
Relative Behavioral Attributes: Filling the Gap between Symbolic Goal
Specification and Reward Learning from Human Preferences

Lin Guan 1 Karthik Valmeekam 1 Subbarao Kambhampati 1

Abstract
Generating complex behaviors that satisfy the
preferences of non-expert users is a crucial re-
quirement for AI agents. Interactive reward learn-
ing from trajectory comparisons (a.k.a. RLHF)
is one way to allow non-expert users to convey
complex objectives by expressing preferences
over short clips of agent behaviors. Even though
this parametric method can encode complex tacit
knowledge present in the underlying tasks, it im-
plicitly assumes that the human is unable to pro-
vide richer feedback than binary preference la-
bels, leading to intolerably high feedback com-
plexity and poor user experience. While pro-
viding a detailed symbolic closed-form specifi-
cation of the objectives might be tempting, it
is not always feasible even for an expert user.
However, in most cases, humans are aware of
how the agent should change its behavior along
meaningful axes to fulfill their underlying pur-
pose, even if they are not able to fully specify
task objectives symbolically. Using this as moti-
vation, we introduce the notion of Relative Be-
havioral Attributes, which allows the users to
tweak the agent behavior through symbolic con-
cepts (e.g., increasing the softness or speed of
agents’ movement). We propose two practical
methods that can learn to model any kind of be-
havioral attributes from ordered behavior clips.
We demonstrate the effectiveness of our meth-
ods on four tasks with nine different behavioral
attributes, showing that once the attributes are
learned, end users can produce desirable agent be-
haviors relatively effortlessly, by providing feed-
back just around ten times. The supplementary
video and source code are available at: https:
//guansuns.github.io/pages/rba.

*Equal contribution 1School of Computing & AI, Arizona
State University, Tempe, AZ. Correspondence to: Lin Guan
<lguan9@asu.edu>.

Interactive Learning with Implicit Human Feedback Workshop at
ICML 2023. Copyright 2023 by the author(s).

1. Introduction
A central problem in building versatile autonomous agents
is how to specify and customize agent behaviors. Two repre-
sentative ways to specify tasks include manual specification
of reward functions, and reward learning from trajectory
comparisons. In the former, the user needs to provide an
exact description of the objective as a suitable reward func-
tion to be used by the agent. This is often only feasible
when the specification can be done at a high level, e.g. in
symbolic terms (Russell & Norvig, 2003) or by providing
a symbolic reward machine or domain model (Yang et al.,
2018; Illanes et al., 2020; Guan et al., 2022; Icarte et al.,
2022), or by giving a natural language instruction (Mah-
moudieh et al., 2022). Instead of requiring users to give
precise task descriptions, reward learning from trajectory
comparisons (a.k.a. reinforcement learning from human
feedback or RLHF) learns a reward function from human
preference labels over pairs of behavior clips (Wilson et al.,
2012; Christiano et al., 2017; Ouyang et al., 2022; Bai et al.,
2022a), or from numerical ratings on trajectory segments
(Knox & Stone, 2009; MacGlashan et al., 2017; Warnell
et al., 2018; Guan et al., 2021; Abramson et al., 2022) or
from rankings over a set of behaviors (Brown et al., 2019).

To illustrate the distinct characteristics of the two objective
specification methods, let us consider a Humanoid control
task in a benchmark DeepMind Control Suite (Tunyasuvu-
nakool et al., 2020). The default symbolic reward function in
the benchmark is a carefully-designed linear combination of
multiple explicit factors such as moving speed and control
force. By optimizing the reward, the agent will learn to run
at the specified speed but in an unnatural way. However,
to further specify the motion styles of the robot (e.g., to
define a human-like walking style), non-expert users may
find it hard to express such objectives symbolically since
this involves tacit motion knowledge. Similarly, in natu-
ral language processing tasks like dialogue (Ouyang et al.,
2022) and summarization (Stiennon et al., 2020), it can be
extremely challenging to construct reward functions purely
with explicit concepts. Hence, for tacit-knowledge tasks,
people usually resort to reward specification via pairwise
trajectory comparisons and learn a parametric reward func-
tion (e.g., parameterized by deep neural networks). While

1

https://guansuns.github.io/pages/rba
https://guansuns.github.io/pages/rba

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Figure 1: Visualizing behavioral attributes of Walker and
Lane-Change. The behavioral attributes of other domains
are shown in Fig. 3 in Appendix A.

pairwise comparisons are general enough to work for any
setting, due to the limited information a binary label can
carry, they are also an impoverished way for humans to
communicate their preferences. Thus, treating every task at
hand as a tacit-knowledge one and limiting reward specifica-
tion to binary comparisons can be unnecessarily inefficient.
Moreover, since the internal representations learned within
neural networks are typically inscrutable, it’s unclear how a
learned reward model can be reused to serve multiple users
and fulfill a variety of goals.

In short, symbolic goal specification is more straightforward
and intuitive to use, but it offers limited expressiveness, mak-
ing it more suitable for explicit-knowledge tasks. Reward
learning from trajectory comparisons, in contrast, offers bet-
ter expressiveness, but it is more costly and less intuitive to
use. However, in many real-world scenarios, user objectives
are neither completely explicit nor purely tacit. In other
words, although human users may not be able to construct
a reward function symbolically, they still have some idea
of how the AI agent can change its behavior along certain
meaningful axes of variation to better serve the users. In
the above Humanoid example, even though the users can
not fully define the motion style in a closed-form manner,
they may still be able to express their preferences in terms
of some nameable concepts that describe certain properties
in the agent behavior. For instance, the users of a household
humanoid robot may want it to not only walk in a natural
way but also walk more softly and take smaller steps at night
when people are sleeping.

Motivated by the observations above, we introduce the no-
tion of Relative Behavioral Attributes (RBA) to capture the
relative strength of some properties’ presence in the agent’s
behavior. We aim to learn an attribute-parameterized re-
ward function that can encode complex task knowledge
while allowing end users to freely increase or decrease the
strength of certain behavioral attributes such as “step size”
and “movement softness” (Fig. 1). This new paradigm of re-

ward specification is intended to bring the best of symbolic
and pairwise trajectory comparison approaches by allowing
for reward feedback in terms of conceptual attributes. The
benefits of explicitly modeling RBAs are obvious: (a) it
offers a semantically richer and more natural mode of com-
munication, such that the hypothesis space of user intents
or preferences can be greatly reduced each time the sys-
tem receives attribute-level feedback from the user, thereby
improving the overall feedback complexity significantly;
(b) since humans communicate at the level of symbols and
concepts, the learned RBAs can be used as shared vocabu-
lary between humans and inscrutable models (Kambhampati
et al., 2022), and more importantly, such shared vocabulary
can be reused to serve any future users and support a diverse
set of objectives.

