
Published in Transactions on Machine Learning Research (09/2025)

Solution Augmentation for ARC-AGI Problems Using
GFlowNet: A Probabilistic Exploration Approach

Sanha Hwang hsh6449@gmail.com
Department of AI Convergence
Gwangju Institute of Science and Technology

Seungpil Lee iamseungpil@gm.gist.ac.kr
Department of AI Convergence
Gwangju Institute of Science and Technology

Sejin Kim sejinkim@gist.ac.kr
Department of AI Convergence
Gwangju Institute of Science and Technology

Sundong Kim sundong@gist.ac.kr
Department of AI Convergence
Gwangju Institute of Science and Technology

Reviewed on OpenReview: https: // openreview. net/ forum? id= ULCOhBgGzy

Abstract

One of the core challenges in building general reasoning systems lies in generating diverse,
human-aligned solution trajectories—different yet valid paths by which a problem can be
solved. Prior approaches often rely on handcrafted templates, rule-based augmentations, or
human demonstrations, which are limited in scalability and stylistic diversity. To address
this, we explore the use of Generative Flow Networks (GFlowNets) for automated solution
augmentation in reasoning tasks. We propose a framework that learns to generate diverse
reasoning trajectories with probabilities proportional to their quality, guided by a human-
inspired reward function and a novel geometric forward policy. This enables the generation
of multiple plausible solution paths without relying on manual supervision. Moreover, our
method supports efficient test-time augmentation from input-output examples alone, without
access to ground-truth programs or external demonstrations—making it suitable for zero-shot
settings. We evaluate our framework on the Abstraction and Reasoning Corpus (ARC-
AGI), a benchmark designed to test compositional and abstract reasoning. Our results show
that GFlowNets can effectively explore the space of valid reasoning processes, producing a
variety of plausible reasoning trajectories, similar to how different individuals might solve
the same problem using different intermediate steps. These trajectories are generated at
scale—over 100k per task in under an hour, and follow a logarithmic yield trend, enabling
practical tradeoffs between augmentation volume and novelty. Furthermore, fine-tuning a
large language model (LLaMA 3.1 Instruct 8B) on these synthetic trajectories leads to a
28.6% improvement in reasoning accuracy on ARC tasks, demonstrating the downstream
utility of our method. These findings suggest that GFlowNets offer a promising foundation
for modeling structured reasoning in automated trajectory generation. Our code is here:
https://github.com/GIST-DSLab/GFN_to_ARC

1 Introduction

One of the central challenges in developing intelligent systems is endowing them with the ability to reason—to
solve novel problems by composing abstract concepts, drawing inferences, and planning intermediate steps.

1

https://openreview.net/forum?id=ULCOhBgGzy
https://github.com/GIST-DSLab/GFN_to_ARC

Published in Transactions on Machine Learning Research (09/2025)

Unlike perception or pattern recognition, which can often be improved through large-scale data and end-to-end
optimization, reasoning requires an explicit modeling of multi-step, structured processes. In humans, reasoning
is not just about arriving at correct conclusions, but about navigating diverse reasoning paths (trajectories)
toward a solution. This diversity—different strategies, representations, or step sequences—plays a critical role
in building a robust understanding and generalization. Hence, to improve reasoning capabilities in AI models,
it is essential not only to optimize for the final answer, but also to model and expose the system to the wide
range of processes by which those answers can be reached (Wei et al., 2022; Wang et al., 2023).

Recent research increasingly emphasizes the value of exposing language models to explicit reasoning tra-
jectories—structured sequences of intermediate steps guiding problem-solving. This includes prompt-based
strategies such as Chain-of-Thought (CoT) (Wei et al., 2022) and Tree-of-Thought (ToT) (Yao et al., 2023),
sampling-based methods like Self-Consistency (Wang et al., 2023) and Best-of-N selection (Liu et al., 2025),
and training-time approaches that filter or reward high-quality reasoning paths (Zelikman et al., 2022; Luo
et al., 2024a; Wang & Su, 2015; Jiang et al., 2024). More recently, test-time iterative refinement has gained
attention: models like Reflexion (Shinn et al., 2023), DeepSeek-R1 (DeepSeek-AI et al., 2025), and OpenAI’s
o1 (OpenAI, 2025; 2024) generate, evaluate, and revise their own reasoning traces in real-time. While these
trends have yielded significant progress, most approaches still rely on prompt engineering, heuristic sampling,
or post-hoc selection—limiting scalability and process-level alignment. In contrast, our work introduces a
generative framework that learns to produce diverse reasoning trajectories in a unified and scalable manner.
Our framework is unique in its ability to augment multiple, varied solution paths for a single problem instance,
a capability lacking in existing human-collected or rule-based datasets (see Appendix D in detail.)

Existing methods for generating reasoning trajectories largely rely on two types of supervision: (1) human-
written demonstrations and (2) rule-based augmentations. Human demonstrations (Strandgaard, 2024; LeGris
et al., 2024; Kim et al., 2025b), often collected from crowdsourcing, capture authentic and diverse reasoning
patterns. However, these solutions are costly to obtain, difficult to scale, and often noisy or inconsistent.
More importantly, they are tied to specific training instances and cannot be applied to novel test tasks where
such demonstrations are unavailable. In contrast, rule-based or hardcoded trajectories (Kim et al., 2024)
offer expert-designed strategies that are typically consistent and efficient. These approaches rely on domain
knowledge or templates to construct solution paths, making them effective within known task distributions.
Yet their rigidity is also a limitation: they encode only a narrow slice of the solution space and fail to
adapt to structurally novel problems. Furthermore, because they require access to ground-truth programs or
transformation logic, they are inapplicable to unseen tasks at test time.

In many real-world reasoning scenarios, such as the ARC Prize (Chollet et al., 2025), systems must solve
entirely unseen tasks at test time within a limited time budget (e.g., 6 minutes per task, assuming 120
tasks in 12 hours). Under these constraints, there is no opportunity to access task-specific supervision or
hand-written demonstrations. This setting calls for test-time augmentation methods that can autonomously
generate high-quality and diverse reasoning paths from scratch.

This leads us to a central research question: Can we develop an automated framework that can generate
diverse reasoning trajectories—without relying on human-written demonstrations or handcrafted rules—and
use them to enhance model reasoning performance? Such a framework would ideally be flexible enough to
explore multiple plausible paths for the same problem, allowing the model to learn how to reason in more
general, compositional, and interpretable ways. Moreover, it should be computationally efficient, able to
generate thousands of diverse solution candidates within a short time window, enabling downstream symbolic
or neural solvers to learn or select from these paths on-the-fly.

To evaluate the effectiveness of our proposed framework, we conduct experiments on the Abstraction and
Reasoning Corpus (ARC-AGI, hereafter ARC) (Chollet, 2019), a benchmark specifically designed
to test reasoning capabilities. ARC consists of few-shot, grid-based tasks where each instance requires the
solver to infer an underlying transformation rule from a small number of input-output demonstrations. While
the task format is visually simple, solving ARC problems often demands compositional reasoning, abstract
generalization, and logical coherence. Indeed, ARC provides a unique lens through which to assess these
dimensions of reasoning—compositionality, productivity, logical coherence (Lee et al., 2025), and the ability to
generalize from limited examples.

2

Published in Transactions on Machine Learning Research (09/2025)

Importantly, ARC’s structure presents a particularly suitable environment for evaluating solution generation
frameworks that aim to capture varied and structured reasoning paths, rather than simulating specific
human-like strategies. First, the dataset is inherently underspecified: multiple reasoning trajectories can
lead to the same correct output, making it ideal for exploring the benefits of diverse solution generation.
Second, the limited data regime and absence of predefined task categories emphasize the need for flexible and
generalizable reasoning strategies—exactly the kind our method aims to generate.

From an AGI perspective, this diversity in reasoning paths is not a peripheral detail but a central objective.
Recent studies (Bengio, 2021; Morris et al., 2024; Kim & Kim, 2024; Lee et al., 2025) emphasize that general
intelligence entails solving novel problems through varied, compositional reasoning processes, even when the
final solution is unique. GFlowNets provide a principled framework for capturing such reasoning diversity.
Instead of optimizing for a single expert path, they discover multiple plausible trajectories that lead to the
same outcome. This capability aligns closely with the AGI goal of modeling not just what to think, but how
to think through problems in multiple valid ways.

Finally, since each ARC task typically requires multi-step abstract inference rather than surface-level pattern
recognition, improvements in trajectory-level modeling are more likely to translate into tangible performance
gains. Our approach is also practically scalable: generating over 100k trajectories per task takes under an
hour on average, and we observe a logarithmic growth trend in the discovery of new unique trajectories,
allowing efficient tradeoffs between data volume and diversity. These properties make our method well-suited
for test-time deployment in ARC-like reasoning scenarios.

Contributions. Our main contributions are summarized as follows:

1. GFlowNet-Based Reasoning Augmentation: We propose the first framework to use GFlowNets
for generating diverse reasoning trajectories, enabling automated solution augmentation that reflects
the structured variability in how problems can be solved.

2. Human-Inspired Policy and Reward Design: We introduce two architectural innovations—a
geometric-forward action policy and a goal-conditioned reward function—that explicitly encode
human reasoning biases into the learning process.

3. Empirical Evaluation on ARC: We demonstrate through extensive experiments on ARC that our
method improves both solution diversity and accuracy compared to existing approaches, particularly
in low-data regimes.

4. Test-Time Efficiency and Yield Analysis: We analyze the generation efficiency of GFlowNet and
show that the number of unique, valid trajectories exhibits a logarithmic growth pattern, providing
practical guidance on how much augmentation is beneficial under compute constraints.

2 Background

2.1 Reasoning with Diverse Solutions

Effective reasoning involves not just arriving at the correct answer, but also navigating structured and coherent
intermediate steps. Many tasks—particularly those involving abstraction, logic, or multi-hop inference—admit
multiple valid solution trajectories, each representing a different way to solve the same problem. This diversity
is analogous to the variation in strategies employed by humans and is essential for improving generalization,
robustness, and interpretability in AI systems.

To incorporate this inductive bias, recent research has introduced techniques that explicitly model the
reasoning process. Chain-of-Thought (CoT) prompting (Wei et al., 2022; Zhang et al., 2025a), Tree-of-
Thought (ToT) (Yao et al., 2023), and Process Reward Models (PRMs) (Zhang et al., 2025b) supervise or
sample intermediate reasoning steps to better align with human-like cognition. These methods show that
exposing models to diverse reasoning paths improves their ability to generalize, particularly in tasks with
sparse supervision or structural novelty. Additional evidence across various reasoning benchmarks—including
GSM8K (Cobbe et al., 2021), SVAMP, and AQuA-RAT (Ling et al., 2017)—further supports this approach,

3

Published in Transactions on Machine Learning Research (09/2025)

demonstrating consistent performance improvements when models explore and aggregate multiple reasoning
trajectories.

Complementary approaches such as automated process supervision (Luo et al., 2024a) and planning-based
trajectory optimization (Jiang et al., 2024) further validate the effectiveness of learning from reasoning paths
directly. These methods synthesize reward signals that capture desirable reasoning characteristics–such as
conciseness, non-redundancy, or clear subgoal structure–without relying on exhaustive human annotations.
Similarly, reasoning-driven process reward modeling (She et al., 2025), and step-by-step human feedback
(Lightman et al., 2024) have achieved substantial performance gains by leveraging automated or semi-
automated trajectory supervision. As a result, models trained with these signals exhibit more structured and
interpretable problem-solving behavior, underscoring a growing consensus that trajectory-level supervision
significantly enhances reasoning abilities.

This emphasis on process-level reasoning has also become a central trend in the development of large language
models (LLMs). Recent models like OpenAI’s o3 series (OpenAI, 2025) and DeepSeek’s R1 (DeepSeek-AI
et al., 2025) incorporate internal deliberation and iterative refinement to improve reasoning performance.
Likewise, Self-Consistency sampling (Wang et al., 2023) aggregates multiple reasoning chains through majority
voting, achieving improved accuracy and robustness on benchmarks such as GSM8K (Cobbe et al., 2021).
These examples highlight a growing consensus: modeling diverse and structured reasoning processes is key to
achieving reliable and human-aligned inference.

However, many of these approaches depend on human-written demonstrations, handcrafted rules, or prompt-
based sampling, which constrain scalability and stylistic diversity. Moreover, outcome-only supervision
fails to distinguish between logically correct but inefficient reasoning paths and concise, interpretable ones.
Without process-level reward signals, models are unable to prioritize solution trajectories that mirror human
preferences.

These limitations motivate our goal of building a generative framework that can learn to produce diverse,
high-quality reasoning trajectories in a scalable and automated manner. In this work, we leverage Generative
Flow Networks (GFlowNets) (Bengio et al., 2021; 2023) to model solution generation as a reward-proportional
sampling problem, enabling the creation of multiple human-aligned reasoning paths without requiring explicit
supervision for each trajectory.

2.2 Data Augmentation for Reasoning Tasks

Data augmentation addresses the inherent scarcity of supervision in reasoning tasks and can be broadly
categorized into input-output augmentation and solution-process (trajectory) augmentation.

Input-Output Pair Augmentation. Methods such as RE-ARC (Hodel, 2024), AugARC (Bikov et al.,
2025), and SOLAR (Kim et al., 2024) generate new input-output examples to enhance training diversity
in ARC tasks. Similar strategies, including synthetic data generation and paraphrasing, have been widely
applied across various reasoning domains. For math word problems, Lu et al. (2024) leveraged question
back-translation to produce synthetic examples, significantly enhancing model performance on the GSM8K
benchmark. In logical reasoning, LogicAsker generated QA pairs by programmatically translating formal
logic into natural language, achieving notable gains in logical consistency (Wan et al., 2024). Likewise, in
code generation tasks, WizardCoder synthesized diverse coding problems and solutions, leading to state-
of-the-art results on benchmarks like HumanEval and MBPP (Luo et al., 2024b). For scientific reasoning
tasks, cross-lingual data augmentation using large language models produced multilingual synthetic QA pairs,
demonstrating considerable improvements in cross-lingual generalization (Whitehouse et al., 2023). These
input-output augmentation techniques substantially improve model generalization by diversifying the task
distribution, though they typically do not explicitly expose underlying reasoning processes.

