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ABSTRACT

Graph-level anomaly detection aims at capturing anomalous individual graphs in
a graph set. Due to its significance in various real-world application fields, such
as identifying rare molecules in chemistry and detecting potential frauds in online
social networks, graph-level anomaly detection has received great attention. In
distinction from node- and edge-level anomaly detection that is devoted to iden-
tifying anomalies on a single graph, graph-level anomaly detection faces more
significant challenges because both the intra- and inter-graph structural and at-
tribute patterns need to be taken into account to distinguish anomalies that exhibit
deviating structures, rare attributes or the both. Although deep graph represen-
tation learning shows effectiveness in fusing high-level representations and cap-
turing characters of individual graphs, most of the existing works are defective
in graph-level anomaly detection because of their limited capability in explor-
ing information across graphs, the imbalanced data distribution of anomalies, and
low interpretability of the black-box graph neural networks (GNNs). To overcome
these limitations, we propose a novel deep evolutionary graph mapping framework
named GmapAD, which can adaptively map each graph into a new feature space
based on its similarity to a set of representative nodes chosen from the graph set.
By automatically adjusting the candidate nodes using a specially designed evolu-
tionary algorithm, anomalies and normal graphs are mapped to separate areas in
the new feature space where a clear boundary between them can be learned. The
selected candidate nodes can therefore be regarded as a benchmark for explaining
anomalies because anomalies are more dissimilar/similar to the benchmark than
normal graphs. Through our extensive experiments on nine real-world datasets,
we demonstrate that exploring both intra- and inter-graph structural and attribute
information are critical to spot anomalous graphs, and our framework outperforms
the state of the art on all datasets used in the experiments1.

1 INTRODUCTION

Graph-level anomalies are abnormal or rare individual graphs in a graph set. These anomalies can be
observed in various application fields, such as rare molecules and abnormal proteins in biochemistry,
brain disorders in brain networks/graphs, and frauds in online social networks (Noble & Cook, 2003;
Akoglu et al., 2015). Detecting this category of anomalies has shown great benefits in facilitating
downstream anomaly handling process, alleviating anomalies’ detrimental impact on society, and
boosting real-world applications (e.g., health monitoring and drug discovery). However, graph-level
anomaly detection differs significantly from node- and edge-level anomaly detection that investi-
gates an individual graph. Graph-level anomaly detection targets anomalous individuals among
various graphs. Not only the unique spatial structure and nodes/edges’ attributes associated with
each graph, but also the cross-graph structural and attribute patterns should be critically analyzed to
identify these potential anomalies in the graph set (Ma et al., 2021).

Recent studies in deep graph representation have put great effort into encoding both the com-
plex graph structural information and attribute information into vectors and then conducting graph
analysis within the representation space (Wu et al., 2020). Although plenty of graph neural net-
works (GNNs) have been developed to learn expressive node representations via message passing

1The code is available at https://github.com/GmapAD/GmapAD
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Figure 1: An overview of the learning feature space for graph-level anomaly detection. Each graph’s
representation is extracted from its own nodes’ representations generated by message passing GNNs.
Anomalies are then identified in the feature space. In a better feature space for anomaly detection
(Feature Space II), anomalies (G2) and normal graphs (G1 and G3) should be well separated.

schema (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017) and to read out the
graph representation from nodes comprised in a single graph (Baek et al., 2021; Xu et al., 2019; Gal-
licchio & Micheli, 2020a), there remain significant challenges to directly applying existing GNNs
for graph-level anomaly detection. (1) Most importantly, simply reading out graph representations
using its own nodes cannot explicitly and fully capture the inter-graph information. For example, G1,
G2, and G3’s representations shown in Figure 1 only maintain their intra-graph information while the
rich cross-graph information is lost. This leads to unsatisfactory detection results and motivates us
to design special read out functions to capture intra- and inter-graph information. (2) In the feature
space, anomalies are also expected to locate away from normal graphs such that a clear boundary
between them can be effectively learned such as Feature space II in Figure 1. (3) Lastly, the graph
representation or the read out function should be interpretable. Noting that human understandable
insights on the detected anomalies are vital for anomaly handling in real applications, but GNNs
have been criticized for their low interpretability (Yuan et al., 2022; Pang et al., 2021).

To address the above mentioned challenges, in this work, we propose a novel graph mapping tech-
nique to learn effective representations for graph-level anomaly detection. Unlike the existing works
that learn a graph’s representation using its own nodes, our devised framework, Graph mapping
Anomaly Detection (GmapAD), comprehensively explores both the complicated intra- and inter-
graph structural and attribute information to map graphs into an interpretable latent space where
anomalies and normal graphs are well separated. Specifically, GmapAD achieves a high degree
of discriminativeness between anomalies and normal graphs by considering all nodes in the graph
set and maps each single graph into the designed representation space according to the similarity
between the graph and nodes.

Moreover, we notice that applying a simple graph mapping is non-trivial due to the massive number
of nodes in the graph set and some nodes might contain non-valuable (or even misleading and de-
fective) information for distinguishing anomalies, as validated in our experiment in Section 5.2. As
a result, we further consider the informativeness of each node and propose a differential evolution-
ary algorithm to iteratively select the best-performing set of nodes for graph mapping. Eventually,
anomalies and normal graphs are projected to different regions in the new feature space and can be
distinguished effectively.

For validation, we conduct extensive experiments on nine real-world graph datasets by comparison
with the state-of-the-arts using four commonly-used metrics, i.e., precision, recall, F1-scores and
AUC. We also analyze the challenges and show the effectiveness of GmapAD modules through
additional ablation tests. The results demonstrate that our proposed framework is superior to the
existing works. In a nutshell, the main contributions of this work are as follows:

• To the best of our knowledge, this is the first graph-level anomaly detection framework that
explores both the intra- and inter-graph information to find clues about anomalous graphs.
The structural and attribute information/patterns within single graphs and cross-graphs can
be effectively captured by our proposed GmapAD, which is also extendable to work jointly
with the state-of-the-art graph neural networks.
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• The graph mapping technique devised in this work is also explainable. Each graph’s repre-
sentation in the new feature space denotes its similarities with the most informative nodes
chosen from the whole graph set, which is traceable, compared with black-box GNNs.