The concept of relative attributes has been introduced earlier
in other areas like computer vision (Parikh & Grauman,
2011) and recommender systems (Goenka et al., 2022).
Though they share some similarities in motivations and
definition to our relative behavioral attribute, the key differ-
ence is that relative attributes there only capture properties
present in a single static image, while RBAs aim to capture
properties over trajectories of behavior, wherein an attribute
may be associated with either static features at a certain
timestep (e.g., step size of a walking agent) or temporally-
extended features spanning multiple steps (e.g., the softness
of movement). Additionally, we need to consider how to
connect the captured attributes to a valid reward function.
In this work, we propose two generic data-driven methods
to encode RBAs within a reward function. On four domains
with nine attributes in total, we show that our methods can
learn to accurately capture the attributes from roughly 200
labelled behavior clips. Once the attribute-parameterized
reward is learned, any end user can produce diverse agent
behaviors with relative ease, by providing feedback just
around 10 times. This offers a significant advantage over
the learning-from-human-preferences baseline (Christiano
et al., 2017) that requires hundreds of binary labels from the
user per task.

2. Related Work
In general, direct reward specification is the most commonly
employed approach. It is used in almost all simulators
with engineered reward functions and in industrial appli-
cations such as self-driving vehicle control systems. Yet,
there are still some challenges associated with it, such as
extensive requirement for sensory instrumentation, incom-
plete (sub)goal specification (Guan et al., 2022), reward
exploitation (Lee et al., 2021) and the expressiveness issue
mentioned in the previous section. These impediments mo-
tivate the idea of learning reward from states or trajectory
comparisons (Christiano et al., 2017; Warnell et al., 2018;

2

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Zhang et al., 2019; Lee et al., 2021), which leverages the
exceptional representational capacity of neural networks but
tends to suffer from high data complexity. Another alterna-
tive to symbolic reward specification is imitation learning
or inverse reinforcement learning (Schaal, 1996; Ng et al.,
2000; Abbeel & Ng, 2004). However, this is usually infeasi-
ble for non-expert end-users, as it requires the user to have
sufficient knowledge and proper hardware setup in order to
teleoperate the agent. Even if a pre-collected large-scale be-
havior dataset is provided to the user, the process of finding
the target behavior trace(s) from the large dataset can still
be frustrating.

The introduction of RBAs aligns with the broader intent of
building symbolic interfaces as a middle layer for humans to
communicate effectively with the agent (Bobu et al., 2021;
Guan et al., 2021; 2022; Silver et al., 2022; Zhang et al.,
2022; Bucker et al., 2022; Cui et al., 2023) or for the agent to
explain to humans (Kim et al., 2018; Sreedharan et al., 2022;
Kambhampati et al., 2022). Lee et al. (2020) utilize relative-
attribute information in robot skill learning, but their GAN-
based formulation is restricted to static visual attributes and
is not applicable to temporally-extended concepts.

This paper adopts a similar setup to works that learn diverse
skills or motion styles from large-scale offline behavior
datasets or demonstrations (Lee & Popović, 2010; Wang
et al., 2017; Zhou & Dragan, 2018; Peng et al., 2018b; Luo
et al., 2020; Chebotar et al., 2021; Peng et al., 2021). These
works emphasize on modeling a variety of reusable motor
skills by learning a low-level controller conditioned on skill
latent codes. Since the latent codes are inscrutable to hu-
mans, for each new task, the user must specify the desirable
agent behavior by constructing an engineered symbolic re-
ward and use it to train a separate high-level policy that
controls the low-level controller. Our methods are comple-
mented by existing diverse-skill learning methods because
skill priors (i.e., pre-trained low-level controllers) allow us
to optimize the behavioral reward more efficiently. More
recently, there have been works in diffusion-based text-to-
motion animation generation (Tevet et al., 2022; Guo et al.,
2022). They are similar to this work in the sense that we
both allow humans to control the agent behavior through
explicit concepts. However, they do not support fine-grained
control over the strength of individual behavioral attributes,
and their works are not applicable to physics-based character
control.

3. Problem Setup
Personalizing agent behaviors at skill level. We assume
the users are interested in customizing agent behaviors at
the level of skills (e.g., making a lane change, taking a step,
picking up an object). A skill is a solution (i.e., policy) to
an episodic task in an indefinite-horizon discounted MDP

M = ⟨S,A,R, P, γ⟩, where S is the set of states, A is the
set of actions, R : S × A → R is the provided reward
function, P : S ×A× S → [0, 1] is the transition function
and γ is the discount factor. An episode terminates whenever
the agent reaches an absorbing terminal state or exceeds a
fixed number of time steps T . An agent M is supposed to
find a policy (π : S → A) that maximizes the expected
return E[

∑T
t=0 γ

trt], r ∈ R. When executing a policy,
the agent is initialized to some initial state s0 ∈ S at the
beginning of each episode; and then at each succeeding time
step t, the agent interacts with the environment E by taking
an action at ∈ A and receiving the next state st+1 ∈ S. In
order to personalize agent behavior, rather than assuming
that the reward function R is supplied by the environment,
we require the reward function to be specified by the end
user.

Given a behavior clip or a trajectory τ =
{(s0, a0), ..., (sl, al)}, where l is the length of the
trajectory, a relative behavioral attribute α ∈ A captures the
strength of the presence of a certain property exhibited in τ .
It assumes that a mapping ζ can be established to map any
(α, τ) pair to a real value that reflects the relative strength
of α in τ . In this work, our goal is to construct a reward
function that allows end users to iteratively adjust attribute
strengths presented in the agent’s behavior.

Learning to model RBAs from offline behavior datasets.
RBAs are essentially semantically capturing different ways
to carry out a task. Ideally, the training data for the reward
function should contain clips of diverse skill behaviors. Al-
though we used synthetic data in this study, there are many
publicly accessible behavior corpora, such as the Waymo
Open Dataset for autonomous driving tasks (Ettinger et al.,
2021) and large-scale motion clips data for character control
(Peng et al., 2018a; 2022). Note that we do not expect the
offline dataset to exhaustively cover all possible skill be-
haviors, as the reward function should generalize to unseen
configurations. Also, considering that action information
is not always available, to be more general, we assume the
training dataset D only consists of state-only trajectories.
Last but not least, as a common setting, we assume the em-
bodiment of the agent is not significantly different from that
in D.

Reward learning from trajectory comparisons. Methods
for reward learning from trajectory comparisons construct a
reward function by learning to infer the user’s latent prefer-
ence from a set of ranked trajectories {(τ1, τ2)}. Typically,
the user preference is modelled according to the Bradley-
Terry model (Bradley & Terry, 1952):

P
[
τ1 ≻ τ2] = exp

∑
t r

(
s1t , [a

1
t]
)∑

i∈{1,2} exp
∑

t r (s
i
t, [a

i
t])

, (1)

where τ1 ≻ τ2 denotes the event that the user prefers τ1

over τ2, r is a parametric learnable reward function, and

3

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

[ait] means the action input is optional. A cross-entropy loss
is typically used for optimization:

Lossp(r) = −
∑

(τ1,τ2,y)∈Dp

{y(1) logP
[
τ1 ≻ τ2]

+ y(2) logP
[
τ2 ≻ τ1]}, (2)

where y ∈ {(1, 0), (0, 1), (0.5, 0.5)} are possible prefer-
ence labels indicating τ1 ≻ τ2, τ2 ≻ τ1, or τ1 and τ2

are equally preferred, respectively. The set of preference
labels Dp can be collected beforehand (Brown et al., 2019)
or through active queries to the user in an online manner
(Wilson et al., 2012; Christiano et al., 2017). The latter is
often referred to as preference-based reinforcement learn-
ing, or PbRL for short. Most PbRL methods build upon the
Bradley-Terry model but differ in the query strategies and
how the network is initialized (Lee et al., 2021; Park et al.,
2022; III & Sadigh, 2022; Ren et al., 2022).

