
Natural Perturbations for Black-box Training of Neural Networks
by Zeroth-Order Optimization

Hiroshi Sawada 1 Kazuo Aoyama 1 Yuya Hikima 1

Abstract
This paper proposes a novel concept of natural
perturbations for black-box training of neural net-
works by zeroth-order optimization. When a neu-
ral network is implemented directly in hardware,
training its parameters by backpropagation ends
up with an inaccurate result due to the lack of
detailed internal information. We instead employ
zeroth-order optimization, where the sampling of
parameter perturbations is of great importance.
The sampling strategy we propose maximizes the
entropy of perturbations with a regularization that
the probability distribution conditioned by the
neural network does not change drastically, by
inheriting the concept of natural gradient. Exper-
imental results show the superiority of our pro-
posal on diverse datasets, tasks, and architectures.

1. Introduction
The backpropagation algorithm (Rumelhart et al., 1986;
Amari, 1993; LeCun et al., 2015) is a standard technique
for training the parameters of a neural network on CPU or
GPU-based ordinary computers. It computes the gradient
vectors with respect to the parameters by backpropagat-
ing the gradient information from the loss function defined
at the output. For the computation, it is necessary to ob-
tain detailed internal information, such as the derivatives
of component-wise activation functions and layer-wise in-
puts to neurons generated during the forward computation.
On the other hand, when neural networks are implemented
directly in hardware (Figure 1), such as optical neural net-
works (Shen et al., 2017; Ashtiani et al., 2022) and analog-
based in-memory computing (Li et al., 2018; Aguirre et al.,
2024), training the parameters by backpropagation ends up
with an inaccurate result. This is because detailed inter-

1NTT Communication Science Laboratories, NTT Corpo-
ration, Kyoto, Japan. Correspondence to: Hiroshi Sawada
<sawada.hiroshi@ieee.org>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. Training neural network implemented in hardware

nal information cannot be accurately obtained even when
the hardware is simulated by an ordinary computer, for ex-
ample, due to hardware-specific manufacturing variations
(Fang et al., 2019; Banerjee et al., 2023).

For such above cases, several black-box optimization meth-
ods have been used to train the parameters of neural net-
works on hardware, including genetic algorithm (Zhang
et al., 2019; 2021), bacterial foraging optimization (Cong
et al., 2022), covariance matrix adaptation evolution strat-
egy (CMA-ES) (Chen et al., 2022; Lupo et al., 2023), and
zeroth-order (ZO) optimization (Shen et al., 2017; Zhou
et al., 2020; Gu et al., 2020; 2021; Bandyopadhyay et al.,
2022). Among these methods, this paper focuses on ZO
optimization (Liu et al., 2020) because it is a local search
based on (approximate) gradient vectors like backpropaga-
tion and is expected to scale to training neural networks
with a moderately large number N of parameters.

The core operation of the ZO optimization for computing
approximate gradient vectors is to slightly perturb the pa-
rameter vector θ ∈ RN to θ + µu with a smoothing hyper-
parameter µ > 0 and a perturbation vector u ∈ RN , and
perform a query to evaluate how the loss function changes
from ℓ(θ) to ℓ(θ + µu). Here, the perturbation vector u is
sampled from some distribution, typically from a multivari-
ate standard normal distribution N (0, I) with an identity
matrix I (Duchi et al., 2015; Nesterov & Spokoiny, 2017)
or similarly from a uniform distribution on a unit sphere
(Fazel et al., 2018). While these sampling strategies are
plausible for a shallow neural network, they are not the best
way for a deep neural network because the parameters are
correlated in the optimization landscape. The reason for the
correlation is that many parameters are involved in a path
from an input element to an output element of the neural
network (Sawada et al., 2025). To mitigate the correlation of
parameters, the use of coordinate-wise perturbations (Lian

1

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

Figure 2. Criteria for methods computing gradient or perturbations

et al., 2016; Berahas et al., 2022; Chen et al., 2024) is effec-
tive, where a perturbation vector u has only one non-zero
element. However, the disadvantage is that it requires as
many queries as the number of parameters to change the
entire parameters.

Returning to the situation where we can use backpropaga-
tion, the natural gradient method (Amari, 1998; Pascanu
& Bengio, 2013; Martens, 2020) is known to be effective
especially when the parameters are correlated. It modifies
the gradient vector computed by backpropagation based on
the Fisher information matrix (FIM), which describes how
the parameters are correlated. Regarding ZO optimization,
some methods (Zhao et al., 2020; Sawada et al., 2024) have
been proposed to introduce the idea of natural gradient. Al-
though these methods modify the ZO gradient vector based
on the natural gradient criterion, they do not suggest an ap-
propriate distribution from which to sample perturbations.

This paper proposes a novel concept of natural perturba-
tions and a way to design the distribution from which we
sample them. The term “natural” refers to the same meaning
as natural gradient, but the criterion of natural perturbations
is different and newly introduced in this paper. As sum-
marized in Figure 2, natural gradient descent aims at the
steepest descent direction by taking care not only of the
parameter space discrepancy (PSD), which is the only regu-
larization in gradient descent, but also of the function space
discrepancy (FSD) defined with the FIM, as will be detailed
with (5). Analogously, natural perturbations are sampled
by considering not only the PSDs but also the FSDs. What
to maximize in this sampling strategy is the entropy of the
distribution, making the sampled perturbations explore as
widely as possible. As will be shown in Section 3.1, the
existing sampling strategy from N (0, I) can be considered
to maximize the entropy only under the PSD regularization.

Our proposed method and natural evolution strategies (NES)
(Wierstra et al., 2014) are both black-box optimization meth-
ods that use the FIM. However, they are fundamentally
different as described in Appendix B.

For neural networks with a large number N of parameters,
computing and inverting the FIM introduced above is prac-
tically prohibited because the matrix size is N2. For natural
gradient, sophisticated approximation methods (Martens &
Grosse, 2015; Benzing, 2022) have been proposed, which

require detailed internal information and are therefore not
applicable to our black-box ZO optimization method. In-
stead, we propose to simply partition a large parameter set
into small blocks. This makes perturbation vectors block
coordinate and thus the FIM that we need block diagonal,
whose inversion can be computed practically.

This work builds on (Sawada et al., 2025), which points out
that the parameters of an optical neural network are layered
and thus correlated, and proposes a method to perturb the
parameters of a linear module. The advancement of this
work over the previous work is substantial as follows.

• The concept of natural perturbations is newly proposed
as Figure 2 shows clear relations to the existing methods
(gradient or perturbation and natural or not).

• A black-box method to compute FIMs is newly proposed
in Section 4.1, whereas the previous work needs to simu-
late the internal information, which may be inaccurate.

• The new ZO optimization method can efficiently handle
convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs), which the previous work cannot do
because FIMs are computed in a module-wise manner.

The rest of this paper is organized as follows. Section 2
formulates a neural network, and explains natural gradient
and ZO optimization. We then newly propose natural per-
turbations in Section 3, and describe a practical method for
ZO optimization using them in Section 4. Section 5 shows
the experimental results to demonstrate the effectiveness of
our proposal. Section 6 concludes the paper.

2. Preliminaries
2.1. Neural Network and Loss Function

As shown in Figure 1, we consider a neural network f with
a parameter vector θ ∈ RN that transforms an input vec-
tor x ∈ RK to an output vector y = f(x,θ) ∈ RM . A
probabilistic interpretation can be given that the neural net-
work expresses a conditional distribution pθ(z | x) = p(z |
f(x,θ)) with a probability distribution p(z | y) defined at
the output. Given a training dataset Dtr = {(x, t)}, each
element of which is a pair of an input vector x and a target
vector t, the loss function for mini-batch D ⊆ Dtr can be
defined as

ℓD(θ) := −E(x,t)∼D[ln p(t | f(x,θ))] , (1)

where ln represents the natural logarithm, i.e., ln = loge.