• The experiments on real-world datasets and ablation tests demonstrate the greater perfor-
mance of GmapAD and validate our approach to the challenges.

2 RELATED WORK

Graph neural networks. To date, graph neural networks are generally implemented following
the message-passing schema that aggregates neighborhoods’ attributes for encoding the target node
into a vector representation. These advanced neural networks, including the popular GCN (Kipf
& Welling, 2017), GAT (Veličković et al., 2018) and GIN (Xu et al., 2019), have extensively ex-
plored the complex correlation between the spatial structure and attributes of a single graph and
proposed different strategies to guide the information aggregation process. Although they have
achieved promising results in various graph analysis tasks, such as link prediction (Wu et al., 2020)
and node classification (Hamilton et al., 2017; Zhu et al., 2021), most existing works are limited to
represent the whole graph using its own nodes through simple read out functions like mean or max
pooling, resulting in sub-optimal solutions to graph-level tasks (Baek et al., 2021).

Graph-level anomaly detection. Graph-level anomaly detection is to spot anomalous graphs in a
graph set. Different from node- (Dou et al., 2020; Tang et al., 2022; Bandyopadhyay et al., 2020) and
edge-level (Yu et al., 2018; Duan et al., 2020) anomaly detection on a single graph, one should con-
sider the complex structural and attribute information of each single graph (i.e., intra-graph informa-
tion) as well as the cross-graph patterns (inter-graph information) for finding clues about graph-level
anomalies. Thanks to the advancement of graph neural networks, recent graph-level anomaly detec-
tion techniques, such as OCGIN (Zhao & Akoglu, 2021) and OCGLT (Qiu et al., 2022), have ap-
plied GNNs to encode the intra-graph information into a vector and transferred graph-level anomaly
detection to a conventional outlying data point detection problem in the representation space (Ma
et al., 2021; Pang et al., 2021). Although these straightforward methods are convenient to apply,
their capabilities in fusing the affluent inter-graph information is very limited and huge research
gaps remain in this field. Nevertheless, these black-box GNN based methods are also criticized
because they cannot provide human-understandable explanations to the learned representations and
detected anomalies (Yuan et al., 2022).

Differential evolutionary algorithm. Differential evolution is a widely-used algorithm for finding
optimal solutions to specific tasks based on random search (Storn & Price, 1997; Wu & Cai, 2014).
Instead of performing brute-force search on all potential candidates, differential evolution algorithm
adopts specially designed objective functions to guide the searching direction with guaranteed con-
vergence (Hu et al., 2013; Vesterstrom & Thomsen, 2004; Rudolph, 1994). The key idea behind this
algorithm is to simulate the natural evolution process, in which only the best candidates are retained
while other candidates are updated through three operators: crossover, mutation and selection. Due
to space limitation, we suggest interested readers to start with prior works like Ilonen et al. (2003);
Zhang et al. (2016) and Qin et al. (2008) to better understand the evolutionary algorithm.

3 PRELIMINARIES AND PROBLEM DEFINITION

In this section, we provide the definitions of all related concepts used in the rest of the paper and the
problem formulation of graph-level anomaly detection.

Definition 1. Graph Set and Node Set. Let G = (G1,G2, . . . ,Gn) be a graph set containing n
individual attributed graphs and all nodes in the graph set form a node set V =

⋃
i Vi, where

Vi contains nodes in an individual graph Gi = (Ai,Xi) whose structure and node attributes are
represented by the adjacency matrix Ai ∈ {0, 1}|Vi|×|Vi| and attribute matrix Xi, respectively.

Definition 2. Candidate and Candidate Pool. We use candidate Ci ∋ vj , vj ∈ V to specifically
denote a subset of nodes chosen from V, and a candidate pool contains p candidates, denoted as
C = (C1,C2, . . . ,Cp). The candidates and candidate pool are utilized to map individual graphs to
new feature spaces. They are two key components of the differential evolutionary algorithm, to be
detailed in Section 4.2.2.
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Figure 2: The GmapAD Framework. Given the graph set, a⃝: GmapAD first encodes intra-graph
information into anomaly-aware node representations. b⃝: The most informative nodes are then
selected from the node set based on the similarity between graphs and all nodes in the graph set.
c⃝: Initial candidates are chosen from the most informative nodes for graph mapping in step e⃝.

Based on the DE objective, candidates are optimized through d⃝. Finally, each graph is mapped to
the optimal feature space using the optimized candidate and anomalies are detected through g⃝. In
f⃝, the more a graph is similar to a node in the candidate, the more area is covered by the node color

in the corresponding dimension.

Definition 3. Graph Mapping. Given a candidate Cm in C, graph mapping transforms each graph Gi

into a new instance hm
Gi

in the feature space. hm
Gi

= (s(Gi, v
m
1 ), . . . , s(Gi, v

m
|Cm|)), where s(Gi, v

m
k )

denotes the similarity score of graph Gi and the kth node vmk in Cm. We use hm
Gi

to specifically
denote graph Gi’s representation in the feature space that is built based on Cm.

Problem Definition. Graph-level anomaly detection is defined to identify anomalous individual
graphs in the given graph set G. In this work, we learn graph representations in a semi-supervised
manner. By this, the graph-level anomaly detection problem can be further defined as identifying
anomalous graphs Gi using a small portion of graph labels yi = {0, 1}, where 0 indicates that the
graph is an anomaly.

4 GRAPH MAPPING ANOMALY DETECTION

In this section, we present the technical details of GmapAD, including anomaly-aware node repre-
sentation learning in Section 4.1, graph mapping in Section 4.2.1, followed by the details of infor-
mative node selection and evolutionary candidate pool optimization in Section 4.2.2, and graph-level
anomaly detection in Section 4.3.