Solution-Process (Trajectory) Augmentation. Techniques explicitly augmenting reasoning trajectories
leverage models’ intermediate solution paths. Self-Consistency sampling (Wang et al., 2023), Tree-of-Thought
deliberative search (Yao et al., 2023), and iterative refinement methods like Reflexion (Shinn et al., 2023)
exemplify trajectory-level augmentation. Methods such as STaR (Zelikman et al., 2022) and Automate-

4

Published in Transactions on Machine Learning Research (09/2025)

CoT (Shum et al., 2023) demonstrated that training on model-generated chains-of-thought significantly
boosted accuracy across various benchmarks, including commonsense and math word problems. Synthetic
Prompting (Shao et al., 2023) further enriched trajectory diversity by iteratively synthesizing questions
and corresponding reasoning paths, yielding substantial gains in numerical and algorithmic reasoning tasks.
Similarly, frameworks like Flow of Reasoning (Yu et al., 2024) leveraged planning-based trajectory sampling
to explore diverse reasoning paths, surpassing previous state-of-the-art performances on puzzle-solving bench-
marks. AlphaCode’s strategy of sampling numerous candidate solutions and evaluating correctness tests
illustrates another successful trajectory-level augmentation approach in code generation tasks (Li et al., 2022).
Collectively, these trajectory-focused methods enable models to explore and validate multiple solution paths
systematically, greatly enhancing performance and interpretability.

Other Augmentation Techniques. Best-of-N (BoN) sampling and ensemble decoding represent additional
augmentation strategies. BoN methods, applied in models like Minerva and AlphaCode, sample multiple
candidate outputs to select the best-performing solution (Lewkowycz et al., 2022; Li et al., 2022). Ensemble
decoding aggregates outputs from multiple models or reasoning chains, typically employing voting or averaging
strategies. These methods primarily function at the output level and rely heavily on external evaluation
metrics or heuristic criteria.

Limitations and Challenges. Despite their effectiveness, existing augmentation methods face challenges
including computational scalability, genuine trajectory diversity, and the absence of reliable intermediate-step
supervision. Techniques such as Tree-of-Thought and extensive sampling-based methods incur significant
computational overhead (Yao et al., 2023; Wang et al., 2023). Furthermore, approaches relying on outcome-only
evaluation lack explicit guidance for intermediate reasoning steps, potentially causing logical inconsistencies
or inefficient reasoning pathways.

Overall, integrating diverse augmentation strategies—ranging from input-output pair expansion to trajectory-
level solution enhancement—can significantly improve model robustness and generalizability. These methods
collectively form an essential toolkit for addressing the inherent limitations of scarce supervision in complex
reasoning tasks like ARC and beyond.

2.3 Generative Flow Networks (GFlowNets)

Generative Flow Networks (GFlowNets) (Bengio et al., 2021; 2023) are a class of generative models designed
to produce diverse solution trajectories by learning from reward signals. They are particularly effective for
structured generation problems where multiple valid outputs exist, such as generating human-like solutions in
reasoning tasks.

Unlike standard generative models, which often produce one-shot outputs, GFlowNets construct solutions
incrementally by sampling sequences of actions. This approach is inspired by reinforcement learning (RL),
enabling GFlowNets to combine the exploration strengths of RL with the flexibility of generative modeling.

In contrast to conventional RL, which typically seeks a single optimal policy, GFlowNets learn a stochastic
policy that assigns higher probability to trajectories with higher terminal rewards. This makes them well-suited
for sparse-reward environments and problems with multiple equally good solutions, such as ARC. GFlowNets
have demonstrated their utility across a wide range of structured generation tasks, including molecular design
and biosequence modeling (Bengio et al., 2021; Gaiński et al., 2025; Jain et al., 2022; Jang et al., 2024; Zhang
et al., 2022), symbolic regression (Zhang et al., 2023b), combinatorial optimization (Jain et al., 2023; Zhang
et al., 2023a), and other applications (Sendera et al., 2024; Zhang et al., 2022; Pan et al., 2023; Falet et al.,
2024; Seo et al., 2025; Kim et al., 2025a; Hu et al., 2024).

Flow Matching Condition and Trajectory Balance (TB) Loss. To understand the underlying
mechanism of GFlowNets, it is essential to grasp the flow matching condition, which maintains consistency
between the inflow and outflow of probability mass at any state in the state space:∑

s′

F (s′ → s) =
∑
s′′

F (s→ s′′), (1)

5

Published in Transactions on Machine Learning Research (09/2025)

Figure 1: GFlowNet Concept Diagram for Solution Generation in ARC

where F (s′ → s) denotes the probability flow from state s′ to state s. This condition ensures that the forward
policy PF (st | st−1) (governing state transitions from an initial state to terminal states) and the backward
policy PB(st−1 | st) (governing transitions in reverse) remain consistent with the reward model’s distribution.

This consistency is operationalized through the Trajectory Balance (TB) loss (Malkin et al., 2022), defined as:

Z

n∏
t=1

PF (st | st−1) = R(x)
n∏

t=1
PB(st−1 | st), (2)

where R(x) represents the reward for a trajectory x = (s0, . . . , sn), and Z is a learnable normalization constant
ensuring proper distribution over trajectories. Minimizing the squared difference of the log probabilities on
both sides yields the TB loss:

LTB(θ) =
(

log Zθ +
n∑

t=1
log PF (st|st−1; θ)− log R(x)−

n∑
t=1

log PB(st−1|st; θ)
)2

. (3)

By optimizing this objective, GFlowNets learn to sample trajectories proportionally to their rewards, naturally
prioritizing high-quality trajectories. This allows effective exploration of complex solution spaces.

Training Steps and DAG Structure. The practical training loop of GFlowNets involves several key steps:
(1) Forward Sampling, starting from an initial state and sequentially sampling states via PF until a terminal
state is reached; (2) Reward Computation, evaluating the sampled trajectory using the reward function R(x);
(3) Backward Sampling, optionally reconstructing the trajectory in reverse via PB to reinforce flow matching;
and (4) Loss Computation and Parameter Update, adjusting model parameters by minimizing the TB loss.
To ensure stable training and avoid cyclic or infinite loops, state transitions are typically constrained within
a Directed Acyclic Graph (DAG), limiting each state to a single visitation and ensuring convergence.

Reward Modeling and Oracle Networks. Since GFlowNets explicitly learn the distribution shaped by
the reward function, accurate reward modeling is paramount. Often, rewards are assigned through pre-trained
or heuristic oracle networks tailored to specific tasks. These oracle models encapsulate task-specific structural
insights and desired properties, significantly enhancing the effectiveness of the generative process. For instance,
in molecular generation tasks, oracle networks evaluate chemical viability, steering GFlowNet exploration
toward feasible and high-quality solutions. The careful design and training of these oracle networks thus play
a critical role in the performance of GFlowNets, particularly in environments with sparse or complex reward
structures.

6

Published in Transactions on Machine Learning Research (09/2025)

Figure 2: Some Problems of Abstraction and Reasoning Corpus (ARC)

The structural exploration capability and explicit reward modeling of GFlowNets position them uniquely to
capture intricate reasoning structures and produce diverse, valid solutions in reasoning tasks. By leveraging
human-inspired reward models, GFlowNets can systematically generate solution trajectories reflective of
human reasoning patterns. This capability makes GFlowNets particularly suited for automated trajectory
augmentation tasks, such as those required by reasoning-intensive benchmarks like ARC.

Specifically, GFlowNets directly support logical coherence through forward and backward flow consistency,
ensuring generated solutions maintain logical consistency. Productivity is enabled by effective generalization
from sparse examples via oracle guidance, and compositionality is facilitated by structurally exploring
compositional reasoning paths evaluated by oracles.

2.4 ARC as a Benchmark for Process-Level Reasoning

The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) is a challenging benchmark comprising visual
grid-based puzzles that require inferring abstract and compositional rules from very few provided examples.
Each ARC task includes only 2–5 input-output examples, with no repetition of input-output pairs across
different tasks. The ARC dataset was originally introduced as a proxy for evaluating core reasoning abilities
of AI systems, specifically in terms of logical coherence, productivity, and compositionality (Lee et al., 2025).

Recently, despite impressive performances by state-of-the-art models such as OpenAI’s O3–low, which
achieved over 75% accuracy on ARC (OpenAI, 2025), performance sharply declined to below 10% on
the newly introduced ARC-AGI-2 dataset (Chollet, 2024; Kamradt, 2025). This drop clearly indicates
the complexity of ARC and highlights the significant gap between current AI capabilities and human-like
abstraction and reasoning, indirectly underscoring the distance to achieving Artificial General Intelligence
(AGI).

The inherent difficulty of ARC arises primarily from its unique structure: each problem set has a single,
unique input-output relationship, and these relationships vary drastically across different tasks. Therefore,
conventional data augmentation methods struggle as additional synthetic examples cannot be trivially
generated. Given these constraints, ARC becomes particularly suitable for testing the capability of automated
solution augmentation methods. Specifically, ARC provides a rigorous environment to examine whether
generative frameworks, such as GFlowNets, can effectively capture structural insights from carefully designed,
human-inspired reward models, thus facilitating the discovery of diverse and valid solution trajectories under
highly sparse and unique example constraints. These characteristics position ARC as an ideal benchmark for
exploring and validating advanced reasoning frameworks like GFlowNets.

Conventional augmentation methods applied specifically to ARC, such as input-output pair augmentation
((Hodel, 2024; Bikov et al., 2025; Kim et al., 2024)), lack explicit trajectory-level reasoning, treating the
transformation processes as black boxes. Rule-based augmentation methods, meanwhile, rely on predefined
human-crafted rules, severely limiting scalability and the generalization capacity to novel, unseen problem
structures. Consequently, these approaches fail to adequately address ARC’s unique demands for explicit and

7

Published in Transactions on Machine Learning Research (09/2025)

diverse trajectory generation, highlighting the need for automated, trajectory-level augmentation frameworks
such as GFlowNets.

3 Methods

3.1 GFlowNet Architecture for Human-Aligned Solution Generation in ARC

We now provide a concise overview of how our GFlowNet is structured and generates solutions tailored
specifically for ARC problems. Building on the general components described in Sections 3.1–3.2, our
architecture differs from conventional GFlowNet models primarily by using asymmetric sampling distributions:
a geometric distribution for forward sampling to prioritize shorter, more efficient action sequences, and a
categorical distribution for backward sampling to ensure effective trajectory reconstruction. Additionally, we
explicitly incorporate human trajectory priors into our reward function, penalizing redundant or excessively
long trajectories to enhance learning efficiency and promote human-like reasoning. In what follows, we detail
this architecture and elaborate on the rationale behind these adaptations.

High-Level Process. At the start of each episode, an initial state derived from the ARC input grid is
set, containing minimal information needed for the ARC task. The GFlowNet forward policy then samples
actions to move from one grid configuration to another, guided by the Geometric distribution described above.
Actions that prove too long or repetitive are penalized by our reward model, while succinct, high-quality
trajectories receive higher rewards. After reaching a final state, the backward policy verifies or backtracks
using a Categorical distribution, helping to ensure the global flow matching necessary for Trajectory Balance.
Over many episodes, this bidirectional sampling process adapts the GFlowNet parameters to favor human-
like solutions that meet the puzzle’s requirements. We summarize the full GFlowNet training process in
Algorithm 1, provided in Appendix C. The pseudocode highlights the use of geometric sampling for forward
actions, categorical backward modeling, and off-policy updates with cycle-penalized reward shaping.

Algorithmic Flow. Algorithm 1 (Appendix C) outlines the main steps: (1) Initialization of the for-
ward/backward networks, (2) Forward Sampling where actions are chosen via the Geometric distribution
based on predicted logits, (3) Reward Assignment using a human-inspired reward model that applies dis-
counting, cycle penalties, trajectory-length constraints, or a combination thereof, depending on the specific
characteristics of the trajectory, (4) Backward Sampling where the backward policy samples a probable reverse
action corresponding to the forward-selected action, ensuring local consistency required for trajectory balance,
and (5) Parameter Update by minimizing the trajectory balance (TB) loss across the sampled trajectory.
Repeating these steps allows the GFlowNet to efficiently converge on a diverse set of high-reward, human-like
trajectories.

ARC-Specific Adaptations. Unlike many domains where actions naturally exhibit uniform or categorical
distributions, ARC problems benefit from the combination of a Geometric-forward and Categorical-backward
design. (Section 3.2). In our setup, each trajectory typically ends with a “Submit” action that finalizes the
generated grid, triggering a binary reward if the puzzle is solved correctly. This setup not only aligns with the
binary reward structure of ARC but also enables GFlowNet to efficiently prioritize high-quality, human-like
trajectories within its generative process.

Test-Time Augmentability. A key advantage of our framework is its ability to generate solution tra-
jectories directly from input-output demonstrations, without requiring access to ground-truth programs or
human-written paths. This enables reasoning augmentation even at test time, where neither human demon-
strations nor rule-based solutions are available. In contrast to prior methods that rely on fixed trajectory
sources tied to specific training tasks, our approach can synthesize plausible and diverse reasoning paths on
unseen problems. This is particularly important in settings like ARC, where the model must solve
novel tasks at test time without access to prior task-specific supervision. As a result, our method
is especially well-suited for ARC’s few-shot, out-of-distribution generalization setting. For detailed empirical
analysis of efficiency and test-time augmentability (e.g., trajectory generation rate and yield scaling), please
refer to Appendix E.

8

Published in Transactions on Machine Learning Research (09/2025)

3.2 Human-Trajectory Guided Reward Design

GFlowNet cannot effectively learn with a purely sparse reward model. A naive sparse reward assignment—1
for correct answers and 0 for incorrect ones—fails to provide the necessary gradient to differentiate between
high-quality and low-quality trajectories, severely limiting learning efficiency or even halting progress entirely.

When applying GFlowNet to the ARC problem, this limitation became apparent. For example, as shown in
Figure 3, some trajectories solve the problem efficiently, while others reach the correct answer with unnecessary
and repetitive actions. Assigning the same reward to both types of trajectories makes it difficult for GFlowNet
to prioritize high-quality solutions.

?

Demo

Pairs

Test

Input

Task 179

Solutions

Figure 3: State Space Graph of Trajectories for ARC Problem. The trajectories were collected through
O2ARC (Shim et al., 2024), illustrating various solution paths from the start node (blue) to the correct solution
node (green). Additionally, incorrect solution nodes (red) are displayed to represent alternative, unsuccessful
attempts. This figure highlights the diversity of possible solutions for a single problem, emphasizing the
multiple ways in which the problem can be approached and solved.

To address this, we analyzed human trajectory data from O2ARC 3.0 (Shim et al., 2024) to identify clear
quality differences and inform the design of a reward model that highlights superior trajectories. Two major
characteristics of high-quality trajectories were identified:

• Final Action: The last action in a trajectory must always be the ‘Submit’ action. This deliberate
conclusion indicates that the solution is complete and allows for feedback. Trajectories that end with
the Submit action are prioritized in the reward model.

• Avoidance of Redundancy: High-quality trajectories avoid unnecessary repetition, using only
essential actions to reach the correct answer. Most general problems rarely require more than 10
steps (Kim et al., 2025b). Repetitive actions, particularly in a Directed Acyclic Graph (DAG) context,
can create cycles that complicate learning.