4. Methodology
4.1. Personalizing Agent Behavior via Relative

Behavioral Attributes

Our framework involves two phases, namely, learning an
attribute parameterized reward function and interacting with
the end user.

Learning attribute parameterized reward function (no
interaction with the end user). This phase is supposed
to learn a reward function that internally learns a family of
rewards that correspond to behaviors with diverse attribute
strengths. By varying the input attribute configurations, end
users will be able to find the preferred “reward member”
and obtain desired behaviors. In Section 4.2 and Section
4.3, we will present two methods that can learn such a
reward function given a subset of labelled trajectories from
an offline behavior dataset D. We assume that the agent
builders are the ones who provide the training labels (e.g.,
the engineers of autonomous vehicles, and the developer
of virtual characters). In some extreme cases, if a novel
concept has to be learned, the training labels may also come
from the end user. Also note that, this step can be skipped
if the RBAs have already been captured by a learned reward
function.

Supporting end users in the loop. Once an attribute pa-
rameterized reward function is learned, any incoming users
can leverage it to personalize the agent behavior through
multiple rounds of query. In each round of interaction, the
agent presents the user a trajectory, sampled according to the
policy that optimizes the current reward function. Then the
user provides a feedback on whether the current behavior is
desirable; and if not satisfied, the user can express the intent
to increase or decrease the strength of certain attributes. The
concept-level feedback is a set of attribute-feedback pairs

{(α, h)}, where α is the attribute of interest, and h is a bi-
nary value indicating whether the user wants to increase or
decrease α’s strength. In this work, we consider two types
of attribute representation, namely the index of α in a list
of known attributes or a natural-language description of
α. Upon collecting feedback from the user, the agent will
adjust the reward function and update the corresponding
policy. This human-agent interaction process repeats until
the user is satisfied with the latest agent behavior.

In the next two sections, we will elaborate on two candidate
architectures for the attribute parameterized reward function.
We note that both architectures support the same type of
user interaction as outlined above.

4.2. Method 1: Modeling Behavioral Attributes by
Establishing Global Rankings

The learning process of Method 1 consists of two steps. In
the first step, we learn an attribute strength estimator ζσ
(parameterized by σ) that can map any given attribute α
and trajectory τ to a real-valued score that measures the
relative strength of attribute α in τ . Here, ζσ is essentially
establishing a global ranking among all possible behaviors
according to any given attribute α. Hence, we denote this
method as RBA-Global. Then in the second step, given
a finite set of attributes A, we learn a dense reward func-
tion rθ(s|vt = ⟨vα1

t , ..., vαk
t ⟩), where vt is called the target

attribute-score vector, vαi
t is the target strength of attribute

αi, and k = |A| is the total number of attributes. rθ is ex-
pected to satisfy that, when rθ(·|vt) is optimized, the agent
is able to sample a trajectory τ ′, such that for any αi ∈ A,
we have ζσ(τ

′, αi) ≃ vαi
t . Hence, with a learned reward

function rθ, the agent can produce diverse behaviors by vary-
ing the input target attribute-score vector vt. As an exam-
ple, let us consider the humanoid household robot domain
with two attributes {α0 : “softness of movement”, α1 :
“step size”}. By setting the target attribute vector vt to
be ⟨vα0

t = −1.5, vα1
t = 2.0⟩, we expect the agent that

optimizes rθ to be able to produce a trajectory τ ′ with a
“softness” score ζσ(τ

′, α0) approximately equal to −1.5. A
graphical illustration of the overall architecture can be found
in Fig. 4 in Appendix A. In the remainder of this section, we
will explain how ζσ and rθ can be learned from the offline
behavior dataset D.

The problem of learning an attribute strength estimator
ζσ is essentially a learning-to-rank problem. Specifically,
we assume we are given (normally by the agent designers
rather than the end users) a set of state-only trajectories
{τ} and their orderings according to different attributes
{(τ0 ≻ τ1 ≻ ... ≻ τN |α)}, or a set of ranked trajectory
pairs Dl = {(τ i ≻ τ j |α)}, where α ∈ A is one of the
attributes in the domain, (τ i ≻ τ j |α) represents the event
that the attribute α has a stronger presence in trajectory τ i

than that in trajectory τ j , and N ≤ |D| is the length of

4

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

the ranked trajectory sequence. We propose to employ a
modified state-only version of Bradley-Terry model (Eq. 1),
in which rather than assuming that the ranking is governed
by the latent user preferences, we assume the ranking is
determined by the given attribute α:

Pσ

[
τ1 ≻ τ2

∣∣α] = exp
∑

t fσ
(
[s1t , eα]

)∑
i∈{1,2} exp

∑
t fσ ([sit, eα])

, (3)

where fσ is an attribute conditioned ranking function with
parameters σ, [·, ·] is the vector concatenation operation,
and eα is the embedding of attribute α. The strength of
any attribute α in a trajectory τ is given as ζσ(τ, α) =∑

s∈τ fσ ([s, eα]). Recall that we consider two types of
attribute representation, namely attribute index and natu-
ral language description. Accordingly, eα can either be a
one-hot vector or a sentence embedding generated by any
pretrained natural language sentence encoder like Sentence-
BERT (Reimers & Gurevych, 2019). Since different be-
haviors may result in trajectories of varying lengths, in
Eq. 3 we do not require the two trajectories to have the
same size. Given the training dataset Dl, fσ can be trained
via a cross-entropy loss similar to the one in Eq. 2. For
numerical stability, in practice, we also clip the values of∑

t fσ
(
[sit, eα]

)
(we used [−20, 20] for all the attributes in

our experiment). With a learned attribute strength estima-
tor ζσ and a finite set of k attributes, the agent behavior in
any trajectory τ can be characterized by an attribute vector
v(τ) = ⟨ζσ(τ, α1), ..., ζσ(τ, αk)⟩.
The problem of learning rθ([s, vt]) can also be cast to a
learning-to-rank or preference modeling problem, wherein
the reward function is supposed to give higher cumulative
rewards to trajectories that have attribute strengths closer
to the targets in vt. Specifically, given vt, for any two
trajectories τi and τj from the offline behavior dataset D,
the preference label lp(τ i, τ j , vt) is given as:

lp(τ
i, τ j , vt) =


τ i ≻ τ j if υi < υj − ξr

τ i ≺ τ j if υi > υj + ξr

no ordering otherwise,

(4)

where υi denotes ∥v(τ i)− vt∥2, υj denotes ∥v(τ j)− vt∥2,
and ξr is a small slack variable. To train rθ, we can randomly
sample a set of triplets from D, namely {(τ0, τ1, τ2)}. By
treating τ0 as the target behavior, we can generate a set of
training labels {lp(τ1, τ2, vt = v(τ0))} for rθ. In short,
rθ can be trained as a standard state-only preference-based
reward function according to Eq. 1 and Eq. 2 but with
preference labels given by the extracted attribute strengths
(i.e., by ζσ). Note that, unlike the training of ζσ , the training
of rθ does not require any human-provided labels.