2.2. Natural Gradient

For a small change δθ ∈ RN of θ, we measure how the
conditional distribution changes using the Kullback–Leibler
(KL) divergence dKL(pθ(z | x), pθ+δθ(z | x)). The func-
tion space discrepancy (FSD) is the expected value of the

2

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

measurements over a subset D of the training dataset

ξD(δθ) := Ex∼D[dKL(pθ(z |x), pθ+δθ(z |x))] . (2)

Note that the target vectors t are not used here (Kunstner
et al., 2019). Let us approximate the above by the Taylor
series expansion of dKL up to the second order (Pascanu &
Bengio, 2013; Martens, 2016). Then it is given as

ξD(δθ) ≈
1

2
δθTFθ δθ =

1

2
tr(Fθδθδθ

T) (3)

with the Fisher information matrix (FIM)

Fθ := Ex

[
Ez

[
∇θ ln pθ(z |x)∇θ ln pθ(z |x)T

]]
, (4)

where the expectation notations are in concise forms as
Ex[·] = Ex∼D[·] and Ez[·] = Ez∼pθ(z|x)[·].
With a parameter update θ ← θ + δθ in mind, natural
gradient descent as well as ordinary gradient descent can be
formulated as the minimization problem (Bae et al., 2022)

δθ ← argmin
δθ

{ℓD(θ+δθ) + r} with (5)

r :=
λ
(NG)
P

2η
∥δθ∥22 +

λ
(NG)
F

η
ξD(δθ) , (6)

where ∥δθ∥22/2 is the parameter space discrepancy (PSD)
defined by the squared l2-norm, and η serves as a learning
rate hyperparameter. The PSD and FSD are weighted by
hyperparameters λ(NG)

P > 0 and λ
(NG)
F ≥ 0. By solving (5)

with the first-order approximation of the loss term ℓD(θ +
δθ) ≈ ℓD(θ) + δθT∇θℓD(θ) and (3), we have

δθ = −η ·
(
λ
(NG)
P · I+ λ

(NG)
F · Fθ

)−1

∇θℓD(θ) . (7)

If λ(NG)
F = 0, (7) reduces to ordinary gradient descent. Nat-

ural gradient corresponds to when λ
(NG)
F > 0. A sufficiently

large value of λ(NG)
P , e.g., λ(NG)

P = 1, ensures that the ma-
trix to be inverted is full rank, even if the computed FIM is
not full rank.

The term∇θℓD(θ) in (7) is the gradient vector for the loss
function with respect to the parameters, and typically com-
puted by backpropagation. However, when neural networks
are implemented directly in hardware, we cannot use back-
propagation and need to rely on a black-box method. In
this paper, we compute approximate gradient vectors by ZO
optimization explained in the next subsection.

2.3. Zeroth-Order (ZO) Optimization

ZO optimization is a black-box optimization method for
function ℓD(θ) that we do not have full access to. Specifi-
cally, we can query a function value ℓD(θ), but we cannot

Algorithm 1 ZO optimization for training a neural network
1: Input: training dataset Dtr={(x, t)}, hyperparameters Q, µ
2: Initialize the parameter vector θ
3: while not converged do
4: Sample mini-batch D from Dtr

5: Evaluate loss ℓD(θ) by (1)
6: Sample perturbations uq, q = 1,. . ., Q from N (0, I)

7: Compute the approximate gradient ∇̂θℓD(θ) by (10)
8: Update the parameter vector θ by (9)
9: end while

compute the gradient∇θℓD(θ) precisely. Still, we can ap-
proximate the gradient by

∇̂(I)
θ ℓD(θ) := Eu∼N (0,I)

[
ℓD(θ + µu)− ℓD(θ)

µ
u

]
,

(8)

which is derived from Gaussian smoothing of ℓD(θ) with
a multivariate standard normal distribution N (0, I) and a
smoothing hyperparameter µ > 0 (Nesterov & Spokoiny,
2017; Berahas et al., 2022).

Algorithm 1 shows a procedure for training a neural network
with ZO optimization. For each mini-batch D, we update
the parameter vector θ by

θ ← θ − η · ∇̂θℓD(θ) (9)

with a realization of the approximate gradient (8)

∇̂θℓD(θ) :=
1

Q

Q∑
q=1

ℓD(θ + µuq)− ℓD(θ)

µ
uq , (10)

where Q perturbation vectors uq ∈ RN , q = 1, . . . , Q are
sampled from N (0, I). The query consumption cost for
(10) is Q+ 1, one for ℓD(θ) and Q for ℓD(θ + µuq).

As discussed in Section 1, if the neural network has a deep
structure, the sampling strategy for perturbation vectors uq

from N (0, I) is not the best way because it ignores the
parameter correlation represented by the FIM. One way to
mitigate the parameter correlation is to sample coordinate-
wise perturbations with one-hot vectors

uq = enq
:= [0, . . . , 1 (nq-th entry), . . . , 0]T ∈ RN ,

(11)
where indices nq, q = 1, . . . , Q are sampled from the set
{1, . . . , N} without replacement. Indeed, the coordinate-
wise sampling strategy is often more effective than that from
N (0, I), as shown by the experimental results in Section 5.
However, it consumes as many queries as N to change the
entire parameter elements because there is only one non-
zero element in the perturbation vector.

3

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

3. Natural Perturbations
Aiming to solve the two issues just mentioned, namely miti-
gating the parameter correlation and having multiple non-
zero elements in a perturbation vector, we propose a novel
strategy that samples natural perturbations.

3.1. Criterion and Main Result

We consider that a good sampling strategy for ZO optimiza-
tion is to somehow maximize the entropy of the distribution
so that the sampled perturbations u explore as widely as pos-
sible (Figure 2). To simplify the discussion, we restrict the
distributions to N -dimensional multivariate normal distribu-
tions N (0,Σ) with an arbitrary positive definite covariance
matrix Σ ∈ RN×N . Then, the entropy of random vectors u
drawn from N (0,Σ) is given as

h(Σ) := Eu∼N (0,Σ)[− ln p(u)]

=
1

2
[N ln(2π) + ln detΣ+N] . (12)

Analogously to (5), the sampling strategy for natural per-
turbations u ∼ N (0,Σ) is formulated as minimizing the
criterion

C(Σ) := −h(Σ)+
λP

2
Eu

[
∥u∥22

]
+λF Eu[ξD(u)] , (13)

where the expectation is written concisely as Eu[·] =
Eu∼N (0,Σ)[·]. The first term is the negative entropy. The
second term with a weight hyperparameter λP > 0 is the
expected PSD, and the third term with a weight hyperpa-
rameter λF ≥ 0 is the expected FSD.

Let us derive the covariance matrix that minimizes the crite-
rion (13). The last two terms, without the weight hyperpa-
rameters, can be written as

1

2
Eu

[
∥u∥22

]
=

1

2
tr(Eu

[
uuT

]
) =

1

2
tr(Σ) , (14)

Eu[ξD(u)]
(3)≈ 1

2
tr(FθEu

[
uuT

]
) =

1

2
tr(FθΣ) , (15)

because Eu

[
uuT

]
= Σ by definition. By ignoring constant

terms in (12) that do not depend on Σ, (13) becomes

C(Σ)
c
= −1

2
ln detΣ+

λP

2
tr(Σ) +

λF

2
tr(FθΣ) . (16)

The gradient matrix with respect to Σ is given by

∂C(Σ)

∂Σ
= −1

2
Σ−1 +

λP

2
I+

λF

2
Fθ . (17)

Setting this to a zero matrix gives

Σ = (λP · I+ λF · Fθ)
−1 (18)

200 500

Expected PSD

600

800

1000

E
nt

ro
py

λF = 0

λF = 1

λF = 10

10 100

Expected FSD

Figure 3. Experimental examples on the relations among the en-
tropy, the expected PSD, and the expected FSD.

as the optimal Σ that minimizes C(Σ).

From (13) and (18), we understand that the existing sam-
pling strategy from N (0, I) is a special case with λP = 1
and λF =0, and takes into account the expected PSD (14)
but not the expected FSD (15). In contrast, our proposed
sampling strategy takes into account the expected FSD as
well by setting λF > 0.

3.2. Metrics

To see how well the term λF ·Fθ in (18) works with λF > 0,
let us experimentally investigate the relations among the
three terms in the criterion (13), namely the entropy (12),
the expected PSD (14), and the expected FSD (15).