To reflect these human-derived structural preferences explicitly, we propose integrating the following mecha-
nisms into our reward design:

9

Published in Transactions on Machine Learning Research (09/2025)

Discount Factor (RDF) The first approach involves applying a discount factor γ (set to 0.9), commonly
used in reinforcement learning. This method inherently favors shorter trajectories by scaling the reward R at
each step t as:

RDF = R · γt (4)

While this mechanism promotes brevity, our goal is not strict minimization, as our experiments show this can
prematurely limit the discovery of diverse solutions. Rather, this approach primarily serves as a heuristic to
guide the search away from aimless wandering and toward more direct, goal-oriented trajectories.

Trajectory Length Regularization (LTLR) The second strategy introduces a regularization term directly
into the objective function. Offering a more flexible way to manage exploration depth, this term penalizes
significant deviations from a target trajectory length Ltarget. This provides a soft constraint that discourages
excessively long or inefficient paths without being overly restrictive, providing flexibility while discouraging
excessively long trajectories:

LTLR = λreg · (Lτ − Ltarget)2 (5)

Here, λreg controls the regularization strength. The total objective function combines this term with the
Trajectory Balance Loss (LTB):

LT otal(θ) = (1− α) · LTB + α · LTLR (6)

where α balances trajectory balance and length regularization.

Cycle Detection (Rcycle) Finally, cycle detection penalizes repetitive actions by flagging repeated states
within a trajectory. A penalty proportional to the number of detected cycles C(τ) is applied:

Rcycle(τ) =
{

r(ST)− λ · C(τ) if a cycle is detected,

r(ST) otherwise.
(7)

This encourages efficient exploration while avoiding redundant actions.

Thus, we define the reward for a trajectory x = (s0, . . . , sT) as:

R(x; y) = 1[f(x)=y] · γL(x) · exp (−λcycle · C(x)) ,

where:

• 1[f(x)=y] is a binary indicator of whether the trajectory leads to a correct solution,

• γ ∈ (0, 1) is a discount factor applied to the trajectory length L(x),

• C(x) is the number of detected cycles (i.e., repeated states) in the trajectory,

• λcycle is the penalty weight for cyclic behavior.

This reward is used as input to the Trajectory Balance (TB) loss, and is log-transformed prior to optimization.

In addition to the reward-based objective, we introduce a separate trajectory length regularization loss to
further encourage concise reasoning:

LTLR(x) = λTLR · (L(x)− Ltarget)2
,

where Ltarget is a reference trajectory length (e.g., 3 or 4), and λTLR controls the penalty strength.

10

Published in Transactions on Machine Learning Research (09/2025)

The overall training objective is then defined as:

Ltotal = LTB + LTLR,

where LTB denotes the Trajectory Balance loss computed using the log-transformed reward log R(x; y).

3.3 Forward Policy via Geometric Action Sampling

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step Length

20

40

60

80

100

120

R
ew

ar
d

Step Length vs. Reward for Successful Unique Trajectories

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step Length

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

Pr
ob

ab
ilit

y

Geometric PMF for Step Length

Geometric PMF (p=0.01)

Figure 4: (Left) Reward Distribution by Step Length: This figure shows the reward distribution across
trajectories with varying lengths for ARC problems. Higher rewards are concentrated in shorter steps, while
rewards decrease as the step length increases. (Right) Geometric PMF: General form of PMF for the
Geometric distribution.

To effectively model the distribution of reward functions derived from human trajectories, it is crucial to
account for the sequential nature of actions and their dependencies in ARC problems. While conventional
GFlowNets typically employ the Categorical distribution to model action probabilities, this approach fails to
capture the observed relationship between reward and step length in ARC problems.

As shown in Figure 4, rewards are heavily skewed toward shorter trajectories, with diminishing rewards as
step lengths increase. This motivates the use of the Geometric distribution to address the limitations of the
Categorical model.

The Geometric distribution is well-suited for modeling action sequences under a framework where actions are
treated as probabilistic steps toward success. Specifically, it represents the number of steps required until the
first success in a sequence of trials, with a constant probability of success p. In the context of ARC problems,
success can be interpreted as reaching the target state, and each action step is viewed as a probabilistic
attempt to move closer to that state.

To formalize this interpretation, we treat each candidate action ai as associated with a success probability pi

obtained via softmax over logits zi. The number of steps until success under this distribution is modeled as a
geometric random variable:

Xi ∼ Geometric(pi), E[Xi] = 1
pi

.

Then, selecting the action with the minimum expected steps corresponds to:

a∗ = arg min
i

E[Xi] = arg max
i

pi.

11

Published in Transactions on Machine Learning Research (09/2025)

This provides a probabilistic justification for the use of Geometric sampling in the forward policy: it naturally
prioritizes actions with higher expected efficiency in sparse reward settings. Moreover, by selecting actions
based on their expected time-to-success, the policy aligns with human-like decision-making that favors shorter
and more effective trajectories.

Figure 5: Comparison of correct and unique trajectory length distributions between human-provided solutions
(n=32) and our GFlowNet-generated solutions (n=39) for Task 179 (ID: 74dd1130). The GFlowNet’s
distribution (orange), guided by the geometric policy, shows a strong preference for shorter trajectories,
peaking at a similar length to the human distribution (blue), empirically validating our brevity-focused
heuristic.

This aligns well with the structure of GFlowNet, where the model explores action sequences that maximize
long-term reward under trajectory-level uncertainty. Building on the efficiency bias introduced by geometric
sampling, this formulation has proven particularly effective in sparse-reward environments such as ARC. In
addition, the preference toward shorter trajectories helps mitigate over-exploration of redundant or excessively
long paths, which can dilute learning signals especially during early stages of training.

This theoretical bias toward shorter, high-probability trajectories is grounded in established principles like
Minimum Description Length (MDL) (Hernandez-Orallo & Minaya-Collado, 1998; Mahoney, 1999; Hutter,
2005; Legg & Hutter, 2007; of Ockham, 1990). This preference for conciseness acts as a powerful heuristic,
and it aligns with general syntactic patterns observed in human problem-solving trajectories, as illustrated in
Figure 5, our model learns to generate trajectories with a length distribution that closely mirrors that of
human solutions, with both distributions peaking at a small number of actions. This provides strong empirical
support for our design choice to incorporate an inductive bias towards brevity, validating that the model
effectively captures key structural features of efficient, human-like reasoning paths.

However, it is crucial to recognize that this heuristic is a means to an end, not an absolute objective. As our
detailed analysis on exploration depth will demonstrate in 4.2.2, treating brevity as the sole goal is a limiting
assumption. The true strength of our policy emerges when its efficiency bias is carefully balanced with a
sufficient ’exploration budget’ of steps. This balance is key to preventing premature convergence and enabling
the discovery of more diverse and complex reasoning paths.

The rationale for using the Geometric distribution is as follows:

• Reward Trends in ARC problems: Higher rewards are observed in shorter trajectories, which
can be naturally modeled by the Geometric distribution’s property of assigning higher probabilities
to fewer steps. By prioritizing trajectories with shorter action sequences, the model effectively aligns
exploration with the observed reward trends in human problem-solving.

12

Published in Transactions on Machine Learning Research (09/2025)

• Action Sequences as Trials: Each action in a sequence can be interpreted as an independent
attempt to reach the target state (success). The Geometric distribution allows the model to evaluate
and prioritize actions based on their probabilities of success, guiding the GFlowNet to focus on
trajectories that are both efficient and high-reward.

To integrate the Geometric distribution into GFlowNet’s forward policy, the policy network outputs a logits
vector z = (z1, z2, . . . , zN) for a given state s. This vector is transformed into probabilities p = (p1, p2, . . . , pN)
via the softmax function. For each action ai, the probability of success is modeled as a Geometric random
variable Xi ∼ Geometric(pi), where the selection of an action a∗ is defined as:

a∗ = arg min
i

Xi. (8)

Here, the action with the fewest expected steps to success is prioritized, effectively capturing the reward
distribution’s dependency on step length and enhancing the exploration process. This step-based probability
assignment allows GFlowNet to balance between exploration and exploitation, focusing on high-reward
trajectories while maintaining diversity.

Conversely, the backward policy retains the use of the Categorical distribution. While the Geometric
distribution is advantageous for exploration, its properties are less suited for reconstructing paths from the
goal to the start state. The backward policy instead relies on the Categorical distribution to guide path
regression, where capturing dependencies between actions is less critical.

Attempts to apply the Geometric distribution to the backward policy yielded suboptimal results, as it failed
to represent the necessary dependencies for effective path reconstruction. Therefore, the use of distinct
distributions—Geometric for forward exploration and Categorical for backward reconstruction—is both
empirically justified and theoretically grounded.

4 Experiments

4.1 Experimental Design

4.1.1 Research Questions

Our central goal is to explore whether Generative Flow Networks (GFlowNets) can be adapted to generate
reasoning trajectories that are aligned with human problem-solving heuristics in the ARC domain.
Since direct comparison with human trajectories is beyond our current scope, we instead assess alignment
through structural properties inspired by human behavior (e.g., brevity, intentionality, loop avoidance). To
this end, we pose the following sub-questions:

• RQ1. Can reward functions informed by human priors promote human-aligned reasoning
patterns? We assess how different reward shaping techniques (e.g., brevity encouragement, loop
avoidance, trajectory regularization) influence the structure and quality of generated trajectories.

• RQ2. Does using a Geometric distribution in the forward policy enhance efficiency
than conventional GFlowNets with a categorical forward policy in diverse trajectory
generation? We evaluate whether modeling forward decisions via the Geometric distribution, which
prioritizes concise action sequences, improves alignment with diverse reasoning behaviors.

• RQ3. Why does a Geometric forward policy excel in goal-conditioned reasoning tasks?
We compare forward–backward policy combinations (G–C, G–G, C–G, C–C) to uncover how the
inductive bias of a Geometric forward policy, together with a stabilizing backward policy, leads to
higher success and diversity under sparse rewards.

13

Published in Transactions on Machine Learning Research (09/2025)

4.1.2 Dataset: Task Selection Rationale

The dataset used in our experiments is based on the Abstraction and Reasoning Corpus (ARC), specifically
focusing on Task 179 (Diagonal Flip) for most experiments. This task exemplifies problems where the solution
requires transformation of the entire grid, rather than localized subregions, making it suitable for evaluating
solution augmentation in full-grid reasoning contexts.

Formally, the selected tasks satisfy:

f(xk) = yk, S = G, where G ∈ Rm×n (9)

Here, S denotes the selection region and G represents the entire grid with dimensions m× n. By defining
S = G, each action operates on the whole grid, requiring full-grid comprehension and transformation.

To further constrain the solution space and evaluate the impact of full-grid transformations, we restrict our
experiments to ARC problems solvable via entire-grid operations—such as flips, rotations, translations, and
global color replacements. This design choice is both practically and theoretically motivated. In the ARCLE
environment (Lee et al., 2024), the default formulation allows any subset of the grid—including individual
pixels or subgrids—to be transformed. However, this leads to an exponentially large action space of roughly
O(AL × 2mn) for a grid of size m × n, where A is the set of atomic actions and L is the typical sequence
length. For a 30× 30 grid, the subregion selection space alone reaches 2900, rendering effective exploration
intractable. By instead focusing on whole-grid transformations (i.e., S = G), we reduce the action space
complexity to approximately O(AL), which not only enhances tractability but also aligns more closely with
the structural reasoning patterns observed in human trajectories.

In addition to Task 179, other tasks solvable by whole-grid selection include: 53, 87, 129, 140, 150, 155, 241,
and 380 are tested. These are shown in appendix B.3.

Figure 6: Example of an Entire grid selection ARC problem

4.1.3 Evaluation Metrics

The following metrics are used to evaluate the performance of GFlowNet:

• Validation Accuracy (Val_ACC): The proportion of correctly generated trajectories among 100
attempts. A trajectory is considered correct if it reaches the target solution while adhering to the task
constraints. This metric evaluates the model’s ability to generate valid and successful trajectories
efficiently.

• Trajectory Diversity (Dtraj): The fraction of unique successful trajectories among all generated
unique trajectories. A higher diversity score indicates that the model explores multiple valid solutions

14

Published in Transactions on Machine Learning Research (09/2025)

rather than converging on a single mode. This reflects the model’s ability to balance exploration and
exploitation in trajectory generation.

• Reward Distribution Diversity (Dreward): The variation in assigned rewards, measured using the
Shannon Index. A higher value suggests that the model assigns rewards more evenly across different
trajectories, encouraging diverse exploration. Conversely, a lower value indicates that rewards are
concentrated on a limited set of trajectories, leading to mode collapse.

4.1.4 Hyperparameters and Glossary

Below are Table 1, which presents key hyperparameter settings, and Table 2, which defines key abbreviations
used throughout the paper.

Hyperparameter Value
Learning Rate (lr) 10−4

of Actions 5
Episode Length 10
Base Reward 15 (O), 0 (X)
Discount Factor (γ) 0.9
Loss Weight (α) 0.2
Trajectory Regularization Weight 0.01

Table 1: Key Hyperparameter Settings

Abbreviation Definition
PF Forward Probability
PB Backward Probability
TLR Trajectory Length Regularization
DF Discount Factor
cycle Cycle Penalty Reward
Splus Submit plus Reward
LTB Trajectory Balance Loss

Table 2: Glossary of Terms and Abbreviations

4.2 Performance of Revised GFlowNet for Solution Augmentation

This section evaluates the effectiveness of our proposed GFlowNet modifications across the three research
questions defined in Section 4.1. To qualitatively illustrate the generated trajectories discussed throughout
our experiments, we present examples from Task 150 (ID: 7a3c6ac) and Task 179 (ID: 74dd1130)—two
ARC problems included in our benchmark suite (Appendix B.3). These examples highlight the variety of
transformation sequences leading to correct solutions.

Input

Left Rotate

V FlipLeft Rotate Left Rotate Left Rotate

Left Rotate H Flip Left RotateV Flip

V FlipRight Rotate

Right Rotate V Flip

V Flip V Flip V Flip

V Flip

V Flip V FlipV Flip

Output

Traj 1

Traj 2

Traj 3

Traj 4

...

(a) Task 150 (ID: 7a3c6ac)

Input

Left Rotate

Left Rotate

Left RotateLeft RotateLeft Rotate

Left Rotate Left Rotate

Left Rotate Left Rotate

Left Rotate Left Rotate Left Rotate Left RotateRight Rotate

Right Rotate Right Rotate Right Rotate

Right Rotate V Flip

V Flip V Flip V Flip

V Flip V Flip

V Flip

V Flip

Output

Traj 1

Traj 2

Traj 3

Traj 4

...