Once a reward function rθ is learned, the end user can use
it to specify agent behavior by simply tuning the attribute
strength values in the input target attribute vector vt. In our
realization, we implement the process of finding the target
attribute score as a process of performing binary search in

real space (details can be found in Appendix A.3). The
process of personalizing agent behavior through rθ is highly
intuitive because rθ handles the complex tacit parts of the
problem internally (e.g., how to walk naturally and realis-
tically with the constraints of softness and step size) and
only relies on the end user to set the explicit parts. Addi-
tional discussion on alternative ways to leverage ζσ without
learning a reward function can be found in Appendix A.2.

4.3. Method 2: Modeling Behavioral Attributes by
Capturing Minimally Viable Local Changes

One limitation of RBA-Global is that, it requires the total
number of encoded attributes to be finite because the size
of the target attribute vector vt grows with the number of
attributes. This may limit the scalability of RBA-Global. In
this section, we will introduce a more extensible method
that can potentially encode an arbitrary number of attributes.
The key motivation is that in RBA-Global, the user never
directly manipulates the attribute scores. Instead, we can
skip the explicit modeling of attribute strength (i.e., learning
ζσ) and directly learn a behavior-editing reward function.

Specifically, given a trajectory τc and the corresponding
human feedback (α, h), our goal is to construct a reward
function rθ(·|α, h, τc) that gives higher cumulative rewards
to trajectories that have some minimal but noticeable change
in α in the direction specified by h while keeping other un-
mentioned attributes unchanged (or minimally changed).
We refer to such minimal but noticeable changes as mini-
mally viable local changes, and the queried trajectory τc as
the anchor trajectory. Accordingly, we denote this method
as RBA-Local.
To learn rθ, we assume we are provided (again, normally
by the agent builder and not the end user) a set of trajectory
pairs Dl = {(τc, τt, α, h)}, where τt is a trajectory that
reflects some minimally viable local changes to the anchor
trajectory τc in terms of the attribute α and the direction h.
rθ is trained to prefer τt over other negative samples (such as
trajectories that make excessive changes to τc, or trajectories
that are not significantly different from τc, or trajectories
that make changes to unspecified attributes). In practice,
we select the negative samples by randomly sampling from
the behavior dataset D. Again, rθ can be formulated as a
modified Bradley-Terry model:

Pθ [τt ≻ τn|α, h, τc]

=
exp

∑
s∈τt

rθ (ν(s))

exp
∑

s∈τn
rθ (ν(s)) + exp

∑
s∈τt

rθ (ν(s))
, (5)

where τn is a negative sample (i.e., trajectory), ν(s) =
[s, eα, h, ϕ(τc)], [·] is the vector concatenation operation, eα
as in RBA-Global can be either an one-hot representation
of attribute α or a sentence embedding output by Sentence-
BERT, and ϕ(τc) is a sequence encoder (e.g., an LSTM
(Hochreiter & Schmidhuber, 1997)) that encodes the anchor
trajectory τc to a compact latent representation. Note that

5

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

ϕ(·) is a sub-module of rθ and it’s jointly optimized with rθ.
Since rθ is essentially a preference-based reward function,
it can be optimized by employing a cross-entropy loss as in
the one in Eq. 2. We note that our computational framework
is similar to the Prompt-DT (Xu et al., 2022) in the sense
that we both take a reference trajectory as a “prompt” to
the model to obtain conditioned outputs. But instead of
trying to replicate the behavior in the “prompt” trajectory
as in Prompt-DT, our reward function learns to modify the
prompt in a controlled way. In a more recent work (Liu
et al., 2023), similar ideas have been shown to be effective
in refining language model outputs through sequences of
local changes informed by human feedback.

Compared to RBA-Global (Sec. 4.2) which requires a full
specification of all the attributes’ strengths, the reward func-
tion in RBA-Local only takes one attribute as input at a
time. This design is appealing as it offers better scalability
and it affords the development of a big universal behavioral
concept “encoder”. Nevertheless, RBA-Local still has the
following shortcomings: (a) it is less efficient than RBA-
Global in searching for the target behavior because it can
only make minimally viable changes to the presented behav-
ior; (b) The training data for RBA-Local is harder to collect.
Unlike RBA-Global, where any random subset of trajecto-
ries exhibiting distinct behaviors can be used as the training
samples, in RBA-Local, the agent builder must carefully
pick pairs of trajectories that reflect local changes. Also, the
judgement of how much variation constitutes a minimally
viable change can be fairly subjective.

5. Empirical Evaluation
As a proof of concept, we demonstrate the effectiveness
of our methods in a diverse set of four domains with nine
behavioral attributes that are depicted in Fig. 1 and Fig. 3:

Walker. This environment corresponds to a scenario that
involves a 2-legged home-service robot walking around the
house to perform household tasks. The users may want the
robot to walk more softly at night. This environment is also
related to physical character control scenarios wherein we
want the character to move in a sneaky way. Two attributes
are considered here: (a) step size; (b) softness of movement.

Manipulator. We consider a virtual character control sce-
nario wherein we want a simulated arm to mimic the ways
of a human lifting objects. When humans, especially elders
and children, are lifting heavy objects, their movement can
be unstable. Hence, we consider two attributes: (a) moving
speed of the arm; (b) instability of the movement.

Lane Change. We consider a driving scenario wherein the
rider would want to change the lane-changing behavior of
the cab to get a more pleasant experience. Two attributes
are used for evaluation: (a) the sharpness of steering: this

attribute corresponds to how sharp a turn the agent makes
while changing lanes; (b) distance to the following vehicle:
this attribute is about the distance between our agent and the
following car at the moment when our agent starts making
the lane change.

Snake Concertina. In this task, the agent is supposed to
control a virtual snake to imitate diverse concertina styles of
a real snake’s locomotion. There are three relevant attributes
in concertina locomotion: (a) width of the bend (i.e., the
maximal width that the snake occupies); (b) compression
(i.e., how much the snake’s body is compressed when it is
moving); (c) speed of movement.

More details of the evaluation domains can be found in
Appendix A.1. In our experiments, all the behavior clips
are generated either by hard-coded motions or by using
reinforcement learning with sophisticated reward designs
and hard-coded constraints.

