
Under review as submission to TMLR

Solution Augmentation for ARC-AGI Problems Using
GFlowNet: A Probabilistic Exploration Approach

Anonymous authors
Paper under double-blind review

Abstract

One of the core challenges in building general reasoning systems lies in generating diverse,
human-aligned solution trajectories—different yet valid paths by which a problem can be
solved. Prior approaches often rely on handcrafted templates, rule-based augmentations, or
human demonstrations, which are limited in scalability and stylistic diversity. To address
this, we explore the use of Generative Flow Networks (GFlowNets) for automated solution
augmentation in reasoning tasks. We propose a framework that learns to generate diverse
reasoning trajectories with probabilities proportional to their quality, guided by a human-
inspired reward function and a novel geometric forward policy. This enables the generation
of multiple plausible solution paths without relying on manual supervision. We evaluate our
framework on the Abstraction and Reasoning Corpus (ARC-AGI), a benchmark designed to
test compositional and abstract reasoning. Our results show that GFlowNets can effectively
explore the space of valid reasoning processes, producing trajectories that are diverse, concise,
and consistent with human reasoning patterns. These findings suggest that GFlowNets offer a
promising foundation for modeling structured reasoning in automated trajectory generation.
Our code is here: https://anonymous.4open.science/r/GFN_to_ARC-B500/

1 Introduction

One of the central challenges in developing intelligent systems is endowing them with the ability to reason—to
solve novel problems by composing abstract concepts, drawing inferences, and planning intermediate steps.
Unlike perception or pattern recognition, which can often be improved through large-scale data and end-to-end
optimization, reasoning requires an explicit modeling of multi-step, structured processes. In humans, reasoning
is not just about arriving at correct conclusions, but about navigating diverse reasoning paths (trajectories)
toward a solution. This diversity—different strategies, representations, or step sequences—plays a critical role
in building a robust understanding and generalization. Hence, to improve reasoning capabilities in AI models,
it is essential not only to optimize for the final answer, but also to model and expose the system to the wide
range of processes by which those answers can be reached (Wei et al., 2022; Wang et al., 2023).

Recent research increasingly emphasizes the value of exposing language models to explicit reasoning tra-
jectories—structured sequences of intermediate steps guiding problem-solving. This includes prompt-based
strategies such as Chain-of-Thought (CoT) (Wei et al., 2022) and Tree-of-Thought (ToT) (Yao et al., 2023),
sampling-based methods like Self-Consistency (Wang et al., 2023) and Best-of-N selection (Liu et al., 2025a),
and training-time approaches that filter or reward high-quality reasoning paths (Zelikman et al., 2022; Luo
et al., 2024a; Wang & Su, 2015; Jiang et al., 2024). More recently, test-time iterative refinement has gained
attention: models like Reflexion (Shinn et al., 2023), DeepSeek-R1 (AI, 2024), and OpenAI’s o1 (OpenAI,
2025; 2024) generate, evaluate, and revise their own reasoning traces in real-time. While these trends have
yielded significant progress, most approaches still rely on prompt engineering, heuristic sampling, or post-hoc
selection—limiting scalability and process-level alignment. In contrast, our work introduces a generative
framework that learns to produce diverse reasoning trajectories in a unified and scalable manner.

An emerging consensus across recent studies is that reasoning performance improves when models are trained
or prompted with diverse, high-quality solution trajectories. Much like how humans benefit from seeing

1

https://anonymous.4open.science/r/GFN_to_ARC-B500/

Under review as submission to TMLR

multiple approaches to a problem, models learn more robust strategies when exposed to varied reasoning
processes. However, despite this growing recognition, generating such diverse reasoning trajectories remains a
fundamental bottleneck. Most current methods rely on manually curated prompts, handcrafted templates,
or rule-based augmentations that limit the scope and diversity of solution paths. Some approaches collect
human-written solutions (Park et al., 2023; Shim et al., 2024), but these are costly, narrow in style, and
difficult to scale. As a result, models trained in this way may struggle when encountering unfamiliar or
structurally novel reasoning tasks.

This leads us to a central research question: Can we develop an automated framework that can generate
diverse reasoning trajectories—without relying on handcrafted rules or human-written demonstrations—and
use them to enhance model reasoning performance? Such a framework would ideally be flexible enough to
explore multiple plausible paths for the same problem, allowing the model to learn how to reason in more
general, compositional, and interpretable ways.

To address this challenge, we explore a generative framework based on Generative Flow Networks
(GFlowNets) (Bengio et al., 2021; 2023). GFlowNets are probabilistic models designed to generate a diverse
set of trajectories with probabilities proportional to their reward, making them naturally suited for learning
distributions over reasoning processes. Rather than collapsing onto a single “optimal” path, GFlowNets can
explore diverse high-reward paths, each representing a different way to reach the solution. This probabilistic
exploration mechanism makes GFlowNets especially appealing for reasoning tasks, where solutions can take
many different—but equally valid—forms. By controlling the reward signal and policy behavior, we can guide
GFlowNets to generate diverse reasoning paths that balance diversity, efficiency, and correctness.

To evaluate the effectiveness of our proposed framework, we conduct experiments on the Abstraction and
Reasoning Corpus (ARC-AGI, hereafter ARC) (Chollet, 2019), a benchmark specifically designed
to test reasoning capabilities. ARC consists of few-shot, grid-based tasks where each instance requires the
solver to infer an underlying transformation rule from a small number of input–output demonstrations. While
the task format is visually simple, solving ARC problems often demands compositional reasoning, abstract
generalization, and logical coherence. Indeed, ARC provides a unique lens through which to assess these
dimensions of reasoning—compositionality, productivity, logical coherence (Lee et al., 2025), and the ability to
generalize from limited examples.

Importantly, ARC’s structure presents a particularly suitable environment for evaluating our solution
augmentation framework. First, the dataset is inherently underspecified: multiple reasoning trajectories can
lead to the same correct output, making it ideal for exploring the benefits of diverse solution generation.
Second, the limited data regime and absence of predefined task categories emphasize the need for flexible and
generalizable reasoning strategies—exactly the kind our method aims to generate. Finally, since each ARC task
typically requires multi-step abstract inference rather than surface-level pattern recognition, improvements in
trajectory-level modeling are more likely to translate into tangible performance gains. These characteristics
make ARC a compelling and challenging testbed for assessing the effectiveness of learning and leveraging
diverse solution trajectories.

Contributions. Our main contributions are summarized as follows:

1. GFlowNet-Based Reasoning Augmentation: We propose the first framework to use GFlowNets
for generating diverse reasoning trajectories, enabling automated solution augmentation for reasoning-
intensive tasks.

2. Human-Inspired Policy and Reward Design: We introduce two architectural innovations—a
geometric-forward action policy and a goal-conditioned reward function—that explicitly encode
human reasoning biases into the learning process.

3. Empirical Evaluation on ARC: We demonstrate through extensive experiments on ARC that our
method improves both solution diversity and accuracy compared to existing approaches, particularly
in low-data regimes.

2

Under review as submission to TMLR

2 Background

2.1 Reasoning with Diverse Solutions

Effective reasoning involves not just arriving at the correct answer, but also navigating structured and coherent
intermediate steps. Many tasks—particularly those involving abstraction, logic, or multi-hop inference—admit
multiple valid solution trajectories, each representing a different way to solve the same problem. This diversity
is analogous to the variation in strategies employed by humans and is essential for improving generalization,
robustness, and interpretability in AI systems.

To incorporate this inductive bias, recent research has introduced techniques that explicitly model the
reasoning process. Chain-of-Thought (CoT) prompting (Wei et al., 2022; Zhang et al., 2025a), Tree-of-
Thought (ToT) (Yao et al., 2023), and Process Reward Models (PRMs) (Zhang et al., 2025b) supervise or
sample intermediate reasoning steps to better align with human-like cognition. These methods show that
exposing models to diverse reasoning paths improves their ability to generalize, particularly in tasks with
sparse supervision or structural novelty. Additional evidence across various reasoning benchmarks—including
GSM8K (Cobbe et al., 2021), SVAMP, and AQuA-RAT (Ling et al., 2017)—further supports this approach,
demonstrating consistent performance improvements when models explore and aggregate multiple reasoning
trajectories.

Complementary approaches such as automated process supervision (Luo et al., 2024a) and planning-based
trajectory optimization (Jiang et al., 2024) further validate the effectiveness of learning from reasoning paths
directly. These methods synthesize reward signals that capture desirable reasoning characteristics–such as
conciseness, non-redundancy, or clear subgoal structure–without relying on exhaustive human annotations.
Similarly, reasoning-driven process reward modeling (She et al., 2025), and step-by-step human feedback
(Lightman et al., 2024) have achieved substantial performance gains by leveraging automated or semi-
automated trajectory supervision. As a result, models trained with these signals exhibit more structured and
interpretable problem-solving behavior, underscoring a growing consensus that trajectory-level supervision
significantly enhances reasoning abilities.

This emphasis on process-level reasoning has also become a central trend in the development of large
language models (LLMs). Recent models like OpenAI’s o3 series (OpenAI, 2025) and DeepSeek’s R1 (AI,
2024) incorporate internal deliberation and iterative refinement to improve reasoning performance. Likewise,
Self-Consistency sampling (Wang et al., 2023) aggregates multiple reasoning chains through majority voting,
achieving improved accuracy and robustness on benchmarks such as GSM8K (Cobbe et al., 2021). These
examples highlight a growing consensus: modeling diverse and structured reasoning processes is key to
achieving reliable and human-aligned inference.

However, many of these approaches depend on human-written demonstrations, handcrafted rules, or prompt-
based sampling, which constrain scalability and stylistic diversity. Moreover, outcome-only supervision
fails to distinguish between logically correct but inefficient reasoning paths and concise, interpretable ones.
Without process-level reward signals, models are unable to prioritize solution trajectories that mirror human
preferences.

These limitations motivate our goal of building a generative framework that can learn to produce diverse,
high-quality reasoning trajectories in a scalable and automated manner. In this work, we leverage Generative
Flow Networks (GFlowNets) (Bengio et al., 2021; 2023) to model solution generation as a reward-proportional
sampling problem, enabling the creation of multiple human-aligned reasoning paths without requiring explicit
supervision for each trajectory.

2.2 Data Augmentation for Reasoning Tasks

Data augmentation addresses the inherent scarcity of supervision in reasoning tasks and can be broadly
categorized into input-output augmentation and solution-process (trajectory) augmentation.

Input-Output Pair Augmentation. Methods such as RE-ARC (Hodel, 2024), AugARC (Bikov et al.,
2025), and SOLAR (Kim et al., 2024) generate new input-output examples to enhance training diversity

3

Under review as submission to TMLR

in ARC tasks. Similar strategies, including synthetic data generation and paraphrasing, have been widely
applied across various reasoning domains. For math word problems, Lu et al. (2024) leveraged question
back-translation to produce synthetic examples, significantly enhancing model performance on the GSM8K
benchmark. In logical reasoning, LogicAsker generated QA pairs by programmatically translating formal
logic into natural language, achieving notable gains in logical consistency (Wan et al., 2024). Likewise, in
code generation tasks, WizardCoder synthesized diverse coding problems and solutions, leading to state-
of-the-art results on benchmarks like HumanEval and MBPP (Luo et al., 2024b). For scientific reasoning
tasks, cross-lingual data augmentation using large language models produced multilingual synthetic QA pairs,
demonstrating considerable improvements in cross-lingual generalization (Whitehouse et al., 2023). These
input-output augmentation techniques substantially improve model generalization by diversifying the task
distribution, though they typically do not explicitly expose underlying reasoning processes.

