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Abstract

In concept erasure, a model is modified to selectively prevent it from generating a
target concept. Despite the rapid development of new methods, it remains unclear
how thoroughly these approaches remove the target concept from the model. We
begin by proposing two conceptual models for the erasure mechanism in diffusion
models: (i) interfering with the model’s internal guidance processes, and (ii) re-
ducing the unconditional likelihood of generating the target concept, potentially
removing it entirely. To assess whether a concept has been truly erased from the
model, we introduce a comprehensive suite of independent probing techniques:
supplying visual context, modifying the diffusion trajectory, applying classifier
guidance, and analyzing the model’s alternative generations that emerge in place
of the erased concept. Our results shed light on the value of exploring concept era-
sure robustness outside of adversarial text inputs, and emphasize the importance
of comprehensive evaluations for erasure in diffusion modeld]
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Figure 1: We suggest that diffusion model concept erasure methods can be broadly categorized
into two types: (1) Guidance-Based Avoidance, which avoids a concept by redirecting the model
to different concept locations. (2) Destruction-Based Removal, which reduces the unconditional
likelihood of the target concept while keeping guidance intact, forcing the model to another concept
when prompted with the target concept. The height represents the unconditional likelihood P(X).

When a concept is supposedly erased from a diffusion model, is its knowledge truly removed?
Or is the model merely avoiding the concept, with the underlying knowledge still intact? This
fundamental question is at the heart of understanding erasure in diffusion models.

"'Source code and datasets can be found at kevinlu4588/WhenAreConceptsErased,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/kevinlu4588/WhenAreConceptsErased

Investigating this question is crucial as it directly impacts how we evaluate the thoroughness of
unlearning methods in text-to-image diffusion models, pushing us towards more rigorous standards.
Furthermore, a clear understanding of the underlying erasure mechanisms will enable us to advance
research, paving the way for stronger and more robust unlearning techniques.

To help analyze how erasure might affect the underlying model’s knowledge, we propose two
conceptual mechanisms for erasure methods: guidance-based avoidance and destruction-based re-
moval. Guidance-based avoidance suggests that the model learns to steer its generation away from
the target concept by modifying the conditional guidance, which may leave the core knowledge
preserved. In contrast, destruction-based removal implies that the process aims to fundamentally
suppress, or ideally, eliminate the underlying knowledge about the concept (see Figure|[T).

Distinguishing between these regimes is not straightforward: both can appear visually successful
when tested with standard prompts. Prior research [[18} 26, 29, 21]] has shown that erased concepts
can be resurfaced by searching for the right input, suggesting that most existing methods act through
guidance-based avoidance rather than destruction-based removal. Yet these findings, while reveal-
ing, leave open a question: if the underlying knowledge persists, through which other methods might
we uncover it? Can it re-emerge through other techniques as well?

We suggest a multi-perspective approach for testing for persistent knowledge. First, we employ
existing input optimization techniques, including textual inversion and prompt-based adversarial
attacks, to actively search for inputs that might still trigger the generation of the erased concept.
Second, we use context-based probing, where the model is provided with contextual cues related to
the erased concept. For example, through inpainting tasks or by initiating the diffusion process from
an intermediate step. Conditioned on such context, we see if the edited model can complete or gen-
erate the concept. Third, we explore training-free trajectory expansion, which broadens the model’s
standard diffusion pathways to potentially uncover latent or suppressed concept representations.
Fourth, we employ latent classifier guidance, augmenting text conditioning with gradients from a
concept-specific latent classifier. This provides a powerful signal that steers the diffusion trajectory
toward residual concept latents, counteracting erasure-induced guidance that drives the model away.
Finally, our suite includes dynamic concept tracing to monitor how a concept’s representation and
its likelihood of generation evolve throughout the entire erasure procedure.

Our findings reveal undiscovered behavior of models under these new evaluation contexts. For in-
stance, models that appear robust under traditional input search techniques remain vulnerable when
assessed from other perspectives. These observations emphasize the critical need for a compre-
hensive suite of evaluations, like the one we propose, to reliably assess the completeness and true
effectiveness of any concept erasure method.

2 Two Conceptual Models for Erasure

Here, we formalize two conceptual models that capture how diffusion model erasure methods can
modify the generative process: guidance-based avoidance and destruction-based removal. While
recent works have proposed numerous erasure algorithms (see Section [] for a review), they are
typically described by their training losses, data requirements, or parameter modifications [, 26}
19, [10]. Often, less attention is given to their effect on the resulting model behavior. Here, we
instead focus on their functional effect on the model’s output distribution.

We term methods that redirect the model’s conditional guidance rather than eliminate the concept
itself as guidance-based approaches. Accordingly, such approaches may still regenerate the erased
concept when given optimized inputs or alternative cues. Destruction-based approaches, in contrast,
aim to suppress the model’s unconditional likelihood P(X) of producing the erased concept. Such
methods correspond to a deeper removal of underlying features (and potentially broader collateral
effects on nearby concepts).

For example, we examine Unified Concept Erasure (UCE) [10] as a representative case of guidance-
based erasure. UCE optimizes a new attention projection matrix W using the following loss:
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where F and P denote erased and protected concepts, respectively. The first term aligns erased con-
cept embeddings ¢; with neutral or substitute vectors v}, while the second term preserves responses



for protected prompts c;. This effectively shifts the model’s conditional distribution from P(X | ¢;)
to P(X | ¢f), where ¢} represents a neutralized prompt (e.g., an empty string).

Because the erased concept’s representation is redefined through a substitute projection, UCE al-
ters the semantic associations between text tokens and their corresponding visual features rather
than eliminating the features themselves. The edited projection matrix W effectively redirects the
model’s conditional mapping from the erased concept toward a neutral or generic concept. As a re-
sult, the model’s output distribution P(X) exhibits redirection rather than complete suppression:
the conditional generation shifts from the erased concept’s toward a different one. Therefore, UCE
exemplifies a guidance-based approach - the underlying concept remains present but the generation
is guided away from it under standard prompts.

