Under review as a conference paper at ICLR 2025

MULTIMODAL GENERATIVE AI FOR STORY POINT ES-
TIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This research explores the application of Multimodal Generative Al to enhance
story point estimation in Agile software development. By integrating text, image,
and categorical data using advanced models like BERT, CNN, and XGBoost, our
approach surpasses the limitations of traditional single-modal estimation methods.
The results demonstrate good accuracy for simpler story points, while also high-
lighting challenges in more complex categories due to data imbalance. This study
further explores the impact of categorical data, particularly severity, on the esti-
mation process, emphasizing its influence on model performance. Our findings
emphasize the transformative potential of multimodal data integration in refin-
ing Al-driven project management, paving the way for more precise, adaptable,
and domain-specific Al capabilities. Additionally, this work outlines future direc-
tions for addressing data variability and enhancing the robustness of Al in Agile
methodologies.

1 INTRODUCTION

Story points (SP) are a key metric in Agile methodologies used to estimate the size, complexity,
and effort for each user story, which is a brief description of a software feature from the end user’s
perspective, outlining their needs and reasons. They are also employed to estimate the remain-
ing useful life of software products (Islam & Sandborn, 2021, 2023, 2024). Agile teams typically
use subjective methods such as planning poker to estimate these points, but this process often ex-
hibits inconsistency and variable accuracy (Jorgensen, 2001 & Usman et al., 2014). The inherent
complexity of software development within Agile frameworks demands more precise and adaptable
techniques for estimating story points (Menzies et al., 2006). Recent advancements in Generative
Al particularly multimodal models that integrate various data formats such as text, images, graphs,
and categorical data, present a groundbreaking solution to these challenges (Devlin et al., 2019; He
et al., 2016). Deep learning architectures in these models process and integrate multimodal inputs,
enabling a more nuanced analysis of text-based data and resulting in predictions that are both more
accurate and consistent (Radford et al., 2021). Multimodal Generative Al exploits the synergistic
potential of diverse data types, uncovering complex relationships among textual descriptions, visual
elements, historical data, and categorical features. This comprehensive approach not only improves
the accuracy of story point estimation, aligning with Agile principles, but also enhances the re-
sponsiveness and adaptability of the development process (Vaswani et al., 2017). Integrating these
models within software development workflows reduces human bias and shortens project timelines,
leading to substantial cost savings by minimizing delays and avoiding unnecessary rework (Lin et
al., 2014).

This paper proposes a novel framework that uses state-of-the-art multimodal machine learning tech-
niques, including Ordinal Encoding, BERT (Bidirectional Encoder Representations from Transform-
ers), CNN (Convolutional Neural Networks), XGBoost (Extreme Gradient Boosting), and other
models, to refine the task of story point estimation. Through empirical analysis, we aim to show
how multimodal Generative Al can significantly advance Agile software development by effectively
addressing the complexities associated with story point estimation. Our findings support the adop-
tion of these technologies to foster more reliable, consistent, and adaptable development practices,
setting a new benchmark for future advancements in the field.

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Researchers have extensively studied the field of story point estimation within Agile software de-
velopment, with traditional approaches predominantly relying on expert judgment, historical data
analysis, and machine learning techniques such as regression models and decision trees. While
useful, these methods often struggle with inconsistencies and inaccuracies due to their reliance on
single-modal data inputs, such as text descriptions of user stories (Friedman, 2001). Recent advances
in machine learning, particularly with the advent of deep learning and natural language processing
(NLP), have introduced more sophisticated approaches. However, even these advanced techniques
face limitations in integrating the diverse data types often present in software development processes.