We trained a small-size CNN having N =816 parameters
with the MNIST handwritten digits (LeCun & Cortes, 2010).
We stopped the training at the 5-th epoch to see a situation
on the way (the test accuracy was still 0.662). We examined
three values for λF as shown by colors/styles in Figure 3.
For λP , we examined various values ranging from 1 to 5
so that the tendencies can be observed visually with many
dots. Note that the values of λP are not visible in Figure 3.
For each pair of λF and λP values, we computed Σ as (18)
and sampled Q = 20 perturbations uq from N (0,Σ). The
expected PSD (14) and FSD (15) were actually calculated
by the averages over Q perturbations:

1

2
Eu

[
∥u∥22

]
≈ 1

2

1

Q

Q∑
q=1

∥uq∥22 , (19)

Eu[ξD(u)] ≈
1

2

1

Q

Q∑
q=1

uT
qFθuq . (20)

We observe the followings in Figure 3. The existing sam-
pling strategy with λF =0 attained the largest entropy under
the same expected PSD (see left hand plot vertically). How-
ever, this was at a cost with the largest expected FSD for
attaining the same entropy among the three λF values (see
the right hand plot horizontally). Our sampling strategy for
natural perturbations with λF > 0 (blue and green symbols),

4

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

on the other hand, reduced the expected FSD for attaining
the same entropy (see the right hand plot horizontally) by
paying a little cost of reducing the entropy (see left hand
plot vertically) under the same expected PSD.

Too large an FSD leads to unstable training because the
probability distribution conditioned by the neural network
changes drastically. Natural perturbations as well as natural
gradient prevent such situations.

3.3. Theoretical Property

This subsection shows the approximation error bound of the
ZO gradient approximation

∇̂(NP)
θ ℓD(θ) := Eu∼N (0,Σ)

[
ℓD(θ + µu)− ℓD(θ)

µ
u

]
(21)

by natural perturbations u ∼ N (0,Σ) with Σ being (18),
to the natural gradient

∇(NG)
θ ℓD(θ) :=

(
λ
(NG)
P · I+ λ

(NG)
F · Fθ

)−1

∇θℓD(θ)

(22)

extracted from (7).

Assumption 3.1. ℓD(θ) is L-smooth, i.e.,

ℓD(θ+µu) ≤ ℓD(θ)+∇ℓD(θ)T(µu)+
L

2
∥µu∥22 , (23)

for any θ ∈ RN , u ∈ RN , and µ > 0.

Theorem 3.2. When we assume λ(NG)
P = λP , λ(NG)

F = λF

and Assumption 3.1, the difference between the ZO gradient
approximation by natural perturbations and the natural
gradient is bounded by∥∥∥∇̂(NP)

θ ℓD(θ)−∇(NG)
θ ℓD(θ)

∥∥∥
2
≤ µL

2

(
3 +N

λP

)3/2

.

(24)

The proof is shown in Appendix A.

Therefore, the ZO gradient approximation by natural per-
turbations well approximates the natural gradient as long as
the smoothing hyperparameter µ is small enough and the
PSD weight λP is not very small. We actually set µ=0.001
and λP =1 in the experiments reported in Section 5.2.

4. Method for ZO Optimization
To practically use natural perturbations for ZO optimiza-
tion of neural networks with many parameters, we need to
overcome two related issues. The first is how to compute
the FIM Fθ in a black-box manner. The second is then how
to avoid the inverse (18) of a big matrix including Fθ. The

second issue is managed by partitioning the parameters into
small blocks, as explained in Section 4.2. But let us start
this section with the FIM computation, assuming that the
number N of parameters is not so large.

4.1. FIM Computation

The derived result (18) for sampling natural perturbations
requires to compute the FIM Fθ as in the case of natural
gradient. If we are allowed to perform backpropagation,
there are ways (Dangel et al., 2020; Martens, 2020) to ap-
proximately compute the FIM efficiently. However, in our
black-box context, we need to develop another practical way
to compute the FIM, as this subsection proposes.

The FIM Fθ defined in (4) can be expressed (Park et al.,
2000; Martens, 2020) as

Fθ = Ex

[
JT
yθFyJyθ

∣∣
y=f(x,θ)

]
∈ RN×N (25)

with a collection of Jacobian matrices

Jyθ :=
∂y

∂θ
=

∂f(x,θ)

∂θ
∈ RM×N (26)

and a collection of the FIMs with respect to the output

Fy := Ez∼p(z|y)
[
∇yln p(z |y)∇yln p(z |y)T

]
∈RM×M .

(27)

4.1.1. WHITE-BOX OUTPUT FIM COMPUTATION

The computation of Fy can be performed in a white-box
manner because we have complete information on the prob-
ability distribution p(z |y) used at the output (see Figure 1).

When we use a multivariate standard normal distribution
as p(z |y) for a regression task, the output FIM is simply
given as Fy=I with an identity matrix (Malagò & Pistone,
2015). When we use a categorical distribution (a multino-
mial distribution for a single observation) as p(z |y) with
logits [y]m, m = 1, . . . ,M , for a classification task, the
output FIM can be computed (Sawada et al., 2024) by

Fy =
∑
z∈T

p(z |y)∇y ln p(z |y)∇y ln p(z |y)T , (28)

where T = {[1, 0, . . . , 0]T, . . . , [0, . . . , 0, 1]T} is a set of
all possible outcomes, and

∇y ln p(z |y) = z − softmax (y) , (29)

[softmax (y)]m =
exp([y]m)∑M
k=1 exp([y]k)

. (30)

4.1.2. BLACK-BOX JACOBIAN COMPUTATION

The computation of the Jacobian matrices Jyθ should be
performed in a black-box manner. We adopt a column-wise

5

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

Figure 4. Block coordinate perturbations when B = 3 and Q = 5.
Colored partitioned vectors are sampled using Σb and white parti-
tioned vectors are filled with zero.

(parameter-wise) computation

Jyθ = [δy1, . . . , δyN] , (31)

and each column is computed by evaluating function values
for multivariate difference quotients

δyn :=
f(x,θ + µen)− f(x,θ)

µ
∈ RM (32)

with coordinate-wise perturbations using one-hot vectors
en := [0, . . . , 1 (n-th entry), . . . , 0]T ∈ RN , n=1, . . . , N .

Assuming that f(x,θ) is already evaluated, the query con-
sumption cost is N for the computation of Jyθ . This cost is
large for a large number N of parameters. We will explain
how to reduce the query cost in the rest of Section 4.

4.2. Partitioning Parameters into Small Blocks

When the number of parameters N is large, the inverse
computation (18) for the covariance matrix Σ is practically
infeasible. To overcome this issue, we adopt a block coordi-
nate approach (Cai et al., 2021; Zhang et al., 2024). Figure 4
shows examples of block coordinate perturbations, where
the block coordinate nature is adopted not only for sampling
perturbations but also for computing the covariance matrix.

4.2.1. BLOCK COORDINATE PERTURBATIONS

Let Nmax be the maximum number of parameters allowed
for each block. We partition a parameter vector θ ∈ RN

into small blocks θ(b), b = 1, . . . , B, so that

θ :=

 θ(1)

...
θ(B)

 , θ(b) ∈ RNb and Nb ≤ Nmax . (33)

For a parameter vector θ, perturbations uq ∈ RN , q =
1, . . . , Q, are made in a block coordinate manner, where
only one block u(b) ∈ RNb corresponding to θ(b) is allowed
to have non-zero elements. The block indices b are sampled
with replacement if B < Q, and without replacement if
B ≥ Q to totally perturb as many parameters as possible.

4.2.2. BLOCK DIAGONAL COVARIANCE MATRIX

As a consequence of block coordinate perturbations, we are
allowed to make the covariance matrix Σ block diagonal,
whose blocks are covariance matrices Σb, b = 1, . . . , B of
small size Nb ×Nb defined as

Σb := (λP · I+ λF · Fθ(b))
−1

. (34)

Here, the FIM also becomes block diagonal with blocks
Fθ(b) , whose definition differs slightly from (4):

Fθ(b) := Ex

[
Ez

[
∇θ(b) ln pθ(z |x)∇θ(b) ln pθ(z |x)T

]]
.