4.1 ANOMALY-AWARE NODE REPRESENTATION

The spatial graph structure and node attributes encapsulate affluent information for identifying
different classes of graphs. Although conventional message-passing graph neural networks have
achieved success in encoding the intra-graph information into vector representation for facilitating
node-level and graph-level analysis, they usually exhibit defective anomaly detection performance,
especially on graph-level anomaly detection (Zhao & Akoglu, 2021; Ma et al., 2021; Qiu et al.,
2022). One major reason is the extreme rarity of anomalies in the graph set since anomalies only
take a very small proportion of the graph set (Noble & Cook, 2003; Akoglu et al., 2015). To learn
more effective node and graph representations that better support graph-level anomaly detection, we
first attempt to handle the imbalanced data distribution and learn anomaly-aware node representa-
tions such that the read out graph representations are distinguishable for anomaly detection.

For simplicity and extensibility, GmapAD employs the conventional message-passing based GNN
(e.g., GCN, GAT) for learning node representations zGi,l

k in Gi at each training iteration l by ag-
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gregating node k’s neighborhood information via zGi,l
k = Agg(αkz

Gi,l−1
k +

∑
j∈NGi

(k) βjz
Gi,l−1
j ),

where Agg(·) is an aggregation function, such as sum or node pair-wise attentions. αk and βj con-
trol the weights of zGi,l−1

k and zGi,l−1
j for learning zGi,l

k , respectively. NGi(k) denotes the neighbors
of k in graph Gi and zGi,0

k is node k’s attribute vector, a row vector in Xi.

To ensure the learned node representations can preserve valuable intra-graph information for
anomaly detection, we apply an anomaly-aware objective function to train the GNN by follow-
ing Zhang et al. (2021). Specifically, given each individual training graph Gi and its label yi, the
representation of each node within the graph is learned via minimizing:

J =
1

|G1|
∑

Gi∈G1

L[ϕ( 1

|Vi|
∑
k∈Gi

zGi,l
k ·W ), yi] +

1

|G0|
∑

Gj∈G0

L[ϕ( 1

|Vj |
∑
k∈Gj

z
Gj ,l
k ·W ), yj ], (1)

where G1 and G0 contain normal and anomalous training graphs, respectively. Gi ∈ G1 if yi = 1,
otherwise Gi ∈ G0. ϕ(·) predicts the probabilities of each graph Gi to be normal and anoma-
lous. L(·) measures the cross-entropy loss between the predicted graph labels and the ground truth.
This class-wise training objective adaptively balances the weights of normal and anomalous training
graphs for capturing the patterns of nodes within them.

4.2 GRAPH REPRESENTATION VIA DIFFERENTIAL EVOLUTIONARY GRAPH MAPPING

While the prior detailed node representation learning is capable to generate graph representations
through special designed read out functions, such approaches are limited to extracting graph repre-
sentations only considering intra-graph information, which inherently ignores valuable cross-graph
information in the whole graph set and leads to sub-optimal solutions. Nevertheless, directly reading
an individual graph’s representation from node representations generated by graph neural networks
also encounters severe low interpretability due to the black-box GNNs.

Driven by existing works in multi-instance learning and the feature mapping criteria between bags
and instances (Wu et al., 2018b; Zhang et al., 2016), we repurpose the mapping criteria for graph
representation learning by exploring the correlation between a single graph and a set of nodes.
Specifically, given the generated anomaly-aware node representations, we first select the most in-
formative k nodes in V as a candidate, and then adopt a specially designed differential evolutionary
algorithm (DE) to find the optimal graph mapping strategy for the eventual graph representation that
will be used for distinguishing anomalies in the graph set as illustrated in steps b⃝- f⃝ in Figure 2.
We start with our proposed graph mapping method, followed by explanations on how we use DE to
find the best performing candidate.

4.2.1 EXPLAINABLE GRAPH MAPPING

Graph mapping aims at encoding an individual graph Gi into a new instance hm
Gi

∈ R|Cm| in
the new feature space given a set of nodes in candidate Cm. Notably, nodes in Cm are col-
lected from different graphs, as shown in Figure 2. Each dimension in the new feature hm

Gi
=

(s(Gi, v
m
1 ), . . . , s(Gi, v

m
|Cm|)) denotes the proximity of graph Gi and a corresponding node vmj in

Cm. For simplicity, in GmapAD, the similarity is measured as:

s(Gi, v
m
j ) = || 1

|Vi|
∑
k∈Gi

zGi,l
k − zGm,l

j ||, (2)

where zGi,l
k denotes the learned representation of node k in graph Gi, while zGm,l

j is the represen-
tation of node j, which belongs to candidate Cm. Through graph mapping, graphs can be clustered
into different groups regarding their similarities to nodes in the candidate, which can be inherently
utilized as a benchmark and normal graphs and anomalies will show divergent similarity patterns if
the candidate is carefully selected.

Compared to conventional GNN-based models that generate graph-level representations through
black-box neural networks, this graph mapping process is traceable and explainable. The value of
each dimension in the graph representation explicitly denotes the proximity between the graph and
a specific candidate node. Each candidate node, whilst, is ultimately selected from the graph set and
can be traced back to its belonging graph, which is achieved by our specially designed DE algorithm
detailed in the following section.
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4.2.2 CANDIDATE SELECTION AND OPTIMIZATION

To facilitate better anomaly detection performance, anomalies and normal graphs are expected to lo-
cate far away in the feature space so that their boundaries are clear and easy to identify (e.g., Feature
Space II in Figure 1). The chosen candidate for graph mapping is critical to gain such discrimina-
tiveness and we achieve this by first selecting the most informative nodes from all normal graphs
and then find the best candidate for graph mapping through a specially designed DE algorithm.