Solution-Process (Trajectory) Augmentation. Techniques explicitly augmenting reasoning trajectories
leverage models’ intermediate solution paths. Self-Consistency sampling (Wang et al., 2023), Tree-of-Thought
deliberative search (Yao et al., 2023), and iterative refinement methods like Reflexion (Shinn et al., 2023)
exemplify trajectory-level augmentation. Methods such as STaR (Zelikman et al., 2022) and Automate-
CoT (Shum et al., 2023) demonstrated that training on model-generated chains-of-thought significantly
boosted accuracy across various benchmarks, including commonsense and math word problems. Synthetic
Prompting (Shao et al., 2023) further enriched trajectory diversity by iteratively synthesizing questions
and corresponding reasoning paths, yielding substantial gains in numerical and algorithmic reasoning tasks.
Similarly, frameworks like Flow of Reasoning (Yu et al., 2024) leveraged planning-based trajectory sampling
to explore diverse reasoning paths, surpassing previous state-of-the-art performances on puzzle-solving bench-
marks. AlphaCode’s strategy of sampling numerous candidate solutions and evaluating correctness tests
illustrates another successful trajectory-level augmentation approach in code generation tasks (Li et al., 2022).
Collectively, these trajectory-focused methods enable models to explore and validate multiple solution paths
systematically, greatly enhancing performance and interpretability.

Other Augmentation Techniques. Best-of-N (BoN) sampling and ensemble decoding represent additional
augmentation strategies. BoN methods, applied in models like Minerva and AlphaCode, sample multiple
candidate outputs to select the best-performing solution (Lewkowycz et al., 2022; Li et al., 2022). Ensemble
decoding aggregates outputs from multiple models or reasoning chains, typically employing voting or averaging
strategies. These methods primarily function at the output level and rely heavily on external evaluation
metrics or heuristic criteria.

Limitations and Challenges. Despite their effectiveness, existing augmentation methods face challenges
including computational scalability, genuine trajectory diversity, and the absence of reliable intermediate-step
supervision. Techniques such as Tree-of-Thought and extensive sampling-based methods incur significant
computational overhead (Yao et al., 2023; Wang et al., 2023). Furthermore, approaches relying on outcome-only
evaluation lack explicit guidance for intermediate reasoning steps, potentially causing logical inconsistencies
or inefficient reasoning pathways.

Overall, integrating diverse augmentation strategies—ranging from input-output pair expansion to trajectory-
level solution enhancement—can significantly improve model robustness and generalizability. These methods
collectively form an essential toolkit for addressing the inherent limitations of scarce supervision in complex
reasoning tasks like ARC and beyond.

2.3 Generative Flow Networks (GFlowNets)

Generative Flow Networks (GFlowNets) (Bengio et al., 2021; 2023) are a class of generative models designed
to produce diverse solution trajectories by learning from reward signals. They are particularly effective for
structured generation problems where multiple valid outputs exist, such as generating human-like solutions in
reasoning tasks.

4

Under review as submission to TMLR

Unlike standard generative models, which often produce one-shot outputs, GFlowNets construct solutions
incrementally by sampling sequences of actions. This approach is inspired by reinforcement learning (RL),
enabling GFlowNets to combine the exploration strengths of RL with the flexibility of generative modeling.

In contrast to conventional RL, which typically seeks a single optimal policy, GFlowNets learn a stochastic
policy that assigns higher probability to trajectories with higher terminal rewards. This makes them well-suited
for sparse-reward environments and problems with multiple equally good solutions, such as ARC. GFlowNets
have demonstrated their utility across a wide range of structured generation tasks, including molecular design
and biosequence modeling (Bengio et al., 2021; Liu et al., 2025b; Jain et al., 2022; Jang et al., 2024; Zhang
et al., 2022), symbolic regression (Zhang et al., 2023b), combinatorial optimization (Jain et al., 2023; Zhang
et al., 2023a), and other applications (Sendera et al., 2024; Zhang et al., 2022; Pan et al., 2023).

Flow Matching Condition and Trajectory Balance (TB) Loss. To understand the underlying
mechanism of GFlowNets, it is essential to grasp the flow matching condition, which maintains consistency
between the inflow and outflow of probability mass at any state in the state space:∑

s′

F (s′ → s) =
∑
s′′

F (s→ s′′), (1)

where F (s′ → s) denotes the probability flow from state s′ to state s. This condition ensures that the forward
policy PF (st | st−1) (governing state transitions from an initial state to terminal states) and the backward
policy PB(st−1 | st) (governing transitions in reverse) remain consistent with the reward model’s distribution.

This consistency is operationalized through the Trajectory Balance (TB) loss (Malkin et al., 2022), defined as:

Z

n∏
t=1

PF (st | st−1) = R(x)
n∏

t=1
PB(st−1 | st), (2)

where R(x) represents the reward for a trajectory x = (s0, . . . , sn), and Z is a learnable normalization constant
ensuring proper distribution over trajectories. Minimizing the squared difference of the log probabilities on
both sides yields the TB loss:

LTB(θ) =
(

log Zθ +
n∑

t=1
log PF (st|st−1; θ)− log R(x)−

n∑
t=1

log PB(st−1|st; θ)
)2

. (3)

By optimizing this objective, GFlowNets learn to sample trajectories proportionally to their rewards, naturally
prioritizing high-quality trajectories. This allows effective exploration of complex solution spaces.

Training Steps and DAG Structure. The practical training loop of GFlowNets involves several key steps:
(1) Forward Sampling, starting from an initial state and sequentially sampling states via PF until a terminal
state is reached; (2) Reward Computation, evaluating the sampled trajectory using the reward function R(x);
(3) Backward Sampling, optionally reconstructing the trajectory in reverse via PB to reinforce flow matching;
and (4) Loss Computation and Parameter Update, adjusting model parameters by minimizing the TB loss.
To ensure stable training and avoid cyclic or infinite loops, state transitions are typically constrained within
a Directed Acyclic Graph (DAG), limiting each state to a single visitation and ensuring convergence.

Reward Modeling and Oracle Networks. Since GFlowNets explicitly learn the distribution shaped by
the reward function, accurate reward modeling is paramount. Often, rewards are assigned through pre-trained
or heuristic oracle networks tailored to specific tasks. These oracle models encapsulate task-specific structural
insights and desired properties, significantly enhancing the effectiveness of the generative process. For instance,
in molecular generation tasks, oracle networks evaluate chemical viability, steering GFlowNet exploration
toward feasible and high-quality solutions. The careful design and training of these oracle networks thus play
a critical role in the performance of GFlowNets, particularly in environments with sparse or complex reward
structures.

5

Under review as submission to TMLR

Figure 1: GFlowNet Concept Diagram for Solution Generation in ARC

Figure 2: Some Problems of Abstraction and Reasoning Corpus (ARC)

The structural exploration capability and explicit reward modeling of GFlowNets position them uniquely to
capture intricate reasoning structures and produce diverse, valid solutions in reasoning tasks. By leveraging
human-inspired reward models, GFlowNets can systematically generate solution trajectories reflective of
human reasoning patterns. This capability makes GFlowNets particularly suited for automated trajectory
augmentation tasks, such as those required by reasoning-intensive benchmarks like ARC.

Specifically, GFlowNets directly support logical coherence through forward and backward flow consistency,
ensuring generated solutions maintain logical consistency. Productivity is enabled by effective generalization
from sparse examples via oracle guidance, and compositionality is facilitated by structurally exploring
compositional reasoning paths evaluated by oracles.

2.4 ARC as a Benchmark for Process-Level Reasoning

The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) is a challenging benchmark comprising visual
grid-based puzzles that require inferring abstract and compositional rules from very few provided examples.
Each ARC task includes only 2–5 input-output examples, with no repetition of input-output pairs across
different tasks. The ARC dataset was originally introduced as a proxy for evaluating core reasoning abilities
of AI systems, specifically in terms of logical coherence, productivity, and compositionality (Lee et al., 2025).

Recently, despite impressive performances by state-of-the-art models such as OpenAI’s O3–low, which
achieved over 75% accuracy on ARC (OpenAI, 2025), performance sharply declined to below 10% on the
newly introduced ARC-AGI-2 dataset (Chollet, 2024; Greg Kamradt, 2025). This drop clearly indicates
the complexity of ARC and highlights the significant gap between current AI capabilities and human-like

6

Under review as submission to TMLR

abstraction and reasoning, indirectly underscoring the distance to achieving Artificial General Intelligence
(AGI).

The inherent difficulty of ARC arises primarily from its unique structure: each problem set has a single,
unique input-output relationship, and these relationships vary drastically across different tasks. Therefore,
conventional data augmentation methods struggle as additional synthetic examples cannot be trivially
generated. Given these constraints, ARC becomes particularly suitable for testing the capability of automated
solution augmentation methods. Specifically, ARC provides a rigorous environment to examine whether
generative frameworks, such as GFlowNets, can effectively capture structural insights from carefully designed,
human-inspired reward models, thus facilitating the discovery of diverse and valid solution trajectories under
highly sparse and unique example constraints. These characteristics position ARC as an ideal benchmark for
exploring and validating advanced reasoning frameworks like GFlowNets.

Conventional augmentation methods applied specifically to ARC, such as input-output pair augmentation
((Hodel, 2024; Bikov et al., 2025; Kim et al., 2024)), lack explicit trajectory-level reasoning, treating the
transformation processes as black boxes. Rule-based augmentation methods, meanwhile, rely on predefined
human-crafted rules, severely limiting scalability and the generalization capacity to novel, unseen problem
structures. Consequently, these approaches fail to adequately address ARC’s unique demands for explicit and
diverse trajectory generation, highlighting the need for automated, trajectory-level augmentation frameworks
such as GFlowNets.

3 Methods

3.1 GFlowNet Architecture for Human-Aligned Solution Generation in ARC

We now provide a concise overview of how our GFlowNet is structured and generates solutions tailored
specifically for ARC problems. Building on the general components described in Sections 3.1–3.2, our
architecture differs from conventional GFlowNet models primarily by using asymmetric sampling distributions:
a geometric distribution for forward sampling to prioritize shorter, more efficient action sequences, and a
categorical distribution for backward sampling to ensure effective trajectory reconstruction. Additionally, we
explicitly incorporate human trajectory priors into our reward function, penalizing redundant or excessively
long trajectories to enhance learning efficiency and promote human-like reasoning. In what follows, we detail
this architecture and elaborate on the rationale behind these adaptations.