(35)
Its computational procedure is similar to that based on (25):

Fθ(b) = Ex

[
JT
yθ(b)FyJyθ(b)

∣∣∣
y=f(x,θ)

]
. (36)

The computation of Fy is the same as those described in
Section 4.1.1. The computation of Jyθ(b) is similar to (31):

Jyθ(b) =
[
δy

(b)
1 , . . . , δy

(b)
Nb

]
∈ RM×Nb , (37)

δy(b)
n :=

f(x,θ + µe
(b)
n)− f(x,θ)

µ
∈ RM , (38)

e(b)n := [0, . . . , 1 (n′th entry), . . . , 0]T ∈ RN (39)

with n′ = n+
∑b−1

i=1 Ni.

4.3. Overall Procedure

Let us summarize aforementioned techniques as Algo-
rithm 2, which is derived from Algorithm 1. The key opera-
tions are in lines 13 and 17, which compute the covariance
matrices Σb and sample natural perturbations u(b) from
N (0,Σb). The matrices Σb are initialized as identity matri-
ces in line 4, and eventually updated in line 13, depending
on which index b is sampled in line 9.

What we need to take care of is the cost of ZO queries. In
line 10, the query cost to compute the Jacobian Jyθ(b) , and
consequently Σb, is Nb. In line 20, the additional query
cost to compute the approximate gradient is Q. To achieve
effective black-box local search with a fixed budget for total
queries, we should consume as many queries as possible for
the approximate gradient. Therefore, we reduce the update
frequency of Σb by introducing a hyperparameter Tud > 1
in line 8. We have experimentally confirmed in Section 5.3.5
that Tud = 100 is appropriate.

5. Experiments
This section reports the experimental results to show the
superiority of the proposed method over the existing ones.
We coded our programs with PyTorch (Paszke et al., 2019),
and ran them on an NVIDIA RTX A6000 (48 GB).

6

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

Algorithm 2 ZO optimization for training a neural network
with block coordinate natural perturbations
1: Input: training dataset Dtr={(x, t)}, hyperparameters Q, µ,

Nmax, Tud, λP , λF

2: Initialize the parameter vector θ
3: Partition θ into blocks {θ(1), . . . ,θ(B)} according to (33)
4: Initialize Σb = I for b = 1, . . . , B
5: while not converged, in τ -th iteration do
6: Sample mini-batch D from Dtr

7: Evaluate loss ℓD(θ) by (1)
8: if (τ mod Tud) = 0 then
9: Sample b ∼ {1, . . . , B}

10: Compute Jyθ(b) by (37)
11: Compute Fy by (28) or Set Fy = I
12: Compute Fθ(b) by (36)
13: Compute Σb by (34)
14: end if
15: for q = 1,. . ., Q do
16: Sample b ∼ {1, . . . , B}
17: Sample a perturbation u(b) from N (0,Σb)

18: Set uq = [0, . . . ,u(b), . . . ,0]T

19: end for
20: Compute the approximate gradient ∇̂θℓD(θ) by (10) with

uq , q = 1, . . . , Q computed above.
21: Update the parameter vector θ by (9)
22: end while

5.1. Datasets/Tasks and Architectures

The first two columns of Table 1 list the five datasets/tasks
we examined and the corresponding neural network archi-
tectures with N parameters. We used a CNN for MNIST
(LeCun & Cortes, 2010) and FashionMNIST (Xiao et al.,
2017), and MLP-Mixer (Tolstikhin et al., 2021) for CI-
FAR10 (Krizhevsky, 2009). For these datasets, the comput-
ing elements are parameterized by matrices as in the most
general cases. For Equalization and Copying memory
tasks, on the other hand, we used a hardware specific ar-
chitecture based on Mach-Zehnder interferometers (MZIs)
(Reck & Zeilinger, 1994; Clements et al., 2016) assuming
optical neural networks (ONNs). The MZI parameteriza-
tion is completely different from that of a matrix: a linear
module realizes a unitary matrix and has a deep structure
(see Appendix C for the details), which leads to a situation
where many parameters are involved in a path from an input
element to an output element even in a single linear module.

The Equalization task is a kind of regression task. As
Figure 5 shows, the ONN on the upper path tries to realize
a given fixed matrix on the lower path. The ONN was in a
form of the singular value decomposition UDVH, where
U and V are unitary matrices and D is a diagonal matrix.
The absolute values of the complex signals were obtained at
the output to convert the optical signals to electrical signals
by photodetectors. The loss function was the mean squared
error (MSE) loss. In the experiment, the dimensionality of
the matrix was set to 16.

Figure 5. Equalization task

The Copying memory task tests how well an RNN remem-
bers data seen many time steps before. An example of input
and target output sequences is

Input: 38612----------:----

Target: ---------------38612

where 38612 is the data to remember, with possible alpha-
bet symbols from 1 to 8. And - and : are special symbols
meaning ‘blank’ and ‘start’, respectively. In total, the RNN
has a 10-dimensional output. The details are described in
(Arjovsky et al., 2016; Lezcano-Casado & Martınez-Rubio,
2019). The task is particularly well tested when the RNN’s
hidden unit is realized by a unitary matrix, where the abso-
lute values of all eigenvalues are one. In our experiment, the
data length and the time steps to ‘start’ after the data were
10 and 100, respectively. The size of the unitary matrix used
in the hidden unit was 32× 32.

We generated the training and test datasets for the Equal-
ization and Copying memory tasks with our own programs.
As in the case of MNIST and FashionMNIST, the number
of samples in the training and test datasets were 60000 and
10000, respectively.

5.2. Methods and Overall Results

We compared three ZO optimization methods: ZO-I and
ZO-co are the existing methods, and ZO-NP is our proposed
method using natural perturbations. We treat that ZO-I is
a special case of ZO-NP with λP = 1 and λF = 0 in (34),
and lines from 8 to 14 are skipped in Algorithm 2. In ZO-co,
perturbation vectors are sampled as coordinate-wise from
a set of one-hot vectors. The number Q of perturbation
vectors were set for each task as the sixth column shows.
The smoothing hyperparameter was set as µ = 0.001.

Instead of the stochastic gradient descent form (9) with ap-
proximate gradients, we used the Adam optimizer (Kingma
& Ba, 2014) with approximate gradients. The size of mini-
batch D was 100 for all tasks. The learning rate (lr) was
appropriately set for each task as the seventh column of
Table 1 shows. The results with varying learning rates are
summarized in Appendix D.1.

Regarding ZO-I and ZO-NP using the block coordinate per-
turbations explained in Section. 4.2.1, we set the maximum

7

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

Table 1. Overview of our experiments and the test accuracies (mean ± standard deviation of five runs). For Equalization, the test R2’s
(coefficients of determination) are shown instead, whose best possible value is 1.0 as the test accuracy. The bold values indicate that they
are the best and statistically different from the others according to the one-sided Mann-Whitney U test at a significance level of p = 0.008.

Hyperparameters Test accuracy (↑)
dataset/task architecture N Nmax B Q lr λF ZO-I ZO-co ZO-NP

MNIST CNN (matrix) 2586 431 6 20 0.0005 100 0.961 ±0.004 0.966 ±0.001 0.978 ±0.002
FashionMNIST CNN (matrix) 2586 431 6 20 0.0005 100 0.796 ±0.013 0.814 ±0.005 0.858 ±0.004

Equalization FeedForward (MZI) 560 280 2 20 0.005 10 0.944 ±0.007 0.944 ±0.008 0.993 ±0.003
Copying memory RNN (MZI) 3168 453 7 20 0.0001 10 0.965 ±0.026 0.985 ±0.002 0.993 ±0.003

CIFAR10 MLP-mixer (matrix) 33642 510 66 200 0.001 100 0.595 ±0.002 0.601 ±0.004 0.625 ±0.004

number Nmax of parameters allowed for each block, and
consequently had the number B of blocks as shown in the
fourth and fifth columns of Table 1. For ZO-NP, the FSD
weight hyperparameter λF was set appropriately for each
task as shown in the eighth column. The other hyperparam-
eters were set as λP = 1 and Tud = 100 for all tasks.