(b) Task 179 (ID: 74dd1130)

Figure 7: Visualization of generated trajectories for two ARC tasks. Each trajectory represents a sequence
of transformations applied to the input grid to achieve the correct output. Task 150 (a) and Task 179 (b)
demonstrate diverse action sequences, including rotations and flips, leading to successful solutions.

15

Published in Transactions on Machine Learning Research (09/2025)

4.2.1 RQ1. Can reward functions informed by human priors promote human-aligned reasoning
patterns?

To investigate whether human-inspired reward signals can effectively shape the structure of generated
trajectories, we evaluate five reward models, each designed to encode specific reasoning heuristics:

• Base: Sparse reward only (no inductive bias).

• Splus: Emphasizes the Submit action.

• Cycle: Penalizes repeated actions (loop avoidance).

• DF: Discount factor encourages early goal completion.

• TLR: Penalizes long trajectories (conciseness).

To isolate the pure effect of different reward components, these experiments were conducted on the standard
Geometric-Categorical (G-C) policy using the base reward scale (a reward of 15 for success).

Results and Analysis We first analyze the effects of individual reward models (Tables 3 and 4). The Base
model performs poorly, with only 5.26% unique success and reward entropy of 0.29, reflecting ineffective
trajectory exploration. Among single reward settings, the model achieves the highest total success rate
(89.33%) but with relatively low diversity (1.04), suggesting that its strong preference for short paths leads
to early convergence on a narrow solution set.

TLR achieves lower total accuracy (67.33%) but the highest reward entropy (1.08), producing the most
structurally diverse successful trajectories (50 in Table 3). This suggests that TLR allows for a wider range of
valid solution strategies while still guiding the model toward goal-oriented reasoning.

Va
lid

at
io

n
A

cc
ur

ac
y

Step

Base
Splus
Cycle
DF
TLR

Validation Accuracy Comparison with reward model

Va
lid

at
io

n
A

cc
ur

ac
y

Step

Validation Accuracy with Multiple Reward Model Combinations

DF+Cycle+TLR
Cycle+TLR
DF+TLR
DF+Cycle

Figure 8: (Left) Validation accuracy for individual reward models. (Right) Validation accuracy for combined
reward models.

Cycle, while reflecting the human tendency to avoid repetition, generates the largest number of unique
trajectories (100), but with relatively low success (32 successful), indicating that diversity alone does not imply
effective reasoning. Splus, despite its alignment with the task-specific "submit" action, shows limited impact
(13.68% accuracy), implying that local task signals are insufficient without broader structural constraints.

We next examine reward combinations to assess whether structural biases interact synergistically (Tables 5, 6).
DF + Cycle + TLR achieves perfect total success (100%), but with reduced diversity (entropy = 1.81),
suggesting a strong convergence effect. DF + TLR, in contrast, yields a balance of high success (86%) and the
highest diversity among all models (2.96), highlighting its effectiveness at preserving reasoning flexibility
while maintaining performance.

16

Published in Transactions on Machine Learning Research (09/2025)

Reward Total Unique Trajectories Successful Unique Trajectories Val_ACC (%)

DF 36 27 75.47
Cycle 100 32 32.00
TLR 79 50 63.03
Base 76 4 5.26
Splus 95 13 13.68

Table 3: Success rate based on unique trajectories for different reward models.

Reward Total Trajectories Total Successful Trajectories Val_ACC (%) Dreward

DF 300 268 89.33 1.04
Cycle 300 96 32.00 0.90
TLR 300 202 67.33 1.08
Base 300 15 5.00 0.29
Splus 300 39 13.00 0.56

Table 4: Success rate and reward diversity based on total trajectories.

Notably, combinations that include Cycle often lead to more constrained trajectory spaces. For example,
Cycle + TLR achieves 89% success but with the lowest diversity (0.92), reinforcing that while repetition
avoidance is important, overly rigid enforcement may limit the model’s exploration. These results support the
notion that reward combinations do not simply stack effects but influence trajectory patterns in complex and
often non-linear ways.

Reward Combination Unique Trajectories Successful Unique Trajectories Val_ACC (%)

DF + Cycle + TLR 5 5 100.00
DF + TLR 35 26 74.29

Cycle + TLR 38 29 76.32
DF + Cycle 47 29 61.70

Table 5: Success rate and reward diversity based on unique trajectories for reward combinations.

Reward Combination Total Trajectories Successful Total Trajectories Val_ACC (%) Dreward

DF + TLR 100 86 86.0 2.96
DF + Cycle + TLR 100 100 100.0 1.81

Cycle + TLR 100 89 89.0 0.92
DF + Cycle 100 91 91.0 1.50

Table 6: Success rate and reward diversity based on total trajectories for reward combinations.

To assess the marginal utility of the cycle constraint and to more deeply understand how different reward
components affect structural efficiency, we analyzed the total number of cycle occurrences and the average
trajectory length for various reward models. The results are presented in Table 7.

Reward Model Total Cycle Occurrences Average Trajectory Length

Base 408 9.59
Cycle 308 8.70

DF + TLR 255 8.12
DF + Cycle 246 8.15

Table 7: Comparison of reward models on trajectory efficiency metrics. Total Cycle Occurrences measures
redundancy, while Average Trajectory Length measures brevity. Lower is better for both.

17

Published in Transactions on Machine Learning Research (09/2025)

The results in Table 7 reveal the distinct effects of different reward strategies on improving trajectory efficiency.
Both approaches that add constraints—either on structure (DF + Cycle) or length (DF + TLR)—significantly
improve upon the Base and Cycle-only models.

Notably, the DF + Cycle model proved to be the most effective at reducing structural redundancy, achieving
the lowest total number of cycle occurrences (246). On the other hand, the DF + TLR model produced the
shortest average trajectories (8.12), making it the most effective in terms of overall brevity. This presents an
interesting trade-off. Given that the primary goal of this work is to reduce inefficient reasoning paths, the DF
+ Cycle model, which most effectively minimizes cyclic (i.e., redundant) actions, can be considered the most
successful in improving the logical quality of the trajectories. This result clearly demonstrates the marginal
utility of an explicit cycle constraint over relying on length penalties alone to indirectly reduce redundancy.

This detailed analysis also puts the model’s overall performance into perspective. As observed in Table 7,
the average trajectory lengths for our optimized models are approximately 8 steps. This contrasts with
human-provided solutions for similar ARC tasks, which often require fewer than 4 steps on average (Kim
et al., 2025b). This significant gap underscores the ongoing challenge and importance of reward shaping in
steering models toward more concise, human-aligned reasoning structures.

Implications These findings suggest that well-designed reward functions not only affect trajectory success
but also influence the underlying structure and interpretability of the reasoning process. Individual rewards
serve as proxies for distinct human problem-solving heuristics, and their combinations can shape exploration
in either beneficial or restrictive ways.

While more constraints can increase success, they may also reduce diversity and generalization. For instance,
the DF + TLR model demonstrates a favorable trade-off between structure and flexibility, whereas overly
rigid combinations like DF + Cycle + TLR lead to narrower solution modes. These results support the idea
that reward shaping is not merely about scoring optimization, but about modeling the reasoning biases that
underlie human-like solution strategies.

This tension between success-driving constraints and diversity-promoting flexibility is central to our investiga-
tion. To dissect this trade-off more granularly and challenge the assumption that shorter paths are always
superior, the following section provides a deep dive into the most critical parameter governing this balance:
the maximum trajectory length, which dictates the model’s fundamental exploration depth.

4.2.2 The Role of Exploration Depth: Challenging the “Shorter is Better” Heuristic

The preceding analysis of reward functions highlights the importance of trajectory length in guiding the
GFlowNet. While mechanisms like DF and TLR encourage conciseness, a crucial question remains: what is
the optimal exploration depth? To investigate this, and to challenge the simple assumption that shorter
trajectories are always superior, we conducted a detailed analysis of the impact of varying the maximum
episode length.

Experiment Setup The action space was fixed at 10 actions, and we varied the episode Length to observe
how each setting influenced the model’s performance. The episode Lengths tested were 4, 5, 10, 20, and 50.
This setup allowed us to assess how different step limitations impact solution quality, exploration diversity,
and learning efficiency.

Results and Analysis Our findings reveal a non-monotonic relationship between trajectory length and
performance, as shown in Figure 9. While very short episodes (e.g., 4 or 5 steps) severely limited the model’s
ability to explore and resulted in low success rates, as detailed in Table 9, performance peaked at a moderate
episode length of 20. This optimal length achieved the highest validation accuracy and a 97% total success
rate. However, further increasing the exploration depth to 50 steps proved detrimental, causing the learning
process to become unstable and fail entirely. This demonstrates that an overly large search space can dilute
the learning signal, preventing the model from converging on valid solutions.

As shown in Table 8, this performance peak at an episode length of 20 also coincides with the highest diversity
of solutions. The model generated 74 unique trajectories, 71 of which were successful, and exhibited the

18

Published in Transactions on Machine Learning Research (09/2025)

highest reward distribution diversity (Dreward = 2.14). This indicates that a sufficient, but not excessive,
exploration depth is essential for discovering a wide variety of high-quality solutions.

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy Comparison with Different Number of Actions

EP 4
EP 5
EP 10 (Base)
EP 20
EP 50

0 5000 10000 15000 20000 25000 30000
Step

50

0

50

100

150

200

250

R
ew

ar
d

Reward Trends for Different Episode Lengths
EP 4
EP 5
EP 10 (Base)
EP 20
EP 50

Figure 9: (Left) Performance comparison across episode length, showing the impact of action count on
validation accuracy over training steps. (Right) Reward comparison: comparison of reward values over training
steps, highlighting differences in reward trends.

File Unique Trajectories Successful Unique Trajectories Val_ACC (%) D_reward

EP 4 1 1 100.00 0.0
EP 5 76 4 5.26 0.20
EP 10 56 40 71.43 0.88
EP 20 74 71 95.95 2.14
EP 50 1 0 0.00 0.0

Table 8: Trajectory success rates and reward distribution diversity for various episode lengths and reward
settings.

File Total Trajectories Successful Total Trajectories Val_ACC (%)

EP 4 100 100 100.0
EP 5 100 5 5.0
EP 10 100 59 59.0
EP 20 100 97 97.0
EP 50 100 0 0.0

Table 9: Total success rates for different episode lengths and reward configurations.

Implications These results provide a crucial insight: the highest performance and diversity are achieved
not through strict length minimization, but at a moderate trajectory length that balances efficiency with
a sufficient ’exploration budget.’ This finding directly informs our interpretation of the results from RQ1,
showing that length-penalizing rewards should be seen as guides against inefficiency rather than tools for
absolute minimization. Furthermore, it sets a crucial context for the following analysis of our Geometric
policy, highlighting that its efficiency bias is most powerful when it does not prematurely curtail necessary
exploration.

4.2.3 RQ2. Does using a Geometric distribution in the forward policy enhance efficiency in diverse
trajectory generation?

We compare two GFlowNet variants that differ only in the choice of forward policy distribution: the original
version using a Categorical distribution, and the revised version using a Geometric distribution. In both cases,

19

Published in Transactions on Machine Learning Research (09/2025)

the backward policy (PB) remains Categorical. To provide a clean baseline comparison of the policies’ innate
exploratory behaviors, both variants were trained with the simple sparse (Base) reward function at the base
reward scale. This setup allows us to evaluate the pure effect of the policy distribution, without confounding
factors from a complex reward structure.

Va
lid

at
io

n
A

cc
ur

ac
y

Step

Validation Accuracy: Categorical vs. Geometric Distributions
Geometric (ours)
Categorical (vanila)

Reward Trend: Categorical vs. Geometric Distributions

Re
w

ar
d

Step

Geometric (ours)
Categorical (vanila)

Figure 10: (Left) Validation accuracy comparison between Categorical (green) and Geometric (blue) distribu-
tions. (Right) Reward profiles comparison over training steps.

Distribution Unique Trajectories Successful Unique Trajectories Val_ACC (%)
Categorical 75 10 13.33
Geometric 45 36 80.00

Table 10: Success rate based on unique trajectories for Categorical and Geometric distributions.

Distribution Total Trajectories Successful Total Trajectories Val_ACC (%) Dreward

Categorical 100 28 0.28 3.38
Geometric 100 89 0.89 0.88

Table 11: Success rate based on total trajectories for Categorical and Geometric distributions.

Results and Analysis The Geometric PF GFlowNet introduces an inductive bias toward concise and
decisive action sequences—an intuition derived from analyzing human trajectory patterns, particularly in
structured reasoning tasks like ARC. Unlike the original Categorical forward policy, which samples actions
uniformly, the Geometric distribution prioritizes earlier actions, naturally biasing the model toward shorter
trajectories.

As shown in Figure 10, the Geometric PF GFlowNet consistently achieves higher validation accuracy
throughout training. Table 10 confirms that, while the Categorical policy produces a larger number of unique
trajectories (75 vs. 45), it leads to significantly fewer successful outcomes (10 vs. 36). Likewise, Table 11
shows that the Geometric model outperforms in overall success rate (89% vs. 28%), despite exhibiting lower
reward diversity (Dreward = 0.88 vs. 3.38).

This contrast highlights that, although the Categorical policy exhibits broader surface-level exploration, much
of it fails to reach valid solutions. In other words, diversity without effectiveness may not equate to useful
reasoning. In contrast, the trajectories generated by the Geometric PF GFlowNet are more likely to be both
correct and structurally sound. Notably, successful trajectories under the Geometric policy typically reach the
goal within 2 to 4 steps—well below the episode limit of 10—demonstrating the model’s inherent preference
for efficient reasoning paths.

These paths exhibit key characteristics commonly associated with human problem-solving behavior: minimal
reversals, consistent transformation patterns, and clear subgoal alignment. Although we do not claim

20

Published in Transactions on Machine Learning Research (09/2025)

full cognitive equivalence, this emergent structure indicates a meaningful alignment between the model’s
exploratory behavior and human-like reasoning strategies.

Implications These results suggest that leveraging distributional biases—such as those imposed by the
Geometric forward policy—can steer solution augmentors toward generating concise and interpretable
reasoning paths. While the diversity of the Categorical model appears greater numerically, the Geometric PF
GFlowNet better balances success and efficiency, especially in sparse-reward settings like ARC.

Moreover, the fact that this model can discover multiple valid reasoning paths for ARC-179—a task solvable
in just a few steps—suggests that even simple inductive biases can facilitate structured solution generation.
When combined with human-inspired reward functions (Section 4.2.4), this opens the possibility of extending
the framework to more complex reasoning domains. Rather than replicating human reasoning in its entirety,
the proposed approach reflects an early but promising step toward learning structural features of expert
reasoning—such as brevity, decisiveness, and goal alignment—and embedding them within generative solution
frameworks.