However, for methods whose post-erasure behavior is less interpretable, such as STEREO [26]], it
becomes less clear whether suppression arises from guidance redirection or true knowledge de-
struction. To empirically differentiate these regimes, we next introduce a comprehensive evaluation
framework that probes multiple pathways through which erased knowledge could resurface. By us-
ing many different probing techniques and checking which can still recover the erased concept, we
assess the extent and character of the model’s residual knowledge, and whether an erasure method
behaves more like guidance-based avoidance or destruction-based removal.

3 Evaluation Suite

We present our evaluation suite and apply it to a representative set of existing erasure methods. We
choose methods that represent different approaches, but our evaluations can be easily applied to any
new or existing method. Specifically, we evaluate the following erasure methods:

Baseline [20]] - Unedited Stable Diffusion 1.4 model (no erasure); UCE [10] - A closed-form so-
lution editing of the cross-attention weight in the model to replace the target concept and preserve
other concepts; ESD-u [8] - fine-tunes the pre-trained diffusion U-Net model weights to remove
a specific style or concept when conditioned on a specific prompt; ESD-x [8] - fine-tunes only
the cross-attention layers, modifying how textual conditioning influences latent feature modulation;
Task Vector [19] - Finetuning the U-net to increase the likelihood of the target concept, and then edit-
ing the model in the opposite direction using the Task Vector technique [15]]; GA - direct gradient
ascent to reduce the likelihood of the target concept; STEREO [26] - A two-stage method com-
bining adversarial prompt search with compositional fine-tuning to robustly erase concepts while
preserving model utility; RECE [12] - A fast, closed-form method that iteratively applies UCE on
text embeddings while minimizing impact on unrelated concepts.

Concepts - we conduct our experiments on 10 object concepts and 3 art styles. We report average
results in the main text, and standard deviation in the supplementary materials. Metrics - CLIP:
we evaluate semantic similarity of the output image to the target concept name [14]; Classification
Accuracy: We detect the presence of the concept in the generated image using an ImageNet classifier
for object concepts. For the specificity of model erasure, we measure how the erasure affects other
unrelated concepts via CLIP and classification scores). Please see App[C| for all model training,
erasing evaluation, and metric calculation implementation details.

We refer to each of the following tests as a distinct probe: designed to challenge the examined
erasure method and reveal the underlying behavior of different methods.

3.1 Optimization-based Probing

Question 1: Can we probe out the residual knowledge by searching for the right input?

We evaluate this question by adopting strategies from previous works [18} [32]. These methods
optimize the inputs of the erased model to search for the right trigger that would resurface the
knowledge of the erased concept, if still present. To this end, we use Textual Inversion [6] and an
adversarial attack, UnlearnDiffAtk [32]. Both these methods optimize the text embeddings or tokens
to generate the erased concept using the erased model. We use them as probes to quantify if there
are traces of knowledge present post-erasure, as done in prior work [[18].



The results in Table [I] reveal a stark dichotomy of how various methods withstand optimization-
based probes. GA, TV, and STEREO exhibit thorough removal of the erased concept, as indicated
by the lower CLIP similarity and classification accuracies across both probes. In contrast, methods
such as UCE and ESD-x remain highly vulnerable to both Textual Inversion and UnlearnDiffAtk,
with high classification accuracy and CLIP scores, suggesting that residual knowledge of the target
concept persists. Moreover, a consistent trend emerges: models that are more robust to adversarial
probing often suffer greater degradation in their performance on unrelated concepts (see Fig. [§]in

App[C33).

GA UCE ESD-x ESD-u TaskVec STEREO RECE

Erased Concept ()

CLIP 243 224 21.1 20.9 23.1 19.6 21.15
Class Acc. (%) 0.6 44 3.6 1.0 2.2 0.0 4.0
Textual Inversion (J)

CLIP 22.7 30.7 30.6 28.0 25.1 24.5 29.15
Class Acc. (%) 0.6 712 65.9 31.8 6.2 6.3 58.20
UnlearnDiffAtk (])

CLIP 26.0 28.3 28.7 27.8 27.1 26.1 27.9
Class Acc. (%) 6.5 26.8 21.0 16.6 10.3 3.7 7.2
Unrelated Concepts (1)

CLIP 28.8 31.2 30.8 30.7 29.4 0.0 30.5
Class Acc. (%) 522 75.0 71.3 70.4 60.4 52.8 71.7

Table 1: Optimization-based probing of residual concept knowledge across erasure methods. We
evaluate whether erased concepts can be resurfaced using standard prompts, Textual Inversion, and
the UnlearnDiffAtk adversarial attack. The final row shows performance on unrelated concepts (1),
measuring the preservation of general model utility.

Figure 2: Inpainting-based probe results for multiple erased concepts. For each method and concept,
the masked region is filled by the model conditioned on surrounding context. Task Vectors success-
fully reconstructs the erased region, despite robustness to Textual Inversion and UnlearnDiffAtk.

3.2 In-context Probing
Question 2: Can we probe out the residual knowledge by providing visual context?

We investigate whether an erased concept can resurface when the model is provided with a single
visual in-context example. This question drives our application of visual in-context cues to evaluate
the depth and thoroughness of concept erasure (a technique also explored in prior works [T}, 23]).
Unlike optimization-based approaches, these method do not use the networks gradients, thereby
providing a different lens on erasure efficacy.

First, we use Inpainting as an in-context probe for erasure. We provide the model with an image
corresponding to the concept, but with a portion of image masked out. When the model truly has



Prompt: “A painting in the style of Van Gogh”
Input UCE ESD-x ESD-u GA TaskVec STEREO RECE

Timestep of original image context

Figure 3: Diffusion Completion outputs given intermediate images generated at timestep ¢ by the
original (unerased) model. These noisy inputs are visualized in the first column via the Denoising
Trajectory (DT) [7] technique. We then pass each of these unfinished images as contextual inputs to
the erased models to complete the remaining denoising steps.

no knowledge of the concept, we assume it should not correctly inpaint the image. Figure 2] shows
that the Task Vector method, for example, despite being robust even against Textual Inversion, still
inpaints recognizable images of Starry Night by Van Gogh. This is reflected in Table 2} where
TaskVectors achieve inpainting CLIP scores comparable to less adversarially robust models. In
contrast, STEREO and GA produce little to no meaningful inpainting.