The existing methods ZO-I and ZO-co completed 1000
epochs for CIFAR10 and 100 epochs for the other four tasks.
However, ZO-NP finished with fewer epochs than these
numbers under the same query budget. This was due to the
fact that ZO-NP consumed extra queries for the black-box
Jacobian computation.

Table 1 shows the overall results. The proposed method
ZO-NP outperformed the existing ones with statistical sig-
nificance in all cases. Also, ZO-NP outperformed CMA-ES
(Hansen, 2016; Hansen et al., 2019), which is another black-
box optimization method, as shown in Appendix D.2.

5.3. Discussion with Detailed Results

5.3.1. CONVERGENCE BEHAVIOR

Figure 6 shows the convergence behavior for CIFAR10 (see
Appendix D.3 for the other tasks). The left plot shows
how the training loss decreased as the number of epochs
increased. ZO-NP completed fewer epochs (975) than the
other two (1000) with the same query budget of 1.005×108.
The right plot shows how the test accuracies improved along
the elapsed time. Although ZO-NP had a computational
overhead over the other two, it was worth paying because
ZO-NP outperformed the other two even with the same
elapsed time.

5.3.2. EFFECT OF BLOCK SIZE

Figure 7 compares ZO-co with ZO-I and ZO-NP with vary-
ing the maximum block size Nmax. To make the compari-
son, we slightly modified Algorithm 2 as inserting

u(b) ← (
√
Nb/∥u(b)∥2) · u(b) , (40)

which made the norm of u(b) be
√
Nb, after line 17. Then

the behavior of ZO-co and the other two became the same

0 250 500 750 1000

Epoch

0.8

1.0

1.2

1.4

Training loss (↓)
ZO-I

ZO-co

ZO-NP

0 10000 20000 30000 40000

Elapsed time (seconds)

0.500

0.525

0.550

0.575

0.600

0.625

Test accuracy (↑)

ZO-I

ZO-co

ZO-NP

Figure 6. Convergence behavior for CIFAR10

100 101 102

Nmax

0.80

0.82

0.84

0.86

T
es

t
ac

cu
ra

cy

ZO-I

ZO-co

ZO-NP

Figure 7. FashionMNIST test accuracies by varying the maximum
block size Nmax for ZO-I and ZO-NP. The size for ZO-co is
only valid at Nmax = 100, but is stretched horizontally for easy
comparison. Shaded areas show one standard deviation over five
independent runs.

under Nmax=Nb=1 because the perturbation vectors were
one-hot vectors (with ±1 non-zero element) in all methods.
The plot shows this empirically at Nmax = 100 = 1. As
we increased Nmax, the performance of ZO-NP steadily
increased. This was due to two effects. The first was to
increase the number of changing parameters per iteration.
The second was to mitigate the parameter correlation repre-
sented by the FIM Fθ(b) in (35). While the proposed method
ZO-NP did both, ZO-co did not do the first, and ZO-I did
the first but not the second.

5.3.3. COMPUTATIONAL OVERHEAD OF ZO-NP

Table 2 shows the average elapsed times per epoch and the
memory footprints for the three methods. Looking at the
left numbers, we observe that the elapsed time overhead

8

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

Table 2. The average elapsed times in seconds per epoch (left) and
the memory footprints in gigabytes (right) for the three methods,
under the same experimental conditions shown in Table 1.

dataset/task ZO-I ZO-co ZO-NP
MNIST 4.74 0.57 4.52 0.57 5.04 2.74

FashionMNIST 4.66 0.57 4.43 0.57 5.04 2.74
Equalization 3.25 0.04 3.20 0.04 3.36 0.05

Copying memory 84.89 0.36 84.22 0.36 90.89 2.57
CIFAR10 43.10 1.92 40.31 1.92 45.79 3.83

Table 3. FashionMNIST memory footprints in gigabytes for the
ZO-NP settings of Figure 7.

Nmax 4 8 16 32 64 124 236 431
memory 0.57 0.57 0.57 0.57 0.59 0.94 1.60 2.74

of ZO-NP over the two existing methods was up to around
10 %, which was offset by the efficient training as already
shown by the right plot of Figure 6. Looking at the right
numbers, we observe that the memory footprint overhead
of ZO-NP over the two existing methods was substantial
for the tasks except Equalization where the maximum block
size Nmax was not so large. We can reduce the overhead
to a negligible amount by decreasing Nmax as shown in
Table 3. Together with Figure 7, we understand that ZO-NP
trades off the test accuracy and the memory overhead.

Appendix D.4 reports the computational overhead of ZO-NP
for an MLP-mixer with N = 1, 706, 762 parameters, which
is much larger than the MLP-mixer reported in the last row
of Table 1. We observe that the proposed method scales
to some extent, but a network with one million parameters
might be a practical limitation.

5.3.4. VARIOUS NUMBERS Q OF PERTURBATIONS

Table 4 shows FashionMNIST test accuracies with various
numbers Q of perturbations. The bold values indicate that
they are the best and statistically different from the others
according to the one-sided Mann-Whitney U test at a sig-
nificance level of p = 0.004. We observe that the proposed
method ZO-NP consistently outperformed the other two
methods, except in the extreme case (Q = 1), where the
number of epochs allowed for ZO-NP was small since the
relative query consumption cost for the black-box Jacobian
computation was large.

5.3.5. ROBUSTNESS TO HYPERPARAMETER SETTINGS

Figure 8 shows the test accuracies for three tasks by ZO-NP
with varying hyperparameters, namely the FSD weight λF

on the left and the update frequency Tud of Σb on the right.
The leftmost results with λF = 0 correspond to those of
ZO-I with fewer epochs (82, 88, and 82 for the three tasks).

Table 4. Second to fourth rows: FashionMNIST test accuracies
(mean of five runs) by varying the number Q of perturbation vec-
tors. Fifth row: query budget determined by the number of queries
that ZO-I and ZO-co consumed for 100 epochs. Sixth row: the
number of epochs allowed for ZO-NP with the same budget.

Q 1 2 5 10 20 50 100
ZO-I 0.717 0.736 0.763 0.782 0.796 0.816 0.830
ZO-co 0.714 0.746 0.773 0.798 0.814 0.833 0.845
ZO-NP 0.714 0.776 0.824 0.841 0.858 0.865 0.873

budget (×106) 0.12 0.18 0.36 0.66 1.26 3.06 6.06
ZO-NP epochs 31 41 58 71 82 92 95

0 1 2 5 10 20 50 100 200
FSD weight λF

0.90

0.92

0.94

0.96

0.98

1.00

10 20 50 100 200 500 1000
Update frequency Tud

0.90

0.92

0.94

0.96

0.98

1.00

MNIST

Equalization

Copying memory

Figure 8. Left: test accuracies obtained by ZO-I (λF = 0) and
ZO-NP with varying the FSD hyperparameter. Right: those by ZO-
NP with varying the update frequency hyperparameter. Vertical
bars show one standard deviation over three independent runs.

Both hyperparameters had wide ranges of appropriate set-
tings that outperformed the ZO-I results, although the ap-
propriate ranges for λF were different depending on the task
and we actually customized λF as Table 1 shows. Regard-
ing the update frequency, we consider that Tud=100 is an
appropriate setting working generally.

6. Conclusion
We have newly proposed an efficient sampling strategy for
ZO optimization, where perturbations u are sampled from
N (0,Σ) with a covariance matrix Σ designed by regular-
izing not only the expected PSD (14) but also the expected
FSD (15). We call such sampled u natural perturbations
since the regularization inherits from the concept of natural
gradient. We then have proposed a new ZO optimization
method based on the sampling strategy, where the block
coordinate approach allows us to compute the covariance
matrix efficiently. Experimental results show that the pro-
posed method clearly outperformed the existing ones for a
variety of datasets, tasks, and neural network architectures.

Future work includes the development of a much stronger
approximation of the FIM than making it block diagonal.
This would enable the method to scale to networks with
more than millions of parameters, and to be applied to ZO-
based large language model (LLM) fine-tuning (Zhang et al.,
2024).