One significant development in machine learning has been the adoption of Generative Al models,
particularly those based on transformer architectures, to enhance the accuracy of story point esti-
mation. Models like BERT (Devlin et al., 2019) and GPT (Brown et al., 2020) have demonstrated
promise in processing textual data and capturing the nuances of user stories with a level of detail
previously unattainable. However, these models typically focus solely on textual analysis and do
not fully exploit the potential of multimodal data integration, limiting their effectiveness in contexts
where visual or categorical data are also relevant. Multimodal learning has emerged as a promising
approach to overcome these limitations by integrating various data formats such as text, images,
graphs, and categorical data. Research in this domain has shown that multimodal models can cap-
ture more complex relationships between different types of data, leading to improved performance
in tasks like image captioning (Radford et al., 2021), sentiment analysis (Wang & Deng, 2018), and
medical diagnosis (Wang et al., 2020). Despite these advancements, applying multimodal learning
to story point estimation in Agile software development remains underexplored. Our work builds
upon these foundations by introducing a Multimodal Generative Al approach that integrates not
only textual but also visual and categorical data, thereby creating a more comprehensive and accu-
rate estimation model. Unlike previous single-modal methodologies, our framework leverages the
strengths of multimodal integration, offering a holistic perspective of user stories and their inher-
ent complexities. This approach promises a significant improvement over traditional methods by
providing a deeper understanding of the multifaceted aspects of story points.

Addressing a critical gap in existing research, our study specifically tailors multimodal learning
to the unique challenges of Agile methodologies, which require rapid iteration and adaptability.
This customization ensures that our model integrates seamlessly into Agile workflows, delivering
real-time, adaptive story point estimates. By extending multimodal learning techniques to Agile
story point estimation, our paper advances the state of the art, overcoming previous limitations and
illuminating new ways to incorporate diverse data types for more accurate and efficient software
development practices. Our research presents a novel framework for integrating multimodal data
into Agile software development, paving the way for more reliable, consistent, and adaptable prac-
tices. This framework makes a significant contribution to the field, offering a robust solution to the
longstanding challenges of story point estimation.

3 OUR APPROACHES

3.1 DATA COLLECTION

For this research, we engaged in a comprehensive data collection process from Bugzill an open-
source bug tracking system, to estimate story points in Agile software development. We chose
Bugzilla for its opensource nature, which provides access to a vast record of historical user sto-
ries focused exclusively on fixes, enhancements, and tasks related to Bugzilla itself. This includes
release-wise data and associated image data, such as wireframes and screenshots of errors. Addition-
ally, Bugzilla offers relevant historical comments from multiple users. This rich data set provides the
diverse and detailed information necessary for our analysis, making Bugzilla an ideal choice for this
project. The data we collected was diverse, encompassing textual descriptions of user stories, histor-
ical data on story points previously assigned to similar user stories, and various visual aids such as
UI/UX mockups, system architecture diagrams, screenshots of errors, and other relevant images like
Ul screenshots and flowcharts (Table 1). We collected categorical data encompassing variables such

"https://www.bugzilla.org/releases/

Under review as a conference paper at ICLR 2025

Table 1: User Stories with Severity and Story Points

USER STORY SEVERITY SP SCREENSHOT
Bugzilla cannot connect to Oracle 11G 2 2
RAC
Typing something like "P1-5” in the 2 5
quicksearch box...
Users who had passwords less than 6 1 2 =
characters long couldn’t log in.
A regression in Bugzilla 4.4.3 due to 1 2 =
CVE-2014-1517...
Update MySQL v5.5.5-10.3.7- 1 3 B
MariaDB1:10.3.7+maria jessi
Remove product and component from 1 2
UNSUPPORTED FIELDS.

as severity levels (e.g., high, medium, low). Our proposed model classifies story points (SP) using
the Fibonacci sequence, a widely adopted system known for its scalability and intuitive handling
of task complexity and size in project management and software development. In this research, we
used the industry-standard sequences of 1, 2, 3, 5, and 8, but additional sequences can be seamlessly
integrated if needed. We also organized the collection of historical story point data for individual
user stories as part of our comprehensive data gathering process.

We meticulously sourced the text data from Bugzilla repositories, involving the extraction and clean-
ing of raw textual descriptions of bugs and feature requests. Historical story points data provided
insights into the assessment trends and valuation of similar past stories. We curated the image data
from associated repositories to ensure a thorough compilation of visuals that contextualize the user
stories, including system architecture, wireframes, UI/UX design wireframes, screenshots, and oth-
ers. For the categorical data, we included attributes like severity levels to facilitate feature engineer-
ing and enhance the model’s accuracy. To manage and streamline the workflow, we consolidated all
collected data—text, graphs, images, and categorical inputs—into a unified dataset. Additionally,
we utilized Pinecone, a vector database, to store and process the embedded data, ensuring organized
storage and efficient handling of complex queries for subsequent analysis and modeling stages.