5.1. Baseline and Results

For comparisons, we use the PbRL algorithm proposed in
(Christiano et al., 2017; Lee et al., 2021), which learns a
reward function from human preference labels collected
by making active queries. Considering that our methods
assume the additional access to the offline behavior dataset
D, we made a couple of modifications to make PbRL into
a stronger baseline. The most important one is that, to
optimize the most recent reward function and update the
agent’s behavior after each query, rather than applying rein-
forcement learning, we use the policies extracted from D.
Specifically, we stochastically sample a large set of rollouts
by executing the policies we used to synthesize dataset D,
and the rollout with the highest cumulative rewards is set as
the agent’s latest behavior. In practice, these policies can
also be unsupervisedly learned from D. This is identical to
the use of skill priors as in (Peng et al., 2018b; Pertsch et al.,
2020; Luo et al., 2020; Peng et al., 2022), which first learns
a diverse set of natural and plausible motions from offline
behavior datasets to reduce online computation. Besides, for
PbRL, we also experimented with different query strategies
and considered reusing previously trained reward models.
For the sake of simplicity, we only report the best PbRL
performance achieved at different setups.

As the evaluation metric, we count the number of human
feedbacks (i.e., the binary preference labels in PbRL and the
attribute-level feedback in our methods) needed to produce
the target behavior. For each domain, we randomly sam-
ple 20 behavior configurations as targets, and the selected
targets were unseen in the behavior dataset D. A trial is
considered as a success if the generated agent behavior has
a ground truth attribute strength or proxy score that falls
within a certain range of the target value. We use a threshold
that roughly divides the strength of each attribute into five

6

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Method Lane-Change Manipulator Snake Walker

SR AF (std) SR AF (std) SR AF (std) SR AF (std)

RBA-Global 0.95 3.95 (2.43) 1.0 2.8 (1.21) 0.85 4.17 (1.85) 1.0 3.75 (1.47)

RBA-Global-L 1.0 3.05 (2.06) 1.0 2.5 (1.32) 0.8 6.38 (5.03) 0.95 3.78 (2.25)

RBA-Local 0.7 7.07 (3.49) 0.7 12.23 (5.75) 0.55 6.45 (3.82) 0.95 5.47 (3.52)

RBA-Local-L 0.9 5.78 (4.04) 0.8 10.75 (6.35) 0.6 4.17 (2.11) 0.9 5.16 (3.08)

PbRL 1.0 162.3 (184) 0.6 159.5 (188.87) 0.05 N/A 1.0 84.6 (79.87)

Table 1: SR - Success Rate; AF - Average Feedback (when success); L - Language

Figure 2: A step-by-step visualization of the interaction process showing how the agent’s behaviors change according to
sequences of user’s feedback in the Walker domain. The two sequences on the left showcase RBA-Global and the sequences
on the right showcase RBA-Local. The upper and bottom rows represent the success and failure cases respectively. The
attribute strength scores above each image frame are given by hard-coded proxy measures, which are in the range of [0, 1].
For RBA-Global, we also show the corresponding reward function and input vt = ⟨target step size, target softness⟩. A more
detailed visualization is presented in the supplementary video.

to ten buckets. A trial is deemed unsuccessful if the agent
fails to produce the target behavior within a user-affordable
number of feedbacks (we used 500 in our evaluation). The
results are shown in Table 1, where we add “L” as suffix
to the names of variants that use language embedding as
attribute representation. Results show that with RBAs, users
can obtain desired agent behavior much more efficiently
than with PbRL. The upper row in Fig. 2 showcases how the
user can obtain desired agent behaviors through sequences
of attribute feedback with both methods. The interaction
processes suggest that the attribute-parameterized reward is
able to modify agent behaviors meaningfully in directions
that are informed by RBAs. For full information of the in-
teraction processes in all domains, we encourage the reader
to check out the supplementary video.1

Analysis of failure modes. Results suggest that both meth-
ods have a lower success rate when trying to generate behav-
iors close to the two extremes (e.g., moving very softly or
very recklessly). The bottom row in Fig. 2 shows two failure
cases. In RBA-Global, the reward function fails to produce

1Supplementary video can be found at https:
//guansuns.github.io/pages/rba.

a behavior with a larger step size when we increase the tar-
get step size score in vt from 18.51 to 18.62. This disrupts
the binary search process (Appendix A.3) and causes the
system to get stuck. Similar failure patterns can also be ob-
served in other domains. For example, in the Lane-Change
domain, the agent fails to increase the distance to the follow-
ing vehicle when the sharpness (proxy) score is 0.09. Since
RBA-Global is composed of two learned models, namely
the attribute strength estimator ζσ and the reward function
rθ, we also examine them separately to see which module
contributes more to the failures. By visualizing the outputs
of ζσ and the corresponding proxy ground truth (Fig. 5 in
Appendix A), we observe a positively correlated or some-
times linear relationship between them, suggesting that ζσ
can accurately capture the attribute strength even at the two
extremes. This observation verifies that the ineffectiveness
of RBA-Global is mainly caused by rθ’s failure to recover
behaviors specified in the target attribute-score vector vt.
Note that this is not surprising since ζσ only needs to learn
one global ordering per attribute while rθ has to learn almost
an infinite number of orderings given various input targets
vt. Future work can explore better training paradigms and
more expressive model architectures for rθ. In terms of the

7

https://guansuns.github.io/pages/rba
https://guansuns.github.io/pages/rba

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

failure modes of RBA-Local, it sometimes fails to edit the
behavior in the anchor trajectory τc and simply produces
the same behavior as in τc. As shown in the right bottom
plot of Fig. 2, the agent gets stuck when the user wants
to increase the softness when the agent is taking a large
step (proxy score: 0.954). Also, RBA-Local tends to have
a lower success rate than RBA-Global, indicating that its
more complex formulation and architecture might affect its
performance.

5.2. Additional Discussion

To get more insights into the number of labels needed to
learn an accurate attribute ranking function or reward func-
tion in our methods, we conduct an extra experiment in
which we train the model with different numbers of sam-
ples uniformly sampled from the training set, and evaluate
each model on a held-out testing set. Results (Appendix
A.5) show that to simultaneously learn two attributes, RBA-
Global needs around 200 labelled trajectories (and the order-
ings among them) and RBA-Local needs around 200 (τc, τt)
pairs, which is a reasonable number. Also, the cost of learn-
ing a reward function is amortized when we continue to use
it to support incoming users over its lifetime.

Recall that in the main experiment, we consider a trial as
a successful one if the difference between the agent’s be-
havior and the target behavior is lower than a threshold.
One interesting thing to see is whether our methods can
achieve even higher-precision control over the agent’s be-
havior. Hence, we additionally experiment with a threshold
value that roughly divides the attribute strengths into five
to ten times more buckets. As expected, a more restrictive
threshold reduces the performance of all algorithms, but our
methods still have a significant advantage in terms of feed-
back efficiency. Results are shown in Table 2 in Appendix
A. Note that this performance degradation was expected
because the control precision we wanted to achieve in this
experiment is higher than what we set in the training data
(e.g., the precision corresponds to changes that are smaller
than the minimally viable local changes defined in the train-
ing data for RBA-Local).