9

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Aguirre, F., Sebastian, A., Le Gallo, M., Song, W., Wang,

T., Yang, J. J., Lu, W., Chang, M.-F., Ielmini, D., Yang,
Y., et al. Hardware implementation of memristor-based
artificial neural networks. Nature Communications, 15
(1):1974, 2024.

Amari, S. Backpropagation and stochastic gradient descent
method. Neurocomputing, 5(4-5):185–196, 1993.

Amari, S. Natural gradient works efficiently in learning.
Neural Computation, 10(2):251–276, 1998.

Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolution
recurrent neural networks. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), pp.
1120–1128, 2016.

Ashtiani, F., Geers, A. J., and Aflatouni, F. An on-chip
photonic deep neural network for image classification.
Nature, 606:501–506, 2022.

Bae, J., Vicol, P., HaoChen, J. Z., and Grosse, R. B. Amor-
tized proximal optimization. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 35:8982–8997,
2022.

Bandyopadhyay, S., Sludds, A., Krastanov, S., Hamerly,
R., Harris, N., Bunandar, D., Streshinsky, M., Hochberg,
M., and Englund, D. Single chip photonic deep neu-
ral network with accelerated training. arXiv preprint
arXiv:2208.01623, 2022.

Banerjee, S., Nikdast, M., and Chakrabarty, K. Characteriz-
ing coherent integrated photonic neural networks under
imperfections. Journal of Lightwave Technology, 41(5):
1464–1479, 2023. doi: 10.1109/JLT.2022.3193658.

Benzing, F. Gradient descent on neurons and its link to
approximate second-order optimization. In Proceedings
of the International Conference on Machine Learning
(ICML), pp. 1817–1853, 2022.

Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg,
K. A theoretical and empirical comparison of gradient
approximations in derivative-free optimization. Foun-
dations of Computational Mathematics, 22(2):507–560,
2022.

Cai, H., Lou, Y., McKenzie, D., and Yin, W. A zeroth-
order block coordinate descent algorithm for huge-scale
black-box optimization. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), pp.
1193–1203, 2021.

Chen, A., Zhang, Y., Jia, J., Diffenderfer, J., Parasyris, K.,
Liu, J., Zhang, Y., Zhang, Z., Kailkhura, B., and Liu,
S. DeepZero: Scaling up zeroth-order optimization for
deep model training. In Proceedings of the International
Conference on Learning Representations (ICLR), 2024.

Chen, M. K., Liu, X., Sun, Y., and Tsai, D. P. Artificial
intelligence in meta-optics. Chemical Reviews, 122(19):
15356–15413, 2022.

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Koltham-
mer, W. S., and Walmsley, I. A. Optimal design for
universal multiport interferometers. Optica, 3(12):1460–
1465, 2016.

Cong, G., Yamamoto, N., Inoue, T., Maegami, Y., Ohno,
M., Kita, S., Namiki, S., and Yamada, K. On-chip bac-
terial foraging training in silicon photonic circuits for
projection-enabled nonlinear classification. Nature Com-
munications, 13(1):3261, 2022.

Dangel, F., Kunstner, F., and Hennig, P. BackPACK: Pack-
ing more into backprop. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR),
2020.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., and Wibisono,
A. Optimal rates for zero-order convex optimization: The
power of two function evaluations. IEEE Transactions
on Information Theory, 61(5):2788–2806, 2015.

Fang, M. Y.-S., Manipatruni, S., Wierzynski, C., Khosrow-
shahi, A., and DeWeese, M. R. Design of optical neural
networks with component imprecisions. Optical Express,
27(10):14009–14029, 2019.

Fazel, M., Ge, R., Kakade, S., and Mesbahi, M. Global
convergence of policy gradient methods for the linear
quadratic regulator. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 1467–
1476, 2018.

Gu, J., Zhao, Z., Feng, C., Li, W., Chen, R. T., and Pan,
D. Z. FLOPS: Efficient on-chip learning for optical neural
networks through stochastic zeroth-order optimization.
In Proceedings of the 57th ACM/EDAC/IEEE Design
Automation Conference, 2020.

Gu, J., Feng, C., Zhao, Z., Ying, Z., Chen, R. T., and Pan,
D. Z. Efficient on-chip learning for optical neural net-
works through power-aware sparse zeroth-order optimiza-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 7583–7591, 2021.

10

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

Hansen, N. The CMA evolution strategy: A tutorial. arXiv
preprint arXiv:1604.00772, 2016.

Hansen, N., Akimoto, Y., and Baudis, P. CMA-ES/pycma on
Github. Zenodo, DOI:10.5281/zenodo.2559634, Febru-
ary 2019. URL https://doi.org/10.5281/
zenodo.2559634.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A. Learning multiple layers of fea-
tures from tiny images. Technical Report
TR-2009, University of Toronto, 2009. URL
https://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf.

Kunstner, F., Hennig, P., and Balles, L. Limitations of
the empirical Fisher approximation for natural gradient
descent. Advances in Neural Information Processing
Systems (NeurIPS), 32, 2019.

LeCun, Y. and Cortes, C. MNIST handwritten digit
database, 2010. URL http://yann.lecun.com/
exdb/mnist.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learn-
ing. Nature, 521:436–444, 2015. doi: 10.1038/
nature14539. URL https://doi.org/10.1038/
nature14539.

Lezcano-Casado, M. and Martınez-Rubio, D. Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group. In
Proceedings of the International Conference on Machine
Learning (ICML), pp. 3794–3803, 2019.

Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., Jiang,
H., Montgomery, E., Lin, P., Wang, Z., et al. Efficient
and self-adaptive in-situ learning in multilayer memristor
neural networks. Nature Communications, 9(1):2385,
2018.

Lian, X., Zhang, H., Hsieh, C.-J., Huang, Y., and Liu, J. A
comprehensive linear speedup analysis for asynchronous
stochastic parallel optimization from zeroth-order to first-
order. Advances in Neural Information Processing Sys-
tems (NeurIPS), 29, 2016.

Liu, S., Chen, P.-Y., Kailkhura, B., Zhang, G., Hero III,
A. O., and Varshney, P. K. A primer on zeroth-order
optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Sig-
nal Processing Magazine, 37(5):43–54, 2020.

Lupo, A., Picco, E., Zajnulina, M., and Massar, S. Deep pho-
tonic reservoir computer based on frequency multiplexing
with fully analog connection between layers. Optica, 10
(11):1478–1485, 2023.

Malagò, L. and Pistone, G. Information geometry of the
Gaussian distribution in view of stochastic optimization.
In Proceedings of the ACM Conference on Foundations
of Genetic Algorithms XIII, pp. 150–162, 2015.

Martens, J. Second-order optimization for neural networks.
University of Toronto (Canada), 2016.

Martens, J. New insights and perspectives on the natural
gradient method. The Journal of Machine Learning Re-
search, 21(1):5776–5851, 2020.

Martens, J. and Grosse, R. Optimizing neural networks
with Kronecker-factored approximate curvature. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), pp. 2408–2417, 2015.

Nesterov, Y. and Spokoiny, V. Random gradient-free mini-
mization of convex functions. Foundations of Computa-
tional Mathematics, 17(2):527–566, 2017.

Park, H., Amari, S., and Fukumizu, K. Adaptive natural gra-
dient learning algorithms for various stochastic models.
Neural Networks, 13(7):755–764, 2000.

Pascanu, R. and Bengio, Y. Revisiting natural gradient for
deep networks. arXiv preprint arXiv:1301.3584, 2013.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in Neural Information
Processing Systems (NeurIPS), 32, 2019.

Petersen, K. and Pedersen, M. The matrix cookbook. Tech-
nical University of Denmark, 7(15):510, 2008.

Reck, M. and Zeilinger, A. Experimental realization of any
discrete unitary operator. Phys. Rev. Lett., 73(1):58–61,
1994.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. Nature,
323(6088):533–536, 1986.

Sawada, H., Aoyama, K., and Ikeda, K. Zeroth-order opti-
mization of optical neural networks with linear combina-
tion natural gradient and calibrated model. In Proceedings
of the 61st ACM/IEEE Design Automation Conference,
2024.