Next, we use Diffusion Completion as another in-context probe by leveraging unfinished image
generations from the unerased base model. Specifically, we run the diffusion process with the base
model for ¢ = 5 or t = 10 timesteps (out of 50) and save the intermediate image. This image is
then passed to the erased model to complete the generation. This approach allows us to quantify how
easily the erased concept can be recovered from partial generation traces. Figure[3|shows that RECE
and STEREO, despite offering significantly stronger robustness to adversarial attacks compared to
methods like UCE, ESD-x, and ESD-u, surprisingly reproduce knowledge about the erased concept
during Diffusion Completion att = 5 and ¢t = 10 respectively.

Given their performance under optimization-based probes, models such as Task Vector, STEREO,
and RECE, appeared to have significantly destroyed traces of erased concepts. However, these
context-based probing methods reveal a more nuanced model behavior. They offer a complementary
perspective to traditional prompt optimization approaches, suggesting that erasure robustness can
depend on the nature of the input signal.

Metric Base UCE ESD-x ESD-u GA TaskVec STEREO RECE
Inpainting ()

CLIP (Inside mask) 295 269 26.8 23.9 24.8 25.9 22.7 26.3
Class Acc. (%) 777 69.1 69.1 68.5 61.7 66.8 63.8 68.2
Diffusion Completion ()

CLIP t=5 302 277 27.2 26.9 24.0 23.8 23.9 28.82
CLIP ¢t=10 30.2 296 28.7 27.5 24.5 24.9 27.8 28.82
Class Acc. (%) t=5 78.0 427 37.8 32.5 1.1 2.4 32 36.5
Class Acc. (%) t=10 78.0  62.1 54.8 36.9 3.2 6.1 21.2 454

Table 2: Inpainting metrics evaluate how well the model completes a masked region when given
surrounding context from an image of the erased concept; CLIP scores reflect semantic similarity
within the masked area, while classification accuracy considers the full image. Diffusion Completion
metrics evaluate whether erased concepts resurface when the erased model completes the diffusion
process starting from an intermediate image produced by the original model after 5 or 10 out of 50
denoising steps.
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Figure 4: Our Noise-Based probing technique adds additional noise to the diffusion trajectory. At
every diffusion denoising timestep, we add back a controlled amount of noise to allow the model to
search in a larger latent space.

3.3 Training-Free Trajectory Probing

Question 3: Can we probe out the residual knowledge by modifying diffusion trajectory?

We introduce Noise-Based probing, a method to probe for residual knowledge by directly manip-
ulating the model’s generation process. This technique searches for hidden knowledge traces by
augmenting the diffusion trajectory. Namely, we allow the model to explore alternative generation
pathways by simply add Gaussian noise to the intermediate latents after each denoising step:

Zi—1 = (& — aep) +ne )

where aep represents the standard denoising process, and 7e represents additional Gaussian noise
scaled by parameter 7 (we explore seven values of 7 in the range [1.0, 1.85]; see App. . To
account for this change and still generate high-quality images, we also scale the diffusion process
scheduler variance by 7 and motivate this probing method based on the DDIM formulation in Ap-
pendix B}

As illustrated in Fig. 4] this approach performs a controlled exploration of the model’s latent space
through Brownian motion along the diffusion trajectory. If an edited model’s trajectory simply de-
viates away from a concept, our noise-probe may help to expand the diffusion trajectory bandwidth
and find again the better (higher likelihood) images of associated concepts. In other words, the in-
jected noise may enable the model to surface concepts it otherwise suppresses. We emphasize this
probe does not optimize an adversarial input or present visual cues, and therefore offers an indepen-
dent perspective into the internal knowledge of the model. Due to the random nature of this probe,
we execute it multiple times and select the generated image with the highest CLIP/classification
score relative to the target concept.

Surprisingly, this simple method can reveal traces of knowledge in cases where even powerful
optimization-based methods fail. E.g., while adversarially optimized probes fail to recover erased
concepts in models like GA and STEREO, the noise-based probe applied to the same prompt and
seed successfully restores them (Fig[5). Table 3] shows that Gradient Ascent and STEREO exhibit
the strongest robustness against noise-based probing.

GA UCE ESD-x ESD-u TaskVec STEREO RECE
Noise-Based Probing (|)
CLIP 26.1 27.8 28.0 27.7 26.5 24.6 27.0
Class Acc. (%) 2.67 219 30.7 27.7 11.0 1.1 13.0

Table 3: Noise-based probing results. Remarkably, simply increasing the stochasticity of the diffu-
sion process, while keeping the same prompt and seed, can bring erased concepts back. This effect
is particularly pronounced for UCE, ESD-x, and ESD-u, indicating that these methods retain recov-
erable latent traces of the erased concept.
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Figure 5: An overview of erasing model behavior under adversarial probes and the Noise-Based
probe. Our Noise-Based probe can recover the target concept (“‘church’) even in cases where Textual
Inversion and UnlearnDiffAtk fail.

3.4 Steered Latent Probing

Question 4: Can we probe out the residual knowledge using by classifier guidance?

To probe whether erased models still encode latent traces of the target concept, we apply a variant
of classifier guidance in latent space [4]. Instead of relying solely on text conditioning, we train a
lightweight classifier directly in latent space (see Appendix [D.5|for details). This classifier provides
a gradient signal that steers the diffusion trajectory toward regions of latent space associated with
the erased concept.

At each denoising step ¢, the current latent x; is passed to a timestep-aware classifier f.- (xy,t)
trained to detect the target concept c*. For each latent, the classifier outputs a probability f.«(x¢,t) €
[0, 1] indicating the presence of the concept. To obtain a semantic direction that increases classifier
confidence in the concept, we compute the gradient of the binary cross-entropy loss with respect to
the latent, using a target label y=1 that denotes the concept’s presence:

gt = th £BCE(fc* (Xtv t)a y:]-) ) (3)

This gradient defines a local direction in latent space that points toward regions the classifier identi-
fies as belonging to the erased concept.

