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Abstract—We address the problem of learning reusable state
representations from a non-stationary stream of high-dimensional
observations. This is important for areas that employ Reinforce-
ment Learning (RL), which yields non-stationary data distribu-
tions during training. Unsupervised approaches can be trained on
such data streams to produce low-dimensional latent embeddings,
which could be reused on domains with different dynamics and
rewards. However, there is a need to adequately evaluate the
quality of the resulting representations. We propose an evaluation
suite that measures alignment between the learned latent states
and the true low-dimensional states. Using this suite, we bench-
mark several widely used unsupervised learning approaches. This
uncovers the strengths and limitations of existing approaches that
impose additional constraints/assumptions on the latent space.

I. INTRODUCTION

In recent years, significant attention has been devoted to
reinforcement learning (RL) [1], which could be promising for
the field of robotics [2]. However, re-training control policies
for each task from scratch is prohibitively expensive in most
cases. Often, it is simply impossible due to lack of hardware
data for each robot+task instance and lack of data-efficiency,
e.g. for model-free RL. This problem is especially profound for
the case of high-dimensional observations (e.g. RGB images,
point clouds). Hence, there is a strong demand for approaches
that can learn re-usable low-dimensional representations, which
can transfer across different tasks and robot/object dynamics.
Consider the case when RL is trained on source domains with
ample data (e.g. in simulation or in a setting where exploration
is cheap and safe). State representations could be extracted
from intermediate layers of RL networks, but they might not be
reusable on a target domain with different rewards or dynamics.

The field of unsupervised learning could offer potential solu-
tions for streamline learning of reusable latent embeddings, e.g.
with bottleneck-reconstruction approaches, such as variational
autoencoder (VAE) [3] variants. However, evaluation in this
field has mostly focused on dataset-oriented learning, making
a limiting assumption that the training data distribution is
stationary. Moreover, advanced unsupervised learning works
mostly report best-case results. These may be achievable only
with architectures, hyperparameters and learning rate decay that
the authors find to work best for a given dataset. Furthermore,
obtaining reconstructions that are clear enough to judge whether
all the important information is encoded in the latent state could
still require days or weeks of training [4, 5]. Hence, there is
a need for thorough evaluation that does not rely on simply
looking at the reconstructed images.

We introduce an evaluation suite for measuring the quality
of unsupervised representation learning for continuous control
domains. We extend commonly used benchmarks, implemented
using PyBullet [6], to report both low- and high-dimensional
state. Low-dimensional state contains standard representations
used in robotics, e.g. robot joint angles & velocities. High-
dimensional state is expressed by an RGB image of the scene.
We provide tools to measure alignment between the latent
state from unsupervised learners and the true low-dimensional
simulator state. Furthermore, we introduce new environments
for manipulation with multiple objects and ability to vary
their complexity: from geometric shapes to mesh scans and
visualizations of real objects. We analyze several commonly
used unsupervised approaches with the proposed evaluation
suite. Our experiments show that while alignment with true low-
dimensional state is achieved on the simpler benchmarks, the
more advanced environments present a formidable challenge,
especially for approaches that need to employ reconstruction.

II. RELATED WORK

Scalable simulation suites for continuous control, such as
[7, 8, 9], have the potential to improve applicability of deep RL
to robotics. However, advanced benchmarks for unsupervised
learning from non-stationary data are lacking, since that
community adopted mainly dataset-oriented evaluation. [10]
provides such framework for ATARI games, but it is not aimed
for continuous control. [11] includes a limited set of robotics
domains and 3 metrics for measuring representation quality:
KNN-based, correlation, RL reward. We incorporate more
standard benchmarks in our suite, introduce a variety of objects
with realistic appearances and measure alignment to latent state
in a complimentary way: highly non-linear, but not RL-based.
In future work, it could be useful to create a combined suite to
support both games- and robotics-oriented domains, and offer a
comprehensive set of RL-based and RL-free evaluation. In our
work, we aimed to create a setting where it is tractable to train &
evaluate using a single GPU (or a small number of GPUs/CPUs).
This makes our suite applicable to initial evaluation of new
algorithms and training adjustments. It could also be beneficial
to include more computationally demanding but completely
photo-realistic simulated environments, e.g. [12, 13]. Such
combined framework could offer more direct incentives for
computer vision and learning communities to thoroughly
evaluate their proposed approaches on non-stationary data
streams, which would be more relevant to robotics.