6. Conclusion
In this paper, we introduced the notion of relative behavioral
attributes which allows users to provide symbolic feedback
(i.e., their intent to increase/decrease attribute strength) to
efficiently tweak and get desired agent behavior. We pro-
posed two approaches and demonstrated their effectiveness
through experiments in a varied set of domains. For future
works, apart from the limitations we discussed earlier, it
would be interesting if we could develop methods that com-
bine the strengths of the two approaches proposed in this
work. Also, currently, we use the sentence embedding of

each attribute only as an alternative to the one-hot vector.
However, it would be beneficial to make better use of the
semantic structure inside the sentence embeddings.

Furthermore, it would be useful to explore the use of RBAs
outside of continuous control tasks. For instance, for AI
chatbots, we may construct rewards to capture not only bi-
nary attributes like helpfulness and harmfulness (Bai et al.,
2022b) but also abstraction levels of the text (e.g., scien-
tific concepts need to be explained differently to kids and
researchers) or the tonality of the response (ranging from
casual to a more formal or professional way). Inspired
by recent attempts to build reward-driven vision models
(Pinto et al., 2023), it would be also interesting to investi-
gate whether RBAs can facilitate reward construction for
fine-tuning models in computer vision tasks.

Acknowledgments
This research is supported in part by ONR grants N00014-
18-1-2442, N14-18-1-2840 and N00014-23-1-2409 and a
JP Morgan AI Faculty Research grant.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 1,
2004.

Abramson, J., Ahuja, A., Carnevale, F., Georgiev, P., Goldin,
A., Hung, A., Landon, J., Lhotka, J., Lillicrap, T., Mul-
dal, A., et al. Improving multimodal interactive agents
with reinforcement learning from human feedback. arXiv
preprint arXiv:2211.11602, 2022.

Bai, J., Wang, W., and Gomes, C. P. Contrastively disen-
tangled sequential variational autoencoder. Advances in
Neural Information Processing Systems, 34, 2021.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022a.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022b.

Bobu, A., Paxton, C., Yang, W., Sundaralingam, B., Chao,
Y.-W., Cakmak, M., and Fox, D. Learning perceptual
concepts by bootstrapping from human queries. arXiv
preprint arXiv:2111.05251, 2021.

8

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952.

Brown, D., Goo, W., Nagarajan, P., and Niekum, S. Extrap-
olating beyond suboptimal demonstrations via inverse re-
inforcement learning from observations. In International
conference on machine learning, pp. 783–792. PMLR,
2019.

Bucker, A., Figueredo, L., Haddadin, S., Kapoor, A., Ma, S.,
and Bonatti, R. Latte: Language trajectory transformer.
arXiv preprint arXiv:2208.02918, 2022.

Chebotar, Y., Hausman, K., Lu, Y., Xiao, T., Kalashnikov,
D., Varley, J., Irpan, A., Eysenbach, B., Julian, R., Finn,
C., et al. Actionable models: Unsupervised offline re-
inforcement learning of robotic skills. arXiv preprint
arXiv:2104.07749, 2021.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Cui, Y., Karamcheti, S., Palleti, R., Shivakumar, N., Liang,
P., and Sadigh, D. ” no, to the right”–online language
corrections for robotic manipulation via shared autonomy.
arXiv preprint arXiv:2301.02555, 2023.

Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Prad-
han, S., Chai, Y., Sapp, B., Qi, C. R., Zhou, Y., et al. Large
scale interactive motion forecasting for autonomous driv-
ing: The waymo open motion dataset. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 9710–9719, 2021.

Goenka, S., Zheng, Z., Jaiswal, A., Chada, R., Wu, Y.,
Hedau, V., and Natarajan, P. Fashionvlp: Vision lan-
guage transformer for fashion retrieval with feedback. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14105–14115, 2022.

Guan, L., Verma, M., Guo, S. S., Zhang, R., and Kambham-
pati, S. Widening the pipeline in human-guided reinforce-
ment learning with explanation and context-aware data
augmentation. Advances in Neural Information Process-
ing Systems, 34:21885–21897, 2021.

Guan, L., Sreedharan, S., and Kambhampati, S. Leveraging
approximate symbolic models for reinforcement learn-
ing via skill diversity. arXiv preprint arXiv:2202.02886,
2022.

Guo, C., Zou, S., Zuo, X., Wang, S., Ji, W., Li, X., and
Cheng, L. Generating diverse and natural 3d human
motions from text. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 5152–5161, 2022.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Icarte, R. T., Klassen, T. Q., Valenzano, R., and McIlraith,
S. A. Reward machines: Exploiting reward function
structure in reinforcement learning. Journal of Artificial
Intelligence Research, 73:173–208, 2022.

III, D. J. H. and Sadigh, D. Few-shot preference learning
for human-in-the-loop RL. In 6th Annual Conference on
Robot Learning, 2022. URL https://openreview.
net/forum?id=IKC5TfXLuW0.

Illanes, L., Yan, X., Icarte, R. T., and McIlraith, S. A.
Symbolic plans as high-level instructions for reinforce-
ment learning. In Proceedings of the Thirtieth Interna-
tional Conference on Automated Planning and Schedul-
ing, Nancy, France, October 26-30, 2020, pp. 540–550.
AAAI Press, 2020.

Kambhampati, S., Sreedharan, S., Verma, M., Zha, Y., and
Guan, L. Symbols as a lingua franca for bridging human-
ai chasm for explainable and advisable ai systems. In
AAAI, 2022.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,
Viegas, F., et al. Interpretability beyond feature attribu-
tion: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning,
pp. 2668–2677. PMLR, 2018.

Knox, W. B. and Stone, P. Interactively shaping agents via
human reinforcement: The tamer framework. In Proceed-
ings of the fifth international conference on Knowledge
capture, pp. 9–16, 2009.

Lee, K., Smith, L., and Abbeel, P. Pebble: Feedback-
efficient interactive reinforcement learning via relabeling
experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021.

Lee, L., Eysenbach, B., Salakhutdinov, R. R., Gu, S. S., and
Finn, C. Weakly-supervised reinforcement learning for
controllable behavior. Advances in Neural Information
Processing Systems, 33:2661–2673, 2020.

Lee, S. J. and Popović, Z. Learning behavior styles with
inverse reinforcement learning. ACM transactions on
graphics (TOG), 29(4):1–7, 2010.

Leurent, E. An environment for autonomous driv-
ing decision-making. https://github.com/
eleurent/highway-env, 2018.

Liu, H., Sferrazza, C., and Abbeel, P. Languages are re-
wards: Hindsight finetuning using human feedback. arXiv
preprint arXiv:2302.02676, 2023.