We use the obtained gradient (Eq. [3) to update the latent at each timestep:

Ty = Ty — Scif Ot i, @

where s is the guidance strength and oy controls the effective step size according to the current
noise level (following Dhariwal and Nichol [4]]).

During inference, we sweep over 24 values of s and select the sample with the highest classifica-
tion score for the target concept. Interestingly, models trained with STEREO, which are robust to
Textual Inversion and UnlearnDiffAtk, can still regenerate the erased concept from a fully noised
seed and the original prompt when guided by this latent classifier (Table ).

When combined with the Noise-Based Probe (Section [3.3), classifier guidance further amplifies
recovery, yielding roughly a 1.5 x increase in classification accuracy for UCE, ESD-X, and ESD-U
relative to standard classifier guidance alone.



The classifier-guided probe provides a powerful test of residual knowledge: rather than altering the
text or context, it steers the model directly within its latent space. We note, however, that as discussed
in Section[5] optimization-based probes such as this one may recreate concept-like outputs through
the optimization process itself rather than strictly reveal residual representations.

Metric GA UCE ESD-x ESD-u TaskVec STEREO RECE
Standard Classifier Guidance (])

CLIP 263 282 28.1 28.1 27.6 25.7 27.1
Class Acc. (%) 3.7 45.6 47.8 46.7 30.2 5.8 333
Classifier-Guided Noise-Based Probing ()

CLIP 26.5 29.1 28.6 28.4 27.8 27.1 27.2
Class Acc. (%) 4.1 75.6 73.3 59.1 35.1 20.3 36.7

Table 4: Classifier-guided probing results. Standard classifier guidance alone reveals residual con-
cept signals across several erasure methods, while combining it with noise-based probing (Classifier-
Guided Noise Probe) further amplifies the recovery of erased concepts. Notably, classification scores
of recovered concepts for STEREO are more than double those achieved by Textual Inversion.

Prompt = “a picture of an airliner”
GA UCE ESD-x ESD-u TaskVec STEREO RECE
' ; e ) " .

Standard
Prompt

Standard CG

CG Noise
Based Probe

Figure 6: Classifier Guidance (CG) with Noise-Based probes significantly improves the visual fi-
delity and semantic accuracy of recovered airplane concepts. Generated airplanes exhibit more
realistic structural features and better-defined geometries compared to the baseline method (particu-
larly for Task Vectors and STEREO).

3.5 Dynamic Concept Tracing
Question 5: How does a concept evolve when progressively being erased?

We analyze the trajectories of the alternative generations for different erasure strengths. Namely, we
prompt the model at different stages using the concept name in the prompt and inspect the resulting
images. We find that methods which perform more robust erasure when evaluated using other probes
tend to degrade the concept more consistently. That is, Gradient Ascent and Task Vector often
converge to generate similar images along the trajectory, and these images degrade in quality as the
erasure progresses. In contrast, methods that tend to behave in a way more similar to the guidance-
based avoidance conceptual model exhibit more abrupt transitions between alternative generations.
Namely, ESD-u and ESD-x produce more varied outputs when prompted with the erased concept
(Fig.[7). To validate this observation, we measure the distance between CLIP embeddings of images
generated by the original (unedited) model and those from the edited models (see App.[D.6).

One potential way to understand this result is through the nature of the erasure mechanism.
Destruction-based methods may create a ‘dip’ in the unconditional likelihood landscape by reduc-



ing the probability of generations containing the target concept (see right panel, Fig.[T). This may
supress the generation probability not only for the target concept but also for semantically nearby
concepts. Consequently, stronger erasure (deeper ‘dips’) may drive alternative generations further
from the original concept. In contrast, guidance-based methods interfere with the guidance mech-
anism, but not necessarily with the unconditional probability. They may have less impact on the
generated image structure while more significantly affecting which specific generation is selected.

We note that this possible explanation relies on assuming a given method is guidance- or destruction-
based. Yet, the categorization of any specific method as one of our conceptual mechanisms remains
tentative. While we believe concept tracing provides valuable complementary insight into erasure
dynamics within our evaluation suite, drawing exact conclusions on the underlying mechanisms
requires further study.
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Figure 7: When comparing generations as concepts are progressively erased, the differences be-
tween method types become visually apparent. Methods that align more with the destruction-based
conceptual model degrade concept generation continuously. In contrast, methods that align with the
guidance-based conceptual model interfere with the conditional guidance process, producing more
diverse images.

3.6 Summary

Across our four probes, distinct patterns emerged. Methods such as GA, TaskVectors, STEREO,
and RECE, appear robust to text-based attacks like Textual Inversion and UnlearnDiffAtk (Sec. [3.1).
Yet Task Vectors and RECE resurfaced the erased concept under inpainting and diffusion-completion
probes (Sec. [3.2). Noise-based probing further showed that concepts erased by UCE, ESD-x, and
ESD-u could be recovered with minor stochastic perturbations: suggesting that these models still
encode the concept but weakly guide away from it (Sec. [3.3). Classifier-guided probing revealed
even stronger residual traces: many models, including STEREO, could regenerate erased concepts
at accuracies rivaling or exceeding Textual Inversion (Sec. [3.4). Finally, dynamic tracing exposed
differing erasure dynamics, where GA and TaskVectors gradually degrade the concept, while ESD-x
and ESD-u produce abrupt, unstable alternatives (Sec. [3.3)).

Together, these findings indicate that most current erasure methods operate through guidance-based
avoidance rather than true destruction of underlying representations, underscoring the need for
multi-perspective evaluation to assess what “erasure” truly means in diffusion models.