Fig. 1: Evaluation suite environments. Left: Standard PyBullet environments for which our suite yields both pixels and low-
dimensional state. Right: Proposed new domains with YCB objects. Our suite is available at https://github.com/contactrika/bulb

III. EVALUATION SUITE FOR UNSUPERVISED LEARNING

Our proposed evaluation suite tracks the alignment between
the learned latent state and the true low-dimensional state. We
train unsupervised approaches on frames that an RL policy
yields during its own training. This creates a setting with a
non-stationary stream of RGB images as training data for an
unsupervised learner. The alignment of the learned latent state
and the true low-dimensional state is measured periodically
as training proceeds. For this, we do a regression fit using
a small fully-connected neural network, which takes latents
as inputs and is trained to produce low-dimensional states
as outputs (robot joint angles, velocities, feet contacts for
locomotion, object position/orientation for manipulation). The
quality of alignment is characterized by the resulting test
error rate. This approach helps quantify latent space quality
without the need to wait for clear image reconstructions to
emerge. It also provides a general way of judging whether
the latent representation is amenable to be incorporated as a
low-dimensional state into a larger learning system. This is in
contrast to other approaches that measure specific aspects of
state quality, such as disentanglement. Our regression-based
approach is more general: if learning using the latent state
succeeds, disentanglement between dimensions is not strictly
needed, and mandating it could limit the flexibility of learned
representations.

To connect our suite to existing RL benchmarks, we extend
OpenAI gym interface [14] of several widely used robotics
domains, so that both pixel- and low-dimensional state are
reported during training. We use PyBullet [6] version of these
domains, which is open source and free, hence supports wide
accessibility/affordability of our testing suite. Simulation envi-
ronments are parallelized, ensuring a scalable setup. PyBullet
provides a convenient python interface, and ensures simulations
are fast: its underlying physics engine runs in C/C++. To
create more realistic object appearances and dynamics we
introduce advanced domains utilizing meshes from scans of real
objects from YCB dataset [15]. Our RearrangeYCB domain
models object rearrangement tasks, with variants for using
a basic planar robot arm and a realistic option with Franka
Emika robot arm. RearrangeGeom variant offers an option
with simple geometric shapes instead of object scans. YCB-on-
incline domain models objects sliding down an incline, with
options to change friction and apply external forces; Geom-

on-incline offers a variant with simple single-color geometric
shapes. Figure 1 gives an overview; other domains with OpenAI
gym interface can be easily incorporated into the suite as well.

IV. BENCHMARKING LATENT STATE ALIGNMENT

We evaluated several widely used and recently proposed
unsupervised learning approaches. Below we give a brief
overview of each approach:
– VAEv0 [3]: a VAE with a 4-layer convolutional encoder and
corresponding de-convolutional decoder (same conv-deconv
stack is also used for all the other VAE-based methods below).
– VAErpl: a VAE with a replay buffer that retains 50% of

initial frames from the beginning of training and replays them
throughout training. This is our modification of the basic VAE
to ensure consistent performance on frames coming from a
wider range of RL policies.

– β-VAE [17]: a VAE with an additional β parameter
in the variational objective that is supposed to encourage
disentanglement of the latent state. To give β-VAE its best
chance we experimented with several β parameters and also
included replay enhancement from VAErpl.
– SVAE: a sequential VAE that is trained to reconstruct a

sequence of frames x1, ..., xt and passes the output of the
convolutional stack through LSTM layer before decoding.
Reconstructions for this and other sequential versions were
also conditioned on actions a1, ..., at.

– PRED: a VAE that is given a sequence of frames
x1, ..., xt and is tasked with constructing a predictive sequence
x1, ..., xt+k. First, the convolutional stack is applied to each
xi as before; then, the t output parts are aggregated and passed
through several fully connected layers. Their output constitutes
the predictive latent state. To decode: this latent code is chunked
into t+ k parts, each fed into deconv stack for reconstruction.
– DSA [18]: a sequential autoencoder that uses structured

variational inference to encourage separation of static vs
dynamic aspects of the latent state. It uses LSTMs in static
and dynamic encoders. To give DSA its best chance we tried
uni- and bidirectional LSTMs, as well as replacing LSTMs
with GRUs, RNNs, convolutions and fully connected layers.
– SPAIR [19]: a spatially invariant and faster version of