9

https://openreview.net/forum?id=IKC5TfXLuW0
https://openreview.net/forum?id=IKC5TfXLuW0
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Luo, Y.-S., Soeseno, J. H., Chen, T. P.-C., and Chen, W.-C.
Carl: Controllable agent with reinforcement learning for
quadruped locomotion. ACM Transactions on Graphics
(TOG), 39(4):38–1, 2020.

MacGlashan, J., Ho, M. K., Loftin, R., Peng, B., Wang, G.,
Roberts, D. L., Taylor, M. E., and Littman, M. L. Inter-
active learning from policy-dependent human feedback.
In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2285–2294. JMLR.
org, 2017.

Mahmoudieh, P., Pathak, D., and Darrell, T. Zero-shot
reward specification via grounded natural language. In
ICML, 2022.

Ng, A. Y., Russell, S., et al. Algorithms for inverse rein-
forcement learning. In Icml, volume 1, pp. 2, 2000.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., et al. Training language models to fol-
low instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Parikh, D. and Grauman, K. Relative attributes. In 2011
International Conference on Computer Vision, pp. 503–
510. IEEE, 2011.

Park, J., Seo, Y., Shin, J., Lee, H., Abbeel, P., and Lee,
K. Surf: Semi-supervised reward learning with data
augmentation for feedback-efficient preference-based re-
inforcement learning. arXiv preprint arXiv:2203.10050,
2022.

Peng, X. B., Abbeel, P., Levine, S., and Van de Panne, M.
Deepmimic: Example-guided deep reinforcement learn-
ing of physics-based character skills. ACM Transactions
On Graphics (TOG), 37(4):1–14, 2018a.

Peng, X. B., Kanazawa, A., Malik, J., Abbeel, P., and Levine,
S. Sfv: Reinforcement learning of physical skills from
videos. ACM Transactions On Graphics (TOG), 37(6):
1–14, 2018b.

Peng, X. B., Ma, Z., Abbeel, P., Levine, S., and Kanazawa,
A. Amp: Adversarial motion priors for stylized physics-
based character control. ACM Trans. Graph., 40(4), July
2021. doi: 10.1145/3450626.3459670. URL http:
//doi.acm.org/10.1145/3450626.3459670.

Peng, X. B., Guo, Y., Halper, L., Levine, S., and Fidler,
S. Ase: Large-scale reusable adversarial skill embed-
dings for physically simulated characters. arXiv preprint
arXiv:2205.01906, 2022.

Pertsch, K., Lee, Y., and Lim, J. J. Accelerating reinforce-
ment learning with learned skill priors. arXiv preprint
arXiv:2010.11944, 2020.

Pinto, A. S., Kolesnikov, A., Shi, Y., Beyer, L., and Zhai, X.
Tuning computer vision models with task rewards. arXiv
preprint arXiv:2302.08242, 2023.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence em-
beddings using siamese bert-networks. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational
Linguistics, 11 2019. URL https://arxiv.org/
abs/1908.10084.

Ren, Z., Liu, A., Liang, Y., Peng, J., and Ma, J. Efficient
meta reinforcement learning for preference-based fast
adaptation. In Oh, A. H., Agarwal, A., Belgrave, D.,
and Cho, K. (eds.), Advances in Neural Information Pro-
cessing Systems, 2022. URL https://openreview.
net/forum?id=61UwgeIotn.

Russell, S. J. and Norvig, P. Artificial intelligence - a mod-
ern approach, 2nd edition. In Prentice Hall series in
artificial intelligence, 2003.

Schaal, S. Learning from demonstration. Advances in neural
information processing systems, 9, 1996.

Silver, T., Athalye, A., Tenenbaum, J. B., Lozano-Perez, T.,
and Kaelbling, L. P. Learning neuro-symbolic skills for
bilevel planning. arXiv preprint arXiv:2206.10680, 2022.

Sreedharan, S., Soni, U., Verma, M., Srivastava, S.,
and Kambhampati, S. Bridging the gap: Providing
post-hoc symbolic explanations for sequential decision-
making problems with inscrutable representations. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=o-1v9hdSult.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback. Ad-
vances in Neural Information Processing Systems, 33:
3008–3021, 2020.

Tevet, G., Raab, S., Gordon, B., Shafir, Y., Cohen-Or, D.,
and Bermano, A. H. Human motion diffusion model.
arXiv preprint arXiv:2209.14916, 2022.

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez,
S., Merel, J., Erez, T., Lillicrap, T., Heess, N., and Tassa,
Y. dm control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020.

Wang, Z., Merel, J. S., Reed, S. E., de Freitas, N., Wayne,
G., and Heess, N. Robust imitation of diverse behaviors.
Advances in Neural Information Processing Systems, 30,
2017.

10

http://doi.acm.org/10.1145/3450626.3459670
http://doi.acm.org/10.1145/3450626.3459670
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://openreview.net/forum?id=61UwgeIotn
https://openreview.net/forum?id=61UwgeIotn
https://openreview.net/forum?id=o-1v9hdSult
https://openreview.net/forum?id=o-1v9hdSult

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Warnell, G., Waytowich, N., Lawhern, V., and Stone,
P. Deep tamer: Interactive agent shaping in high-
dimensional state spaces. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence, 2018.

Wilson, A., Fern, A., and Tadepalli, P. A bayesian approach
for policy learning from trajectory preference queries.
Advances in neural information processing systems, 25,
2012.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J., and Gan, C. Prompting decision transformer for few-
shot policy generalization. In International Conference
on Machine Learning, pp. 24631–24645. PMLR, 2022.

Yang, F., Lyu, D., Liu, B., and Gustafson, S. Peorl: In-
tegrating symbolic planning and hierarchical reinforce-
ment learning for robust decision-making. arXiv preprint
arXiv:1804.07779, 2018.

Zhang, R., Torabi, F., Guan, L., Ballard, D. H., and Stone,
P. Leveraging human guidance for deep reinforcement
learning tasks. arXiv preprint arXiv:1909.09906, 2019.

Zhang, R., Bansal, D., Hao, Y., Hiranaka, A., Gao, J., Wang,
C., Martı́n-Martı́n, R., Fei-Fei, L., and Wu, J. A dual
representation framework for robot learning with human
guidance. In 6th Annual Conference on Robot Learning,
2022.

Zhou, A. and Dragan, A. D. Cost functions for robot motion
style. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3632–3639.
IEEE, 2018.

11

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Figure 3: Visualizations of the evaluation domains and behavioral attributes.

A. Appendix
A.1. Details of the evaluation domains

Walker. Two attributes are considered in this domain: (a) step size; (b) softness of movement. To synthesize dataset and
simulate human feedbacks, we use the moving speed and landing speed of the feet as proxies to measure the abstract concept
softness or “sneaky”. The environment is implemented based on the Walker-2d domain in the DeepMind control suite
(Tunyasuvunakool et al., 2020).