4 Related Works

Concept erasure methods for text-to-image models. Recently, various techniques have been in-
troduced to prevent generative models from producing images of unwanted concepts. Some work
(2,30, propose modifying the inference process to steer outputs away from unwanted con-
cepts. Other methods utilize classifiers to adjust the generated results. However, since inference-
guided approaches can be circumvented with sufficient access to model parameters [24], subsequent
research has focused on directly updating the model weights. Pham et al. [19] apply task vectors



to shift the model towards a weight space that forgets the unwanted concepts. Heng and Soh [13]
utilize continual learning techniques to erase targeted concepts. Gandikota et al. [8] fine-tune the
model to minimize the likelihood of generating the desirable concepts. Gandikota et al. [10]] propose
a closed-form expression of the weights of an erased model. Gong et al. [11]] used a closed-form
solution to find target embeddings of a concept which are used to update the cross-attention layers
accordingly. Zhang et al. [31]] suggest cross-attention re-steering to update the cross-attention maps
in the UNet model of Stable Diffusion to erase concepts.

Attacks against concept erasure methods. While concept erasure methods effectively prevent un-
desirable generations when the concept is explicitly mentioned in the prompt (e.g., “a painting in the
style of Picasso”), recent studies have demonstrated that adversarial inputs can bypass most of these
defenses. In a white-box setting, Pham et al. [[18] leveraged textual inversion to learn word embed-
dings capable of reintroducing so-called erased concepts. Similarly, Rusanovsky et al. [21] applied
the same technique to learn latent seeds that reconstruct the removed concepts. Other research
[29] 32 13]] has focused on directly crafting hard prompts that evade concept erasure mechanisms.

Internal representations in diffusion models. Recent work has revealed that diffusion models en-
code semantic information in structured and interpretable ways. For instance, Gandikota et al. [9]
demonstrated that semantic directions within the model can be effectively captured using low-rank
adaptors, enabling precise continuous control. Building on this understanding, Dravid et al. [3]]
showed that semantic representations are localized within specific subspaces of the model’s cross-
attention weights. Further investigations into the architectural components of diffusion models have
yielded important insights. Liu et al. [17], Surkov et al. [27] discovered that specific concepts can
be modified by targeting sparse sets of neurons. Through the application of Sparse Autoencoders
(SAEs). Toker et al. [28]] leveraged the UNet as an analytical tool to probe text encoder repre-
sentations by studying how different internal representations influence the final generated outputs.
Through our holistic evaluation framework, we analyze how different erasure methods distinctly
affect concept representations.

5 Limitations

Causality and control in concept erasure. In many cases, even the expectations for an ideal con-
cept erasure algorithm remain unclear. For example, when attempting to erase an art style like Van
Gogh’s, should we also remove related styles, such as Edvard Munch’s? This is particularly tricky
when causality is involved (e.g., should erasing ‘Van Gogh’ cause the erasing of ‘Edvard Munch’
but not vice versa?). In any case, achieving this level of control is still beyond the capabilities of
current methods. Nevertheless, our findings offer some guidance: destruction-based removal tends
to impact related concepts more significantly than guidance-based avoidance.

Evaluating other concepts. Our study covers 13 concepts, 10 objects and 3 art styles. However,
other concepts may include verbs, relationships, or abstract ideas (e.g., ‘violence’). Studying such
concepts is beyond the scope of this work.

Discovery of existing knowledge vs. invoking it. In optimization-based probing techniques, there
is an inherent danger that the discovered knowledge does not originate from the original model, but
rather to the optimization process [18]]. Namely, it could be that an extensive enough optimization-
based probe (such as shown in Sec[3.4) may be able to induce generation of a concept the model did
not even encounter during training. Careful consideration of this possibility is required, and may
depend on the exact purpose of the erasure (e.g., safety, intellectual property law, or privacy).

6 Conclusion

In this paper, we propose a suite of independent probing techniques to uncover traces of supposedly
erased knowledge in diffusion models. Our evaluation reveals that knowledge undetectable through
one technique can often be recovered through others. Surprisingly, probes that require less supervi-
sion sometimes prove more effective than their more complex counterparts. Our study is motivated
by the suspicion that many existing methods merely redirect generation away from target concepts
rather than thoroughly erasing them, whether explicitly or implicitly. We hope our categorization of
guidance-based versus destruction-based mechanisms will guide future research into understanding
how erasure fundamentally alters a model’s internal representations and generative dynamics.
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A Broader Impact

Our work aims to improve the reliability and transparency of concept erasure in diffusion models, a task with
growing importance as generative models are deployed in real-world settings. Effective erasure can help pre-
vent the generation of harmful, private, or copyrighted content, but it also introduces risks, such as the potential
misuse of these methods to suppress culturally or politically significant concepts. By providing a compre-
hensive evaluation framework, we offer tools to better understand the trade-offs involved in erasure methods,
particularly between robustness and the preservation of unrelated capabilities. We hope this encourages more
responsible use and assessment of erasure techniques, while recognizing that such methods are not a complete
solution and must be applied with care and oversight.

B Training Free Inference Time Noise-Based Probe

Song et al. [25] introduced Denoising Diffusion Implicit Models (DDIM), which presented a deterministic
generative process defined by the equation:

0
e — V1 — ey’ (x4) .
Ti—1 = \Je—1 < Ja 9 +4/1 =41 —0? veé )(xt) + o 5)

random noise

“direction pointing to z¢"

We observe that the random noise term acts as a brownian motion component, driving stochastic sample gener-
ation when o; > 0. This insight motivates our approach: by controlling the magnitude of this brownian motion,
we can systematically explore a broader latent space of the diffusion model. We modify the DDIM formulation
by introducing a scaling factor 7 an additional random noise component:

e — /1 — ateét)(mt)
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eta-based noise injection

We take the absolute value of the “direction pointing to x;” term because scaling 7 > 1 can cause the square
root to receive a negative argument, which breaks the generative process. To avoid this failure mode while still
injecting increased stochasticity, we apply the absolute value inside the square root. This allows us to safely
explore values of 7 > 1, enabling stronger noise injection than what standard DDIM or DDPM configurations
permit. We leverage this controlled over-noising as a training-free Noise-Based probe, allowing the model to
access otherwise unreachable latent regions that may contain residual concept information.