Sawada, H., Aoyama, K., and Notomi, M. Layered-
parameter perturbation for zeroth-order optimization of
optical neural networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pp. 20292–
20301, 2025.

11

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones,
T., Hochberg, M., Sun, X., Zhao, S., Larochelle, H., En-
glund, D., and Soljačić, M. Deep learning with coherent
nanophotonic circuits. Nature Photonics, 11:441–446,
2017.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Steiner, A., Keysers, D.,
Uszkoreit, J., et al. MLP-mixer: An all-MLP architecture
for vision. Advances in Neural Information Processing
Systems (NeurIPS), 34:24261–24272, 2021.

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters,
J., and Schmidhuber, J. Natural evolution strategies. The
Journal of Machine Learning Research, 15(1):949–980,
2014.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zhang, H., Thompson, J., Gu, M., Jiang, X., Cai, H., Liu,
P., Shi, Y., Zhang, Y., Karim, M., Lo, G., Luo, X., Dong,
B., Kwek, L., and Liu, A. Efficient on-chip training of
optical neural networks using genetic algorithm. ACS
Photonics, 8(6):1662–1672, 2021.

Zhang, T., Wang, J., Dan, Y., Lanqiu, Y., Dai, J., Han, X.,
Sun, X., and Xu, K. Efficient training and design of
photonic neural network through neuroevolution. Optics
Express, 27(26):37150–37163, 2019.

Zhang, Y., Li, P., Hong, J., Li, J., Zhang, Y., Zheng, W.,
Chen, P.-Y., Lee, J. D., Yin, W., Hong, M., et al. Re-
visiting zeroth-order optimization for memory-efficient
LLM fine-tuning: A benchmark. In Proceedings of the
International Conference on Machine Learning (ICML),
pp. 59173–59190, 2024.

Zhao, P., Chen, P.-Y., Wang, S., and Lin, X. Towards query-
efficient black-box adversary with zeroth-order natural
gradient descent. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 6909–6916,
2020.

Zhou, H., Zhao, Y., Wang, X., Gao, D., Dong, J., and Zhang,
X. Self-configuring and reconfigurable silicon photonic
signal processor. ACS Photonics, 7(3):792–799, 2020.

12

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

A. Proof of Theorem 3.2
When we assume λ(NG)

P = λP , λ(NG)
F = λF and Assumption 3.1, the difference between the ZO gradient approximation by

natural perturbations and the natural gradient is bounded by∥∥∥∇̂(NP)
θ ℓD(θ)−∇(NG)

θ ℓD(θ)
∥∥∥
2
≤ µL

2

(
3 +N

λP

)3/2

. (41)

Proof. From the assumptions λ(NG)
P = λP and λ

(NG)
F = λF , (22) can be written using (18) as

∇(NG)
θ ℓD(θ) = Σ∇θℓD(θ) . (42)

Then, considering Eu∼N (0,Σ)

[
uuT

]
= Σ as its definition, we have

∇(NG)
θ ℓD(θ) = Eu∼N (0,Σ)

[
uuT

]
∇θℓD(θ) = Eu∼N (0,Σ)

[
uuT∇θℓD(θ)

]
. (43)

The difference between ∇̂(NP)
θ ℓD(θ) defined in (21) and the above, measured by the l2-norm, can be expressed as∥∥∥∇̂(NP)

θ ℓD(θ)−∇(NG)
θ ℓD(θ)

∥∥∥
2
=

∥∥∥∥Eu∼N (0,Σ)

[
ℓD(θ + µu)− ℓD(θ)

µ
u

]
− Eu∼N (0,Σ)

[
uuT∇θℓD(θ)

]∥∥∥∥
2

(44)

=

∥∥∥∥Eu∼N (0,Σ)

[
ℓD(θ + µu)− ℓD(θ)

µ
u− u

{
uT∇θℓD(θ)

}]∥∥∥∥
2

(45)

=

∥∥∥∥Eu∼N (0,Σ)

[
ℓD(θ + µu)− ℓD(θ)− µuT∇θℓD(θ)

µ
u

]∥∥∥∥
2

(46)

(23)

≤
∥∥∥∥Eu∼N (0,Σ)

[
1

µ

L

2
∥µu∥22 u

]∥∥∥∥
2

(47)

=
µL

2

∥∥Eu∼N (0,Σ)

[
∥u∥22u

]∥∥
2

(48)

≤ µL

2
Eu∼N (0,Σ)

[
∥u∥22 ∥u∥2

]
. (49)

We have applied Assumption 3.1 in the transition from (46) to (47). Now, by generating u via a linear transformation
u = Σ1/2 v with sampled v ∼ N (0, I), we have∥∥∥∇̂(NP)

θ ℓD(θ)−∇(NG)
θ ℓD(θ)

∥∥∥
2
≤ µL

2
Ev∼N (0,I)

[
vTΣv

∥∥∥Σ1/2 v
∥∥∥
2

]
(50)

≤ µL

2

∥∥∥Σ1/2
∥∥∥
2
Ev∼N (0,I)

[
vTΣv ∥v∥2

]
(51)

≤ µL

2

∥∥∥Σ1/2
∥∥∥
2
∥Σ∥2 Ev∼N (0,I)

[
∥v∥22 ∥v∥2

]
, (52)

where the matrix norm is the spectral norm and thus the maximum eigenvalue. From the structure (18) of Σ, we have

∥Σ∥2 = max (eig (Σ)) = max
(
eig

(
(λP · I+ λF · Fθ)

−1
))

= min (eig (λP · I+ λF · Fθ))
−1 ≤ λ−1

P (53)

from (Petersen & Pedersen, 2008) and similarly
∥∥Σ1/2

∥∥
2
≤ λ

−1/2
P . For N -dimensional vectors v, we have

Ev∼N (0,I)

[
∥v∥22 ∥v∥2

]
≤ (3 +N)3/2 (54)

from Lemma 1 of (Nesterov & Spokoiny, 2017). Therefore,∥∥∥∇̂(NP)
θ ℓD(θ)−∇(NG)

θ ℓD(θ)
∥∥∥
2
≤ µL

2

(
3 +N

λP

)3/2

. (55)

13

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

B. Differences between Natural perturbations and Natural evolution strategies
Natural evolution strategies (NES) (Wierstra et al., 2014) are a family of black-box optimization algorithms that use the
natural gradient, and are closely related to covariance matrix adaptation evolution strategy (CMA-ES) (Hansen, 2016; Hansen
et al., 2019). Since our proposed ZO optimization with natural perturbations and NES are both black-box optimization
methods that use the Fisher information matrix (FIM), here we clarify the differences between them in Table 5 in terms of
the FIM. As the table shows, the definitions and usage of the FIMs are fundamentally different. Due to the size of the FIM,
our proposed method using natural perturbations can be applied to larger problems with more parameters than NES.

Table 5. Differences between Natural perturbations and Natural evolution strategies (NES)

Natural perturbations Natural evolution strategies (NES)

FIM is computed for distributions that
the neural network expresses sampling distribution

FIM is used for directly as the covariance matrix
of the sampling distribution

iteratively updating the parameters of
the sampling distribution with a small

learning rate in a natural gradient manner

FIM of neural network parameters, whose
number is N , to be optimized

all kinds of parameters of sampling distribution,
e.g., mean and covariance matrix for

a multivariate normal distribution

size of FIM N ×N
(N +N2)× (N +N2)

for a multivariate normal distribution

C. Optical neural network (ONN) based on Mach-Zehnder interferometers (MZIs)
This appendix explains an ONN based on MZIs, which we assumed in the experiments as described in 5.1.

Figure 9 shows the structure. We used the Clements mesh (Clements et al., 2016) for a linear module. It consists of a layered
array of MZIs colored in light blue. An MZI consists of two pairs of phase shifters and beam splitters, whose functionalities
are shown in the 2× 2 matrices. An MZI realizes a 2× 2 unitary matrix depending on the settings of the phase parameters θ
colored in orange. The Clements mesh realizes a unitary matrix of larger size by structurally combining multiple MZIs.