Manipulator. We consider two attributes: (a) moving speed of the arm; (b) instability of the movement. The environment
is implemented based on the Manipulator domain in the DeepMind control suite. We synthesize the behavior clips by
hard coding the arm motion and by adding random noises in a controlled way. The purpose of conducting experiments in
this domain is to demonstrate that our method can capture not only regular behavior patterns but also the irregularities. A
Markov state is constructed by stacking five consecutive raw states of the environment to ensure it contains information
about the irregularities.

Lane Change. Two attributes are used for evaluation: (a) the sharpness of steering: this attribute corresponds to how
sharp a turn the agent makes while changing lanes; (b) distance to the following vehicle: this attribute is about the distance
between our agent and the following car at the moment when our agent starts making the lane change. This environment is
built on the highway environment in (Leurent, 2018). Note that the environment is an image based domain, so the objective
here is to verify that our methods can be scaled to image inputs.

Snake Concertina. There are three relevant attributes in concertina locomotion: (a) width of the bend (i.e., the maximal
width that the snake occupies); (b) compression (i.e., how much the snake’s body is compressed when it is moving); (c)
speed of movement.

A.2. Alternative ways to use the attribute strength estimator function in Method 1 (RBA-Global)

Recall that in RBA-Global, given a trained attribute strength estimator ζσ and a finite set of attributes A, the agent behavior
in any trajectory τ can be represented by an attribute vector v(τ) = ⟨ζσ(τ, α1), ..., ζσ(τ, αk)⟩, where k = |A| is the number
of attributes. If we assume the optimal policy is approximated via some parametric model (e.g., neural networks), we can
actually skip the learning of the attribute parameterized reward function by viewing the attribute vectors as skill latent codes
and learning a versatile policy conditioned on them. This is similar to the operations in (Wang et al., 2017; Peng et al., 2022)
but with a more structured latent code. Also, one might create a sparse reward given at the end of episode by computing the
distance between the extracted attribute vector and the target attribute vector. But such a reward is usually hard to optimize.

The main reason we choose to construct a reward function is that we find it more general, since rewards can be optimized
not only by RL, but also by other optimization-based methods. Another consideration here is whether it is easier to learn a
policy directly (e.g., via BC or IL) or to learn the reward first and then the policy (e.g., via IRL or PbRL). Prior empirical
results suggest that the latter tends to be a more robust solution.

12

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Method Lane-Change Manipulator Snake Walker

SR AF (std) SR AF (std) SR AF (std) SR AF (std)

RBA-Global 0.60 6.75 (2.98) 0.80 7.00 (2.45) 0.55 8.00 (3.67) 0.70 7.29 (2.63)

RBA-Global-L 0.7 6.79 (1.66) 0.75 5.47 (3.2) 0.25 10.4 (6.02) 0.75 6.00 (3.59)

RBA-Local 0.25 5.00 (0.63) 0.45 19.44 (5.57) 0.30 8.16 (3.18) 0.40 9.37 (4.15)

RBA-Local-L 0.4 8.63 (2.45) 0.30 10.5 (5.5) 0.50 7.2 (4.621) 0.40 6.25 (2.48)

PbRL 0.35 286.22
(167.49)

0.15 81.33 (66.97) 0.05 N/A 0.35 288.0 (143.45)

Table 2: Results on controlling the agent’s behavior with higher precision. SR - Success Rate; AF - Average Feedback (when success); L
- Language

A.3. Finding the target attribute scores with binary search

Binary search is highly efficient because it narrows down the search space by cutting it in half at each step. In order to
apply binary search in the attribute space, we need to maintain beliefs about the upper and lower bounds of each attribute.
In our case, the upper and lower bounds can be initialized to the maximum and minimum attribute scores observed in the
offline behavioral dataset D, where the scores are given by ζσ. At each query step, the agent presents to the human the
behavior corresponding to the median attribute value, i.e., αupper+αlower

2 , and updates the beliefs accordingly after getting
the feedback. In the case of extrapolation, we can also go beyond the maximum and minimum attribute strengths, but this is
no longer a binary search.

A.4. Architectures and Hyperparameters

When one-hot representation is used to represent attributes, both fσ and rθ in RBA-Global employ a 3-layer fully-connected
network with 512 hidden neurons as the architecture. In RBA-Local, for the trajectory encoder, we use a 2-layer bi-directional
LSTM with 128 as the hidden dim. The trajectory embedding, along with the input state and attribute, are fed into a 3-layer
fully-connected network with 512 hidden neurons to compute the reward.

When sentence embeddings are used as attribute representation, for both RBA-Global and RBA-Local, we increase the
number of hidden neurons in fully-connected layers from 512 to 1024 due to the increase in the size of attribute embedding
(size 768).

A.5. Number of training samples needed in our methods

Fig. 7 and Fig. 8 show the performance (on a held-out testing set) of Method 1 (RBA-Global) and Method 2 (RBA-Local)
when different numbers of training samples are used. For RBA-Global, given an ordered trajectory pair (τ1 ≻α τ2), the
ranking function is converted into a binary classifier that predicts the ordering of the given pair. The performance is measured
in terms of the accuracy of this binary classifier. Similarly for RBA-Local, the performance is measured by converting
Equation 5 to a binary classification problem where the function predicts whether a trajectory is the target trajectory or
not. Note that the sample complexity of the two methods is not directly comparable because their training samples are in
different formats.

A.6. Discussion on Unsupervised Discovery of Behavioral Attributes

As a preliminary attempt in this study, we explored the possibility of unsupervised discovery of concepts or properties. We
applied a state-of-the-art disentangled sequential variational autoencoder method, C-DSVAE (Bai et al., 2021), to learn
to encode behaviors in the offline behavior dataset D. Though the behavior/motion embeddings given by C-DSVAE are
able to cluster visually similar traces together, it still has difficulty capturing subtle but meaningful differences in behaviors.
More importantly, it fails to establish any meaningful ordering among behaviors. As an example (Fig. 6), we visualize the
variations encoded in a specific dimension in the latent space of the Lane-Change domain. This observation is consistent with
the current trend in vision-text research, which suggests unless additional supervision signals are provided, representations
developed by neural networks are not guaranteed to capture semantics that make sense to humans. This preliminary study
confirms the necessity to employ supervised learning for behavioral attribute modeling.

13

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Figure 4: Overview of Method 1 (RBA-Global) and Method 2 (RBA-Local).

Figure 5: The relationship between ζσ and the hand-designed proxy ground truth. The attribute strength scores are computed
with one-hot vectors used as the attribute representation. We can observe a similar pattern when language embeddings are
used.

14

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Figure 6: A failure case of unsupervised concept discovery. Each row corresponds to a behavior trace.

15

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Figure 7: Performance of the ranking function in Method 1 (RBA-Global) versus # of training samples.

16

RBAs: Filling the Gap between Symbolic Goal Specification and Reward Learning from Human Preferences

Figure 8: Performance of Method 2 (RBA-Local) versus # of training samples in Method 2 (RBA-Local).

17