B.1 Noising Probe in Practice

Remark. The theoretical argument above suggests that injecting noise into the diffusion process can enable
the recovery of erased concepts. Standard samplers such as DDPM already introduce stochasticity, but their
noise levels are typically fixed and moderate. To evaluate the practical effect of our noising attack, we compare
three sampling strategies: (1) DDIM1, the deterministic DDIM sampler with » = 1; (2) DDPM, the stochastic
ancestral sampler; and (3) Noise-Based, our proposed sampling strategy that explicitly increases the noise
level beyond standard settings (e.g., n > 1). DDIM with nn = 0 is the standard deterministic scheduler for the
models, which has been evaluated to produce the target concepts close to 0% of the time.

Table [3 reports CLIP similarity scores and top-1 classification accuracy across 13 erased concepts for three
erasure methods: esdu, esdx, and uce. Our noising approach consistently improves both CLIP alignment and
classification accuracy, demonstrating that inference-time noise injection can serve as a practical, training-free
mechanism for concept recovery. See Section[D.3]for details on noise scales and sampling configurations.

C Erasing and Evaluation Implementation Details

C.1 Concepts
We consider a set of 10 object concepts: English Springer Spaniel, airliner, garbage truck, parachute, cassette
player, chainsaw, tench, French horn, golf ball, and church; alongside 3 distinct art styles: Van Gogh, Picasso,

and Andy Warhol. This selection allows us to evaluate the impact of concept erasure across both tangible
objects and artistic styles, ensuring a diverse range of visual and semantic attributes in our analysis.

C.2 Experiment Results Reproducibility

To train all the models, run the entire evaluation suite, and create the CLIP and classificatio metrics, we used two
NVIDIA A6000 GPUs. This mainly involved generating the probingimages (for validating erasure, assessing
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esdu esdx uce

CLIP Score (1)
DDIM1 25.80 2634 26.81
DDPM 25.80 2635 26.81

Noised-Based 27.99 30.56 30.65

Top-1 Accuracy (%) (1)

DDIM1 13.77 20.62 18.31
DDPM 13.00 20.38 16.85
Noised-Based 27.70 30.70 21.90

Table 5: Average CLIP scores and Top-1 classification accuracy for each method and sampling
scheduler. The Noised-Based probe significantly boosts concept recovery performance.

robustness via attacks, and checking interference with unrelated concepts), and evaluating the performance
using CLIP similarity and classification accuracy.

C.3 Evaluation Protocol

C.3.1 CLIP Evaluation

All similarity assessments were performed using CLIP ViT (openai/clip-vit-base-patch32). For an
object, such as a garbage truck, we compared the output image to the generation prompt, i.e. "a picture of a
garbage truck".

C.3.2 C(lassifier Evaluation for Object Concepts

To assess whether erased concepts remain recognizable in generated images, we perform classification using a
ResNet-50 model pretrained on the Imagenette dataset, a simplified subset of ImageNet. Each generated image
is processed by the classifier, and the top-5 predicted class labels are extracted based on softmax scores.

We consider a prediction correct if the concept name (e.g., cassette_player) matches the top-1 prediction
(Top-1 Accuracy), or appears anywhere in the top-5 predictions (Top-5 Accuracy). For each match, we also
record the classifier’s confidence score as the Top-1 or Top-5 Score.

Classification results are aggregated across all object concepts (excluding artistic styles), and we report the
following metrics per method and evaluation setting:
* Top-1 Accuracy: Percentage of images where the correct label is the highest scoring prediction.
* Top-5 Accuracy: Percentage of images where the correct label appears within the top-5 predictions.
* Top-1 / Top-5 Scores: Average softmax score for correct labels when they appear in the top-1 or

top-5.

This evaluation provides a quantitative measure of whether erased concepts can still be semantically identified
using an external classifier trained on real-world object categories. For the main paper, we mainly focus on
Top-1 Accuracy scores.

For artist classification, we used CLIP-based similarity scores between generated images and artist-specific
prompts as a proxy for classification, following prior work on zero-shot image-text alignment.

C.3.3 Side-effects on Unrelated Concepts

To evaluate whether concept erasure negatively impacts unrelated generations, we assess each model’s ability to
generate images for concepts that were not erased. Specifically, for each of the 13 erased concepts, we consider
the remaining 12 as control classes. For each model, we generate 10 images per control class, resulting in 120
control task images. We then compute CLIP similarity scores and classification accuracies for these images
to quantify the extent to which erasure methods affect generalization and performance on unrelated concepts.
Please see Figure[§|for examples.

C.4 Erasure Methods

To evaluate the impact of different concept erasure techniques, we implemented several existing methods and
trained models under controlled settings. Below, we detail the exact configurations for each approach:
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SD14 | GA UCE ESD-x ESD-u TaskVec STEREO

“Van Gogh” Erased Model

Figure 8: We show the undesirable effects of the erasure methods when erased “Van Gogh" concept
on unerased concepts like “Church” and “Picasso”. We find that Gradient Ascent and STEREO have
the most interference with unrelated concept.

C.4.1 Gradient Ascent (GA)

We implement the Gradient Ascent (GA) method by negating the standard training loss used in Stable Diffusion,
effectively encouraging the model to increase the likelihood of generating the target concept. The training data
comprises 500 diverse images per concept, generated using the original model along with their associated text
prompts. For the English Springer Spaniel and Garbage Truck concepts, we reduced the number of fine-tuning
steps to 10, while using 60 steps for all other concepts. To prevent degradation of the model’s general utility, a
known issue when applying GA over extended training, we adopt a conservative training configuration: a batch
size of 5, gradient accumulation steps of 4, and a learning rate of 1 x 107°.

C.4.2 Erased Stable Diffusion (ESD-x & ESD-u)

We fine-tuned for 200 steps using a learning rate of 2 x 107°.

C.4.3 Unified Concept Editing (UCE)

We fine-tuned for 200 steps with an empty guiding concept and an erase scale of 1.

C.4.4 Task Vector (TV)

To get the fine-tuned model for computing task vectors, we fine-tuned each model on 500 images for 200 steps,
using a learning rate of 1 x 10™°. We used batch size of 4 and gradient accumulation step of 4. For erasure,
we set the editing strength o = 1.75.