4.2.4 RQ3. Why does a Geometric forward policy excel in goal-conditioned reasoning tasks?

Having established the superior G-C policy (in Section 4.2.3) and identified effective reward components (DF
+ Cycle in Section 4.2.1), we now evaluate their final, combined effect. For this main experiment, we compare
all policy combinations using the DF + Cycle reward scheme with the 15x amplified reward scale (as justified
in Appendix B.1). We evaluate different combinations of forward (PF) and backward (PB) policies:

• G-C: Geometric for PF and Categorical for PB .

• G-G: Geometric for both PF and PB .

• C-C: Categorical for both PF and PB .

• C-G: Categorical for PF and Geometric for PB .

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy with different PF-PB Combination
GC
GG
CC
CG

Figure 11: Validation accuracy for different PF -PB combinations.

21

Published in Transactions on Machine Learning Research (09/2025)

PF -PB Unique Trajectories Successful Unique Trajectories Val_ACC (%)
G-G 21 18 85.71
G-C 56 49 87.50
C-G 59 10 16.95
C-C 75 10 13.33

Table 12: Unique trajectory performance for different PF -PB combinations.

PF -PB Total Trajectories Successful Total Trajectories Dreward

G-G 100 97 2.15
G-C 100 97 2.09
C-G 100 11 0.73
C-C 100 10 3.39

Table 13: Overall success rates for different PF -PB combinations.

Results and Analysis We compare four configurations of forward (PF) and backward (PB) policies. Both
G-G and G-C achieve the highest total success rate (97.0%), but the G-C pairing yields a significantly higher
number of successful unique trajectories (49 vs. 18), indicating better structural generalization. C-G and C-C
perform poorly, both in accuracy and trajectory success.

This pattern suggests that the forward and backward policies contribute differently to learning dynamics.
The forward policy (PF) is responsible for generating exploratory trajectories, while the backward policy
(PB) adjusts the reverse probabilities to match the desired flow based on reward signals. When both policies
are heavily biased (e.g., G-G), the backward policy may no longer act as a corrective mechanism. Instead, it
may reinforce the forward bias, narrowing the trajectory space and reducing diversity.

In contrast, the G-C setup preserves high success while also producing a wider range of successful solutions.
This indicates that an asymmetric policy design—where PF is biased for efficient exploration and PB remains
uniform to stabilize flow alignment—achieves better reasoning diversity without sacrificing performance.
The observed Dreward values support this: G-G has slightly higher entropy (2.15) than G-C (2.09), but the
diversity of correct solutions is much higher in G-C.

We also observe that C-C has the highest reward entropy (3.39) but fails to achieve meaningful performance,
indicating that reward distribution diversity alone does not imply reasoning quality. High entropy may reflect
exploratory breadth, but it must be interpreted alongside success metrics. Ultimately, reward diversity without
trajectory effectiveness may signal unstructured exploration, not reasoning robustness.

Insights These findings reinforce the importance of decoupling exploration and correction roles in bidi-
rectional learning. The forward policy drives goal-directed trajectory generation, while the backward policy
should facilitate stable reward-aligned flow learning. We hypothesize that if both policies impose strong,
aligned biases (as in G-G), the resulting feedback loop can distort the reward structure and impair the
model’s ability to generalize across diverse solutions.

Moreover, a successful unique trajectory count emerges as a valuable proxy for structural reasoning diversity.
Models such as G-C not only succeed frequently but also do so via a wider variety of valid solution paths.
This suggests that asymmetric policy pairing enables the model to learn broader reasoning structures—a key
capability in ARC-like tasks where flexible generalization is crucial.

Finally, reward distribution diversity, as captured by entropy, offers useful information about the model’s
exploratory behavior, but does not alone indicate reasoning effectiveness. Reward entropy should be interpreted
in conjunction with success metrics to evaluate the utility—not just the scope—of the model’s exploration.

22

Published in Transactions on Machine Learning Research (09/2025)

4.3 Downstream Evaluation on Large Language Models

To assess whether GFlowNet-generated trajectories provide tangible utility in reasoning models, we conduct
a downstream evaluation using LLM. Our objective is to determine whether exposure to these synthetic
trajectories can teach an LLM to reason through ARC-style tasks using DSL-based action sequences.

Experimental Setup. We fine-tune LLaMA 3.1 8B Instruct, a powerful language model, on approxi-
mately 10k GFlowNet-generated trajectories per ARC task. The target output is the complete action sequence
required to transform the input into the correct output. This is a stricter evaluation than final output
prediction, as it tests whether the model has internalized procedural reasoning in DSL format.

Dataset and Tasks. We select 7 ARC tasks of varying difficulty and structure, covering geometric
transformations, color-based logic, and compositional reasoning. Each task contains a mixture of high-level
and low-level operations. For each task, 100k trajectories were generated, and 10k were sampled uniformly
for fine-tuning.

Results. The results in Table 14 demonstrate a clear performance improvement. The baseline model fails
all tasks, generating only natural language or malformed DSL. The fine-tuned model, however, correctly
solves two tasks and produces valid DSL in several others. Qualitatively, the model demonstrates awareness
of transformation steps such as rotation, reflection, and conditional masking.

Table 14: Downstream performance of LLaMA 3.1 8B Instruct on ARC tasks before and after fine-tuning
with GFlowNet-generated trajectories.

Task # (ID) Baseline (Pretrained) Fine-Tuned w/ GFlowNet Aug.
87 (3c9b0459) ✗ ✗

140 (6150a2bd) ✗ ✓
150 (67a3c6ac) ✗ ✗
155 (68b16354) ✗ ✗
179 (74dd1130) ✗ ✓
241 (9dfd6313) ✗ ✗
380 (ed36ccf7) ✗ ✗

Overall Accuracy 0 / 7 (0%) 2 / 7 (28.6%)

Qualitative Insights. The fine-tuned model learns to generate syntactically valid DSL expressions such
as [rotate, xor, color_mask, submit] rather than vague or irrelevant text (e.g., "Let’s analyze the
pattern..."). This indicates that the model acquired procedural understanding rather than just output
matching. Notably, the two successful tasks involve spatial transformations, suggesting that GFlowNet
augmentation helped capture geometric reasoning structures.

Implications. These findings provide strong proof-of-concept evidence that GFlowNet-generated trajecto-
ries can serve as adequate supervision for training reasoning-capable LLMs. Even in this limited experiment,
trajectory-level augmentation enables the LLM to generalize in domains where it previously failed. This sup-
ports the broader thesis that generating diverse, structured reasoning traces can improve model generalization
and interpretability.

4.4 Comparison to Trajectory Augmentation Baseline

While many augmentation strategies exist for input–output pairs in vision and NLP tasks, there is no
established baseline for augmenting solution trajectories in ARC. Existing efforts such as ReARC (Hodel,
2024) primarily augment the input grids, associating each augmented instance with a single canonical solution.
However, this style of augmentation does not capture the diversity of valid reasoning paths that can lead to
the same outcome. Consequently, we adopt ReARC-style augmentation as a proxy baseline for comparison.

23

Published in Transactions on Machine Learning Research (09/2025)

Experimental Setup. To fairly evaluate the utility of our framework, we compared LLMs fine-tuned
on two distinct forms of augmented data, while keeping all model and training configurations fixed. Both
models used the LLaMA 3.1 8B Instruct backbone and were fine-tuned with identical LoRA settings
(r=16, α = 32).

• ReARC-style Augmentation: ∼70,000 examples were generated via input grid perturbations,
each paired with a single canonical solution sequence (e.g., a rotation or reflection). This provides
high variability in the input space but minimal variability in solution paths.

• GFlowNet-based Augmentation: ∼10,000 trajectories were synthesized across 7 ARC problems
using our framework. Unlike the baseline, these data contain multiple diverse trajectories per task,
better reflecting the exploratory nature of ARC reasoning.

Results. The GFlowNet-augmented model solved 2 of 7 tasks (28.6%), specifically Problem 140
(6150a2bd) and Problem 179 (74dd1130). By contrast, the ReARC baseline solved only 1 task (14.3%),
despite being trained on seven times more examples. Moreover, the baseline consistently produced the
same action sequence in 5 of 7 tasks, indicating severe overfitting to canonical solutions. In contrast, the
GFlowNet-trained model generated a more diverse set of valid sequences, enabling it to generalize to problems
requiring geometric transformations.

Table 15: Downstream performance of LLaMA 3.1 8B Instruct on ARC tasks with ReARC-style vs.
GFlowNet-based augmentation.

Task # (ID) ReARC-style Aug. GFlowNet Aug.
87 (3c9b0459) ✗ ✗

140 (6150a2bd) ✓ ✓
150 (67a3c6ac) ✗ ✗
155 (68b16354) ✗ ✗
179 (74dd1130) ✗ ✓
241 (9dfd6313) ✗ ✗
380 (ed36ccf7) ✗ ✗

Overall Accuracy 1 / 7 (14.3%) 2 / 7 (28.6%)

Analysis. This experiment shows that diversity in solution paths is more valuable than diversity in input
grids. While the ReARC baseline introduced many surface-level variations, its reliance on a single fixed
solution sequence limited both its learning signal and generalization. In contrast, our GFlowNet framework,
even with significantly fewer examples, exposed the model to rich intermediate states and trajectory structures,
enabling it to learn the process of problem solving rather than memorizing outcomes.

Conclusion. This controlled comparison highlights that trajectory-level augmentation, which enriches
the diversity of solution paths, can outperform input-driven baselines in ARC. By generating diverse and
meaningful solution trajectories, our framework doubled downstream accuracy compared to the canonical
augmentation approach, despite using fewer data. These findings strengthen the case for trajectory-level
augmentation as a more effective training signal for reasoning-intensive tasks such as ARC.

5 Conclusion

In this study, we proposed a novel GFlowNet-based framework for solution augmentation in ARC problems.
By leveraging a Geometric forward policy, a Categorical backward policy, and human-inspired reward models,
our method discovers structurally efficient and diverse solution trajectories in sparse-reward environments.

24

Published in Transactions on Machine Learning Research (09/2025)

5.1 Summary and Implications

Our experiments demonstrate that:

• Policy and Reward Design: The combination of a Geometric forward policy (PF) with human-
inspired reward shaping (discounting, length regularization, and cycle penalties) substantially improves
success rates over categorical baselines, showing that efficiency-biased heuristics and structural
guidance are critical for effective learning.

• Exploration–Policy Trade-off: Our analysis reveals that the best performance and diversity
emerge at moderate trajectory lengths, not strict minimization. Moreover, pairing a Geometric PF

with a Categorical backward policy (PB) balances directed exploration and flow correction, yielding
both high accuracy and diverse successful trajectories.

• Downstream Validation: Fine-tuning LLaMA 3.1 8B with our GFlowNet-generated trajectories led
to a significant improvement (0%→28.6%). In a controlled experiment, our 10k diverse trajectories
outperformed 70k ReARC-style input-augmented examples (28.6% vs. 14.3%), highlighting the
superiority of trajectory diversity over mere input augmentation.

• Efficiency and Test-Time Augmentability: Our framework can generate over 100k trajectories
per task in under an hour on a single GPU (2,000/min). This logarithmic yield of unique solutions
enables efficient augmentation without redundancy and makes real-time, test-time augmentation
feasible.

• Practical Significance: Rather than claiming cognitive alignment, our findings show that GFlowNet
can be guided toward syntactic features of efficient problem solving—brevity, structure, and di-
versity—through policy and reward design. This positions GFlowNet as a scalable, expert-aligned
solution generator for reasoning-intensive tasks like ARC.

Rather than claiming full cognitive alignment, our work shows that GFlowNet can be guided to reflect aspects
of efficient problem-solving—such as brevity and structural clarity—through reward design. These findings
suggest that carefully structured inductive biases (i.e., policy and reward) can guide GFlowNet toward
expert-aligned solution augmentation, highlighting its utility for complex reasoning tasks such as ARC.

5.2 Limitations and Future Work

While our proposed framework yields promising results, several limitations remain:

• On-Policy Training Sensitivity: The current approach relies on on-policy training, which is
sensitive to the quality of initial trajectory samples. Early poor samples may cause high variance in
learning. Future work will explore hybrid training schemes that combine the robustness of off-policy
updates with the stability of on-policy guidance.

• Restricted Task Scope: This study focuses on ARC tasks involving full-grid transformations.
Extending the framework to handle tasks that require localized sub-grid manipulations poses a
significant challenge due to the exponentially growing action space. We plan to address this by
leveraging ARCLE (Lee et al., 2024) and developing submodules capable of supporting fine-grained
selection and transformation operations.

• Adaptive Exploration Depth and Reward Weighting: Our findings highlight the critical role of
episode length. The current framework uses a fixed length, but future work should explore adaptive
methods for determining the optimal exploration depth dynamically based on task complexity. Fur-
thermore, as a natural extension, exploring adaptive reward weighting and training-phase scheduling
could help to dynamically manage the trade-offs between different reasoning heuristics in more
complex or open-ended domains.

25

Published in Transactions on Machine Learning Research (09/2025)

5.3 Final Remarks

Our work demonstrates the potential of GFlowNet as a powerful mechanism for automated solution augmen-
tation in reasoning-intensive tasks. By incorporating human-inspired reward structures and asymmetric policy
design, we guide the model to generate concise, diverse, and high-quality solutions—an essential capability in
sparse-reward environments.

Rather than functioning purely as a solver, GFlowNet here serves as an expert-aligned solution generator.
This opens opportunities for integrating our approach into broader reasoning pipelines, where diverse
solution candidates are required for further verification, ranking, or learning. Our framework’s scalability and
downstream effectiveness position it as a practical component in such pipelines, especially under compute-
limited test-time settings. We believe that future advances in exploration strategies, structural bias modeling,
and downstream integration will further enhance the applicability of GFlowNet to System-2-level tasks,
ultimately contributing to more general and interpretable artificial intelligence systems.

Acknowledgements

This work was supported by NRF (Reinforcement Learning-Based Program Synthesis Techniques for Solving
Abstract Visual Reasoning Problems by Identifying Patterns and Combining Concepts; RS-2024-00451162,
Developing Abstraction and Reasoning Capability for AI Model; RS-2024-00454000), IITP (Enhancing AI
Model Reliability Through Domain-Specific Automated Value Alignment Assessment; RS-2024-00445087,
Development of Artificial Complex Intelligence for Conceptually Understanding and Inferring like Human;
RS-2023-00216011), and GIST (KH0330, Future-leading Specialized Research Project) grants funded by the
Ministry of Science and ICT, Korea.