Informative node selection. Since normal graphs are the majority in the graph set, instead of using
all nodes in the node set V for graph mapping, we only select the top k nodes that are most similar
to normal graphs such that the computational and storage cost of graph mapping is minimized and
the negative effect introduced by the curse of dimensionality (Bellman, 1966) can be alleviated.
Practically, GmapAD selects the top k nodes from normal graphs based on the cosine similarity,

which measures a node j and a normal graph Gi’s similarity score as
1

|Vi|
∑

ϵ∈Gi
h

Gi,l
ϵ ·hGm,l

j

| 1
|Vi|

∑
ϵ∈Gi

h
Gi,l
ϵ |·|hGm,l

j |
, and

for each node j, we take the sum of its similarity scores with all normal graphs as its final score.
Eventually, the top k nodes with the highest scores become the initial candidate Cinit leveraged in
the following DE algorithm.

Differential evolutionary candidate optimization. Given the initial candidate selected from the
whole graph set, although each node in the candidate has high proximity to normal graphs, it is
not guaranteed that conducting graph-node feature mapping using all of them will lead to the best
detection performance (as validated in our ablation test in Section 5.2). Thus, we further establish a
rule to optimize the candidate that all normal graphs should be similar in the new feature space while
normal graphs and anomalies are dissimilar. Accordingly, due to DE’s guaranteed convergence (Hu
et al., 2013; Rudolph, 1994), we propose a novel objective function for guiding the DE algorithm
and adaptively learn the best candidate Cop from different combinations of nodes in Cinit through
mutation, crossover, and selection (as shown in d⃝ in Figure 2). More specifically, given a candidate
Cm, our objective is to find the best diagonal node selection matrix Iop that maps graphs into a
distinguishable space with the best anomaly detection performance, where diag(Iop) is an indicator
vector and diag(Iop)e = 1 if ve ∈ Cop, otherwise 0. We obtain Iop following:

(1) Initialization. In this stage, we randomly initialize p different candidate selection matrices I0 =
[I0

1 , . . . , I
0
p ] for generating p divergent candidates that forms a set C0 = [C0

1, . . . ,C0
p]. Specifically,

for candidate selection matrix I0
i , each entry e in its indicator vector diag(I0

i ) ∈ {0, 1}|Cinit| is
drawn from a Bernoulli distribution diag(I0

i )e ∼ B(ps). This intuitive binary selection process
directly chooses nodes from the graph set and the selected node can be easily traced back to its
belonging graph.

(2) Evaluation. Given the candidates in Ct, where 0 ≤ t ≤ et denotes the evolution iteration,
we then map all graphs to p feature spaces following the graph mapping detailed in Section 4.2.1
using each candidate Ct

i in Ct and apply a binary SVM (Chang & Lin, 2011) to classify graphs as
anomalies or normal in each space. A performance score is assigned to each candidate according to
the anomaly detection performance, which is quantified as:

score(Ct
i) =

1

|Gtrain|
∑

Gk∈Gtrain

L(yGk
, ŷGk

), (3)

and

L(yGk
, ŷGk

) =

{
max(0, 1− yGk

· ŷGk
), yGk

= 1

max(0, ŷGk
), yGk

= 0
(4)

where yk and ŷk are the ground truth and predicted label of a training graph Gk, respectively.

(3) Updating. Given the score of each candidate, we then generate an updated set of candidates Ct+1

based on Ct through mutation and crossover. In the mutation process, a new candidate prototype is
created using candidate selection matrix It+1

new, which is created as:

diag(It+1
new)e =

{
1, d ≥ 2

0, d < 2
(5)

where d = diag(It
r1)e+µ(diag(It

r2)e+diag(It
r3)e+diag(It

r4)e+diag(It
r5)e), µ is the predefined

mutation rate, and r1, r2, r3, r4, and r5 are divergent integers randomly selected between [1, p] to
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maintain the diversity of candidates, as specified in existing works (Ahmad et al., 2021; Deng et al.,
2021; Zhang et al., 2016). We set the threshold of d as 2 to ensure diag(It+1

new)e has equal possibilities
to be 1 or 0 in our setting µ = 0.5. A binominal crossover is then applied to get the final candidate
selection matrix It+1

new as:

diag(It+1
new)e =

{
diag(It+1

new)e, p(r) < CR or r = e

diag(It
new)e, otherwise

(6)

where p(r) is a random number drawn in range [0, 1] following the uniform distribution, CR is
a predefined crossover rate, r is a random integer between [1, |Ct

i|]. Once the new candidate is
generated, we quantify its score following the prior evaluation step and replace a less performing
candidate Ct

i by Ct+1
i since score(Ct+1

i ) < score(Ct
i).

This evolutionary candidate optimization is applied to find the most supportive candidate within et
iterations. Finally, Cop is chosen for mapping all graphs into a new feature space in which anomalies
and normal graphs can be best separated. And, a graph Gi’s representation can be generated using
Cop with candidate selection matrix Iop as the following:

hGi
= [s(Gi, v

op
1 · diag(Iop)1), . . . , s(Gi, v

op
|Cop| · diag(Iop)|Cop|)) (7)

4.3 GRAPH-LEVEL ANOMALY DETECTION

After the last evolution iteration of DE, GmapAD eventually learns the best candidate and a SVM
classifier for assigning graph labels. Given test graphs in the input set, the model maps each graph
into the new feature space and labels them regarding their locations in the space.

5 EXPERIMENTS

For validating the performance and key modules of GmapAD, we 1) conduct extensive experiments
for detecting anomalies on nine commonly used graph datasets by comparison with the state-of-the-
arts, and 2) perform a thorough ablation test on the devised model.

5.1 ANOMALY DETECTION PERFORMANCE

5.1.1 DATASETS

The nine benchmark datasets include two mostly-used brain networks datasets2 (i.e., KKI and
OHSU), and seven repurposed binary graph classification datasets published on site3. Specifically,
AIDS, MUTAG, Mutagenicity, NCI1 and PROTEINS are collected from biochemistry while IMDB-
BINARY and REDDIT-BINARY are from online social networks (Cai & Wang, 2018; Wu et al.,
2018a; Gallicchio & Micheli, 2020b;a). The KKI and OHSU brain network datasets are constructed
from the functional magnetic resonance image (fMRI) atlas of the whole brain for brain disorder
analysis (Van Den Heuvel & Pol, 2010; Pan et al., 2016; Hernández-Pérez et al., 2021), and since
their labels indicate abnormal brain disorders, we use them directly without any further processing.
For the 7 graph classification datasets, we follow previous works in (Zhao & Akoglu, 2021) and (Qiu
et al., 2022) and repurposed them for graph-level anomaly detection by downsampling the deviating
class. The detailed descriptions and statistics of these datasets are given in Appendix A.