High-Level Process. At the start of each episode, an initial state derived from the ARC input grid is
set, containing minimal information needed for the ARC task. The GFlowNet forward policy then samples
actions to move from one grid configuration to another, guided by the Geometric distribution described above.
Actions that prove too long or repetitive are penalized by our reward model, while succinct, high-quality
trajectories receive higher rewards. After reaching a final state, the backward policy verifies or backtracks
using a Categorical distribution, helping to ensure the global flow matching necessary for Trajectory Balance.
Over many episodes, this bidirectional sampling process adapts the GFlowNet parameters to favor human-
like solutions that meet the puzzle’s requirements. We summarize the full GFlowNet training process in
Algorithm 1, provided in Appendix C. The pseudocode highlights the use of geometric sampling for forward
actions, categorical backward modeling, and off-policy updates with cycle-penalized reward shaping.

Algorithmic Flow. Algorithm 1 (Appendix C) outlines the main steps: (1) Initialization of the for-
ward/backward networks, (2) Forward Sampling where actions are chosen via the Geometric distribution
based on predicted logits, (3) Reward Assignment using a human-inspired reward model that applies dis-
counting, cycle penalties, trajectory-length constraints, or a combination thereof, depending on the specific
characteristics of the trajectory, (4) Backward Sampling where the backward policy samples a probable reverse
action corresponding to the forward-selected action, ensuring local consistency required for trajectory balance,
and (5) Parameter Update by minimizing the trajectory balance (TB) loss across the sampled trajectory.
Repeating these steps allows the GFlowNet to efficiently converge on a diverse set of high-reward, human-like
trajectories.

7

Under review as submission to TMLR

ARC-Specific Adaptations. Unlike many domains where actions naturally exhibit uniform or categorical
distributions, ARC problems benefit from the combination of a Geometric-forward and Categorical-backward
design. (Section 3.2). In our setup, each trajectory typically ends with a “Submit” action that finalizes the
generated grid, triggering a binary reward if the puzzle is solved correctly. This setup not only aligns with the
binary reward structure of ARC but also enables GFlowNet to efficiently prioritize high-quality, human-like
trajectories within its generative process.

3.2 Human-Trajectory Guided Reward Design

GFlowNet cannot effectively learn with a purely sparse reward model. A naive sparse reward assignment—1
for correct answers and 0 for incorrect ones—fails to provide the necessary gradient to differentiate between
high-quality and low-quality trajectories, severely limiting learning efficiency or even halting progress entirely.

When applying GFlowNet to the ARC problem, this limitation became apparent. For example, as shown in
Figure 3, some trajectories solve the problem efficiently, while others reach the correct answer with unnecessary
and repetitive actions. Assigning the same reward to both types of trajectories makes it difficult for GFlowNet
to prioritize high-quality solutions.

?

Demo

Pairs

Test

Input

Task 179

Solutions

Figure 3: State Space Graph of Trajectories for ARC Problem. The trajectories were collected through
O2ARC (Shim et al., 2024), illustrating various solution paths from the start node (blue) to the correct solution
node (green). Additionally, incorrect solution nodes (red) are displayed to represent alternative, unsuccessful
attempts. This figure highlights the diversity of possible solutions for a single problem, emphasizing the
multiple ways in which the problem can be approached and solved.

To address this, we analyzed human trajectory data from O2ARC 3.0 (Shim et al., 2024) to identify clear
quality differences and inform the design of a reward model that highlights superior trajectories. Two major
characteristics of high-quality trajectories were identified:

• Final Action: The last action in a trajectory must always be the ‘Submit’ action. This deliberate
conclusion indicates that the solution is complete and allows for feedback. Trajectories that end with
the Submit action are prioritized in the reward model.

8

Under review as submission to TMLR

• Avoidance of Redundancy: High-quality trajectories avoid unnecessary repetition, using only
essential actions to reach the correct answer. Most general problems rarely require more than 10
steps (Kim et al., 2025). Repetitive actions, particularly in a Directed Acyclic Graph (DAG) context,
can create cycles that complicate learning.

To reflect these human-derived structural preferences explicitly, we propose integrating the following mecha-
nisms into our reward design:

Discount Factor (RDF) The first approach involves applying a discount factor γ (set to 0.9), commonly
used in reinforcement learning. This method inherently favors shorter trajectories by scaling the reward R at
each step t as:

RDF = R · γt (4)

While effective in promoting brevity, this approach can negatively impact tasks that require longer solutions.

Trajectory Length Regularization (LTLR) The second strategy introduces a regularization term directly
into the objective function. This term penalizes deviations from a target trajectory length Ltarget, providing
flexibility while discouraging excessively long trajectories:

LTLR = λreg · (Lτ − Ltarget)2 (5)

Here, λreg controls the regularization strength. The total objective function combines this term with the
Trajectory Balance Loss (LTB):

LT otal(θ) = (1− α) · LTB + α · LTLR (6)

where α balances trajectory balance and length regularization.

Cycle Detection (Rcycle) Finally, cycle detection penalizes repetitive actions by flagging repeated states
within a trajectory. A penalty proportional to the number of detected cycles C(τ) is applied:

Rcycle(τ) =
{

r(ST)− λ · C(τ) if a cycle is detected,

r(ST) otherwise.
(7)

This encourages efficient exploration while avoiding redundant actions.

Thus, we define the reward for a trajectory x = (s0, . . . , sT) as:

R(x; y) = 1[f(x)=y] · γL(x) · exp (−λcycle · C(x)) ,

where:

• 1[f(x)=y] is a binary indicator of whether the trajectory leads to a correct solution,

• γ ∈ (0, 1) is a discount factor applied to the trajectory length L(x),

• C(x) is the number of detected cycles (i.e., repeated states) in the trajectory,

• λcycle is the penalty weight for cyclic behavior.

9

Under review as submission to TMLR

This reward is used as input to the Trajectory Balance (TB) loss, and is log-transformed prior to optimization.

In addition to the reward-based objective, we introduce a separate trajectory length regularization loss to
further encourage concise reasoning:

LTLR(x) = λTLR · (L(x)− Ltarget)2
,

where Ltarget is a reference trajectory length (e.g., 3 or 4), and λTLR controls the penalty strength.

The overall training objective is then defined as:

Ltotal = LTB + LTLR,

where LTB denotes the Trajectory Balance loss computed using the log-transformed reward log R(x; y).

3.3 Forward Policy via Geometric Action Sampling

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step Length

20

40

60

80

100

120

R
ew

ar
d

Step Length vs. Reward for Successful Unique Trajectories

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step Length

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

Pr
ob

ab
ilit

y

Geometric PMF for Step Length

Geometric PMF (p=0.01)

Figure 4: (Left) Reward Distribution by Step Length: This figure shows the reward distribution across
trajectories with varying lengths for ARC problems. Higher rewards are concentrated in shorter steps, while
rewards decrease as the step length increases. (Right) Geometric PMF: General form of PMF for the
Geometric distribution.

To effectively model the distribution of reward functions derived from human trajectories, it is crucial to
account for the sequential nature of actions and their dependencies in ARC problems. While conventional
GFlowNets typically employ the Categorical distribution to model action probabilities, this approach fails to
capture the observed relationship between reward and step length in ARC problems.

As shown in Figure 4, rewards are heavily skewed toward shorter trajectories, with diminishing rewards as
step lengths increase. This motivates the use of the Geometric distribution to address the limitations of the
Categorical model.

The Geometric distribution is well-suited for modeling action sequences under a framework where actions are
treated as probabilistic steps toward success. Specifically, it represents the number of steps required until the
first success in a sequence of trials, with a constant probability of success p. In the context of ARC problems,
success can be interpreted as reaching the target state, and each action step is viewed as a probabilistic
attempt to move closer to that state.

10

Under review as submission to TMLR

To formalize this interpretation, we treat each candidate action ai as associated with a success probability pi

obtained via softmax over logits zi. The number of steps until success under this distribution is modeled as a
geometric random variable:

Xi ∼ Geometric(pi), E[Xi] = 1
pi

.

Then, selecting the action with the minimum expected steps corresponds to:

a∗ = arg min
i

E[Xi] = arg max
i

pi.

This provides a probabilistic justification for the use of Geometric sampling in the forward policy: it naturally
prioritizes actions with higher expected efficiency in sparse reward settings. Moreover, by selecting actions
based on their expected time-to-success, the policy aligns with human-like decision-making that favors shorter
and more effective trajectories.

This aligns well with the structure of GFlowNet, where the model explores action sequences that maximize
long-term reward under trajectory-level uncertainty. Building on the efficiency bias introduced by geometric
sampling, this formulation has proven particularly effective in sparse-reward environments such as ARC. In
addition, the preference toward shorter trajectories helps mitigate over-exploration of redundant or excessively
long paths, which can dilute learning signals especially during early stages of training. This theoretical bias
toward shorter, high-probability trajectories is further supported by empirical evidence.

The rationale for using the Geometric distribution is as follows:

• Reward Trends in ARC problems: Higher rewards are observed in shorter trajectories, which
can be naturally modeled by the Geometric distribution’s property of assigning higher probabilities
to fewer steps. By prioritizing trajectories with shorter action sequences, the model effectively aligns
exploration with the observed reward trends in human problem-solving.

• Action Sequences as Trials: Each action in a sequence can be interpreted as an independent
attempt to reach the target state (success). The Geometric distribution allows the model to evaluate
and prioritize actions based on their probabilities of success, guiding the GFlowNet to focus on
trajectories that are both efficient and high-reward.

To integrate the Geometric distribution into GFlowNet’s forward policy, the policy network outputs a logits
vector z = (z1, z2, . . . , zN) for a given state s. This vector is transformed into probabilities p = (p1, p2, . . . , pN)
via the softmax function. For each action ai, the probability of success is modeled as a Geometric random
variable Xi ∼ Geometric(pi), where the selection of an action a∗ is defined as:

a∗ = arg min
i

Xi. (8)

Here, the action with the fewest expected steps to success is prioritized, effectively capturing the reward
distribution’s dependency on step length and enhancing the exploration process. This step-based probability
assignment allows GFlowNet to balance between exploration and exploitation, focusing on high-reward
trajectories while maintaining diversity.

Conversely, the backward policy retains the use of the Categorical distribution. While the Geometric
distribution is advantageous for exploration, its properties are less suited for reconstructing paths from the
goal to the start state. The backward policy instead relies on the Categorical distribution to guide path
regression, where capturing dependencies between actions is less critical.

Attempts to apply the Geometric distribution to the backward policy yielded suboptimal results, as it failed
to represent the necessary dependencies for effective path reconstruction. Therefore, the use of distinct
distributions—Geometric for forward exploration and Categorical for backward reconstruction—is both
empirically justified and theoretically grounded.

11

Under review as submission to TMLR

4 Experiments

4.1 Experimental Design

4.1.1 Research Questions

Our central goal is to explore whether Generative Flow Networks (GFlowNets) can be adapted to generate
reasoning trajectories that are aligned with human problem-solving heuristics in the ARC domain.
Since direct comparison with human trajectories is beyond our current scope, we instead assess alignment
through structural properties inspired by human behavior (e.g., brevity, intentionality, loop avoidance). To
this end, we pose the following sub-questions:

• RQ1. Can reward functions informed by human priors promote human-aligned reasoning
patterns? We assess how different reward shaping techniques (e.g., brevity encouragement, loop
avoidance, trajectory regularization) influence the structure and quality of generated trajectories.

• RQ2. Does using a Geometric distribution in the forward policy enhance efficiency
than conventional GFlowNets with a categorical forward policy in diverse trajectory
generation? We evaluate whether modeling forward decisions via the Geometric distribution, which
prioritizes concise action sequences, improves alignment with diverse reasoning behaviors.