References
Samuel Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine Wong, Gabrielle Ecanow,

Maxwell Nye, Michael Tessler, and Joshua B. Tenenbaum. Communicating Natural Programs to Humans
and Machines. In NeurIPS Datasets and Benchmarks, 2022.

Emmanuel Bengio, Moksh Jain1, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow Network
Based Generative Models for Non-Iterative Diverse Candidate Generation. In NeurIPS, 2021.

Yoshua Bengio. System 2 Deep Learning: Higher-Level Cognition, Agency, Out-of-Distribution Generalization,
and Causality. Invited talk at IJCAI, 2021. https://ijcai-21.org/invited-talks/.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio. GFlowNet
Foundations. Journal of Machine Learning Research, 2023.

Kiril Bikov, Mikel Bober-Irizar, and Soumya Banerjee. AugARC: Augmented Abstraction and Reasoning
Benchmark for Large Language Models. In AAAI Workshop, 2025.

François Chollet. On the Measure of Intelligence. arXiv:1911.01547, 2019.

François Chollet. OpenAI o3 Breakthrough High Score on ARC-AGI-Pub , 2024. URL https://arcprize.
org/blog/oai-o3-pub-breakthrough.

François Chollet, Mike Knoop, Greg Kamradt, Walter Reade, and Addison Howard. ARC Prize 2025:
Competetion Rules, 2025. URL https://www.kaggle.com/competitions/arc-prize-2025/.

Karl Cobbe, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training Verifiers to
Solve Math Word Problems. arXiv:2110.14168, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang

26

https://ijcai-21.org/invited-talks/
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://www.kaggle.com/competitions/arc-prize-2025/

Published in Transactions on Machine Learning Research (09/2025)

Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao,
Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo,
Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng
Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin,
Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu,
Shunfeng Zhou, Shuting Pan, and S. S. Li. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning . arXiv:2501.12948, 2025.

Jean-Pierre Falet, Hae Beom Lee, Nikolay Malkin, Chen Sun, Dragos Secrieru, Thomas Jiralerspong, Dinghuai
Zhang, Guillaume Lajoie, and Yoshua Bengio. Delta-AI: Local objectives for Amortized Inference in Sparse
Graphical Models. In ICLR, 2024.

Piotr Gaiński, Michał Koziarski, Krzysztof Maziarz, Marwin Segler, Jacek Tabor, and Marek Śmieja. Diverse
and Feasible Retrosynthesis Using GFlowNets. Information Sciences, 714(C):122194, 2025.

Jose Hernandez-Orallo and Neus Minaya-Collado. A Formal Definition of Intelligence Based on an Intensional
Variant of Algorithmic Complexity. In EIS, 1998.

Michael Hodel. Addressing the Abstraction and Reasoning Corpus via Procedural Example Generation.
arXiv:2404.07353, 2024.

Edward Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio, and Nikolay
Malkin. Amortizing Intractable Inference in Large Language Models. In ICLR, 2024.

Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability.
Springer, 2005.

Moksh Jain, Emmanuel Bengio, Alex-Hernandez Garcia, Jarrid Rector-Brooks, Bonaventure F. P. Dossou,
Chanakya Ekbote, Jie Fu, Tianyu Zhang, Micheal Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, and
Yoshua Bengio. Biological Sequence Design with GFlowNets. In ICML, 2022.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Yoshua Bengio,
Santiago Miret, and Emmanuel Bengio. Multi-Objective GFlowNets. In ICML, 2023.

Hyosoon Jang, Minsu Kim, and Sungsoo Ahn. Learning Energy Decompositions for Partial Inference in
GFlowNets. In ICLR, 2024.

Yuxuan Jiang, Zihan Wang, Haozhuo Jiang, Jipeng Zhang, and Zhiyuan Liu. Learning Planning-based
Reasoning by Trajectories Collection and Process Reward Synthesizing. In EMNLP, 2024.

Greg Kamradt. ARC-AGI-2 + ARC Prize 2025 is Live!, 2025. URL https://arcprize.org/blog/
announcing-arc-agi-2-and-arc-prize-2025.

Minsu Kim, Sanghyeok Choi, Taeyoung Yun, Emmanuel Bengio, Leo Feng, Jarrid Rector-Brooks, Sungsoo
Ahn, Jinkyoo Park, Nikolay Malkin, and Yoshua Bengio. Adaptive teachers for amortized samplers. In
ICLR, 2025a.

Sejin Kim and Sundong Kim. System-2 Reasoning via Generality and Adaptation. In NeurIPS Workshop,
2024.

Sejin Kim, Hosung Lee, and Sundong Kim. Addressing and Visualizing Misalignments in Human Task-Solving
Trajectories. In KDD, 2025b.

Yunho Kim, Jaehyun Park, Heejun Kim, Sejin Kim, Byung-Jun Lee, and Sundong Kim. Diffusion-Based
Offline RL for Improved Decision-Making in Augmented ARC Task. arXiv:2410.11324, 2024.

27

https://arcprize.org/blog/announcing-arc-agi-2-and-arc-prize-2025
https://arcprize.org/blog/announcing-arc-agi-2-and-arc-prize-2025

Published in Transactions on Machine Learning Research (09/2025)

Hosung Lee, Sejin Kim, Seungpil Lee, Sanha Hwang, Jihwan Lee, Byung-Jun Lee, and Sundong Kim. ARCLE:
The Abstract and Reasoning Corpus Learning Environment for Reinforcement Learning. In CoLLAs, 2024.

Seungpil Lee, Woochang Sim, Donghyeon Shin, Wongyu Seo, Jiwon Park, Seokki Lee, Sanha Hwang, Sejin Kim,
and Sundong Kim. Reasoning Abilities of Large Language Models: In-Depth Analysis on the Abstraction
and Reasoning Corpus. ACM Transactions on Intelligent Systems and Technology, 2025.

Shane Legg and Marcus Hutter. Universal Intelligence: A Definition of Machine Intelligence. arXiv:0712.3329,
2007.

Solim LeGris, Wai Keen Vong, Brenden M Lake, and Todd M Gureckis. H-ARC: A Robust Estimate of
Human Performance on the Abstraction and Reasoning Corpus Benchmark. arXiv:2409.01374, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. Solving Quantitative Reasoning Problems with Language Models. In NeurIPS,
2022.

Wen-Ding Li, Keya Hu, Carter Larsen, Yuqing Wu, Simon Alford, Caleb Woo, Spencer M Dunn, Hao Tang,
Michelangelo Naim, Dat Nguyen, et al. Combining Induction and Transduction for Abstract Reasoning. In
ICLR, 2025.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James
Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor
Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu,
and Oriol Vinyals. Competition-Level Code Generation with AlphaCode. Science, 378(6624):1092–1097,
2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step: Improving Mathematical
Reasoning with Process Supervision. In ICLR, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program Induction by Rationale Generation:
Learning to Solve and Explain Algebraic Word Problems. In ACL, 2017.

Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Pairwise RM: Perform Best-of-N
Sampling with Knockout Tournament. arXiv:2501.13007, 2025.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and Hongsheng
Li. MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical
Reasoning of LLMs. In ACL, 2024.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei Shu,
Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve Mathematical Reasoning in Language Models
by Automated Process Supervision. arXiv:2406.06592, 2024a.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei
Lin, and Daxin Jiang. WizardCoder: Empowering Code Large Language Models with Evol-Instruct. In
ICLR, 2024b.

Matthew V. Mahoney. Text Compression as a Test for Artificial Intelligence. In AAAI, 1999.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory Balance: Improved
Credit Assignment in GFlowNets. In NeurIPS, 2022.

Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Aleksandra Faust,
Clement Farabet, and Shane Legg. Position: Levels of AGI for Operationalizing Progress on the Path to
AGI. In ICML, 2024.

28

Published in Transactions on Machine Learning Research (09/2025)

Arseny Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The ConceptARC Benchmark: Evaluating
Understanding and Generalization in the ARC Domain. Transactions on Machine Learning Research, 2023.

William of Ockham. Philosophical Writings: A Selection. Hackett Publishing Company, 1990.

OpenAI. Learning to Reason with LLMs. https://openai.com/index/learning-to-reason-with-llms,
2024.

OpenAI. OpenAI o3-mini. https://openai.com/index/openai-o3-mini/, 2025.

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative Augmented
Flow Networks. In ICLR, 2023.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexandre
Adam, Yoshua Bengio, and Nikolay Malkin. Improved Off-Policy Training of Diffusion Samplers. In
NeurIPS, 2024.

Seonghwan Seo, Minsu Kim, Tony Shen, Martin Ester, Jinkyoo Park, Sungsoo Ahn, and Woo Youn Kim.
Generative Flows on Synthetic Pathway for Drug Design. In ICLR, 2025.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Synthetic Prompting:
Generating Chain-of-Thought Demonstrations for Large Language Models. In ICML, 2023.

Shuaijie She, Junxiao Liu, Yifeng Liu, Jiajun Chen, Xin Huang, and Shujian Huang. R-PRM: Reasoning-Driven
Process Reward Modeling. arXiv:2503.21295, 2025.

Max W. Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and Tommaso
Biancalani. Towards Understanding and Improving GFlowNet Training. In ICML, 2023.

Suyeon Shim, Dohyun Ko, Hosung Lee, Seokki Lee, Doyoon Song, Sanha Hwang, Sejin Kim, and Sundong
Kim. O2ARC 3.0: A Platform for Solving and Creating ARC Tasks. In IJCAI Demo, 2024. URL
https://o2arc.com.

Noah Shinn, Beck Labash, Ashwin Gopinath, Ishita Dasgupta, Anca D. Dragan, and Trevor Darrell. Reflexion:
Language Agents with Verbal Reinforcement Learning. In NeurIPS, 2023.

Kashun Shum, Shizhe Diao, and Tong Zhang. Automatic Prompt Augmentation and Selection with Chain-of-
Thought from Labeled Data. In EMNLP, 2023.

Simon Strandgaard. ARC-Interactive-History-Dataset, 2024. URL https://github.com/neoneye/
ARC-Interactive-History-Dataset.

Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang Jiao, and
Michael Lyu. LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language
Models. In EMNLP, 2024.

Ke Wang and Zhendong Su. Automatic Generation of Raven’s Progressive Matrices. In IJCAI, 2015.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language Models. In ICLR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In NeurIPS,
2022.

Chenxi Whitehouse, Monojit Choudhury, and Alham Fikri Aji. LLM-powered Data Augmentation for
Enhanced Cross-lingual Performance. In EMNLP, 2023.

Zhengxuan Wu. BabyARC, 2021. URL https://github.com/frankaging/BabyARC.

Shunyu Yao, Dian Yu, Zhao Jeffrey, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of Thoughts: Deliberate Problem Solving with Large Language Models. In NeurIPS, 2023.

29

https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/openai-o3-mini/
https://o2arc.com
https://github.com/neoneye/ARC-Interactive-History-Dataset
https://github.com/neoneye/ARC-Interactive-History-Dataset
https://github.com/frankaging/BabyARC

Published in Transactions on Machine Learning Research (09/2025)

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of Reasoning: Efficient Training of
LLM Policy with Divergent Thinking. arXiv:2406.05673, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. STaR: Self-Taught Reasoner – Bootstrapping
Reasoning with Reasoning. In NeurIPS, 2022.

David W. Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust Scheduling with
GFlowNets. In ICLR, 2023a.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua Bengio.
Generative Flow Networks for Discrete Probabilistic Modeling. In ICML, 2022.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let the Flows
Tell: Solving Graph Combinatorial Optimization Problems with GFlowNets. In NeurIPS, 2023b.

Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, and Jinqiao Wang. Enhancing Chain of Thought Prompting
in Large Language Models via Reasoning Patterns. In AAAI, 2025a.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin Bowen Yu, Dayiheng Liu, Jingren
Zhou, and Junyang Lin. The Lessons of Developing Process Reward Models in Mathematical Reasoning.
In arxiv:2501.07301, 2025b.

30

Published in Transactions on Machine Learning Research (09/2025)

A Extended Background Details

A.1 GFlowNet Training Mechanism and Flow Matching

Flow Matching Condition. GFlowNets maintain a flow F (s′ → s) for each directed edge (s′, s) in a
Directed Acyclic Graph (DAG), ensuring no probability mass is lost or gained within each state:∑

s′

F (s′ → s) =
∑
s′′

F (s→ s′′), (10)

where F (s′ → s) is the flow from state s′ to s. This condition (Equation 10) ensures that each state’s inflow
equals its outflow. In practice, F (s′ → s) is factored through a forward policy PF (s | s′).

Trajectory Balance (TB) Loss. Building on Flow Matching, the TB loss (Malkin et al., 2022) ensures a
global consistency between forward and backward paths:

Z

n∏
t=1

PF (st | st−1) = R(x)
n∏

t=1
PB(st−1 | st), (11)

where Z is a trainable constant and R(x) the reward function for trajectory x. Minimizing:

LTB(θ) =
[

log Zθ +
n∑

t=1
log PF (st | st−1; θ) − log R(x) −

n∑
t=1

log PB(st−1 | st; θ)
]2

(12)

aligns the probability of forward-sampled trajectories with their corresponding reward-proportional flows.

Training Steps. We outline the GFlowNet training procedure:

1. Forward Sampling: From initial state s0, sample actions at ∼ PF (· | st−1). Collect the resulting
trajectory x = (s0, . . . , sn).

2. Reward Computation: Evaluate R(x), e.g. 1 if it solves an ARC puzzle, else 0.

3. Backward Sampling: Use PB to reconstruct or partially revisit states from sn to s0.

4. TB Loss Computation: Compute LTB via Equation equation 12.

5. Parameter Update: Optimize θ to minimize LTB, adjusting both PF and PB accordingly.

By iterating these steps, GFlowNets learn to focus on high-reward trajectories while maintaining a diverse
distribution of solutions.

A.2 Extended ARC Details

Although this work focuses on whole-grid transformations, many ARC puzzles require partial selection (e.g.
coloring only a sub-region). This drastically increases the action space because selecting subsets of a 30× 30
grid can be combinatorial. We note:

• Dataset Complexity: Some tasks have grid dimensions smaller than 30× 30, but the upper limit
still poses a challenge.

• Potential Approaches for Partial-Selection: We can adopt hierarchical policies that first select a
region, then transform it. This approach can be integrated into GFlowNets by factoring the forward
policy into multiple steps (Appendix of (Lee et al., 2024)).

• Sparse Rewards and OOD Issues: ARC test grids often deviate from training grids (different
shapes, new patterns), demanding robust generalization. GFlowNets’ ability to maintain multiple
solutions is beneficial, but design of the reward function must handle rarely-seen corner cases.