5.1.2 BASELINES

We compare our devised framework GmapAD with six state-of-the-art GNN models, GCN (Kipf
& Welling, 2017), GAT (Veličković et al., 2018), g-U-Nets (Gao & Ji, 2019), SAGPool (Lee et al.,
2019), DIFFPOOL (Ying et al., 2018), and GMT Baek et al. (2021), and two graph-level anomaly
detection methods, OCGIN (Zhao & Akoglu, 2021) and OCGTL (Qiu et al., 2022). For a fair com-
parison, we add the anomaly-aware loss function proposed in Section 4.1 to the six GNN models
for reassigning them for graph anomaly detection and use GCN and GAT as the basis of GmapAD
for graph mapping. g-U-Nets, SAGPool, DIFFPOOL and GMT adopt different pooling strategies

2https://github.com/GRAND-Lab/graph datasets
3https://chrsmrrs.github.io/datasets/
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Table 1: Detection precision scores on nine datasets. (Best in bold)
Dataset GCN GAT g-U-Nets DiffPool SAGPool GMT OCGIN OCGLT GmapAD-GCN GmapAD-GAT

KKI 0.53±0.3 0.54±0.3 0.38±0.2 0.46±0.1 0.36±0.2 0.46±0.2 0.40±0.2 0.43±0.2 0.63±0.3 0.67±0.4
OHSU 0.58±0.3 0.55±0.2 0.51±0.3 0.48±0.2 0.46±0.2 0.43±0.2 0.57±0.1 0.64±0.2 0.59±0.1 0.66±0.2
AIDS 0.97±0.1 0.97±0.1 0.97±0.1 0.97±0.1 0.92±0.1 0.98±0.3 0.96±0.1 0.96±0.2 0.98±0.1 0.98±0.1

MUTAG 0.83±0.2 0.77±0.3 0.88±0.1 0.75±0.1 0.80±0.1 0.79±0.1 0.59±0.1 0.72±0.1 0.93±0.3 0.84±0.2
Mutagenicity 0.87±0.1 0.88±0.1 0.88±0.1 0.72±0.1 0.88±0.1 0.90±0.1 0.89±0.2 0.88±0.1 0.90±0.1 0.91±0.1

NCI1 0.88±0.3 0.87±0.2 0.89±0.1 0.61±0.1 0.91±0.1 0.91±0.1 0.90±0.1 0.92±0.1 0.93±0.2 0.93±0.3
PROTEINS 0.87±0.1 0.85±0.2 0.87±0.3 0.75±0.1 0.87±0.1 0.88±0.1 0.85±0.1 0.86±0.2 0.89±0.1 0.87±0.2

IMDB-BINARY 0.91±0.1 0.87±0.3 0.94±0.1 0.76±0.1 0.90±0.1 0.93±0.1 0.93±0.1 0.88±0.1 0.98±0.1 0.92±0.1
REDDIT-BINARY 0.88±0.1 0.85±0.1 0.89±0.1 0.74±0.1 0.91±0.1 0.93±0.2 0.83±0.1 0.89±0.1 0.93±0.1 0.91±0.1

and specially designed pooling layers for learning graph-level representations. Both baseline graph
anomaly detection models, OCGIN and OCGLT, apply a one-class SVDD classifier to learn a hy-
persphere using only normal graphs, and anomalies are distinguished as those lying outside the
hypersphere. Open-sourced implementations of these baselines are provided in Appendix B.

5.1.3 EXPERIMENTAL SETTINGS

In our experiment, we denote GmapAD-GCN and GmapAD-GAT as variants of our model using
GCN and GAT as basis, respectively. We use Adam (Kingma & Ba, 2014) (learning rate is 0.005,
weight decay is 0.0005) as the optimizer for fine-tuning GNN parameters. In GmapAD-GCN, we
stack 2 GCN layers, while in GmapAD-GAT, we use 2 GAT layers, each of which uses 8 heads. The
dimensions of GNN layers are set to 128 and 64, respectively, and the dimension of W in Equation 1
is 64. For the evolutionary graph-node feature mapping, we set k to 64 when selecting the top-k
most informative nodes and set the size of candidate pool to 30. For DE, we set the possibility ps of
the Bernoulli distribution as 0.5, mutate rate as 0.5, crossover rate as 0.9 and iterations for evolution
as 2, 000 (following previous DE works (Zhang et al., 2016; Wu & Cai, 2014)). Each dataset is
randomly shuffled and split for training, validation and test with ratios of 80%, 10%, and 10%. For
the baselines, we use their published settings unless the parameters are specially identified in the
original paper. All the experiments are conducted on a Rocky Linux 8.6 (Green Obsidian) server
with a 12-core CPU, 1 Nvidia V100 GPU and 60Gb RAM. The average and standard deviation of
10-fold test results are reported. The additional parameter sensitivity test results are provided in
Appendix D.

5.1.4 RESULT ANALYSIS

From the results in Tables 1, 2, and 3, the two variants of GmapAD, namely GmapAD-GCN and
GmapAD-GAT, achieve better results compared to other baselines on all datasets regarding preci-
sion, recall and F1-scores, because all baselines only consider intra-graph information for detecting
anomalies in the graph set, which inherently indicates that one should explore the inter-graph in-
formation more comprehensively for generating graph representations so that potential graph-level
anomalies can be more effectively identified. The conventional GCN and GAT models we utilize
for validation can also achieve comparative results to other state-of-the-art on graph-level anomaly
detection when trained with the anomaly-aware loss detailed in Section 4.1. g-U-Nets, SAGPool,
DIFFPOOL and GMT obtain the second-best results which can be attributed to their specially de-
signed pooling methods for reading graph-level representations using nodes within the graph, while
GmapAD explores the most informative nodes considering the whole graph set. We can also see
that there remain significant gaps to improve the detection performance on the two brain networks
and the low results of all methods on them can be reasoned to the relatively smaller size of datasets.
Nevertheless, the higher recall scores of all methods compared to their precision and F1-scores im-
ply the methods can capture most of the true anomalies while the number of predicted false positives
by different models is relatively high. Both problems can be future research in this direction. Due
to space limitation, AUC results are reported in Appendix C.