AIR [20] that imposes a particular structure on the latent state.
SPAIR overlays a grid over the image (e.g. 4x4=16, 6x6=36
cells) and learns ‘location’ variables that encode bounding

https://github.com/contactrika/bulb


Fig. 2: Benchmarking alignment with true low-dimensional sate on multicolor versions of CartPole, InvertedPendulum,
HalfCheetah, Ant. The plots show mean absolute test error of NN regressors trained with current latent codes as inputs and true
low-dimensional states (robot positions, velocities, contacts) as outputs. 90% confidence intervals over 6 training runs for each
unsupervised approach are shown (overall, we performed >140 training runs for these plots). Unsupervised approaches are
trained on frames from replay buffers, filled by PPO [16] RL learner, while it trains from 64 parallel simulation environments.
Unsupervised learners get 1024 frames per batch; 10 batches per epoch for pendulums, 50 for locomotion. Top row shows
performance on frames from current RL policy πcurr, middle row: random policy πrand. Current RL reward is displayed in the
bottom row (scaled to ≈ [-1, 1]). 1st column shows results for CartPole and InvertedPendulum for position (cart/base position,
pole/pendulum angle); 2nd column: for velocity (cart/base linear velocity, pole/pendulum angular velocity). 3rd column shows
aggregated results for position, velocity and contacts for HalfCheetah; 4th column shows these results for the Ant domain.

boxes of objects detected in each cell. ‘Presence’ variables
indicate object presence in a particular cell. A convolutional
backbone first extracts features from the overall image (e.g.
64x64 pixels). These are passed on to further processing to
learn ‘location’,‘presence’ and ‘appearance’ of the objects. The
‘appearance’ is learned by object encoder-decoder, which only
sees a smaller region of the image (e.g. 28x28 pixels) with
a single (presumed) object. The object decoder also outputs
transparency alphas, which allow rendering occlusions.

A. Neural Network Architectures and Training Parameters

In our experiments, unsupervised approaches learn from
64x64 pixel images, which are rendered by the simulator. All
approaches (except SPAIR) first apply a convolutional stack
with 4 hidden layers, (with [64,64,128,256] conv filters). The
decoder has analogous de-convolutions. Fully-connected and
recurrent layers have size 512. We also experimented with
batch/weight normalization and larger/smaller network depth
& layer sizes, but these did not yield a noticeable change
in performance. The latent space size is set to be twice the
dimensionality of the true low-dimensional state. For VAE we
also tried setting it to be the same, but this did not impact results.
PRED,SVAE,DSA use sequence length 24 for pendulums
& 16 for locomotion (increasing to 32 yields similar results).
SPAIR parameters and network sizes are set to match those

in [19]. We experimented with several alternatives, but only
the cell size had a noticeable effect on the final outcome. We
report results for 4x4 and 6x6 cell grids, which did best.

To decouple the number of gradient updates for unsupervised
learners from the simulator speed: frames for training are
re-sampled from replay buffers. These keep 5K frames and
replace a random subset with new observations collected
from 64 parallel simulation environments, using the current
policy of an RL learner. All training hyperparameters are the
same for all settings (e.g. learning rate set to 1e-4). Since
different approaches need different time to perform gradient
updates, we equalize the resources consumed by each approach
by reducing the batch size for the more advanced/expensive
learners. VAEv0 , VAErpl, β-VAE get 1024 frames per batch;
for sequential approaches (SVAE,PRED,DSA) we divide
that by the sequence length; for SPAIR we use 64 frames per
batch (since SPAIR’s decoding process is significantly more
expensive). With that, the compute time of these approaches
is roughly equalized.

B. Evaluation on Multicolor Pendulums and Locomotion

Figure 2 shows results on multicolor versions of CartPole,
InvertedPendulum, HalfCheetah and Ant domains. We devel-
oped these versions to give a chance to the more advanced
algorithms to display their benefits. A potential issue with



Fig. 3: Evaluation on RearrangeGeom domain. VAErpl encoded angle of the main robot joint, location & partly orientation
(major axis) of the largest objects. SPAIR encoded (rough) locations quickly, but did not improve with longer training.

original environments could have been that the single color
scheme in the images was too simple to exploit for obtaining
trivial color-based features. With this foresight, we developed
the multicolor versions. However, in the end we did not observe
qualitatively different results on multicolor vs original domains.