31

Published in Transactions on Machine Learning Research (09/2025)

Reasoning Dimensions in ARC. Following the framework of Lee et al. (2025), we consider three core
cognitive dimensions of reasoning assessed by ARC:

• Compositionality: The ability to combine simple building blocks (e.g., functions or rules) into more
complex transformations. ARC tasks often require models to compose multiple abstract operations.

• Productivity: The ability to extrapolate beyond observed examples and generate novel input-output
mappings consistent with the inferred rules. ARC evaluates this by testing generalization to new
input grids.

• Logical Coherence: The ability to maintain consistent internal logic throughout the reasoning
process. This includes applying learned transformations in a rule-consistent manner across diverse
contexts.

A.2.1 Formal Problem Definition for Whole-Grid ARC

Formally, each ARC task is a function f mapping x ∈ X to y ∈ Y. We define a sequence of transformations
a1, . . . , aT operating on the entire grid to produce y.

x(t+1) = f
(
x(t), at

)
with x(0) = x, x(T) = y.

We use a binary reward R(x) = 1 if x(T) matches the target output y, else 0. Further details on Markov
Decision Process (MDP) formulations, action definitions, and potential expansions can be found in (Lee et al.,
2024).

B Ablation Studies

The ablation studies focus on identifying which components of GFlowNet contribute most to its success in
solving ARC problems. We evaluate the effects of reward scaling, different distribution combinations, and
on-policy vs off-policy learning.

B.1 Effect of Reward Scale

In this study, we analyze the impact of varying reward scales on GFlowNet’s performance. By adjusting the
magnitude of rewards, we observe changes in learning efficiency, trajectory diversity, and reward distribution,
aiming to identify the optimal reward scale for effective solution generation.

Experiment Setup As described in the hyperparameter settings, the base rewards were set at 15 for
correct solutions, 0 for incorrect ones, and 10 for solutions ending with the submit action without reaching
the maximum episode length. To examine the effects of different reward scales, we conducted experiments
with the following settings:

• Low Scale: Reduced base rewards to 3 (by dividing the base reward by 5) for correct solutions and
2 for submit-ended trajectories.

• Moderate Scale (Base): Maintained the default base rewards of 15 for submit-ended trajectories,
10 for trajectories that ended due to the maximum episode limit, and 0 for incorrect trajectories.

• High Scale: Increased base rewards to 225 for correct solutions and 150 for submit-ended trajectories
(by multiplying the base reward by 15).

• Very High Scale: Significantly increased base rewards to 1500 for correct solutions and 1000 for
submit-ended trajectories (by multiplying the base reward by 100).

32

Published in Transactions on Machine Learning Research (09/2025)

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy
Validation Accuracy Comparison with Different Reward Scales

Very High Scale (r*100)
High Scale (r*15)
Moderate Scale (Base)
Low Scale (r/5)

Figure 12: Performance comparison across different reward scales, showing the impact of reward values on
validation accuracy over training steps.

Results and Analysis Tables 16 and 17 summarize the effects of different reward scales on success rates
for unique and total trajectories. A moderate reward scale (Base) demonstrated a balanced improvement in
solution diversity and success rate, achieving a 71.43% success rate for unique trajectories and 59.0% for
total trajectories.

The effect of excessively high scaling (e.g., 100r) led to a 100% success rate for both unique and total
trajectories. However, it also significantly reduced solution diversity, producing only a single unique trajectory.
This outcome suggests that while very high rewards lead to success, they may limit exploration. To confirm
this effect, we calculated the diversity metric Dreward, which showed a reduction in reward distribution
diversity at very high rewards, supporting the conclusion that excessive scaling discourages exploration.

Conversely, a lower reward scale (r/5) resulted in no successful trajectories, as indicated by a 0% success rate
for both unique and total trajectories. This lack of success demonstrates that low rewards do not sufficiently
reinforce correct solutions, causing the model to struggle to distinguish high- from low-quality trajectories.

Figure 12 illustrates the learning curves for each reward setting, showing that lower reward scales lead to
noticeably poorer initial performance due to insufficient reinforcement. In contrast, moderate scaling enables
broader exploration of the solution space, allowing the model to generalize effectively across different ARC
tasks.

Furthermore, the diversity metrics, including trajectory diversity Dtraj and reward distribution diversity
Dreward, show that moderate reward scaling promotes greater exploration of successful trajectories. This
finding suggests that a well-scaled reward signal enhances the model’s ability to discover correct solutions
while encouraging diverse trajectory exploration.

Conclusion These findings suggest that while moderate reward scaling enables GFlowNet to balance
efficient learning and exploration, excessively high rewards yield diminishing returns in terms of diversity.
Although high rewards increase task completion rates, they may reduce exploration and solution diversity.

33

Published in Transactions on Machine Learning Research (09/2025)

Reward Scale Unique Trajectories Successful Unique Trajectories Val_ACC (%)

Low Scale 100 0 0.00
Moderate Scale (Base) 56 40 71.43

High Scale 74 53 71.62
Very High Scale 1 1 100

Table 16: Success rate and reward distribution diversity based on unique trajectories across different reward
scales.

Reward Scale Total Trajectories Successful Total Trajectories Val_ACC (%) D_reward

Low Scale 100 0 0.0 0.5139
Moderate Scale (Base) 100 59 59.0 0.8817

High Scale 100 75 75.0 0.6739
Very High Scale 100 100 100.0 0.0

Table 17: Success rate based on total trajectories across different reward scales.

Conversely, low reward scales do not provide sufficient reinforcement for effective learning. Optimal reward
scaling is thus essential for supporting both accuracy and diversity, meeting the ARC task’s requirements for
generalization and high-quality solutions.

Statistical tests (e.g., chi-squared and Fisher’s exact tests) confirmed a significant difference in success rates
and diversity metrics between moderate and very high reward scales, reinforcing that balanced reward scaling
is critical for effective exploration and efficient learning in complex tasks.

B.2 Action Number Performance Comparison

In this ablation study, we investigate the impact of varying the number of actions (3, 4, 5, and 10) on learning
efficiency, exploration capacity, and trajectory diversity, further validating the insights obtained from the
primary experiments.

Experiment Setup To solve ARC Task 179, which features a “Diagonal Flip" transformation, a minimum of
three actions is required. While alternative solutions exist, the shortest solution involves three transformations:
rotating the grid by 90 degrees, performing a horizontal flip, and executing the submit action. Starting with
this minimal action set, we incrementally increased the number of actions to observe how each configuration
affected validation accuracy and trajectory diversity over a maximum episode length of 10. This setup allowed
us to explore the relationship between action granularity and the model’s learning and exploration capabilities.

Results and Analysis As shown in Figure 13, models with three and five actions achieved high validation
accuracy, with the three-action configuration reaching high performance relatively early in training. This
indicates that a smaller action space allows more focused exploration, leading to efficient learning. Notably,
the five-action configuration achieved near-optimal accuracy, outperforming both the four- and ten-action
configurations in terms of learning efficiency. In contrast, the ten-action configuration, despite its expanded
action space, failed to improve accuracy, suggesting that an excessive number of actions may impede effective
exploration within the same training duration.

The reward trend graph further illustrates the differences across action configurations. The five-action setup
shows stable and high rewards, indicating that this configuration balances action granularity with exploration
capacity. The four-action configuration stabilizes at a moderate reward level after an initial exploration
phase. In contrast, the ten-action configuration exhibits consistently low rewards, suggesting that GFlowNet
struggles to optimize effectively in larger action spaces without additional guidance. This finding aligns with
prior research, suggesting that overly large action or state spaces can dilute exploration, leading to suboptimal
learning.

34

Published in Transactions on Machine Learning Research (09/2025)

0 5000 10000 15000 20000 25000 30000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy Comparison with Different Number of Actions

Action 3
Action 4
Action 5 (Base)
Action 10

0 5000 10000 15000 20000 25000 30000
Step

0

50

100

150

200

250

Re
wa

rd

Reward Trends for Different Actions

Action 3
Action 4
Action 5 (Base)
Action 10

Figure 13: (Left) Performance comparison across number of actions, showing the impact of action count
on validation accuracy over training steps. (Right) Reward comparison: comparison of reward values over
training steps for each action configuration, highlighting differences in reward trends.

While expanding the action space increases trajectory diversity, it does not necessarily correlate with higher
validation accuracy. For example, although the ten-action configuration showed greater trajectory diversity, it
suffered from reduced learning efficiency and failed to achieve high rewards. This suggests that, while larger
action spaces introduce more potential trajectories, they may also complicate exploration, especially without
additional guidance.

The calculated Reward Distribution Diversity Dreward values provide further insight. As seen in Tables 18
and 19, Dreward for the three- and four-action configurations is zero, indicating uniform rewards due to limited
trajectory diversity. In contrast, the ten-action configuration has a Dreward of 0.4439, and the five-action
configuration yields 0.6739, reflecting greater reward diversity as the action space expands. Although increased
diversity reflects broader exploration, it does not necessarily lead to improved performance, as shown by the
ten-action configuration’s low success rate and accuracy.

File Unique Trajectories Successful Unique Trajectories Val_ACC (%) Total Trajectories D_reward

n(a) = 3 1 1 100.00 100 0.0
n(a) = 4 1 1 100.00 100 0.0
n(a) = 5 (Base) 41 26 63.41 100 0.6739
n(a) = 10 95 11 11.58 100 0.4439

Table 18: Summary of unique and successful trajectories, success rates, total trajectories, and reward
distribution diversity for each action configuration.

File Successful Total Trajectories Val_ACC (%) D_reward Comments

n(a) = 3 100 100.0 0.0 Minimal exploration with consistent success
n(a) = 4 100 100.0 0.0 Limited diversity but high success rate
n(a) = 5 (Base) 81 81.0 0.6739 Balanced exploration and success
n(a) = 10 11 11.0 0.4439 High diversity, low success rate

Table 19: Total success rates, reward distribution diversity, and additional comments on trajectory diversity
and performance for each action configuration.

The three-action and four-action configurations both achieved 100% success rates for unique trajectories,
indicating that each generated trajectory successfully completed the task, though with limited diversity.
Conversely, the ten-action configuration showed the highest number of unique trajectories (95) but had a
low success rate (11.58%), suggesting that a large action space dilutes effective exploration, leading to lower
task completion rates. The five-action configuration balanced exploration and success, yielding 41 unique
trajectories with a success rate of 63.41%.

35

Published in Transactions on Machine Learning Research (09/2025)

For the five- and ten-action configurations, statistical tests (chi-squared and Fisher’s exact tests) confirmed a
statistically significant difference in success rates, with the five-action configuration performing better among
unique trajectories. This reinforces the idea that an optimal action space size is essential for effective learning.

These findings suggest that balancing action space size is critical for effective exploration and learning. Larger
action spaces may require additional mechanisms, such as hybrid training approaches or managed replay
buffers, to selectively sample high-quality data for focused exploration (Shen et al., 2023; Sendera et al.,
2024). In this study, we implemented off-policy mechanisms to address this challenge. Future research could
develop models capable of handling extensive search spaces more effectively, potentially by incorporating
adaptive exploration techniques that adjust to the complexities of larger action spaces.

B.3 Generated Trajectories and application to other tasks

To further analyze GFlowNet’s trajectory generation and evaluate its applicability to other tasks, we
conducted task-specific experiments on selected ARC tasks. These experiments aimed to examine the diversity
of generated trajectories, their success rates, and the consistency of reward-based learning across different
task types.

Trajectory Visualization and Analysis Figure 14 illustrates multiple trajectories generated for two
ARC tasks: Task 150 and Task 179. Each trajectory represents a unique sequence of transformations (e.g.,
rotations, flips) applied to the input grid to generate the correct output:

• Task 150 (67a3c6ac): The generated trajectories include efficient sequences (e.g., fewer steps) and
redundant solutions with repeated actions. This demonstrates GFlowNet’s exploration of diverse
paths to the same output.

• Task 179 (74dd1130): While successful trajectories are generated, Task 179 highlights the tendency
of some solutions to include unnecessary repetitive actions, suggesting room for further optimization.

• These examples showcase GFlowNet’s ability to discover a range of action sequences, balancing
diversity and correctness in trajectory generation.

Input

Left Rotate

V FlipLeft Rotate Left Rotate Left Rotate

Left Rotate H Flip Left RotateV Flip

V FlipRight Rotate

Right Rotate V Flip

V Flip V Flip V Flip

V Flip

V Flip V FlipV Flip

Output

Traj 1

Traj 2

Traj 3

Traj 4

...

(a) Task 150

Input

Left Rotate

Left Rotate

Left RotateLeft RotateLeft Rotate

Left Rotate Left Rotate

Left Rotate Left Rotate

Left Rotate Left Rotate Left Rotate Left RotateRight Rotate

Right Rotate Right Rotate Right Rotate

Right Rotate V Flip

V Flip V Flip V Flip

V Flip V Flip

V Flip

V Flip

Output

Traj 1

Traj 2

Traj 3

Traj 4

...

(b) Task 179

Figure 14: Visualization of generated trajectories for two ARC tasks. Each trajectory represents a sequence
of transformations applied to the input grid to achieve the correct output. Task 150 (a) and Task 179 (b)
demonstrate diverse action sequences, including rotations and flips, leading to successful solutions.

Task-wise Results and Observations Table 20 summarizes the results of our task-specific analysis,
including the number of unique trajectories, their success rates, and the reward diversity (entropy).

36

Published in Transactions on Machine Learning Research (09/2025)

Task # Unique Trajectories (Total) Successful Unique (Total) Success Rate (Unique, Total, %) Reward Diversity (Entropy)

87 (3c9b0459) 15 (300) 15 (300) 100.00 (100.00) 0.72
140 (6150a2bd) 3 (300) 3 (300) 100.00 (100.00) 0.00
150 (67a3c6ac) 100 (300) 10 (30) 10.00 (10.00) 0.37
155 (68b16354) 3 (300) 3 (300) 100.00 (100.00) 0.00
241 (9dfd6313) 105 (300) 99 (280) 94.29 (93.33) 0.37
380 (ed36ccf7) 3 (300) 3 (300) 100.00 (100.00) 0.00

Table 20: Task-wise analysis of trajectories, success rates, and reward diversity. Unique values are shown with
their corresponding total values in parentheses.

• Unique Trajectories: For tasks like 380, 155, and 140, the model consistently generated only a few
successful trajectories, indicating that these tasks allow minimal variation in the solution space.

• Success Rate: Tasks such as 380, 155, and 87 achieved a 100% success rate, demonstrating that
GFlowNet effectively explores correct solutions. However, for task 150, only 10% of unique trajectories
were successful, suggesting a more complex solution space.

• Reward Diversity: Tasks with lower reward entropy (e.g., 380 and 140) reflect a solution space
with limited diversity. In contrast, tasks like 87 exhibit higher entropy, indicating a greater variety of
valid solutions.