• RQ3. Why does a Geometric forward policy excel in goal-conditioned reasoning tasks?
We compare forward–backward policy combinations (G–C, G–G, C–G, C–C) to uncover how the
inductive bias of a Geometric forward policy, together with a stabilizing backward policy, leads to
higher success and diversity under sparse rewards.

4.1.2 Dataset: Task Selection Rationale

The dataset used in our experiments is based on the Abstraction and Reasoning Corpus (ARC), specifically
focusing on Task 178 (Diagonal Flip) for most experiments. This task exemplifies problems where the solution
requires transformation of the entire grid, rather than localized subregions, making it suitable for evaluating
solution augmentation in full-grid reasoning contexts.

Formally, the selected tasks satisfy:

f(xk) = yk, S = G, where G ∈ Rm×n (9)

Here, S denotes the selection region and G represents the entire grid with dimensions m× n. By defining
S = G, each action operates on the whole grid, requiring full-grid comprehension and transformation.

To further constrain the solution space and evaluate the impact of full-grid transformations, we restrict our
experiments to ARC problems solvable via entire-grid operations—such as flips, rotations, translations, and
global color replacements. This design choice is both practically and theoretically motivated. In the ARCLE
environment (Lee et al., 2024), the default formulation allows any subset of the grid—including individual
pixels or subgrids—to be transformed. However, this leads to an exponentially large action space of roughly
O(AL × 2mn) for a grid of size m × n, where A is the set of atomic actions and L is the typical sequence
length. For a 30× 30 grid, the subregion selection space alone reaches 2900, rendering effective exploration
intractable. By instead focusing on whole-grid transformations (i.e., S = G), we reduce the action space
complexity to approximately O(AL), which not only enhances tractability but also aligns more closely with
the structural reasoning patterns observed in human trajectories.

In addition to Task 178, other tasks solvable by whole-grid selection include: 53, 87, 129, 140, 150, 155, 179,
241, 322, 339, 346, 355, 380, and 385 are tested. These are shown in appendix B.4.

4.1.3 Evaluation Metrics

The following metrics are used to evaluate the performance of GFlowNet:

12

Under review as submission to TMLR

Figure 5: Example of an Entire grid selection ARC problem

• Validation Accuracy (Val_ACC): The proportion of correctly generated trajectories among 100
attempts. A trajectory is considered correct if it reaches the target solution while adhering to the task
constraints. This metric evaluates the model’s ability to generate valid and successful trajectories
efficiently.

• Trajectory Diversity (Dtraj): The fraction of unique successful trajectories among all generated
unique trajectories. A higher diversity score indicates that the model explores multiple valid solutions
rather than converging on a single mode. This reflects the model’s ability to balance exploration and
exploitation in trajectory generation.

• Reward Distribution Diversity (Dreward): The variation in assigned rewards, measured using the
Shannon Index. A higher value suggests that the model assigns rewards more evenly across different
trajectories, encouraging diverse exploration. Conversely, a lower value indicates that rewards are
concentrated on a limited set of trajectories, leading to mode collapse.

4.1.4 Hyperparameters and Glossary

Below are Table 1, which presents key hyperparameter settings, and Table 2, which defines key abbreviations
used throughout the paper.

Hyperparameter Value
Learning Rate (lr) 10−4

of Actions 5
Episode Length 10
Base Reward 15 (O), 0 (X)
Discount Factor (γ) 0.9
Loss Weight (α) 0.2
Trajectory Regularization Weight 0.01

Table 1: Key Hyperparameter Settings

Abbreviation Definition
PF Forward Probability
PB Backward Probability
TLR Trajectory Length Regularization
DF Discount Factor
cycle Cycle Penalty Reward
Splus Submit plus Reward
LTB Trajectory Balance Loss

Table 2: Glossary of Terms and Abbreviations

4.2 Performance of Revised GFlowNet for Solution Augmentation

This section evaluates the effectiveness of our proposed GFlowNet modifications across the three research
questions defined in Section 4.1.

13

Under review as submission to TMLR

To qualitatively illustrate the generated trajectories discussed throughout our experiments, we present
examples from Task 150 and Task 179—two ARC problems included in our benchmark suite (Appendix B.4).
These examples highlight the variety of transformation sequences leading to correct solutions.

Input

Left Rotate

V FlipLeft Rotate Left Rotate Left Rotate

Left Rotate H Flip Left RotateV Flip

V FlipRight Rotate

Right Rotate V Flip

V Flip V Flip V Flip

V Flip

V Flip V FlipV Flip

Output

Traj 1

Traj 2

Traj 3

Traj 4

...

(a) Task 150

Input

Left Rotate

Left Rotate

Left RotateLeft RotateLeft Rotate

Left Rotate Left Rotate

Left Rotate Left Rotate

Left Rotate Left Rotate Left Rotate Left RotateRight Rotate

Right Rotate Right Rotate Right Rotate

Right Rotate V Flip

V Flip V Flip V Flip

V Flip V Flip

V Flip

V Flip

Output

Traj 1

Traj 2

Traj 3

Traj 4

...

(b) Task 179

Figure 6: Visualization of generated trajectories for two ARC tasks. Each trajectory represents a sequence
of transformations applied to the input grid to achieve the correct output. Task 150 (a) and Task 179 (b)
demonstrate diverse action sequences, including rotations and flips, leading to successful solutions.

4.2.1 RQ1. Can reward functions informed by human priors promote human-aligned reasoning
patterns?

To investigate whether human-inspired reward signals can effectively shape the structure of generated
trajectories, we evaluate five reward models, each designed to encode specific reasoning heuristics:

• Base: Sparse reward only (no inductive bias).

• Splus: Emphasizes the Submit action.

• Cycle: Penalizes repeated actions (loop avoidance).

• DF: Discount factor encourages early goal completion.

• TLR: Penalizes long trajectories (conciseness).

Results and Analysis We first analyze the effects of individual reward models (Tables 3 and 4). The Base
model performs poorly, with only 5.26% unique success and reward entropy of 0.29, reflecting ineffective
trajectory exploration. Among single reward settings, the DF model achieves the highest total success rate
(89.33%) but with relatively low diversity (1.04), suggesting that its strong preference for short paths leads
to early convergence on a narrow solution set.

TLR achieves lower total accuracy (67.33%) but the highest reward entropy (1.08), producing the most
structurally diverse successful trajectories (50 in Table 3). This suggests that TLR allows for a wider range
of valid solution strategies while still guiding the model toward goal-oriented reasoning.

Cycle, while reflecting the human tendency to avoid repetition, generates the largest number of unique
trajectories (100), but with relatively low success (32 successful), indicating that diversity alone does not imply
effective reasoning. Splus, despite its alignment with the task-specific "submit" action, shows limited impact
(13.68% accuracy), implying that local task signals are insufficient without broader structural constraints.

We next examine reward combinations to assess whether structural biases interact synergistically (Tables 5, 6).
DF + Cycle + TLR achieves perfect total success (100%), but with reduced diversity (entropy = 1.81),

14

Under review as submission to TMLR

Va
lid

at
io

n
A

cc
ur

ac
y

Step

Base
Splus
Cycle
DF
TLR

Validation Accuracy Comparison with reward model

Va
lid

at
io

n
A

cc
ur

ac
y

Step

Validation Accuracy with Multiple Reward Model Combinations

DF+Cycle+TLR
Cycle+TLR
DF+TLR
DF+Cycle

Figure 7: (Left) Validation accuracy for individual reward models. (Right) Validation accuracy for combined
reward models.

Reward Total Unique Trajectories Successful Unique Trajectories Val_ACC (%)

DF 36 27 75.47
Cycle 100 32 32.00
TLR 79 50 63.03
Base 76 4 5.26
Splus 95 13 13.68

Table 3: Success rate based on unique trajectories for different reward models.

Reward Total Trajectories Total Successful Trajectories Val_ACC (%) Dreward

DF 300 268 89.33 1.04
Cycle 300 96 32.00 0.90
TLR 300 202 67.33 1.08
Base 300 15 5.00 0.29
Splus 300 39 13.00 0.56

Table 4: Success rate and reward diversity based on total trajectories.

suggesting a strong convergence effect. DF + TLR, in contrast, yields a balance of high success (86%) and
the highest diversity among all models (2.96), highlighting its effectiveness at preserving reasoning flexibility
while maintaining performance.

Notably, combinations that include Cycle often lead to more constrained trajectory spaces. For example,
Cycle + TLR achieves 89% success but with the lowest diversity (0.92), reinforcing that while repetition
avoidance is important, overly rigid enforcement may limit the model’s exploration. These results support the
notion that reward combinations do not simply stack effects but influence trajectory patterns in complex and
often non-linear ways.

Reward Combination Unique Trajectories Successful Unique Trajectories Val_ACC (%)

DF + Cycle + TLR 5 5 100.00
DF + TLR 35 26 74.29

Cycle + TLR 38 29 76.32
DF + Cycle 47 29 61.70

Table 5: Success rate and reward diversity based on unique trajectories for reward combinations.

Across all experiments, the average trajectory length was approximately 7 steps, close to the episode maximum
of 10. In contrast, human-provided solutions for similar ARC tasks often require fewer than 4 steps on

15

Under review as submission to TMLR

Reward Combination Total Trajectories Successful Total Trajectories Val_ACC (%) Dreward

DF + TLR 100 86 86.0 2.96
DF + Cycle + TLR 100 100 100.0 1.81

Cycle + TLR 100 89 89.0 0.92
DF + Cycle 100 91 91.0 1.50

Table 6: Success rate and reward diversity based on total trajectories for reward combinations.

average (Kim et al., 2025). This further underscores the role of reward shaping in steering the model toward
concise, human-aligned reasoning structures.

Implications These findings suggest that well-designed reward functions not only affect trajectory success
but also influence the underlying structure and interpretability of the reasoning process. Individual rewards
serve as proxies for distinct human problem-solving heuristics, and their combinations can shape exploration
in either beneficial or restrictive ways.

While more constraints can increase success, they may also reduce diversity and generalization. For instance,
the DF + TLR model demonstrates a favorable trade-off between structure and flexibility, whereas overly
rigid combinations like DF + Cycle + TLR lead to narrower solution modes. These results support the idea
that reward shaping is not merely about scoring optimization, but about modeling the reasoning biases that
underlie human-like solution strategies.

Rather than claiming full cognitive alignment, our work shows that GFlowNet can be guided to reflect aspects
of human reasoning—brevity, efficiency, and structural clarity—through reward design. Future research should
explore adaptive reward weighting and training-phase scheduling to dynamically manage these trade-offs in
more complex or open-ended reasoning domains.

4.2.2 RQ2. Does using a Geometric distribution in the forward policy enhance efficiency in diverse
trajectory generation?

We compare two GFlowNet variants that differ only in the choice of forward policy distribution: the original
version using a Categorical distribution, and the revised version using a Geometric distribution. In both cases,
the backward policy (PB) remains Categorical.