5.2 ABLATION TESTS

Apart from anomaly detection performance validation, we perform further ablation tests to validate
our approach to the challenges pinpointed in Section 1. Since GmapAD’s training process comprises
two main stages, i.e., anomaly-aware node representation learning and evolutionary graph mapping,
we report GNN basis’ detection performance to show the effectiveness of the learned node represen-
tations and then validate the differential evolutionary graph mapping method by conducting graph
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Table 2: Detection recall scores on nine datasets. (Best in bold)
Dataset GCN GAT g-U-Nets DiffPool SAGPool GMT OCGIN OCGLT GmapAD-GCN GmapAD-GAT

KKI 0.35±0.1 0.62±0.4 0.32±0.1 0.46±0.1 0.68±0.5 0.83±0.4 0.38±0.2 0.42±0.2 0.83±0.3 0.80±0.4
OHSU 0.70±0.2 0.49±0.2 0.45±0.4 0.49±0.2 0.65±0.2 0.68±0.4 0.57±0.1 0.62±0.2 0.82±0.2 0.64±0.2
AIDS 0.58±0.1 0.72±0.1 0.73±0.2 0.93±0.1 0.82±0.1 1.0±0.0 0.49±0.1 0.97±0.1 0.99±0.1 0.99±0.1

MUTAG 0.82±0.2 0.61±0.1 0.85±0.1 0.80±0.1 0.82±0.1 0.76±0.1 0.36±0.1 0.73±0.1 0.95±0.3 0.89±0.2
Mutagenicity 0.71±0.1 0.79±0.1 0.95±0.2 0.74±0.1 0.95±0.1 0.95±0.1 0.49±0.1 0.88±0.1 0.98±0.1 0.98±0.1

NCI1 0.75±0.3 0.78±0.1 0.96±0.1 0.58±0.1 0.95±0.1 0.98±0.1 0.48±0.1 0.92±0.1 0.99±0.1 0.99±0.1
PROTEINS 0.57±0.1 0.64±0.4 0.71±0.1 0.68±0.1 0.92±0.1 0.95±0.1 0.48±0.1 0.87±0.1 0.99±0.1 0.97±0.2

IMDB-BINARY 0.70±0.1 0.85±0.3 0.98±0.1 0.77±0.1 0.98±0.1 0.95±0.1 0.98±0.1 0.89±0.1 0.99±0.1 0.94±0.1
REDDIT-BINARY 0.83±0.1 0.92±0.1 0.78±0.2 0.68±0.1 0.91±0.1 0.93±0.1 0.45±0.1 0.89±0.1 0.94±0.1 0.96±0.1

Table 3: Detection F1 scores on nine datasets. (Best in bold)
Dataset GCN GAT g-U-Nets DiffPool SAGPool GMT OCGIN OCGLT GmapAD-GCN GmapAD-GAT

KKI 0.36±0.2 0.56±0.3 0.34±0.1 0.44±0.1 0.46±0.3 0.58±0.3 0.38±0.2 0.43±0.2 0.71±0.3 0.73±0.3
OHSU 0.59±0.2 0.51±0.2 0.36±0.3 0.47±0.2 0.51±0.2 0.51±0.3 0.57±0.1 0.61±0.2 0.68±0.7 0.63±0.2
AIDS 0.73±0.1 0.83±0.1 0.83±0.1 0.98±0.1 0.86±0.1 1.0±0.0 0.65±0.1 0.96±0.1 0.99±0.1 0.99±0.1

MUTAG 0.86±0.1 0.75±0.1 0.82±0.1 0.83±0.1 0.81±0.1 0.78±0.1 0.44±0.1 0.71±0.2 0.96±0.3 0.86±0.1
Mutagenicity 0.81±0.1 0.87±0.1 0.92±0.1 0.72±0.1 0.91±0.1 0.92±0.1 0.63±0.1 0.87±0.2 0.94±0.1 0.94±0.1

NCI1 0.84±0.3 0.85±0.1 0.94±0.1 0.59±0.1 0.95±0.1 0.94±0.1 0.63±0.1 0.92±0.1 0.96±0.2 0.97±0.2
PROTEINS 0.71±0.1 0.73±0.3 0.78±0.1 0.71±0.1 0.92±0.1 0.91±0.1 0.61±0.1 0.85±0.3 0.94±0.1 0.93±0.2

IMDB-BINARY 0.81±0.1 0.88±0.2 0.94±0.1 0.91±0.2 0.94±0.1 0.95±0.1 0.61±0.1 0.87±0.2 0.95±0.1 0.94±0.1
REDDIT-BINARY 0.88±0.1 0.92±0.1 0.82±0.1 0.69±0.1 0.93±0.1 0.93±0.2 0.58±0.1 0.88±0.1 0.94±0.1 0.95±0.1

mapping using all top-k informative nodes in the whole graph set without further optimization (de-
noted as + Full mapping), followed by graph mapping using the best candidate selected through
differential evolution (denoted as +DE).