We performed evaluation on frames from two kinds of
policies: current RL learner policy πcurr and random policy
πrand. Ensuring reasonable performance on πrand is needed
for successful transfer: the stream of frames generated when
starting to learn a new task would be more similar to that from
a random policy than a final source task policy. Frames used
for evaluation were held out from training i.e. not added to
replay buffers at any time. To decouple unsupervised learner
performance from RL training: for these experiments RL was
trained on simulator state. Our evaluation suite supports training
RL from the current latent representation. This is useful when
analyzing one unsupervised method, but when comparing
different methods this would likely cause RL learners to learn
in different ways and at different rates. In turn, this could
cause evaluation on πcurr to refer to incomparable policies
with vastly different success rates. For example: if RL gets
stuck it might produce the same failed end state often, which
would be easy to reconstruct due to low variability in frames,
but would not constitute a success of the unsupervised learner.

The performance of VAEv0 quickly deteriorated on πrand.
We discovered that this problem can be effectively eliminated
by replaying the frames from the initial random policy. The
resulting VAErpl offered good alignment for position-based
part of the true state (e.g. cart/base x coordinate, angles of the
pole/pendulum, joint angles for HalfCheetah and Ant robots).
Hence, we added this fix to all the other approaches as well.

Surprisingly, β-VAE offered no improvement over VAErpl.
We tried a range of βs: [100, 20, 10, 5, 0.5]; the best (β =5)
performed slightly worse than VAErpl on pendulum domains
(shown in Figure 2), the rest did significantly worse (omitted
from plots).

As anticipated, the sequential approaches (SVAE, PRED,
DSA) offered significant gains when measuring alignment to
velocity part of the true low-dimensional state. Despite its
simpler architecture and training, PRED performed best on
pendulum domains. For aggregated performance on position,
velocity and contacts (i.e. whether robot joints are touching the
ground): in locomotion domains PRED outperformed VAErpl

on πcurr, but was second-best on πrand. Overall, this set of
experiments was rather illuminating: simpler approaches were
frequently able to beat the more advanced ones, despite the
fact we made an extra effort to ensure the appearance of the
domains was not trivialized.

C. Evaluation on the New Multi-object Environments

For our newly proposed domains with multiple objects: the
first surprising result was that all approaches we tested failed to
achieve clear reconstructions for objects from the YCB dataset.
This was despite our attempts of using larger architectures (up
to 8 layers with skip connections) to get a decoder network
similar to [21]. Clear reconstructions were achieved on the
simplified version with geometric shapes with SPAIR, while
the rest of the algorithms failed to reconstruct the simplified
objects as well. This indicates that a multi-object domain
(with realistic textures) is a highly needed addition to the
current continuous control benchmarks. While single-object
benchmarks might be still challenging for control, they could be

Fig. 4: True images (top) and reconstructions (bottom) after 10K epochs for: VAErpl (4 leftmost columns), SVAE (next 2
columns), PRED (next 2 columns), DSA (2 rightmost columns).



Fig. 5: Left side: SPAIR RearrangeYCB results after 10K epochs (≈32 hours). Right side: SPAIR after 100K epochs (≈11 days).
True images are in the top row, reconstructions in the bottom. 3 left sets of images show SPAIR with 6x6 grid; 4 right sets
show SPAIR with 4x4 grid. Red boxes overlaid over true image show that bounding boxes did not shrink with further training.
SPAIR 6x6 tended to split large objects into pieces (visible in the case with blue background). SPAIR 4x4 did not split objects
and had better results for low-dimensional alignment. Despite shortcomings, SPAIR’s reconstructions were better than those
from other approaches we tried. Its object localization could be suitable for cases where approximate positions are sufficient.

inherently simpler for latent state learning and reconstruction.
We note that our evaluation uncovered shortcomings of recent
approaches, which are considered successful by the learning
community. This hints at the fact that it could be challenging
to scale/adapt the progress in this other community to make it
adequately applicable to advanced applications in robotics. We
will come back to this discussion in the conclusions section.

Figure 3 shows analysis of latent state alignment for SPAIR
vs VAErpl on RearrangeGeom domain. VAErpl only learns
to encode position & orientation of the largest object and the
angle of the main robot joint. SPAIR encodes positions of
all objects quickly, but the alignment remains imprecise even
after extensive further training. This could be due to the fact
that our benchmark contains objects of various sizes, while
SPAIR’s most successful results have been shown on domains
with small uniformly sized objects. Bounding boxes reported
by SPAIR were not tight event after further training (up to
11 days of training on one NVIDIA GeForce GTX1080 GPU).
We used PyTorch implementation from [22], which was tested
in [23] to reproduce the original SPAIR results (and we added
the capability to learn non-trivial backgrounds). An optimized
Tensorflow implementation could potentially offer a speedup,
but PyTorch has a strong advantage of being more accessible
and convenient for research code.