Va
lid

at
io

n
A

cc
ur

ac
y

Step

Validation Accuracy: Categorical vs. Geometric Distributions
Geometric (ours)
Categorical (vanila)

Reward Trend: Categorical vs. Geometric Distributions

Re
w

ar
d

Step

Geometric (ours)
Categorical (vanila)

Figure 8: (Left) Validation accuracy comparison between Categorical (green) and Geometric (blue) distribu-
tions. (Right) Reward profiles comparison over training steps.

Results and Analysis The Geometric PF GFlowNet introduces an inductive bias toward concise and
decisive action sequences—an intuition derived from analyzing human trajectory patterns, particularly in
structured reasoning tasks like ARC. Unlike the original Categorical forward policy, which samples actions

16

Under review as submission to TMLR

Distribution Unique Trajectories Successful Unique Trajectories Val_ACC (%)
Categorical 75 10 13.33
Geometric 45 36 80.00

Table 7: Success rate based on unique trajectories for Categorical and Geometric distributions.

Distribution Total Trajectories Successful Total Trajectories Val_ACC (%) Dreward

Categorical 100 28 0.28 3.38
Geometric 100 89 0.89 0.88

Table 8: Success rate based on total trajectories for Categorical and Geometric distributions.

uniformly, the Geometric distribution prioritizes earlier actions, naturally biasing the model toward shorter
trajectories.

As shown in Figure 8, the Geometric PF GFlowNet consistently achieves higher validation accuracy throughout
training. Table 7 confirms that, while the Categorical policy produces a larger number of unique trajectories
(75 vs. 45), it leads to significantly fewer successful outcomes (10 vs. 36). Likewise, Table 8 shows that the
Geometric model outperforms in overall success rate (89% vs. 28%), despite exhibiting lower reward diversity
(Dreward = 0.88 vs. 3.38).

This contrast highlights that, although the Categorical policy exhibits broader surface-level exploration, much
of it fails to reach valid solutions. In other words, diversity without effectiveness may not equate to useful
reasoning. In contrast, the trajectories generated by the Geometric PF GFlowNet are more likely to be both
correct and structurally sound. Notably, successful trajectories under the Geometric policy typically reach the
goal within 2 to 4 steps—well below the episode limit of 10—demonstrating the model’s inherent preference
for efficient reasoning paths.

These paths exhibit key characteristics commonly associated with human problem-solving behavior: minimal
reversals, consistent transformation patterns, and clear subgoal alignment. Although we do not claim
full cognitive equivalence, this emergent structure indicates a meaningful alignment between the model’s
exploratory behavior and human-like reasoning strategies.

Implications These results suggest that leveraging distributional biases—such as those imposed by the
Geometric forward policy—can steer solution augmentors toward generating concise and interpretable
reasoning paths. While the diversity of the Categorical model appears greater numerically, the Geometric PF
GFlowNet better balances success and efficiency, especially in sparse-reward settings like ARC.

Moreover, the fact that this model can discover multiple valid reasoning paths for ARC-178—a task solvable
in just a few steps—suggests that even simple inductive biases can facilitate structured solution generation.
When combined with human-inspired reward functions (Section 4.2.3), this opens the possibility of extending
the framework to more complex reasoning domains. Rather than replicating human reasoning in its entirety,
the proposed approach reflects an early but promising step toward learning structural features of expert
reasoning—such as brevity, decisiveness, and goal alignment—and embedding them within generative solution
frameworks.

4.2.3 RQ3. Why does a Geometric forward policy excel in goal-conditioned reasoning tasks?

We evaluate different combinations of forward (PF) and backward (PB) policies:

• G-C: Geometric for PF and Categorical for PB .

• G-G: Geometric for both PF and PB .

• C-C: Categorical for both PF and PB .

17

Under review as submission to TMLR

• C-G: Categorical for PF and Geometric for PB .

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0
Va

lid
at

io
n

Ac
cu

ra
cy

Validation Accuracy with different PF-PB Combination
GC
GG
CC
CG

Figure 9: Validation accuracy for different PF -PB combinations.

PF -PB Unique Trajectories Successful Unique Trajectories Val_ACC (%)
G-G 21 18 85.71
G-C 56 49 87.50
C-G 59 10 16.95
C-C 75 10 13.33

Table 9: Unique trajectory performance for different PF -PB combinations.

PF -PB Total Trajectories Successful Total Trajectories Dreward

G-G 100 97 2.15
G-C 100 97 2.09
C-G 100 11 0.73
C-C 100 10 3.39

Table 10: Overall success rates for different PF -PB combinations.

Results and Analysis We compare four configurations of forward (PF) and backward (PB) policies. Both
G-G and G-C achieve the highest total success rate (97.0%), but the G-C pairing yields a significantly higher
number of successful unique trajectories (49 vs. 18), indicating better structural generalization. C-G and C-C
perform poorly, both in accuracy and trajectory success.

This pattern suggests that the forward and backward policies contribute differently to learning dynamics.
The forward policy (PF) is responsible for generating exploratory trajectories, while the backward policy
(PB) adjusts the reverse probabilities to match the desired flow based on reward signals. When both policies
are heavily biased (e.g., G-G), the backward policy may no longer act as a corrective mechanism. Instead, it
may reinforce the forward bias, narrowing the trajectory space and reducing diversity.

18

Under review as submission to TMLR

In contrast, the G-C setup preserves high success while also producing a wider range of successful solutions.
This indicates that an asymmetric policy design—where PF is biased for efficient exploration and PB remains
uniform to stabilize flow alignment—achieves better reasoning diversity without sacrificing performance.
The observed Dreward values support this: G-G has slightly higher entropy (2.15) than G-C (2.09), but the
diversity of correct solutions is much higher in G-C.

We also observe that C-C has the highest reward entropy (3.39) but fails to achieve meaningful performance,
indicating that reward distribution diversity alone does not imply reasoning quality. High entropy may reflect
exploratory breadth, but it must be interpreted alongside success metrics. Ultimately, reward diversity without
trajectory effectiveness may signal unstructured exploration, not reasoning robustness.

Insights These findings reinforce the importance of decoupling exploration and correction roles in bidi-
rectional learning. The forward policy drives goal-directed trajectory generation, while the backward policy
should facilitate stable reward-aligned flow learning. We hypothesize that if both policies impose strong,
aligned biases (as in G-G), the resulting feedback loop can distort the reward structure and impair the
model’s ability to generalize across diverse solutions.

Moreover, a successful unique trajectory count emerges as a valuable proxy for structural reasoning diversity.
Models such as G-C not only succeed frequently but also do so via a wider variety of valid solution paths.
This suggests that asymmetric policy pairing enables the model to learn broader reasoning structures—a key
capability in ARC-like tasks where flexible generalization is crucial.

Finally, reward distribution diversity, as captured by entropy, offers useful information about the model’s
exploratory behavior, but does not alone indicate reasoning effectiveness. Reward entropy should be interpreted
in conjunction with success metrics to evaluate the utility—not just the scope—of the model’s exploration.

5 Conclusion

In this study, we proposed a novel GFlowNet-based framework for solution augmentation in ARC problems.
By leveraging a Geometric forward policy in combination with a Categorical backward policy and integrating
human-inspired reward models, our method efficiently discovers concise and high-quality solution trajectories
in sparse-reward environments.

5.1 Summary and Implications

Our experiments demonstrate that:

• A Geometric distribution for the forward policy (PF) induces a structural bias toward shorter,
goal-directed trajectories, resulting in higher success rates compared to Categorical policies.

• Reward models inspired by human reasoning–such as discounting, cycle detection, and trajectory
length regularization–substantially improve learning by guiding the model toward concise and
interpretable solution paths.

• The combination of a Geometric PF with a Categorical backward policy (PB) balances directed
exploration and flow correction, yielding not only high overall performance but also structurally
diverse successful trajectories.

These findings suggest that carefully structured inductive biases—in both policy and reward design—can
guide GFlowNet toward expert-aligned solution augmentation, highlighting its utility for complex reasoning
tasks such as ARC.

5.2 Limitations and Future Work

While our proposed framework yields promising results, several limitations remain:

19

Under review as submission to TMLR

• On-Policy Training Sensitivity: The current approach relies on on-policy training, which is
sensitive to the quality of initial trajectory samples. Early poor samples may cause high variance in
learning. Future work will explore hybrid training schemes that combine the robustness of off-policy
updates with the stability of on-policy guidance.

• Restricted Task Scope: This study focuses on ARC tasks involving full-grid transformations.
Extending the framework to handle tasks that require localized sub-grid manipulations poses a
significant challenge due to the exponentially growing action space. We plan to address this by
leveraging ARCLE (Lee et al., 2024) and developing submodules capable of supporting fine-grained
selection and transformation operations.

• Evaluation of Downstream Utility: Although our method generates diverse and valid solutions, we
have not yet evaluated whether these augmented solutions meaningfully improve the performance of
downstream models. Future research will empirically investigate whether training on these augmented
solutions leads to measurable improvements in AI reasoning or generalization. In particular, we
believe that exposing large language models (LLMs) to curated and diverse reasoning trajectories may
help expand their solution space and improve their ability to generalize over structurally complex
tasks.

5.3 Final Remarks

Our work demonstrates the potential of GFlowNet as a powerful mechanism for automated solution augmen-
tation in reasoning-intensive tasks. By incorporating human-inspired reward structures and asymmetric policy
design, we guide the model to generate concise, diverse, and high-quality solutions—an essential capability in
sparse-reward environments.

Rather than functioning purely as a solver, GFlowNet here serves as an expert-aligned solution generator.
This opens opportunities for integrating our approach into broader reasoning pipelines, where diverse
solution candidates are required for further verification, ranking, or learning. We believe that future advances
in exploration strategies, structural bias modeling, and downstream integration will further enhance the
applicability of GFlowNet to System-2-level tasks, ultimately contributing to more general and interpretable
artificial intelligence systems.

20

Under review as submission to TMLR

References
DeepSeek AI. Deepseek r1: Towards reliable and verifiable reasoning in large language models. https:

//www.deepseek.com/research, 2024. Accessed: 2025-04-19.

Emmanuel Bengio, Moksh Jain1, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow Network
Based Generative Models for Non-Iterative Diverse Candidate Generation. In NeurIPS, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio. GFlowNet
Foundations. Journal of Machine Learning Research, 2023.

Kiril Bikov, Mikel Bober-Irizar, and Soumya Banerjee. AugARC: Augmented Abstraction and Reasoning
Benchmark for Large Language Models. AAAI Workshop on Preparing Good Data for Generative AI:
Challenges and Approaches, 2025.

François Chollet. On the Measure of Intelligence. arXiv:1911.01547, 2019.

François Chollet. OpenAI o3 Breakthrough High Score on ARC-AGI-Pub , 2024. URL https://arcprize.
org/blog/oai-o3-pub-breakthrough.

Karl Cobbe, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
solve math word problems. arXiv:2110.14168, 2021.

Greg Kamradt. Announcing arc-agi-2 and arc prize 2025, 2025. URL https://arcprize.org/blog/
announcing-arc-agi-2-and-arc-prize-2025. Accessed: 2025-04-19.

Michael Hodel. Addressing the Abstraction and Reasoning Corpus via Procedural Example Generation.
arXiv:2404.07353, 2024.