Table 4: Ablation test (Best in bold).
Dataset Variants F1-score Precision Recall

KKI
GCN 0.36±0.2 0.53±0.3 0.80±0.3

+ Full mapping 0.43±0.3 0.40±0.5 0.74±0.4
+ DE 0.71±0.3 0.63±0.3 0.83±0.3

MUTAG
GCN 0.86±0.1 0.83±0.2 0.82±0.2

+ Full mapping 0.91±0.1 0.91±0.2 0.91±0.3
+ DE 0.96±0.3 0.93±0.3 0.95±0.3

Mutagenicity
GCN 0.81±0.1 0.87±0.1 0.71±0.1

+ Full mapping 0.93±0.1 0.84±0.1 0.99±0.1
+ DE 0.94±0.1 0.90±0.1 0.98±0.1

Graph mapping performance. As illustrated
in Tables 1, 2, 3, and 4, GmapAD-GCN’s supe-
rior detection performance mainly comes from
our proposed differential evolutionary graph
mapping method, improved more than 10% and
2% on the GCN basis and full mapping, re-
spectively, on the three datasets. By compar-
ing GCN and full mapping, we find that the
straightforward graph mapping using all top-k
informative nodes cannot guarantee a satisfying detection performance. For example, GCN outper-
forms full mapping regarding the precision and recall scores on KKI dataset. This is because some
nodes might contain non-informative or even defective information that may blur the boundary be-
tween anomalies and normal graphs, as prior mentioned in Section 4.2.1.

Differential evolutionary algorithm’s performance. +DE’s better performance over full mapping
demonstrates that our devised DE algorithm can further improve the detection performance by iter-
atively selecting the best candidate nodes for graph mapping while maintaining the traceability of
graph mapping for representation explanation.

6 CONCLUSION

In this paper, we have devised a novel graph-level anomaly detection framework based on graph
representations learned through deep evolutionary graph mapping. From our study, we pinpoint that
investigating both the abundant inter- and intra-graph information in the graph set is mandatory for
capturing the deviating patterns of anomalies, which however has not yet been sufficiently studied
in existing works. To bridge the gap, our developed framework, GmapAD, first utilizes a GNN to
encapsulate the spatial graph structure and attributes into node representations and then iteratively
selects the best subset of informative nodes in the graph set for mapping graphs into the new feature
space (according to the similarity between each graph and nodes in the subset). Eventually, anoma-
lies and normal graphs will be mapped to the deviating locations in the feature space and thus can be
classified effectively using conventional machine learning techniques such as SVM. The extensive
experiments on nine widely-used real-world datasets show that GmapAD outperforms the five state-
of-the-art baselines, and our approach to the challenges discussed early in the paper is validated
through the additional ablation tests.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Mohamad Faiz Ahmad, Nor Ashidi Mat Isa, Wei Hong Lim, and Koon Meng Ang. Differential
evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal,
2021.

Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and description:
a survey. Data Mining and Knowledge Discovery, 29(3):626–688, 2015.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In International Conference on Learning Representations, 2021.

Sambaran Bandyopadhyay, Saley Vishal Vivek, and MN Murty. Outlier resistant unsupervised deep
architectures for attributed network embedding. In Proceedings of the 13th International Confer-
ence on Web Search and Data Mining, pp. 25–33, 2020.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Chen Cai and Yusu Wang. A simple yet effective baseline for non-attributed graph classification.
arXiv preprint arXiv:1811.03508, 2018.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

Wu Deng, Shifan Shang, Xing Cai, Huimin Zhao, Yingjie Song, and Junjie Xu. An improved
differential evolution algorithm and its application in optimization problem. Soft Computing, 25
(7):5277–5298, 2021.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp. 315–324, 2020.

Dongsheng Duan, Lingling Tong, Yangxi Li, Jie Lu, Lei Shi, and Cheng Zhang. Aane: Anomaly
aware network embedding for anomalous link detection. In 2020 IEEE International Conference
on Data Mining (ICDM), pp. 1002–1007. IEEE, 2020.

Claudio Gallicchio and Alessio Micheli. Fast and deep graph neural networks. In Proceedings of
the AAAI conference on Artificial Intelligence, volume 34, pp. 3898–3905, 2020a.

Claudio Gallicchio and Alessio Micheli. Ring reservoir neural networks for graphs. In 2020 Inter-
national Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE, 2020b.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2083–2092.
PMLR, 09–15 Jun 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in Neural Information Processing Systems, 30, 2017.
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A DOWNSAMPLED DATASET DESCRIPTION

Statistics of the nine raw datasets, including the number of graphs in each class, the average num-
ber of nodes and edges are given in Table 5. For the KKI and OHSU datasets, G0 denotes brain
networks/graphs with disorders while G1 denotes the normal class. For the rest seven datasets, we
follow previous works in Zhao & Akoglu (2021); Qiu et al. (2022) and downsample G0 as anomalies
(only 10% data samples are kept). The meanings of G0 and G1 are also summarized in Table 6.

Table 5: Dataset statistics

Dataset KKI OHSU AIDS MUTAG Mutagenicity PROTEINS NCI1 IMDB REDDIT
G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

#G 37 46 35 44 400 1600 63 125 2401 1936 663 450 2053 2057 500 500 1000 1000
avg.#V 190.0 190.0 190.0 190.0 37.61 10.2 13.9 14.9 29.4 31.5 49.9 22.9 25.7 34.1 20.1 19.4 641.3 218.0
avg.#E 237.4 239.3 400.5 381.1 80.9 20.4 29.2 44.8 60.6 62.7 188.1 83.1 55.3 73.9 193.6 192.6 1471.9 519.1

B BASELINE IMPLEMENTATIONS

In our experiment, we strictly follow the official implementations of the baselines and their corre-
sponding code repository are as follows:

g-U-Nets. https://github.com/HongyangGao/Graph-U-Nets.

SAGPool. https://github.com/inyeoplee77/SAGPool.

DIFFPOOL. https://github.com/RexYing/diffpool.

GMT. https://github.com/JinheonBaek/GMT.

OCGIN. https://github.com/LingxiaoShawn/GLOD-Issues.

OCGLT. https://github.com/boschresearch/GraphLevel-AnomalyDetection.

C ADDITIONAL EXPERIMENTAL RESULTS

We provide experimental results regarding the ROC-AUC score here. Specifically, as our proposed
GmapAD learns an SVM classifier and directly assigns labels for graphs as anomalies or normal,
we use the distance between each graph representation and the margin learned by SVM as its score.
As can be seen in Table 7, GmapAD achieves the best performance in most cases.