3.2 DATA PRE-PROCESSING AND FEATURE ENGINEERING

We meticulously pre-processed the raw data for this project to prepare it for use in machine learning
models. We refined the text data by removing extraneous details, normalizing the language, and
tokenizing the content, while pre-processing the image data involved resizing, normalization, and
feature extraction to ensure effective representation of the visual and textual content in the form of
embeddings. Our entire corpus consists of 113 observations. For feature extraction and embedding,
we utilized BERT (Bidirectional Encoder Representations from Transformers) for text data and CNN
(Convolutional Neural Networks) for image data. We chose BERT for its ability to understand the
context within user stories, making it ideal for tasks requiring deep semantic comprehension, such
as classification or sentiment analysis (Table 2). We selected CNNs for their exceptional ability to
process and analyze visual data. Additionally, we applied ordinal encoding to categorical data such
as severity and story points, leveraging the inherent order within these categories to enhance model
interpretability. We used Fibonacci sequencing to estimate story points. Ordinal encoding is particu-
larly valuable for encoding categorical features that follow a natural sequence or hierarchy, ensuring
that the encoded data accurately reflects the structured relationships inherent in the project’s cate-
gories. We integrated these processed features into a multimodal dataset ready for machine learning
in the final step. This fusion combined cleaned text, image features, and encoded categorical data
into a unified format. To facilitate effective model training, we flattened multi-dimensional arrays
into one-dimensional formats and normalized these to ensure a consistent scale across all data types,
thereby optimizing the performance of subsequent algorithms. This comprehensive approach to
data preparation is crucial for accurately predicting and categorizing story points in our models. We

Under review as a conference paper at ICLR 2025

Table 2: Embedded Data

USER STORY IMAGE FEATURE SEVERITY SP
[-2.21136838e01 [-5.24738908e01 2 2
9.56352428e02 ...] 2.34980389¢01 ...]

[-4.05773252e01 - [-5.08334517e-01 2 1
1.53721854e01 ...] 2.26934329e-01]

[-5.83501697e01 - [4.55121100e01 3 2
4.14541990e01] 1.26431987¢01 ...]

[-2.50783592e01 - [-5.24738908e01 2 2
1.19310036¢01 ...] 2.34980389¢01...]

[-2.49652594e01 - [-5.03451347¢e01 3 1
1.48752362¢01 ...] 2.49840632¢01...]

conducted a correlation analysis to explore hidden relationships among individual parameters, in-
corporating the calculation of the mean of embeddings into a single numeric metric. We took this
approach to reduce the dimensionality of complex data, allowing us to identify patterns more effec-
tively and improve the interpretability of the correlation results. The correlation analysis reveals that
the Severity Encoded feature has a strong positive correlation (0.55) with StoryPoint Encoded when
included (Figure 2). In contrast, both Story Embedding Mean and Image Feature Embedding Mean
exhibit low correlations with StoryPoint Encoded (around 0.06 in Figures 1 and 2), indicating a
weaker relationship with the target variable. Despite these differences, XGBoost effectively handles
both correlated and non-correlated data (Chen & Guestrin, 2016). Notably, the Story Embedding
Mean and Image Feature Embedding Mean are average values representing the embedded features
from text data (story descriptions) and image data (visual elements),

Correlation Matrix Heatmap

10

Story_Embedding_Mean
0.8
-06

Image_Feature_Embedding_Mean 04

-0z

StoryPoint_Encoded

StoryPoint_Encoded

=
tu
b
=
o
E
=]
k=]
o
a
£
fiv]
il
5
A

Image_Feature_Embedding_Mean

Figure 1: Correlation Analysis with Mean Embeddings Metric - Excluding Severity.