Moksh Jain, Emmanuel Bengio, Alex-Hernandez Garcia, Jarrid Rector-Brooks, Bonaventure F. P. Dossou,
Chanakya Ekbote, Jie Fu, Tianyu Zhang, Micheal Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, and
Yoshua Bengio. Biological Sequence Design with GFlowNets. In ICML, 2022.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Yoshua Bengio,
Santiago Miret, and Emmanuel Bengio. Multi-Objective GFlowNets. In ICML, 2023.

Hyosoon Jang, Minsu Kim, and Sungsoo Ahn. Learning Energy Decompositions for Partial Inference in
GFlowNets. In ICLR, 2024.

Yuxuan Jiang, Zihan Wang, Haozhuo Jiang, Jipeng Zhang, and Zhiyuan Liu. Learning Planning-based
Reasoning by Trajectories Collection and Process Reward Synthesizing. EMNLP, 2024.

Sejin Kim, Hosung Lee, and Sundong Kim. Addressing and Visualizing Misalignments in Human Task-Solving
Trajectories. ICLR Workshop on Bidirectional Human-AI Alignment, 2025.

Yunho Kim, Jaehyun Park, Heejun Kim, Sejin Kim, Byung-Jun Lee, and Sundong Kim. Diffusion-Based
Offline RL for Improved Decision-Making in Augmented ARC Task. arXiv:2410.11324, 2024.

Hosung Lee, Sejin Kim, Seungpil Lee, Sanha Hwang, Jihwan Lee, Byung-Jun Lee, and Sundong Kim. ARCLE:
The Abstract and Reasoning Corpus Learning Environment for Reinforcement Learning. In CoLLAs, 2024.

Seungpil Lee, Woochang Sim, Donghyeon Shin, Wongyu Seo, Jiwon Park, Seokki Lee, Sanha Hwang, Sejin Kim,
and Sundong Kim. Reasoning Abilities of Large Language Models: In-Depth Analysis on the Abstraction
and Reasoning Corpus. ACM Transactions on Intelligent Systems and Technology, 2025.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V. Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Tamas Gutman-Solo, Andrew Lampinen, Charles Chan, Surya
Ganguli, Samuel S. Schoenholz, and Justin Gilmer. Solving quantitative reasoning problems with language
models. arXiv:2206.14858, 2022.

21

https://www.deepseek.com/research
https://www.deepseek.com/research
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/announcing-arc-agi-2-and-arc-prize-2025
https://arcprize.org/blog/announcing-arc-agi-2-and-arc-prize-2025

Under review as submission to TMLR

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James
Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor
Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu,
and Oriol Vinyals. Competition-level code generation with alphacode. Science, 378(6624):1092–1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step: Improving mathematical reasoning
with process supervision. In ICLR, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale generation:
Learning to solve and explain algebraic word problems. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 158–167, 2017.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Pairwise rm: Perform best-of-n sampling
with knockout tournament. arXiv preprint arXiv:2501.13007, 2025a.

Yucheng Liu, Wengong Jin, Wenshuai Gao, Connor W. Coley, Regina Barzilay, and Yoshua Bengio. Retrogfn:
One-step retrosynthesis with generative flow networks. Information Sciences, 676:119264, 2025b. ISSN
0020-0255. doi: 10.1016/j.ins.2024.119264. URL https://www.sciencedirect.com/science/article/
pii/S0020025525003263.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and Hongsheng Li.
Mathgenie: Generating synthetic data with question back-translation for enhancing mathematical reasoning
of llms. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 2732–2747, Bangkok, Thailand, 2024.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei Shu,
Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language models
by automated process supervision. arXiv:2406.06592, 2024a.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei
Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with evol-instruct. In
Proceedings of the 12th International Conference on Learning Representations (ICLR), 2024b.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory Balance: Improved
Credit Assignment in GFlowNets. In NeurIPS, 2022.

OpenAI. Learning to reason with llms (openai o1). https://openai.com/index/
learning-to-reason-with-llms, 2024.

OpenAI. openai-o3-mini. https://openai.com/index/openai-o3-mini/, 2025.

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative Augmented
Flow Networks. In ICLR, 2023.

Jaehyun Park, Jaegyun Im, Sanha Hwang, Mintaek Lim, Sabina Ualibekova, Sejin Kim, and Sundong Kim.
Unraveling the ARC Puzzle: Mimicking Human Solutions with Object-Centric Decision Transformer. In
ICML Workshop, 2023.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexan-
dre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion samplers.
arXiv:2402.05098, 2024.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Synthetic prompting:
Generating chain-of-thought demonstrations for large language models. In Proceedings of the 40th Interna-
tional Conference on Machine Learning (ICML), volume 202 of Proceedings of Machine Learning Research,
pp. 30706–30775, Honolulu, HI, 2023.

22

https://www.sciencedirect.com/science/article/pii/S0020025525003263
https://www.sciencedirect.com/science/article/pii/S0020025525003263
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/openai-o3-mini/

Under review as submission to TMLR

Shuaijie She, Junxiao Liu, Yifeng Liu, Jiajun Chen, Xin Huang, and Shujian Huang. R-prm: Reasoning-driven
process reward modeling. arXiv:2503.21295, 2025.

Max W. Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and Tommaso
Biancalani. Towards Understanding and Improving GFlowNet Training. In ICML, 2023.

Suyeon Shim, Dohyun Ko, Hosung Lee, Seokki Lee, Doyoon Song, Sanha Hwang, Sejin Kim, and Sundong
Kim. O2ARC 3.0: A Platform for Solving and Creating ARC Tasks. In IJCAI Demo, 2024. URL
https://o2arc.com.

Noah Shinn, Beck Labash, Ashwin Gopinath, Ishita Dasgupta, Anca D. Dragan, and Trevor Darrell. Reflexion:
Language agents with verbal reinforcement learning. arXiv:2303.11366, 2023.

Kashun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection with chain-of-
thought from labeled data. In Findings of the Association for Computational Linguistics: EMNLP 2023,
pp. 12113–12139, Singapore, 2023.

Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang Jiao, and
Michael Lyu. Logicasker: Evaluating and improving the logical reasoning ability of large language models.
In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 2124–2155, Miami, Florida, USA, 2024.

Ke Wang and Zhendong Su. Automatic Generation of Raven’s Progressive Matrices. In IJCAI, 2015.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In ICLR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In NeurIPS,
2022.

Chenxi Whitehouse, Monojit Choudhury, and Alham Fikri Aji. LLM-powered data augmentation for enhanced
cross-lingual performance. arXiv:2305.14288, 2023.

Shunyu Yao, Dian Yu, Zhao Jeffrey, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurIPS, 2023.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Efficient training of
llm policy with divergent thinking. arXiv:2406.05673, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. STaR: Self-taught reasoner – bootstrapping
reasoning with reasoning. In NeurIPS, 2022.

David W. Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust Scheduling with
GFlowNets. In ICLR, 2023a.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua Bengio.
Generative Flow Networks for Discrete Probabilistic Modeling. In ICML, 2022.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let the Flows
Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets. In NeurIPS, 2023b.

Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, and Jinqiao Wang. Enhancing Chain of Thought Prompting
in Large Language Models via Reasoning Patterns. In AAAI, 2025a.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin Bowen Yu, Dayiheng Liu, Jingren
Zhou, and Junyang Lin. The Lessons of Developing Process Reward Models in Mathematical Reasoning.
In arxiv:2501.07301, 2025b.

23

https://o2arc.com

Under review as submission to TMLR

A Extended Background Details

A.1 GFlowNet Training Mechanism and Flow Matching

Flow Matching Condition. GFlowNets maintain a flow F (s′ → s) for each directed edge (s′, s) in a
Directed Acyclic Graph (DAG), ensuring no probability mass is lost or gained within each state:∑

s′

F (s′ → s) =
∑
s′′

F (s→ s′′), (10)

where F (s′ → s) is the flow from state s′ to s. This condition (Equation 10) ensures that each state’s inflow
equals its outflow. In practice, F (s′ → s) is factored through a forward policy PF (s | s′).

Trajectory Balance (TB) Loss. Building on Flow Matching, the TB loss (Malkin et al., 2022) ensures a
global consistency between forward and backward paths:

Z

n∏
t=1

PF (st | st−1) = R(x)
n∏

t=1
PB(st−1 | st), (11)

where Z is a trainable constant and R(x) the reward function for trajectory x. Minimizing:

LTB(θ) =
[

log Zθ +
n∑

t=1
log PF (st | st−1; θ) − log R(x) −

n∑
t=1

log PB(st−1 | st; θ)
]2

(12)

aligns the probability of forward-sampled trajectories with their corresponding reward-proportional flows.

Training Steps. We outline the GFlowNet training procedure:

1. Forward Sampling: From initial state s0, sample actions at ∼ PF (· | st−1). Collect the resulting
trajectory x = (s0, . . . , sn).

2. Reward Computation: Evaluate R(x), e.g. 1 if it solves an ARC puzzle, else 0.

3. Backward Sampling: Use PB to reconstruct or partially revisit states from sn to s0.

4. TB Loss Computation: Compute LTB via Equation equation 12.

5. Parameter Update: Optimize θ to minimize LTB, adjusting both PF and PB accordingly.

By iterating these steps, GFlowNets learn to focus on high-reward trajectories while maintaining a diverse
distribution of solutions.

A.2 Extended ARC Details

Although this work focuses on whole-grid transformations, many ARC puzzles require partial selection (e.g.
coloring only a sub-region). This drastically increases the action space because selecting subsets of a 30× 30
grid can be combinatorial. We note:

• Dataset Complexity: Some tasks have grid dimensions smaller than 30× 30, but the upper limit
still poses a challenge.

• Potential Approaches for Partial-Selection: We can adopt hierarchical policies that first select a
region, then transform it. This approach can be integrated into GFlowNets by factoring the forward
policy into multiple steps (Appendix of (Lee et al., 2024)).

• Sparse Rewards and OOD Issues: ARC test grids often deviate from training grids (different
shapes, new patterns), demanding robust generalization. GFlowNets’ ability to maintain multiple
solutions is beneficial, but design of the reward function must handle rarely-seen corner cases.

24

Under review as submission to TMLR

Reasoning Dimensions in ARC. Following the framework of Lee et al. (2025), we consider three core
cognitive dimensions of reasoning assessed by ARC:

• Compositionality: The ability to combine simple building blocks (e.g., functions or rules) into more
complex transformations. ARC tasks often require models to compose multiple abstract operations.

• Productivity: The ability to extrapolate beyond observed examples and generate novel input-output
mappings consistent with the inferred rules. ARC evaluates this by testing generalization to new
input grids.

• Logical Coherence: The ability to maintain consistent internal logic throughout the reasoning
process. This includes applying learned transformations in a rule-consistent manner across diverse
contexts.

A.2.1 Formal Problem Definition for Whole-Grid ARC

Formally, each ARC task is a function f mapping x ∈ X to y ∈ Y. We define a sequence of transformations
a1, . . . , aT operating on the entire grid to produce y.

x(t+1) = f
(
x(t), at

)
with x(0) = x, x(T) = y.

We use a binary reward R(x) = 1 if x(T) matches the target output y, else 0. Further details on Markov
Decision Process (MDP) formulations, action definitions, and potential expansions can be found in (Lee et al.,
2024).