D PARAMETER SENSITIVITY

As detailed in Section 4 and the experimental settings in Section 5.1.3, GmapAD’s main hyper-
parameters are: 1) dimensions of the GNN layers, 2) k value used for selecting the top-k most
informative nodes in the graph set, and 3) mutation rate and crossover rate in the differential evolu-
tionary algorithm. For validation purposes and because GmapAD is two-staged, we test GmapAD’s
sensitivity to GNN parameters and k value separately. We set k as 64 when testing GNN dimen-
sions’ impacts. Similarly, we set the GNN dimensions as 128 and 64 when testing different k values.
To be noticed, for the DE algorithm-related parameters, we follow previous works in Zhang et al.
(2016) and Wu & Cai (2014) since both rates have already been validated. All tests are conducted
on a representative dataset – MUTAG and GmapAD’s detection performance regarding precision,
recall and F1 scores are reported.

D.1 GNN PARAMETER SENSITIVITY

In this experiment, we use GCN as the basis of GmapAD and conduct a grid search on the dimen-
sions of the two GCN layers, where each layer’s dimension is set as [32, 64, 128, 256]. As can be
seen from Figure 3, the settings of GCN dimensions have little impact on GmapAD-GCN’s perfor-
mance. This maybe because the graph mapping takes the similarities between graph and candidate

13

https://github.com/HongyangGao/Graph-U-Nets
https://github.com/inyeoplee77/SAGPool
https://github.com/RexYing/diffpool
https://github.com/JinheonBaek/GMT
https://github.com/LingxiaoShawn/GLOD-Issues
https://github.com/boschresearch/GraphLevel-AnomalyDetection


Under review as a conference paper at ICLR 2023

Table 6: Graph label description

Dataset Class Description

KKI G0 Brain networks with attention deficit hyperactivity disorder
G1 Health brain networks

OHSU G0 Brain networks with hyperactive-impulsive disorder
G1 Health brain networks

AIDS G0 Chemical compounds inactive against HIV
G1 Chemical compounds active against HIV

MUTAG G0 Nitroaromatic compounds mutagenicity on Salmonella typhimurium
G1 Nitroaromatic compounds non-mutagenicity on Salmonella typhimurium

Mutagenicity G0 Chemical compounds categorized as mutagen drugs

G1 Chemical compounds categorized as non-mutagen

PROTEINS G0 Enzymes proteins

G1 Non-enzymes proteins

NCI1 G0 Chemical compounds active for non-small cell lung cancer

G1 Chemical compounds inactive for non-small cell lung cancer

IMDB-BINARY G0 Movie collaboration network extracted from romance movies

G1 Movie collaboration network extracted from action movies

REDDIT-BINARY G0 Discussion-based communities extracted from Reddit

G1 Question/answer-based communities extracted from Reddit

Table 7: Detection AUC scores on nine datasets. (Best in bold)
Dataset GCN GAT g-U-Nets DiffPool SAGPool GMT OCGIN OCGLT GmapAD-GCN GmapAD-GAT

KKI 0.52±0.1 0.44±0.2 0.35±0.2 0.50±0.2 0.50±0.1 0.52±0.1 0.44±0.1 0.35±0.1 0.64±0.2 0.55±0.2
OHSU 0.62±0.2 0.51±0.1 0.53±0.1 0.59±0.2 0.53±0.2 0.57±0.2 0.50±0.2 0.46±0.2 0.69±0.2 0.64±0.3
AIDS 0.64±0.1 0.66±0.1 0.98±0.1 0.98±0.1 0.93±0.1 0.98±0.1 0.96±0.1 0.97±0.1 0.93±0.1 0.92±0.1

MUTAG 0.54±0.1 0.50±0.1 0.76±0.1 0.76±0.1 0.73±0.1 0.72±0.1 0.63±0.4 0.66±0.1 0.79±0.1 0.73±0.2
Mutagenicity 0.46±0.1 0.65±0.1 0.68±0.1 0.62±0.1 0.68±0.1 0.69±0.1 0.47±0.1 0.55±0.1 0.69±0.1 0.67±0.1

NCI1 0.62±0.1 0.62±0.1 0.65±0.1 0.66±0.1 0.67±0.1 0.66±0.1 0.35±0.1 0.63±0.1 0.67±0.1 0.67±0.1
PROTEINS 0.65±0.1 0.61±0.1 0.83±0.1 0.73±0.1 0.88±0.1 0.66±0.1 0.39±0.1 0.69±0.1 0.88±0.1 0.79±0.2

IMDB-BINARY 0.67±0.1 0.69±0.1 0.76±0.1 0.69±0.1 0.85±0.1 0.77±0.1 0.61±0.3 0.67±0.3 0.87±0.1 0.81±0.1
REDDIT-BINARY 0.73±0.1 0.68±0.1 0.74±0.1 0.74±0.1 0.75±0.1 0.78±0.1 0.42±0.4 0.75±0.2 0.76±0.1 0.73±0.1

nodes for generating graph representations. Although the dimension of GNN varies, the similarities
among graphs and the selected candidate nodes are rarely affected by it.
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Figure 3: GNN parameter sensitivity.
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Figure 4: k value sensitivity.

D.2 k VALUE SENSITIVITY

The value of k determines the number of the most informative nodes for graph mapping and
optimization. To validate k’s impact on GmapAD, we use GmapAD-GCN with fixed dimen-
sions (128, 64) and report the detection performance on validation and test sets under settings
k = [8, 16, 32, 64, 128, 256] in Figure 4.

We can observe slight changes in the precision, recall and F1-score under different k values. This
implies GmapAD can eventually find the best candidate from the given graph set for graph mapping
and the best k for MUTAG is 64. Meanwhile, since a high value of k will result in high dimen-
sional graph representations, which introduces more computation cost, a balance between k and the
performance should be made when applied to real applications.
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