B.4 Off-Policy Training Analysis

Experiment Setup We explored off-policy training using a replay buffer with various sampling methods:

• Priority Sampling (PRT): Prioritizes high-reward experiences.

• Epsilon-Greedy Sampling: Randomly samples with probability ϵ and high-reward trajectories
otherwise.

• Fixed Ratio Sampling: Samples a fixed mix (e.g., 8:2 or 9:1) of high- and low-reward trajectories.

0 20000 40000 60000 80000 100000 120000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Validation Accuracy Comparison with on/off-policy

prt
egreedy
fixed_ratio
On-policy

Figure 15: Validation accuracy comparison between on-policy and off-policy training methods. On-policy
training converges much faster than off-policy sampling methods.

37

Published in Transactions on Machine Learning Research (09/2025)

Results and Analysis Off-policy training with PRT sampling achieved lower variance across seeds but
required significantly more steps (approximately 120,000) to converge, compared to on-policy training which
reached near-perfect accuracy within 1,000 steps. This trade-off indicates that while off-policy methods
enhance stability, their slower convergence makes on-policy training more practical for ARC problems.

(Additional Analysis) In particular, because ARC problems are highly sparse in rewards and often solved
with short sequences, quickly stumbling upon a good trajectory is crucial. Off-policy learning, which replays a
mix of older experiences, can excessively re-emphasize suboptimal early trajectories unless carefully managed.
On-policy methods, by contrast, adapt more rapidly to newly discovered successful paths—leading to faster
improvement.

38

Published in Transactions on Machine Learning Research (09/2025)

C Algorithm

Algorithm 1 GFlowNet Architecture for ARC Task
Input: ARC environment env with input xk, forward policy parameters θF , backward policy parameters θB ,

total flow Zθ, reward function r(s), max episode length T , Replay buffer buffer (optional)
Output: Trajectory τ
s← s0 ← xk

foreach example do
foreach training step do

τ ← [s]
log ptotal

F ← 0
log ptotal

B ← 0
t← 0
while t < T and ¬ env.is_done(s) do

t← t + 1
z ← πF (s; θF , θB)
Split z into zF , zB

Step 1: Forward Pass
pF ← Softmax(zF)
Sample Xi ∼ Geometric(pFi) // Xi = {3, 14, 2, . . . , 7}
a∗ ← arg mini Xi

log pF ← log GeomPMF(Xa∗)
s′ ← env.step(s, a∗)
τ ← τ ∪ {s′}

Step 2: Backward Pass
pB ← Softmax(zB)
Sample a′ ∼ Categorical(pB)
log pB ← log pB(a′)

Step 3: Reward
r(s′)← rfinal

if cycle is detected then
r(s′)← r(s′)− λC(τ)

end
log ptotal

F ← log ptotal
F + log pF

log ptotal
B ← log ptotal

B + log pB

Store in buffer if off-policy (optional)
s← s′

end
loss← (log Zθ + log ptotal

B − log ptotal
F − log r(s))2

Optimize θF , θB to minimize loss
Off-policy updates using buffer (optional)
Update sampling model (optional)

end
end
return τ

39

Published in Transactions on Machine Learning Research (09/2025)

D Comparison of ARC Trajectory Datasets and Generation Methods

In this section, we compare ARC trajectory datasets and generation methods according to their supervision
type and augmentation strategy. We organize existing approaches into four main categories: (1) Human-
written trajectories collected through annotation or crowdsourcing (e.g., ARCTraj (Kim et al., 2025b),
ARC-Interactive (Strandgaard, 2024), H-ARC (LeGris et al., 2024)); (2) Rule-based trajectories derived from
hardcoded logic or symbolic programs (e.g., SOLAR (Kim et al., 2024)); (3) Model-generated trajectories
produced via generative models such as GFlowNet (Ours); and (4) Other augmentations such as I/O
pair-based synthesis (e.g., RE-ARC (Hodel, 2024), BARC (Li et al., 2025), BabyARC (Wu, 2021)) and
task/label-based formulations (e.g., LARC (Acquaviva et al., 2022), ConceptARC (Moskvichev et al., 2023)).

This categorization helps clarify the trade-offs between trajectory diversity, scalability, and generalization. In
particular, our GFlowNet-based method (3) stands out by generating diverse and plausible reasoning paths
directly from input-output examples, without relying on either human supervision or ground-truth programs.
This makes our approach especially suitable for ARC, where solvers must generalize to unseen tasks at test
time without access to task-specific demonstrations.

Additionally, unlike other methods, our method uniquely supports the generation of multiple distinct
trajectories for each input grid, enabling a richer and more flexible reasoning process. To support this claim,
we provide a detailed empirical and structural comparison with other methods below. Table 21 compares
these datasets in terms of trajectory format, augmentation capabilities, and multi-trajectory support per grid.
Table 22 then presents a quantitative comparison of trajectory scale and diversity across selected methods.

Method Task
Count

Data
Generation

Trajectory
Format

Multi-Traj
per Grid

Ours 7 ✓ ✓ ✓

SOLAR (Kim et al., 2024) 20 ✓ ✓
✗

(1 Traj/Grid)

ARCTraj (Kim et al., 2025b) 400 ✗

(Human Traj) ✓ ✓

ARC-Interactive (Strandgaard, 2024) 400 ✗

(Human Traj) ✓ ✓

H-ARC (LeGris et al., 2024) 800 ✗

(Human Traj) ✓ ✓

RE-ARC (Hodel, 2024) 400 ✓
✗

(I/O Grid) ✗

BARC (Li et al., 2025) 400 ✓
✗

(New Task) ✗

BabyARC (Wu, 2021) 800 ✓
✗

(New Task) ✗

LARC (Acquaviva et al., 2022) 400 ✓
✗

(Task Description) ✗

ConceptARC (Moskvichev et al., 2023) 160 ✓
✗

(Task Label) ✗

Table 21: Comparison of data augmentation and trajectory support across ARC-AGI methods. Ours is the
only method that augments multiple trajectories per input grid.

Among the existing datasets, human-collected trajectories such as ARCTraj (Kim et al., 2025b), ARC-
Interactive (Strandgaard, 2024), and H-ARC (LeGris et al., 2024) offer valuable insights into how people
solve ARC tasks. However, these datasets typically cover a large number of tasks, but each task only has a
single input grid, limiting their capacity to explore diverse solving behaviors from different inputs. Moreover,
the cost of collecting multiple trajectories per input grid is prohibitively high in human studies.

In contrast, our method is the only approach that generates multiple trajectories per input grid through data
augmentation. Despite using only seven target tasks, we synthesize 1,601 valid trajectories with 162 unique
ones (Table 22). This results in a trajectory density of 228.7 and a trajectory diversity of 23.1, both of which

40

Published in Transactions on Machine Learning Research (09/2025)

are significantly higher than those of other methods. As shown in Table 22, our trajectory diversity is even
comparable to the trajectory density of human-collected datasets, which typically ranges from 19.7 to 26.7.
Since diversity is upper-bounded by density, this suggests that our method achieves at least as much diversity
as those human-collected datasets.

These comparisons (Tables 21 and 22) highlight the effectiveness of our augmentation method in producing a
rich set of diverse solving trajectories from a compact task set, without requiring large-scale human annotation.

Method Valid
Traj.

Unique
Traj.

Target
Tasks

Grids
per Task

Trajectory
Density

Trajectory
Diversity

Ours 1,601 162 7 1 228.7 23.1
SOLAR (Kim et al., 2024) 10,000 10,000 20 500 1.0 1.0
ARCTraj (Kim et al., 2025b) 10,672 - 400 1 26.7 -
ARC-Interactive (Strandgaard, 2024) 8,374 - 400 1 20.9 -
H-ARC (LeGris et al., 2024) 15,744 - 800 1 19.7 -

Table 22: Comparison of trajectory density and diversity across human-collected and augmented trajectories.
Trajectory Density is calculated as the number of valid trajectories divided by the number of input grids. In
contrast, Trajectory Diversity is the number of unique (non-duplicate) trajectories per input grid. Notably,
the diversity of Ours (23.1) is comparable to the trajectory density of human-collected datasets such as
ARCTraj, ARC-Interactive, and H-ARC. Since diversity is upper-bounded by density, this suggests that the
diversity of Ours is at least on par with, if not superior to, those datasets.

41

Published in Transactions on Machine Learning Research (09/2025)

E Efficiency and Scalability of GFlowNet Augmentation

GFlowNet-based augmentation is not only effective, but also computationally efficient and
structurally scalable. We report the time required to generate 100K valid trajectories for
each ARC task used in our downstream experiments. As summarized in Table 23, most tasks
complete this process in under an hour, with generation rates exceeding 2K trajectories per
minute on average. Given that the ARC Prize evaluation protocol allows only 6 minutes per
task, this level of speed implies that even test-time augmentation is feasible, yielding thousands
of trajectories within a fraction of the allotted time.

This level of efficiency demonstrates that our method can serve as a practical augmentation tool—even in
scenarios with tight compute budgets or real-time constraints. Notably, even the slowest tasks still maintain
generation rates above 1,180/min, reinforcing the method’s robustness across task variability.

Table 23: Time and throughput required to generate 100,000 trajectories per task. Our framework consistently
achieves multi-thousand-per-minute generation rates, enabling fast and scalable augmentation even under
strict time constraints.

Task # (ID) Time Required (for 100k) Generation Rate (trajectories/min)
87 (3c9b0459) 53 min 1,880/min

140 (6150a2bd) 52 min 1,920/min
150 (67a3c6ac) 50 min 2,000/min
155 (68b16354) 27 min 3,700/min
179 (74dd1130) 46 min 2,170/min
241 (9dfd6313) 83 min 1,200/min
380 (ed36ccf7) 84 min 1,180/min

Average 56.4 min 2,000/min

Beyond raw throughput, our framework also demonstrates structural scalability in the form of trajectory
diversity. To assess how diversity grows over time, we measured the number of unique successful trajectories
as a function of the total number of trajectories generated.

As shown in Figure 16, all tasks exhibit a consistent logarithmic decay pattern in the rate of discovering
new unique solutions. During the early stages, new solution strategies are discovered rapidly, but the rate
of discovery decreases logarithmically as the solution space becomes progressively saturated. This behavior
aligns with the long-tailed structure of human reasoning, where common strategies emerge early, and rarer
patterns require deeper exploration. Notably, while all tasks follow this logarithmic trend, there
are substantial variations between different problems, with some tasks (like Problem 150) reaching
saturation much faster than others (like Problems 86 and 140), reflecting the inherent complexity differences
across ARC tasks.

This logarithmic scaling property has important implications. First, it allows practitioners to make informed
tradeoffs between diversity and compute budget. Even small-scale generation (e.g., 10k–20k samples) captures
a significant portion of the solution space, while longer runs offer diminishing but non-negligible improvements.
The logarithmic nature of the decay means that the marginal benefit of additional sampling decreases
predictably, enabling efficient resource allocation.

Second, this structure suggests that GFlowNet-based augmentation is well-suited for dynamic test-time
settings. Depending on resource availability, one can determine how much augmentation is "enough" based on
the task complexity or diversity needs. The problem-specific variations observed in Figure 16b indicate that
some tasks may benefit from extended sampling while others reach effective saturation more quickly, allowing
for adaptive resource allocation strategies.

Third, our framework is well-aligned with the real-time constraints of ARC-like benchmarks. For instance,
the ARC Prize evaluation protocol allots approximately 6 minutes per task to solvers, including any

42

Published in Transactions on Machine Learning Research (09/2025)

(a) Final uniqueness rates vary significantly across tasks,
ranging from 2.6% to 26.5%, indicating different levels of
solution diversity potential.

N
ew

 U
ni

qu
e

Se
qu

en
ce

s
D

is
co

ve
re

d

Culmulative Successful Trajectory

Rate of New Unique Sequence Discovery
87
140
150
179

Rate of New Unique Sequence Discovery
87
140
150
179

50

1000 2000 3000 4000 5000 6000 7000

100

200

150

N
ew

 U
ni

qu
e

Se
qu

en
ce

s
D

is
co

ve
re

d

(b) Rate of new unique sequence discovery follows a
logarithmic decay pattern, with notable variations in
decay rates across different problems.

Figure 16: Trajectory diversity analysis across ARC tasks. (a) The final uniqueness rate among successful
trajectories shows significant task-dependent variation. (b) The rate of discovering new unique sequences
decreases logarithmically over time, with problem-specific decay characteristics reflecting varying solution
space complexity.

computation performed during test time. Within this limited window, our method can generate thousands of
candidate trajectories per task, thanks to its throughput of over 2,000 trajectories per minute.

This enables practical test-time augmentation, where diverse solution candidates can be synthesized and
evaluated on the fly. Even allocating just 2–3 minutes of the 6-minute window for trajectory generation yields
tens of thousands of diverse paths, offering valuable input to downstream symbolic solvers or neural rerankers.
The logarithmic discovery pattern ensures that even short generation runs capture the most promising solution
strategies, making our augmentation pipeline not only practical offline but also feasible for real-time AGI
scenarios requiring rapid reasoning under constraints.

43

	Introduction
	Background
	Reasoning with Diverse Solutions
	Data Augmentation for Reasoning Tasks
	Generative Flow Networks (GFlowNets)
	ARC as a Benchmark for Process-Level Reasoning

	Methods
	GFlowNet Architecture for Human-Aligned Solution Generation in ARC
	Human-Trajectory Guided Reward Design
	Forward Policy via Geometric Action Sampling

	Experiments
	Experimental Design
	Research Questions
	Dataset: Task Selection Rationale
	Evaluation Metrics
	Hyperparameters and Glossary

	Performance of Revised GFlowNet for Solution Augmentation
	RQ1. Can reward functions informed by human priors promote human-aligned reasoning patterns?
	The Role of Exploration Depth: Challenging the ``Shorter is Better'' Heuristic
	RQ2. Does using a Geometric distribution in the forward policy enhance efficiency in diverse trajectory generation?
	RQ3. Why does a Geometric forward policy excel in goal-conditioned reasoning tasks?

	Downstream Evaluation on Large Language Models
	Comparison to Trajectory Augmentation Baseline

	Conclusion
	Summary and Implications
	Limitations and Future Work
	Final Remarks

	Extended Background Details
	GFlowNet Training Mechanism and Flow Matching
	Extended ARC Details
	Formal Problem Definition for Whole-Grid ARC

	Ablation Studies
	Effect of Reward Scale
	Action Number Performance Comparison
	Generated Trajectories and application to other tasks
	Off-Policy Training Analysis

	Algorithm
	Comparison of ARC Trajectory Datasets and Generation Methods
	Efficiency and Scalability of GFlowNet Augmentation