B Ablation Studies

The ablation studies focus on identifying which components of GFlowNet contribute most to its success in
solving ARC problems. We evaluate the effects of reward scaling, different distribution combinations, and
on-policy vs off-policy learning.

B.1 Effect of Reward Scale

In this study, we analyze the impact of varying reward scales on GFlowNet’s performance. By adjusting the
magnitude of rewards, we observe changes in learning efficiency, trajectory diversity, and reward distribution,
aiming to identify the optimal reward scale for effective solution generation.

Experiment Setup As described in the hyperparameter settings, the base rewards were set at 15 for
correct solutions, 0 for incorrect ones, and 10 for solutions ending with the submit action without reaching
the maximum episode length. To examine the effects of different reward scales, we conducted experiments
with the following settings:

• Low Scale: Reduced base rewards to 3 (by dividing the base reward by 5) for correct solutions and
2 for submit-ended trajectories.

• Moderate Scale (Base): Maintained the default base rewards of 15 for submit-ended trajectories,
10 for trajectories that ended due to the maximum episode limit, and 0 for incorrect trajectories.

• High Scale: Increased base rewards to 225 for correct solutions and 150 for submit-ended trajectories
(by multiplying the base reward by 15).

• Very High Scale: Significantly increased base rewards to 1500 for correct solutions and 1000 for
submit-ended trajectories (by multiplying the base reward by 100).

25

Under review as submission to TMLR

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy
Validation Accuracy Comparison with Different Reward Scales

Very High Scale (r*100)
High Scale (r*15)
Moderate Scale (Base)
Low Scale (r/5)

Figure 10: Performance comparison across different reward scales, showing the impact of reward values on
validation accuracy over training steps.

Results and Analysis Tables 11 and 12 summarize the effects of different reward scales on success rates
for unique and total trajectories. A moderate reward scale (Base) demonstrated a balanced improvement in
solution diversity and success rate, achieving a 71.43% success rate for unique trajectories and 59.0% for
total trajectories.

The effect of excessively high scaling (e.g., 100r) led to a 100% success rate for both unique and total
trajectories. However, it also significantly reduced solution diversity, producing only a single unique trajectory.
This outcome suggests that while very high rewards lead to success, they may limit exploration. To confirm
this effect, we calculated the diversity metric Dreward, which showed a reduction in reward distribution
diversity at very high rewards, supporting the conclusion that excessive scaling discourages exploration.

Conversely, a lower reward scale (r/5) resulted in no successful trajectories, as indicated by a 0% success rate
for both unique and total trajectories. This lack of success demonstrates that low rewards do not sufficiently
reinforce correct solutions, causing the model to struggle to distinguish high- from low-quality trajectories.

Figure 10 illustrates the learning curves for each reward setting, showing that lower reward scales lead to
noticeably poorer initial performance due to insufficient reinforcement. In contrast, moderate scaling enables
broader exploration of the solution space, allowing the model to generalize effectively across different ARC
tasks.

Furthermore, the diversity metrics, including trajectory diversity Dtraj and reward distribution diversity
Dreward, show that moderate reward scaling promotes greater exploration of successful trajectories. This
finding suggests that a well-scaled reward signal enhances the model’s ability to discover correct solutions
while encouraging diverse trajectory exploration.

Conclusion These findings suggest that while moderate reward scaling enables GFlowNet to balance
efficient learning and exploration, excessively high rewards yield diminishing returns in terms of diversity.
Although high rewards increase task completion rates, they may reduce exploration and solution diversity.

26

Under review as submission to TMLR

Reward Scale Unique Trajectories Successful Unique Trajectories Val_ACC (%)

Low Scale 100 0 0.00
Moderate Scale (Base) 56 40 71.43

High Scale 74 53 71.62
Very High Scale 1 1 100

Table 11: Success rate and reward distribution diversity based on unique trajectories across different reward
scales.

Reward Scale Total Trajectories Successful Total Trajectories Val_ACC (%) D_reward

Low Scale 100 0 0.0 0.5139
Moderate Scale (Base) 100 59 59.0 0.8817

High Scale 100 75 75.0 0.6739
Very High Scale 100 100 100.0 0.0

Table 12: Success rate based on total trajectories across different reward scales.

Conversely, low reward scales do not provide sufficient reinforcement for effective learning. Optimal reward
scaling is thus essential for supporting both accuracy and diversity, meeting the ARC task’s requirements for
generalization and high-quality solutions.

Statistical tests (e.g., chi-squared and Fisher’s exact tests) confirmed a significant difference in success rates
and diversity metrics between moderate and very high reward scales, reinforcing that balanced reward scaling
is critical for effective exploration and efficient learning in complex tasks.

B.2 Action Number Performance Comparison

In this ablation study, we investigate the impact of varying the number of actions (3, 4, 5, and 10) on learning
efficiency, exploration capacity, and trajectory diversity, further validating the insights obtained from the
primary experiments.

Experiment Setup To solve ARC Task 178, which features a “Diagonal Flip" transformation, a minimum of
three actions is required. While alternative solutions exist, the shortest solution involves three transformations:
rotating the grid by 90 degrees, performing a horizontal flip, and executing the submit action. Starting with
this minimal action set, we incrementally increased the number of actions to observe how each configuration
affected validation accuracy and trajectory diversity over a maximum episode length of 10. This setup allowed
us to explore the relationship between action granularity and the model’s learning and exploration capabilities.

Results and Analysis As shown in Figure 11, models with three and five actions achieved high validation
accuracy, with the three-action configuration reaching high performance relatively early in training. This
indicates that a smaller action space allows more focused exploration, leading to efficient learning. Notably,
the five-action configuration achieved near-optimal accuracy, outperforming both the four- and ten-action
configurations in terms of learning efficiency. In contrast, the ten-action configuration, despite its expanded
action space, failed to improve accuracy, suggesting that an excessive number of actions may impede effective
exploration within the same training duration.

The reward trend graph further illustrates the differences across action configurations. The five-action setup
shows stable and high rewards, indicating that this configuration balances action granularity with exploration
capacity. The four-action configuration stabilizes at a moderate reward level after an initial exploration
phase. In contrast, the ten-action configuration exhibits consistently low rewards, suggesting that GFlowNet
struggles to optimize effectively in larger action spaces without additional guidance. This finding aligns with
prior research, suggesting that overly large action or state spaces can dilute exploration, leading to suboptimal
learning.

27

Under review as submission to TMLR

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy Comparison with Different Number of Actions

Action 3
Action 4
Action 5 (Base)
Action 10

0 5000 10000 15000 20000 25000 30000
Step

0

50

100

150

200

250

Re
wa

rd

Reward Trends for Different Actions

Action 3
Action 4
Action 5 (Base)
Action 10

Figure 11: (Left) Performance comparison across number of actions, showing the impact of action count
on validation accuracy over training steps. (Right) Reward comparison: comparison of reward values over
training steps for each action configuration, highlighting differences in reward trends.

While expanding the action space increases trajectory diversity, it does not necessarily correlate with higher
validation accuracy. For example, although the ten-action configuration showed greater trajectory diversity, it
suffered from reduced learning efficiency and failed to achieve high rewards. This suggests that, while larger
action spaces introduce more potential trajectories, they may also complicate exploration, especially without
additional guidance.

The calculated Reward Distribution Diversity Dreward values provide further insight. As seen in Tables 13
and 14, Dreward for the three- and four-action configurations is zero, indicating uniform rewards due to limited
trajectory diversity. In contrast, the ten-action configuration has a Dreward of 0.4439, and the five-action
configuration yields 0.6739, reflecting greater reward diversity as the action space expands. Although increased
diversity reflects broader exploration, it does not necessarily lead to improved performance, as shown by the
ten-action configuration’s low success rate and accuracy.

File Unique Trajectories Successful Unique Trajectories Val_ACC (%) Total Trajectories D_reward

n(a) = 3 1 1 100.00 100 0.0
n(a) = 4 1 1 100.00 100 0.0
n(a) = 5 (Base) 41 26 63.41 100 0.6739
n(a) = 10 95 11 11.58 100 0.4439

Table 13: Summary of unique and successful trajectories, success rates, total trajectories, and reward
distribution diversity for each action configuration.

File Successful Total Trajectories Val_ACC (%) D_reward Comments

n(a) = 3 100 100.0 0.0 Minimal exploration with consistent success
n(a) = 4 100 100.0 0.0 Limited diversity but high success rate
n(a) = 5 (Base) 81 81.0 0.6739 Balanced exploration and success
n(a) = 10 11 11.0 0.4439 High diversity, low success rate

Table 14: Total success rates, reward distribution diversity, and additional comments on trajectory diversity
and performance for each action configuration.

The three-action and four-action configurations both achieved 100% success rates for unique trajectories,
indicating that each generated trajectory successfully completed the task, though with limited diversity.
Conversely, the ten-action configuration showed the highest number of unique trajectories (95) but had a
low success rate (11.58%), suggesting that a large action space dilutes effective exploration, leading to lower
task completion rates. The five-action configuration balanced exploration and success, yielding 41 unique
trajectories with a success rate of 63.41%.

28

Under review as submission to TMLR

For the five- and ten-action configurations, statistical tests (chi-squared and Fisher’s exact tests) confirmed a
statistically significant difference in success rates, with the five-action configuration performing better among
unique trajectories. This reinforces the idea that an optimal action space size is essential for effective learning.

These findings suggest that balancing action space size is critical for effective exploration and learning. Larger
action spaces may require additional mechanisms, such as hybrid training approaches or managed replay
buffers, to selectively sample high-quality data for focused exploration (Shen et al., 2023; Sendera et al.,
2024). In this study, we implemented off-policy mechanisms to address this challenge. Future research could
develop models capable of handling extensive search spaces more effectively, potentially by incorporating
adaptive exploration techniques that adjust to the complexities of larger action spaces.

B.3 episode Length Performance Evaluation

In this ablation study, we examine how varying episode Lengths affect GFlowNet’s performance in solving
ARC tasks. By allowing the model a limited number of steps versus unlimited steps, we aim to understand
the impact of step limitations on GFlowNet’s ability to find high-quality solutions.

Experiment Setup The action space was fixed at 10 actions, and we varied the episode Length to observe
how each setting influenced the model’s performance. The episode Lengths tested were 4, 5, 10, 20, and 50.
This setup allowed us to assess how different step limitations impact solution quality, exploration diversity,
and learning efficiency.

Results and Analysis The results show a trend of increasing validation accuracy with longer episode
lengths. For shorter episodes (4 and 5 steps), the model struggled to consistently find optimal solutions,
likely due to limited exploration capacity. As the episode length increased to 10, 20, and 50 steps, validation
accuracy improved significantly. This suggests that longer episodes allow GFlowNet to explore a broader
solution space, increasing the chances of finding correct solutions.

The Reward Distribution Diversity Dreward values further illustrate the effect of episode length on exploration
diversity. As shown in Tables 15 and 16, diversity values increase with episode length, indicating a broader
exploration range. For example, Episode Length 4 has a Dreward of 0.32, while Episode Length 20 achieves
the highest diversity with a Dreward of 8.62. This pattern suggests that allowing more steps enables the model
to explore a wider variety of reward trajectories, enhancing trajectory robustness.