Under review as a conference paper at ICLR 2025

Correlation Matrix Heatmap

10
Story_Embedding_Mean

08

Image_Feature_Embedding_Mean -06

-04

Severity_Encoded
-02

0o

StoryPoint_Encoded

Severity_Encoded -

StoryPoint Encoded

Story Embedding Mean

Image_Feature_Embedding_Mean

Figure 2: Correlation Analysis with Mean Embeddings Metric — Including Severity

respectively. These means help capture the overall characteristics of the stories and images, aiding in
more accurate story point estimation. Without the Severity Encoded feature, the correlations among
the other features remain consistent and relatively low, suggesting that these features are largely in-
dependent and do not strongly influence the story points on their own. The introduction of Severity
Encoded does not significantly alter the relationships between the other features but highlights its
importance in the model. Therefore, including Severity Encoded in the model may enhance its pre-
dictive accuracy, while the embeddings provide additional, albeit weaker, contributions. However,
incorporating severity could also introduce added complexity, which may prevent any noticeable
improvements in accuracy.

3.3 MODEL DEVELOPMENT AND TRAINING

After integrating BERT text embeddings, CNNextracted image features, and encoded categorical
data, we trained a multimodal generative Al model for story point estimation. To assess the signifi-
cance of severity data in the estimation process, we trained the model both with and without includ-
ing severity data. The model was designed to learn patterns across the multimodal data—text, im-
ages, and categorical values—corresponding to predefined Fibonacci sequence story point classes.
We approached the task as a classification problem. We used TensorFlow, a Pythonbased open-
source machine learning framework, for all our modeling efforts. For the final estimation of story
points, we utilized XGBoost, a powerful ensemble learning algorithm known for its efficiency and
performance (Equation 1).

b=y fulw:) ¢))

Where:

Under review as a conference paper at ICLR 2025

Table 3: User Stories with Severity and Story Points
DEFAULT FINE-TUNED

PARAMETER VALUE VALUE COMMENTS

nestimators 100 75 Reduced to prevent over-fitting due to
the small dataset.

maxgepth 6 4 Lowered to simplify the model and re-
duce complexity.

learning,.ate 0.3 0 Reduced for gradual learning, balancing
performance and risk.

subsample 1 1 Introduces randomness to reduce over-
fitting.

colsample,ytree 1 1 Helps reduce overfitting by adding fea-
ture selection randomness.

gamma 0 1 Increased to make the model more con-
servative with splits.

min.hild,,etght 1 3 RlIncreased to avoid splits that add little
value.

earlystopping,.ounds N/A 15 Used to prevent overfitting by stopping

training early.

* ¢, is the predicted value for the ¢-th observation.
* K is the total number of trees (boosting rounds).

* fr(z;) is the prediction from the k-th tree for the i-th observation.

XGBoost was trained on a labeled dataset, with 80 percent of the data used for training and 20
percent reserved for testing to ensure exposure to diverse examples during training. A total of 113
observations were utilized in this process. We adjusted XGBoost parameters for fine-tuning (Table
3).

3.4 MODEL EVALUATION AND VALIDATION

After training, we thoroughly evaluated and validated the XGBoost model. We conducted com-
prehensive verification and validation by comparing the model’s predictions with the actual story
points assigned by Agile teams. We included evaluation metrics such as precision, recall, F1 score,
accuracy, and other relevant measures to ensure a robust assessment of the model’s performance.

4 RESULTS & DISCUSSION

4.1 INTERPRETATION OF RESULTS

When we compare the model’s performance with and without severity data, several key trends
emerge. The precision, recall, and F1 scores for story point categories 1 and 3 remain consis-
tently high in both models, indicating strong performance in predicting these categories (Figure
3-5). However, excluding severity data leads to a noticeable improvement in overall model accu-
racy, which increases from 0.63 to 0.77 (Table 4). This improvement is also reflected across the
macro and weighted averages, showing more balanced performance across categories.