D Probing Methods and Additional Results

To assess the resilience of erasure methods against adversarial strategies, we conducted various attack experi-
ments using a dataset of 100 prompts spanning 13 concepts (10 objects, 3 styles), each evaluated using unique
seeds.

D.1 Textual Inversion

Training involved 100 images, optimized for 3000 steps using a learning rate of 5 x 10™%.

D.2 UnlearnDiffAtk

The model was trained using a learning rate of 0.01 and a weight decay of 0.1, with the classifier parameter set
to K = 3. ImageNet was used as the classifier for object-based erasures, while a custom classifier from the
UnlearnDiffAtk repository was used for artist styles. Due to computational cost, UnlearnDiffAtk was evaluated
on 30 prompts per concept, with 40 samples per experiment, where each sample was generated through 40
optimization steps.

D.3 Inference-Time Noising Probe

We searched over an evenly spaced set of 6 1 values between 1.0 and 1.85: [1.0, 1.17, 1.34, 1.51, 1.68, 1.85].
These bounds were chosen based on qualitative observations: values above 1.85 produced overly noisy images,
while those below 0.95 resulted in blurry object generation. For each 7, we scaled the additional random
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noise added at each denoising step by a factor of 1.00, 1.02, 1.03, or 1.04. A full grid search across these
combinations yielded 24 samples per prompt per experiment. The CLIP model then selected the image with
the highest similarity score as the representative probing instance.

D.4 Inpainting

The inpainting pipeline was based on Stable Diffusion 1.5 and implemented via Hugging Face’s
StableDiffusionInpaintPipeline. Base images were 512512 pixels and were masked with a 225 x225
white box at the center. Source images were generated using Stable Diffusion 1.4. CLIP scores were computed
only on the masked area to prevent artificially inflated similarity scores.

D.5 Steered Latent Probing: Classifier Guidance Implementation

We implement steering latent probing by training a lightweight, timestep-aware classifier in the Stable Diffusion
latent space and injecting its gradient during sampling to steer trajectories toward residual concept regions.

D.5.1 Dataset Construction
We construct binary datasets per concept from ImageNet-1k as follows:

« Positives: all samples belonging to the target ImageNet class (resolved via the label name lookup in
the HF metadata).

» Negatives: a diverse pool sampled from all other classes (default: n,, = 5000), oversampled 5 x
initially to ensure diversity, then downsampled to the requested size.

* Binary label: we add a 1abel_bin column (1 for positives, O for negatives), and save each concept
subset to disk as a HuggingFace Dataset.

We apply standard SD image preprocessing (resize to 512 x 512, normalization to [—1, 1]). The split is 90%
train / 10% validation.

D.5.2 Latent Encoding and Caching

Images are mapped to Stable Diffusion latents using the SD v1.4 VAE (AutoencoderKL), sampling from the
posterior and scaling by 0.18215, yielding latents of shape (4, 64, 64). We precompute and cache latents for
both train and validation splits to avoid repeated VAE passes during classifier training.

D.5.3 Timestep-Aware Latent Classifier

Let z € R**%4%6% denote a latent and ¢ € {0, . .., T—1} a diffusion timestep. We encode ¢ using the scheduler’s
cumulative noise level &;:
e(t) = [at,1 — a:] € R,
The classifier f4(x,t) is a small MLP with two streams:
» Latent stream: flatten = and project to 1024 dims.
* Timestep stream: project e(¢) to 1024 dims.
We sum the two 1024-d embeddings and pass through: SiLU, Dropout(0.3), Linear(1024—512), SiL.U,

Dropout(0.3), Linear(512—1), yielding a logit. This architecture is intentionally small to avoid overfitting
and to keep gradients stable during guidance.

D.5.4 Training Procedure
We train with AdamW (Ir 1 x 10~*, weight decay 10~3), batch size 8, gradient clipping at 1.0, for 10 epochs
by default. The loss is BCEWithLogits with a positive-class weight

_ #fneg
Wpos = #pos

computed from the subset to counter class imbalance.

To improve robustness across noise levels, each mini-batch is augmented with & noisy views per sample (default
k=T). We draw timesteps via a power-law that favors noisier latents:

t ~ (Uniform(0,1)*/7) - (T = 1), ~ = 3.0,

and form noisy latents with the scheduler’s forward operator. Validation averages logits over 3 independently
sampled timesteps. After training for 70 epochs, we pick the checkpoint with the lowest validation loss.
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D.5.5 Inference-Time Steering (Guidance)

During sampling, we run the standard classifier-free guidance (CFG) pass to obtain ey and then inject the
latent-classifier gradient. At each timestep ¢:

1. Compute €., using CFG with guidance scale 7.5.

2. Enable gradients on the current latent x; and compute the BCE loss with target label 1:
¢y = BCEWithLogits(fs(x¢,t),1).

3. Backpropagate to obtain g; = V., ¢y, scale by st (the classifier guidance strength), and rescale by

the current noise level:
€= €etg — V1 — Qi Sar G-

4. Step the scheduler with € using a DDIM sampler then continue.

The classifier gradient acts as a steering force that nudges the diffusion trajectory toward regions where the
classifier predicts high probability for the target concept. Since we’re probing for residual concept knowledge
in an erased model, successful steering reveals that the model still retains information about the supposedly
erased concept.

This steering follows the principle of classifier guidance in diffusion models. To sample from a conditional
distribution pe (x: | ¢*), Bayes’ rule tells us we can decompose the score as:

Vx, logpe(x: | ¢*) = Vx, logpo(x:) + Vx, log ps(c* | x¢)

The first term is the unconditional diffusion score, and the second term (approximated by our classifier gradient)
steers the sampling toward the concept c*. The guidance scale sqr controls how strongly we condition on the
concept, effectively amplifying any residual concept knowledge that remains after erasure.