However, the results also indicate that excessive reward diversity, such as with Episode Length 50, does not
necessarily lead to higher validation accuracy or success rates. The validation accuracy graph (Figure 12)
shows that, while Episode Length 50 allows extensive exploration, it may introduce too much complexity,
resulting in suboptimal learning outcomes.

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy Comparison with Different Number of Actions

EP 4
EP 5
EP 10 (Base)
EP 20
EP 50

0 5000 10000 15000 20000 25000 30000
Step

50

0

50

100

150

200

250

R
ew

ar
d

Reward Trends for Different Episode Lengths
EP 4
EP 5
EP 10 (Base)
EP 20
EP 50

Figure 12: (Left) Performance comparison across episode length, showing the impact of action count on
validation accuracy over training steps. (Right) Reward comparison: comparison of reward values over training
steps, highlighting differences in reward trends.

29

Under review as submission to TMLR

Additional Insights Analysis of reward distribution diversity Dreward and success rates for unique and
total trajectories across different episode lengths highlights distinct patterns:

1. Reward Distribution Diversity: Dreward represents variability in the reward values encountered,
reflecting the extent of exploration. The highest diversity (2.14) is achieved with Episode Length
20, indicating broad exploration and high variability in rewards. Moderate diversity is observed for
Episode Length 10 (0.88) and Episode Length 5 (0.20), while Episode Lengths 4 and 50 exhibit
minimal diversity (0.0), suggesting limited exploration under these configurations.

2. Unique and Total Trajectories: Episode Length 4 and Episode Length 50 yield only 1 unique
trajectory, with Episode Length 4 achieving complete success (100%) and Episode Length 50 showing
no success (0%). This indicates that very short or very long episode lengths may hinder the model’s
exploration and success potential. Episode Length 20 exhibits a high success rate (95.95%) across 74
unique trajectories, suggesting an effective balance between exploration and solution quality. Episode
Length 10 (Base) maintains moderate success (71.43%) with a diversity score of 0.88, reaffirming its
utility as a stable baseline.

3. Success Rate: Both unique and total success rates are maximized with Episode Length 20, demon-
strating that it supports optimal exploration for high-quality solutions. Low success rates in unique
and total trajectories for Episode Length 50 (0.0%) indicate that overly long episodes may dilute
effective exploration, preventing the model from reliably identifying successful solutions.

File Unique Trajectories Successful Unique Trajectories Val_ACC (%) D_reward

EP 4 1 1 100.00 0.0
EP 5 76 4 5.26 0.20
EP 10 56 40 71.43 0.88
EP 20 74 71 95.95 2.14
EP 50 1 0 0.00 0.0

Table 15: Trajectory success rates and reward distribution diversity for various episode lengths and reward
settings.

File Total Trajectories Successful Total Trajectories Val_ACC (%)

EP 4 100 100 100.0
EP 5 100 5 5.0
EP 10 100 59 59.0
EP 20 100 97 97.0
EP 50 100 0 0.0

Table 16: Total success rates for different episode lengths and reward configurations.

Conclusion These findings demonstrate that, while longer episode lengths generally allow GFlowNet to
explore and converge on higher-quality solutions, an optimal range exists. Excessively long episodes increase
reward diversity but can hinder learning efficiency by introducing unnecessary complexity. Balancing episode
length with suitable exploration strategies is essential for maximizing GFlowNet’s performance on ARC tasks.
Future research could focus on adaptive episode lengths or exploration control mechanisms to fine-tune this
balance, achieving more efficient learning in complex search spaces.

B.4 Generated Trajectories and application to other tasks

To further analyze GFlowNet’s trajectory generation and evaluate its applicability to other tasks, we
conducted task-specific experiments on selected ARC tasks. These experiments aimed to examine the diversity

30

Under review as submission to TMLR

of generated trajectories, their success rates, and the consistency of reward-based learning across different
task types.

Trajectory Visualization and Analysis Figure 13 illustrates multiple trajectories generated for two
ARC tasks: Task 150 and Task 179. Each trajectory represents a unique sequence of transformations (e.g.,
rotations, flips) applied to the input grid to generate the correct output:

• Task 150 (a): The generated trajectories include efficient sequences (e.g., fewer steps) and redundant
solutions with repeated actions. This demonstrates GFlowNet’s exploration of diverse paths to the
same output.

• Task 179 (b): While successful trajectories are generated, Task 179 highlights the tendency of some
solutions to include unnecessary repetitive actions, suggesting room for further optimization.

• These examples showcase GFlowNet’s ability to discover a range of action sequences, balancing
diversity and correctness in trajectory generation.

Input

Left Rotate

V FlipLeft Rotate Left Rotate Left Rotate

Left Rotate H Flip Left RotateV Flip

V FlipRight Rotate

Right Rotate V Flip

V Flip V Flip V Flip

V Flip

V Flip V FlipV Flip

Output

Traj 1

Traj 2

Traj 3

Traj 4

...

(a) Task 150

Input

Left Rotate

Left Rotate

Left RotateLeft RotateLeft Rotate

Left Rotate Left Rotate

Left Rotate Left Rotate

Left Rotate Left Rotate Left Rotate Left RotateRight Rotate

Right Rotate Right Rotate Right Rotate

Right Rotate V Flip

V Flip V Flip V Flip

V Flip V Flip

V Flip

V Flip

Output

Traj 1

Traj 2

Traj 3

Traj 4

...

(b) Task 179

Figure 13: Visualization of generated trajectories for two ARC tasks. Each trajectory represents a sequence
of transformations applied to the input grid to achieve the correct output. Task 150 (a) and Task 179 (b)
demonstrate diverse action sequences, including rotations and flips, leading to successful solutions.

Task-wise Results and Observations Table 17 summarizes the results of our task-specific analysis,
including the number of unique trajectories, their success rates, and the reward diversity (entropy).

Task # Unique Trajectories (Total) Successful Unique (Total) Success Rate (Unique, Total, %) Reward Diversity (Entropy)

380 3 (300) 3 (300) 100.00 (100.00) 0.00
241 105 (300) 99 (280) 94.29 (93.33) 0.37
155 3 (300) 3 (300) 100.00 (100.00) 0.00
150 100 (300) 10 (30) 10.00 (10.00) 0.37
140 3 (300) 3 (300) 100.00 (100.00) 0.00
87 15 (300) 15 (300) 100.00 (100.00) 0.72

Table 17: Task-wise analysis of trajectories, success rates, and reward diversity. Unique values are shown with
their corresponding total values in parentheses.

• Unique Trajectories: For tasks like 380, 155, and 140, the model consistently generated only a few
successful trajectories, indicating that these tasks allow minimal variation in the solution space.

31

Under review as submission to TMLR

• Success Rate: Tasks such as 380, 155, and 87 achieved a 100% success rate, demonstrating that
GFlowNet effectively explores correct solutions. However, for task 150, only 10% of unique trajectories
were successful, suggesting a more complex solution space.

• Reward Diversity: Tasks with lower reward entropy (e.g., 380 and 140) reflect a solution space
with limited diversity. In contrast, tasks like 87 exhibit higher entropy, indicating a greater variety of
valid solutions.

B.5 Off-Policy Training Analysis

Experiment Setup We explored off-policy training using a replay buffer with various sampling methods:

• Priority Sampling (PRT): Prioritizes high-reward experiences.

• Epsilon-Greedy Sampling: Randomly samples with probability ϵ and high-reward trajectories
otherwise.

• Fixed Ratio Sampling: Samples a fixed mix (e.g., 8:2 or 9:1) of high- and low-reward trajectories.

0 20000 40000 60000 80000 100000 120000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy Comparison with on/off-policy

prt
egreedy
fixed_ratio
On-policy

Figure 14: Validation accuracy comparison between on-policy and off-policy training methods. On-policy
training converges much faster than off-policy sampling methods.

Results and Analysis Off-policy training with PRT sampling achieved lower variance across seeds but
required significantly more steps (approximately 120,000) to converge, compared to on-policy training which
reached near-perfect accuracy within 1,000 steps. This trade-off indicates that while off-policy methods
enhance stability, their slower convergence makes on-policy training more practical for ARC problems.

(Additional Analysis) In particular, because ARC problems are highly sparse in rewards and often solved
with short sequences, quickly stumbling upon a good trajectory is crucial. Off-policy learning, which replays a
mix of older experiences, can excessively re-emphasize suboptimal early trajectories unless carefully managed.
On-policy methods, by contrast, adapt more rapidly to newly discovered successful paths—leading to faster
improvement.

32

Under review as submission to TMLR

C Algorithm

Algorithm 1 GFlowNet Architecture for ARC Task
Input: ARC environment env with input xk, forward policy parameters θF , backward policy parameters θB ,

total flow Zθ, reward function r(s), max episode length T , Replay buffer buffer (optional)
Output: Trajectory τ
s← s0 ← xk

foreach example do
foreach training step do

τ ← [s]
log ptotal

F ← 0
log ptotal

B ← 0
t← 0
while t < T and ¬ env.is_done(s) do

t← t + 1
z ← πF (s; θF , θB)
Split z into zF , zB

Step 1: Forward Pass
pF ← Softmax(zF)
Sample Xi ∼ Geometric(pFi) // Xi = {3, 14, 2, . . . , 7}
a∗ ← arg mini Xi

log pF ← log GeomPMF(Xa∗)
s′ ← env.step(s, a∗)
τ ← τ ∪ {s′}

Step 2: Backward Pass
pB ← Softmax(zB)
Sample a′ ∼ Categorical(pB)
log pB ← log pB(a′)

Step 3: Reward
r(s′)← rfinal

if cycle is detected then
r(s′)← r(s′)− λC(τ)

end
log ptotal

F ← log ptotal
F + log pF

log ptotal
B ← log ptotal

B + log pB

Store in buffer if off-policy (optional)
s← s′

end
loss← (log Zθ + log ptotal

B − log ptotal
F − log r(s))2

Optimize θF , θB to minimize loss
Off-policy updates using buffer (optional)
Update sampling model (optional)

end
end
return τ

33

	Introduction
	Background
	Reasoning with Diverse Solutions
	Data Augmentation for Reasoning Tasks
	Generative Flow Networks (GFlowNets)
	ARC as a Benchmark for Process-Level Reasoning

	Methods
	GFlowNet Architecture for Human-Aligned Solution Generation in ARC
	Human-Trajectory Guided Reward Design
	Forward Policy via Geometric Action Sampling

	Experiments
	Experimental Design
	Research Questions
	Dataset: Task Selection Rationale
	Evaluation Metrics
	Hyperparameters and Glossary

	Performance of Revised GFlowNet for Solution Augmentation
	RQ1. Can reward functions informed by human priors promote human-aligned reasoning patterns?
	RQ2. Does using a Geometric distribution in the forward policy enhance efficiency in diverse trajectory generation?
	RQ3. Why does a Geometric forward policy excel in goal-conditioned reasoning tasks?

	Conclusion
	Summary and Implications
	Limitations and Future Work
	Final Remarks

	Extended Background Details
	GFlowNet Training Mechanism and Flow Matching
	Extended ARC Details
	Formal Problem Definition for Whole-Grid ARC

	Ablation Studies
	Effect of Reward Scale
	Action Number Performance Comparison
	episode Length Performance Evaluation
	Generated Trajectories and application to other tasks
	Off-Policy Training Analysis

	Algorithm