Story point category 8, which represents more complex or rare story points, shows significant dif-
ferences. With severity data included, the model fails to effectively predict this category, resulting
in a precision, recall, and F1 score of 0.00 (Figure 3). However, excluding severity data, the model’s
recall for story point category 8 improves to 1.00 (Figure 5), and the F1 score reaches 0.5 (Table 4),
though precision remains low at 0.33 (Figure 4). This indicates the model’s ability to identify more
complex cases, albeit with some inaccuracies. This comparison suggests that while severity data
might add complexity, removing it allows the model to generalize better across different categories,
particularly improving its performance on rare or complex story points.

Under review as a conference paper at ICLR 2025

Table 4: Comparison of F1 Scores with and without Severity Data

SP ACCURACY F1 ACCURACY F1
(With Severity) (With Severity) (Without Severity) (Without Severity)
1 1.00 1.00
2 0.67 0.71
3 0.63 0.63 0.77 0.84
5 0.67 0.67
8 0.00 0.50

F1-score by Story Point Category F1 Score by Story Point Category

10

08

06

F1 Scare

04

0z

0o
1 8 2

3
Story Point Category Story Point Category

R

Figure 3: F1 Scores with Severity (left) and without Severity (right)

While the model performed well on simpler categories of story points (1 and 3) in both scenar-
ios, the inclusion of severity data seemed to introduce more complexity than the model could handle
effectively, leading to a decrease in overall accuracy and performance balance. The comparison sug-
gests that while severity data may offer additional insights, it also increases the model’s complexity,
potentially hindering its ability to generalize across all categories.

The confusion matrices further illustrate the model’s performance, highlighting that misclassifica-
tion predominantly occurred in categories with fewer data points, such as category 8. In the first
confusion matrix (with severity data), the model shows a tendency to misclassify categories 2 and 3
into one another, but it generally predicts these categories with a reasonable level of accuracy, likely
due to the higher number of examples in these categories during training (Figure 6). In contrast, in
the second confusion matrix (without severity data), the model displays an improved ability to cor-
rectly classify category 3, evidenced by fewer misclassifications, and a better overall performance
across categories, especially in handling category 8 (Figure 7). These confusion matrices reflect the
challenge the model faces when dealing with imbalanced data, where categories with fewer exam-
ples, like category 8, are harder to predict accurately. Additionally, while severity is an influential
factor in story point estimation, the improved performance without severity data suggests that other
features might be more critical in driving accurate predictions, as severity alone does not account
for the complexity of the task. Table 5 compares actual and predicted story points (SP) for 22 user
stories, focusing on predictions made with and without considering severity. Notably, certain user
stories feature actual and predicted estimations that are very close. In real-life scenarios, develop-
ment teams often accept estimations as accurate when they fall within a close range. If we applied
this approach to the current model, the accuracy would increase to 0.82 when considering severity,
and to 0.95 when not considering severity. However, we could still improve the accuracy of these
models by training them with a larger dataset, enhancing data preprocessing, and exploring other
advanced methodologies.

4.2 LIMITATIONS AND CHALLENGES

First, the limited size of the corpus and the imbalance in the dataset, particularly with fewer exam-
ples in the higher story point categories, likely contributed to the model’s reduced performance in

Under review as a conference paper at ICLR 2025

Precision by Story Point Category - Precision by Story Peint Category

Precision
Precision
Recall

2 3 5 8
Story Point Category

3
Story Point Category

Figure 4: Precision with Severity (left) and without Severity (right)

Recall by Story Paint Category Recall by Stary Point Category

10

Recall

1 3 5 e
Story Point Category Story Paint Category

Figure 5: Recall with Severity (left) and without Severity (right)

these areas. This imbalance challenges the model’s ability to grasp the nuances of more complex
stories, leading to misclassification. Another challenge arises from the integration of multimodal
data. Although the combination of text, image, and categorical data provided a more comprehensive
feature set, the varying quality and relevance of the image data posed difficulties. Some images,
such as architectural diagrams, may not have directly contributed to the estimation process, leading
to noise in the data. Moreover, the reliance on BERT embeddings for text representation, while
powerful, may have limitations in fully capturing the domain-specific language used in Bugzilla
user stories. This limitation could affect the model’s ability to generalize beyond the specific dataset
used in this study