D.6 Dynamic Concept Tracing

‘We quantitatively analyze how concept representations evolve during the erasure process by tracking the trajec-
tories of generated images in CLIP embedding space. For each erasure method and target concept, we generate
25 images at varying erasure strengths and compute the centroid of their CLIP embeddings. This allows us to
measure how far the generated concepts drift from their original representations as erasure intensity increases.

Figure 9] reveals distinct patterns between erasure methods. Gradient Ascent and Task Vector exhibit approxi-
mately linear trajectories, progressively pushing concept representations away from their original locations in
embedding space. In contrast, ESD-x and ESD-u demonstrate more abrupt displacement. This pattern hints
that their approach redirects generation toward unconditional outputs rather than fundamentally altering the
concept representation itself.

GA Centroid Deviation Over Time ESD-x Centroid Deviation Over Time ESD-u Centroid Deviation Over Time TV Centroid Deviation Over Time
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Figure 9: Trajectories of concept representations during erasure in CLIP embedding space. The x-
axis shows erasure strength, while the y-axis measures the Euclidean distance between the centroid
(mean) of all generated samples and the original concept embedding (computed from 25 samples
per concept). Shaded regions indicate 95% confidence intervals. The GA and TV methods show
more consistent degradation patterns than ESD-x and ESD-u.

E Full Results with Standard Deviations

We include here the full quantitative results with standard deviations across runs, complementing Tables 1, 2,
and 3 from the main paper. These tables report the mean and standard deviation for both CLIP similarity scores
and classification accuracies across multiple erasure evaluation settings. Including standard deviation helps
illustrate the consistency and robustness of each erasure method under different probing strategies.
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Eval Metric Base GA UCE ESD-x ESD-u TaskVec STEREO RECE

Erased Concepts (])

CLIP - 243+£27 224+£52 21.1+£41 209+£34 23.1+£3.0 19.6+23 21.2+4.0
Text Inversion ()

CLIP - 227+25 30.7+£20 306+24 28.0+x34 251%£26 245+29 292+28
UnlearnDiffAtk

CLIP - 26.0+2.2 283+£32 287+22 27.8+28 27117 26.1+28 279+£23
Unrelated Concepts (1)

CLIP - 28.8+2.8 31.2+23 308+25 30.7+£33 294+26 29.0+£3.0 305%2.7
Inpainting ({)

CLIP 205+22 248+24 269+33 268+3.1 239+3.1 259+26 227+£3.0 263+2.7
Diffusion Completion t = 5 (])

CLIP 302+2.1 240+£24 277+28 272+31 269+29 238+24 239+27 288+2.5
Diffusion Completion ¢t = 10 ({)

CLIP 302+2.1 245+£23 296+23 28.7+£29 275+28 249+23 278+26 28.8+25

Table 6: CLIP scores (mean + std) across concept erasure methods. Lower scores ({) indicate better
erasure of the target concept, while higher scores (1) reflect stronger retention of unrelated concepts.
Rows cover adversarial and in-context evaluations including inpainting and diffusion completion at
denoising steps t = 5 and ¢ = 10.

Eval Metric Base GA UCE ESD-x ESD-u TaskVec STEREO RECE
Erased Concepts ()

Acc. (%) - 06+048 44+1.1 36+13 1.0£069 2210 0.0x000 40%12
Text Inversion ()

Acc. (%) - 0.6+059 712+23 659+29 31.8+3.6 62+1.8 63+x1.6 582+3.1
UnlearnDiffAtk

Acc. (%) - 65+15 268+28 21.0+x2.6 16.6x23 103+21 3.7+10 72+1.7
Unrelated Concepts (1)

Acc. (%) - 522427 75.0+x19 713+£22 704+24 604+£26 52829 71.7+£21
Inpainting ()

Acc. (%) 777+1.5 61724 69.1+18 69119 685+1.7 668+16 63.8+20 682+18
Diffusion Completion t = 5 ()

Acc. (%) 780+14 11+058 427+27 378+30 325+32 24+094 32+12 365+33
Diffusion Completion ¢ = 10 (})

Acc. (%) 780+x14 32+11 62.1+£23 548+27 369+3.0 6115 212+22 454+28

Table 7: Classification accuracy (%, mean * std) across seven concept erasure methods and the
original Stable Diffusion model (Base). Lower values (|) on erased concepts, textual inversion,
UnlearnDiffAtk, inpainting, and diffusion completion indicate more effective removal of the target
concept. Higher values (1) on unrelated concepts reflect successful preservation of general genera-
tion capabilities.
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* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec[3l
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that the
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* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to viola-
tions of these assumptions (e.g., independence assumptions, noiseless settings, model well-
specification, asymptotic approximations only holding locally). The authors should reflect on
how these assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

¢ The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address prob-
lems of privacy and fairness.

¢ While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a com-
plete (and correct) proof?

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that the paper does not include theoretical results.
 All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimen-
tal results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: See App[C|

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For ex-
ample, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: See supplementary materials.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

The instructions should contain the exact command and environment needed to run to repro-
duce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
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Answer: [Yes]
Justification: Yes. See App[C|and code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate infor-
mation about the statistical significance of the experiments?

Answer: [Yes]
Standard deviations are reported in the supplementary material.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence inter-
vals, or statistical significance tests, at least for the experiments that support the main claims of
the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer re-
sources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: Please see App[C.2}
Guidelines:

* The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual experimen-
tal runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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12.

* If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal im-
pacts of the work performed?

Answer: [Yes]
Justification: See App[A]
Guidelines:

¢ The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g., dis-
information, generating fake profiles, surveillance), fairness considerations (e.g., deployment
of technologies that could make decisions that unfairly impact specific groups), privacy consid-
erations, and security considerations.

¢ The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strate-
gies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time, im-
proving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: We do not release novel pretrained language models, image generators, or scraped
datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

¢ Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: See supplementary material.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
¢ The authors should state which version of the asset is used and, if possible, include a URL.
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13.

14.

16.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their submis-
sions via structured templates. This includes details about training, license, limitations, etc.

» The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks
were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equiv-
alent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and lo-
cations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.
Answer: [NA]
Justification: An LLM is used only for editorial purposes.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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