Figure 9. Optical neural network (ONN) based on Mach-Zehnder interferometers (MZIs)

14

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

D. Additional Experimental Results
This appendix reports additional experimental results. The test accuracy values for the Equalization were actually computed
by the test R2’s (coefficients of determination), whose best possible value is 1.0 as the test accuracy.

D.1. Results with Various Learning Rates

The results reported in Section 5.3 were obtained by setting the learning rate (lr) as shown in Table 1. Here, Figure 10 shows
the results with various learning rates for all tasks except CIFAR10. Specifically, we examined five learning rates for each
task, where the third (middle) one corresponds to the setting reported in Section 5.3. We observe that ZO-NP consistently
outperformed the other two methods with various learning rates, except for the extreme cases at both ends in the Copying
memory task.

0.0001 0.0002 0.0005 0.001 0.002

Learning rate (lr)

0.88

0.90

0.92

0.94

0.96

0.98

T
es

t
ac

cu
ra

cy

MNIST

ZO-I

ZO-co

ZO-NP

0.0001 0.0002 0.0005 0.001 0.002

Learning rate (lr)

0.75

0.80

0.85

FashionMNIST

0.001 0.002 0.005 0.01 0.02

Learning rate (lr)

0.7

0.8

0.9

1.0
Equalization

2e-05 5e-05 0.0001 0.0002 0.0005

Learning rate (lr)

0.90

0.95

1.00

Copying memory

Figure 10. The effects of learning rate (lr) on test accuracies for the MNIST, FashionMNIST, Equalization, and Copying memory tasks.
Vertical bars show one standard deviation over three independent runs.

D.2. Comparisons to CMA-ES

In addition to the comparison summary reported in Table 1, here we compare the results with covariance matrix adaptation
evolution strategy CMA-ES (Hansen, 2016), which is a well-known black-box optimization method. It computes a
covariance matrix using selected solutions from the population, in a fundamentally different way from ours Σ (18) and
Σb (34). For performing CMA-ES, we used a python package (Hansen et al., 2019). Since it was difficult for the CMA-ES
python package to introduce the block coordinate approach used in ZO-I and ZO-NP, we examined tasks with small numbers
N of parameters, namely the MNIST and FashionMNIST dataset with the same CNN used in Section 3.2 (N = 816)
and the Equalization task (N = 560). The initial standard deviation hyperparameter of CMA-ES was appropriately set
to sigma0 = 0.005, sigma0 = 0.002, and sigma0 = 0.009 for the MNIST, FashionMNIST, and Equalization tasks,
respectively. These numbers were chosen as the best out of six different values for each task. Figure 11 shows the results.
The proposed method ZO-NP consistently outperformed the other three methods.

0.90

0.92

0.94

0.96

T
es

t
ac

cu
ra

cy

MNIST

0.74

0.76

0.78

0.80

0.82

FashionMNIST

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Equalization

ZO-I

ZO-co

ZO-NP

CMA-ES

Figure 11. Box plots for the test accuracies obtained by the four methods including CMA-ES. Each box shows the distribution of the
results by five independent runs. The number N of parameters were 816, 816, and 560 for the MNIST, FashionMNIST, and Equalization
tasks, respectively.

15

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

D.3. Convergence Behavior

The convergence behavior for CIFAR10 is reported in Section 5.3.1. Here, Figure 12 shows those for the other four tasks.
The upper plots show that ZO-NP completed fewer epochs (82, 82, 88, and 82 for the four tasks) than the other two methods
(100, 100, 100, and 100 for the four tasks). This was because the query budget was 1.26× 106, and ZO-NP consumed extra
queries for the black-box Jacobian computation. The lower plots show how the test accuracies improved along the elapsed
time. The times of ZO-NP were shorter than those of the other two in most cases. The reason was that ZO-NP was allowed
fewer epochs as described above and the computational overhead of ZO-NP over the other two methods was not large.

0 25 50 75 100

Epoch

0.1

0.2

0.3

0.4

T
ra

in
in

g
lo

ss

MNIST

ZO-I

ZO-co

ZO-NP

0 25 50 75 100

Epoch

0.4

0.5

0.6

0.7

0.8

FashionMNIST

ZO-I

ZO-co

ZO-NP

0 25 50 75 100

Epoch

0.0

0.2

0.4

0.6

0.8

Equalization

ZO-I

ZO-co

ZO-NP

0 25 50 75 100

Epoch

0.0

0.2

0.4

0.6

0.8

Copying memory

ZO-I

ZO-co

ZO-NP

0 200 400

Elapsed time (seconds)

0.90

0.92

0.94

0.96

0.98

T
es

t
ac

cu
ra

cy

ZO-I

ZO-co

ZO-NP

0 200 400

Elapsed time (seconds)

0.70

0.75

0.80

0.85

ZO-I

ZO-co

ZO-NP

0 100 200 300

Elapsed time (seconds)

0.80

0.85

0.90

0.95

1.00

ZO-I

ZO-co

ZO-NP

0 2000 4000 6000 8000

Elapsed time (seconds)

0.80

0.85

0.90

0.95

1.00

ZO-I

ZO-co

ZO-NP

Figure 12. Convergence behaviors for the MNIST, FashionMNIST, Equalization, and Copying memory tasks. Each column corresponds
to each task. Top and bottom rows correspond to the training losses and the test accuracies, respectively.

16

Natural Perturbations for Black-box Training of Neural Networks by Zeroth-Order Optimization

D.4. Computational costs for a neural network with one million parameters

This appendix part shows the computational scalability of our proposed method ZO-NP for a neural network with one
million parameters, as well as its limitations.

The largest neural network reported in the main body is the MLP-mixer with N = 33, 642 parameters, as shown at the last
row of Table 1. Here, we report the computational costs of the three ZO methods applied to a much larger neural network.
Specifically, for the CIFAR10 task with the MLP-mixer, we increased the number of mixers from 3 to 12, the channel width
from 32 to 256, and consequently the number N of parameters from 33,642 to 1,706,762. Table 6 shows the computational
cost of the enlarged MLP-mixer. We can observe the computational overhead of ZO-NP over ZO-I and ZO-co by looking
at the second to fourth rows. While the elapsed time (reported as seconds/epoch) overhead of ZO-NP over ZO-co was
650.79− 593.84 = 56.95, which was less than 10% of 593.84, the memory footprint overhead was 31.10− 12.10 = 19.00,
which was considerable. We could reduce the memory footprint overhead by decreasing the maximum block size Nmax as
shown in the last two rows. As a tradeoff, however, this increased the number B of blocks and consequently the elapsed
time in seconds per epoch.

Table 6. The elapsed times in seconds per epoch and the memory footprints in gigabytes for the CIFAR10 task using the enlarged
MLP-mixer with N = 1, 706, 762 parameters.

method Nmax B seconds/epoch memory (GB)
ZO-I 512 3334 636.85 12.10

ZO-co 512 3334 593.84 12.10
ZO-NP 512 3334 650.79 31.10
ZO-NP 256 6668 693.11 16.55
ZO-NP 128 13335 772.62 13.73

A more critical problem of ZO-NP for the enlarged network with a large number B of blocks is that computing the FIM for
all blocks takes a significant amount of epochs and practically does not finish. In other words, the FIMs of many blocks
remain unchanged as the initialized identity matrix I. Table 7 shows such situations. The second row corresponds to the last
row in Table 1, where the number B was not so large. The third to fifth rows correspond to the above introduced enlarged
MLP-mixer. Since the number B of blocks was very large in these enlarged networks, many blocks remained as initialized
even after 1000 epochs with the update frequency hyperparameter Tud = 100.

Table 7. The number of blocks where the FIM was updated from the initialized identity matrix I as epochs proceeded in ZO-NP.

epochs
network B 1 2 5 10 20 50 100 200 500 1000

MLP-mixer in Table 1 66 5 10 22 36 52 66 66 66 66 66
Enlarged MLP-mixer 3334 5 10 25 49 98 237 465 871 1751 2580
Enlarged MLP-mixer 6668 5 10 25 50 100 249 488 939 2086 3530
Enlarged MLP-mixer 13335 5 10 25 50 100 248 493 966 2285 4176

17