4.3 FUTURE WORK AND IMPROVEMENTS

Future research should address data imbalance by incorporating techniques such as data augmen-
tation or synthetic data generation to provide more examples for underrepresented categories. Ad-
ditionally, researchers should explore advanced image preprocessing techniques, such as attention
mechanisms, to better leverage visual data and reduce the impact of irrelevant images. Another
potential improvement involves fine-tuning BERT on domain-specific corpora related to software
development and bug tracking. This fine-tuning could enhance the model’s understanding of the
unique language used in these contexts, potentially improving performance across all story point
categories. Additionally, exploring alternative machine learning models or ensemble methods that
better handle the complexity and variability of story point estimation could lead to more accurate
and reliable results. Integrating these approaches with the current multimodal framework could
further enhance the model’s robustness and applicability in real-world Agile development settings.
Future work should also explore multimodal models such as ViLBERT, CLIP, LXMERT, Visual-
BERT, MMT, and others. A larger corpus of pre-processed data is necessary to evaluate how the

Under review as a conference paper at ICLR 2025

Confusion Matrix

0
~ -]]
g " 4 1 0 1 i
- o 0] 0
oo o 0] 0 0
i i i i i
1 2 3 5]
Predicted

Figure 6: Confusion Matrix with Severity

Confusion Matrix

i i
2 3

8
Predicted

Figure 7: Confusion Matrix without Severity

model’s performance.

model performs with a more extensive data pool. Additionally, conducting ablation studies and fur-

ther analysis on why severity reduced accuracy will be critical for understanding and improving the

Under review as a conference paper at ICLR 2025

Table 5: Estimation of User Stories with and without Severity

PREDICTED SP PREDICTED SP

USERSTORY# SP iy GEVERITY WITHOUT SEVERITY

1 3 3 3
2 2 2 8
3 2 2 2
4 3 8 3
5 3 2 3
6 2 2 2
7 3 2 2
8 3 3 3
9 5 5 5
10 1 1 1
11 2 3 3
12 2 2 2
13 2 2 2
14 3 3 3
15 3 3 3
16 2 3 3
17 8 2 8
18 3 8 3
19 1 1 1
20 3 3 3
21 5 2 8
22 2 2 2

5 CONCLUSION

This research demonstrated a novel approach to story point estimation in Agile software develop-
ment by leveraging a Multimodal Generative Al framework. The integration of text, image, and
categorical data using advanced machine learning techniques such as BERT for text embeddings,
CNN for image processing, and XGBoost for classification has shown potential to improve the ac-
curacy and consistency of story point predictions. The study’s main findings highlight that while
the model performs well in estimating simpler story points, it faces challenges with more complex
categories, particularly due to data imbalance and the varying quality of image inputs.

The significance of this work lies in its contribution to the growing field of Al-driven software
project management and development tools. By demonstrating how multimodal data can be effec-
tively integrated to provide more nuanced and accurate estimates, this research opens new avenues
for enhancing the efficiency of Agile workflows. The ability to more accurately estimate story points
has direct implications for project planning, resource allocation, and overall software development
efficiency, making this approach highly relevant to both academic research and industry practices.
While this study shows promise, further exploration is needed. Addressing data imbalance, refining
multimodal inputs, and tailoring AI models to the language and context of software development are
key areas for advancement. Future work should focus on these aspects and extend the approach to
other project management domains, bringing us closer to fully realizing AI’s potential in transform-
ing Agile software development

ETHICS STATEMENT

This research on Multi-modal Generative Al for Agile software development addresses ethical con-
siderations in Al-driven decision-making, emphasizing the importance of complementing, not re-
placing, human judgment. Transparency and accountability in Al decisions are key to maintaining
trust within Agile teams. Public data from Bugzilla was carefully anonymized to protect privacy.
The research also acknowledges potential biases in Al models, particularly regarding data distribu-
tion across story point categories, and highlights the need for ongoing efforts to ensure Al tools are
fair, transparent, and ethically sound.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, ...
Dario Amodei. Language Models are Few-Shot Learners. Advances in Neural Information
Processing Systems, 2020.

Tiangi Chen Carlos Guestrin. XGBoost: A scalable tree boosting system. Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, & Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), 2019.

Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine. The Annals
of Statistics, 29(5):1189-1232, 2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. Deep Residual Learning for Image Recog-
nition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Rubyet Islam and Peter Sandborn. Analyzing the influence of processor speed and clock speed on re-
maining useful life estimation of software systems. Proceedings of the Computing Conference,
11-12 July 2024, London, UK, Springer Nature, 2024. DOI: https://doi.org/10.1007/978-3-031-
62281-634.

Rubyet Islam and Peter Sandborn. Demonstration of a response time based remaining useful life
(RUL) prediction for software systems. Journal of Prognostics and Health Management,
3(1):9-36, 2023. DOI: https://doi.org/10.22215/jphm.v3i1.3641.

Rubyet Islam and Peter Sandborn. Application of Prognostics and Health Management (PHM) to
software system fault and remaining useful life (RUL) prediction. Proceedings of the ASME
2021 International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, 2021. DOI: 10.1115/DETC2021-70508.

Magne Jorgensen. A Review of Studies on Expert Estimation of Software Development Effort.
Journal of Systems and Software, 70(1-2):37-60, 2004.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, & C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. European
Conference on Computer Vision (ECCV), 2014.

Tim Menzies, Zhihao Chen, Jairus Hihn, & Karen Lum. Selecting Best Practices for Effort Estima-
tion. IEEE Transactions on Software Engineering, 32(11):883-895, 2006.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, & Ilya
Sutskever. Learning Transferable Visual Models From Natural Language Supervision. Pro-
ceedings of the International Conference on Machine Learning (ICML), 2021.

Muhammad Usman, Emilia Mendes, Frank Weidt, & Ricardo Britto. Effort Estimation in Agile
Software Development: A Systematic Literature Review. Proceedings of the 10th International
Conference on Predictive Models in Software Engineering (PROMISE), 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, & Illia Polosukhin. Attention Is All You Need. Advances in Neural Information
Processing Systems (NeurlPS), 2017.

Meng Wang & Weihong Deng. Deep Visual-Semantic Embedding Model for Multimodal Sentiment
Analysis. IEEE Transactions on Multimedia, 2018.

Yaqing Wang, Quanming Yao, James T. Kwok, & Lionel M. Ni. Generalizing from a Few Examples:
A Survey on Few-Shot Learning. ACM Computing Surveys (CSUR), 53(3):1-34, 2020.

11

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ALGORITHMS AND MODELS
BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS(BERT)

BERT is a transformer-based model that processes text bidirectionally to understand the context of
words by considering both preceding and following words. In our research, BERT generates em-
beddings from user story descriptions, providing rich contextual representations for the story point
estimation model. It uses multi-head self-attention mechanisms and is trained on tasks like masked
language modeling (MLM) and next sentence prediction (NSP).The equation for the attention mech-
anism is given below:

Attention(Q, K, V') = softmax (QKT) |4 (2)
s Vi

where @), K, and V are the query, key, and value matrices, and d, is the dimension of the key.

CONVOLUTIONAL NEURAL NETWORK(CNN)

CNNss are deep neural networks used to analyze visual data by extracting spatial features through
convolutional layers that detect edges, textures, and other visual elements. In our research, CNNs
extract features from images associated with user stories, such as wireframes or screenshots, to
enhance story point estimation accuracy alongside text embeddings. The core operation in a CNN
is the convolution, defined as (Equation 3):

(I« K)(@y) = > I(@—my—n)K(m,n) 3)

where [is the input image, and K is the kernel or filter applied to the image to detect features.

XGBo0OST (EXTREME GRADIENT BOOSTING)

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flex-
ible, and portable. It implements machine learning algorithms under the Gradient Boosting frame-
work, which builds models sequentially, each new model attempting to correct the errors made by
the previous ones. XGBoost is used in our research to handle categorical data and produce predic-
tions based on the combined inputs from text and image features.

A.2 FEATURE ENGINEERING TECHNIQUES

Feature engineering is the process of using domain knowledge to create features that make ma-
chine learning algorithms work. In our research, feature engineering involved encoding categorical
variables, normalizing text and image features, and integrating them into a cohesive input for the
multimodal model. This step is crucial for ensuring that the model can effectively learn from diverse
data types.