We note that VAErpl outperformed SPAIR on encoding
the orientation of the largest object. This exposes the limitation
of SPAIR as position-oriented approach, which succeeds in
adding more structure to help encode location information,
but does not alleviate the challenge of uncovering orientation
information. Orientation has to be inferred from the object
‘appearance’ features, which lie in the unstructured part of
the latent space. Our analysis illustrates that structuring latent
space could be beneficial, but has to be done such that it does
not impair the learning process and latent representations. This
is not trivial, since relying on intuition can be misleading.
Seemingly beneficial structure and assumptions that have been
shown to work well on simpler domains could fail to hold on
a new set of domains in unanticipated ways. At the same time,
forgoing structure can result in complete failure to capture
information from the more advanced scenes.

It would be interesting to compare SPAIR to a few successors,
for example SPACE [24] and IODINE [4]. However, the source
code for these was not available. Since these approaches aim
to be more general and incorporate less structure than SPAIR:
there is no definite reason for them to yield better results in our
setting. Nonetheless, it would be useful to get an experimental
result. Re-implementation could have been time-consuming,
and it would be difficult to judge whether shortcomings are due
to re-implementation vs intrinsic limitations of an algorithm.
Overall, it would be important for the research community to
devote more attention to enabling outside evaluation, even in
cases where the source code can not be shared publicly.

V. KEY INSIGHTS AND CONCLUSIONS

The high-level insights from our experimental analysis can
be summarized as follows:
– A basic VAE with convolutional networks and a large batch

size can outperform advanced approaches, including sequential
autoencoders (SVAEs) that utilize LSTMs and structured
variational inference with unsupervised disentanglement. This
could be because non-stationary observations are challenging
for advanced approaches, which require more gradient updates
to significantly shift their posteriors (and might also need
careful selection/decay of learning rates). Rather surprisingly,
unsupervised disentanglement (e.g. β-VAE) performs worse
(or at best similar to) the basic VAE.
– Predictive SVAE with a simple fully-connected architecture

instead of an LSTM can outperform more advanced approaches.
It can provide benefits for encoding velocity and contacts
information into the latent state. This points to the opportunity
for developing algorithms that interpolate between model-free
and model-based RL. We could create latent representations
that benefit from capturing the essence of an extended forward
model p(st, ..., st+k|s<t, a<t) in the latent state, without
explicitly mandating the use of a model-based RL algorithm.
– Approaches that introduce additional latent space structure

can help faster learning, but can also impair ability to retain
precise information about the underlying state. SPAIR [19], a
faster version of AIR [20], mandates encoding explicit location
variables. This helps it to roughly capture locations of all the



objects in the scene. However, for our newly proposed domains
with objects of non-uniform sizes, the precision of locations
does not improve with longer training. In contrast, a basic
VAE completely fails to capture all but the largest objects
in the scene, even if we simplify them to be simple single-
color geometric shapes and remove the scene background.
Nonetheless, VAE does learn to encode both position and
orientation of the largest object in the scene much faster and
more precisely than the structured SPAIR approach. Taking a
broader view, we could postulate that for the field of robotics
it is important to incorporate domain knowledge and structure
into unsupervised learning methods. It might not be appropriate
for roboticists to strive for removing all prior knowledge, even
for approaches that aim for generality.
– The most non-intuitive finding was that the stumbling block

was not in the latent space learning, but in decoding. It is known
that reconstructing small but salient parts of the scene can be
challenging. Hence, in our experiments we enlarged the objects
as much as possible. Thus, most objects were not small in
terms of their pixel area. All of the basic decoder architectures
we tried failed to reconstruct multi-object scenes. Supervised
learning of the decoder with true low-dimensional state as
input also did not produce high-quality reconstructions for the
more advanced domains. For domains where decoding was
tractable, our alignment analysis showed that the latent state
tended to encode all the relevant information long before the
decoder was able to produce discernible images. This points to
a fundamental mismatch between the difficulty of encoding vs
decoding. In turn, this points to the need to consider latent space
learning that does not involve reconstruction. Despite excellent
results for dataset-oriented applications, reconstruction might
not be the best choice for settings with streaming non-stationary
data, the kind we would like to handle in robotics.
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