Techniques Used:

Ordinal Encoding: Used for categorical variables where the categories have a meaningful order.

Normalization: Applied to ensure that features are on a similar scale, particularly when combining
data from different modalities.

Embedding Techniques: Used to transform high-dimensional categorical data into lower dimen-
sional continuous vectors.

A.3 CODE LISTING

The following Python code generates BERT embeddings for tokenized text (Figure 8):

12

Under review as a conference paper at ICLR 2025

M # Step 5: Generate BERT embeddings for the tokenized text in both columns
def get bert_embeddings(tokenized text):
with torch.no_grad():
outputs = model(**tokenized_text)
embeddings = torch.mean(outputs.last_hidden_state, dim=1)
return embeddings

df['story_embedding'] = df['tokenized_story'].apply(get_bert_embeddings)
df[’imageFeature_embedding'] = df[tokenized_imageFeature'].apply(get_bert_embeddings)

print(df['story_embedding’].head(})
print(df['imageFeature_embedding'].head())

2]

Bowor e

Name:

T]

[[tensor(-0.2211},

[
[
[
L

[
[
[
[
L

tensor(-8.8853),
tensor(-9.4858),
tensor(-@.5835},
tensor(-8.2588),

tensor(-8.5883),
tensor(-8.5247),
tensor(-©.4551},
tensor(-8.5247),

tensor(@.8956),

tensor({@.32...

tensor(-0.1954), tensor(e.8...

tensor(-8.1537),

tensor(-8....

tensor(-0.4145), tensor(@.3...
tensor(-0.1193), tensor(9.8...
tory_embedding, dtype: object

tensor(@.235@),
tensor(@.2269),
tensor(8.2358),
tensor(@.1264),
tensor(@.235@),

tensor(@.21...
tensor(@.28...
tensor(@.21...
tensor(@.85...
tensor(9.21...

[
[
[
[
[
s
[tensor(-©.5247),
[
[
[
[
i

Mame: imageFeature_embedding, dtype: object

Figure 8: Python code for BERT

The following Python code flattens the numpy arrays of the embeddings, assuming the data is already
normalized (Figure 9):

M # Convert PyTorch tensor to NumPy array and flatten it
df['story_embedding'] = df['story_embedding'].apply(lambda x: x.numpy().flatten() if torch.is_tensor(x) else x.flatten())
df[' imageFeature_embedding'] = df['imageFeature embedding'].apply(lambda x: x.numpy().flatten() if torch.is_tensor(x) else x

Display the first few rows of the processed embeddings
print(df['story_embedding’].head())

print(df[" imageFeature_embedding'].head())

4 »

] [-©.22113684, ©.09563524, ©.3231366, ©.0260801...
1 [-8.08532778, -0.19539368, ©.852737627, ©.1881...
2 [-©.48577325, -0.15372185, -0.29964513, ©.0119...
3 [-8.5835017, -8.414542, 0.33154988, B.87981408...
4 [-8.2507836, -8.119316804, 0.85581850, 8.122883...
Name: story_embedding, dtype: object

a [-8.5247389, 0.234980839, B.21061182, -8.052838...
1 [-8.5883345, ©.22693433, ©.284350863, ©.0658858...
2 [-e.5247389, ©.23498039, ©.21061182, -0.052830...
3 [-8.4551211, ©.12643199, ©.852981365, -0.11214...
4 [-e.5247389, ©.23498039, ©.21061182, -0.052830...
Name: imageFeature_embedding, dtype: object

Figure 9: Python code for flattening embeddings

13

	INTRODUCTION
	RELATED WORK
	OUR APPROACHES
	 Data Collection
	Data Pre-processing and Feature Engineering
	MODEL DEVELOPMENT AND TRAINING
	Model Evaluation and Validation

	RESULTS & DISCUSSION
	Interpretation of Results
	Limitations and Challenges
	Future Work and Improvements

	CONCLUSION
	Appendix
	Algorithms and Models
	Feature Engineering Techniques
	Code Listing

