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Abstract
Medical image segmentation is of great significance to disease
diagnosis and treatment planning. Despite multiple progresses,
most present methods (1) pay insufficient attention to suppressing
background noise disturbance that impacts segmentation accuracy
and (2) are not efficient enough, especially when the images are
of large resolutions. To address the two challenges, we turn to a
traditional de-noising method and a new efficient network struc-
ture and propose BSBP-RWKV for accurate and efficient medical
image segmentation. Specifically, we combine the advantages of
Perona-Malik Diffusion (PMD) in noise suppression without losing
boundary details and RWKV in its efficient structure, and devise
the DWT-PMD RWKV Block across one of our encoder branches to
preserve boundary details of lesion areas while suppressing back-
ground noise disturbance in an efficient structure. Then we feed the
de-noised lesion boundary cues to our proposed Multi-Step Runge-
Kutta convolutional Block to supplement the cues with more local
details. We also propose a novel loss function for shape refinement
that can align the shape of predicted lesion areas with GT masks in
both spatial and frequency domains. Experiments on ISIC 2016 and
Kvasir-SEG show the superior accuracy and efficiency of our BSBP-
RWKV. Specifically, BSBP-RWKV reduces complexity of 5.8 times
compared with the SOTA while also cutting down GPU memory
usage by over 62.7% for each 1024 × 1024 image during inference.
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1 Introduction
Medical image segmentation is a fundamental task in the field of
medical imaging analysis, aimed at extracting precise lesion infor-
mation from various types of medical images. It plays a crucial
role in helping healthcare professionals in accurate diagnosis, treat-
ment planning, and monitoring of various diseases and conditions.
However, relying on manual diagnosis is often time-consuming and
prone to errors. Therefore, there is a need for an automated, effi-
cient and accurate medical image segmentation method to improve
the clinical workflow.

In the early years, traditional methods were commonly used,
which involved hand-crafted features. However, these methods
heavily relied on prior knowledge, were unstable, and inefficient,
resulting in limited performance improvement for medical image
segmentation. In recent years, deep learning-based methods have
significantly improved the performance of medical image segmenta-
tion. These methods can be categorized into two main approaches:
CNN-based methods [5, 14, 22, 24, 43] and Transformer-based meth-
ods [3, 21]. The performance of CNN-based methods in most medi-
cal image segmentation tasks is often inferior to Transformer-based
methods due to the limitation of CNNs in focusing solely on lo-
cal features. However, while Transformer-based methods excel in
modeling long-range dependencies, they generally suffer from a
weak local feature extraction ability [10, 11, 42]. As a result, re-
searchers have turned to hybrid approaches that combine CNNs
and Transformers [4, 19, 35, 39]. Using CNNs in extracting local fea-
tures and the capabilities of Transformers in modeling long-range
dependencies, these hybrid methods have achieved state-of-the-art
performance in many medical image segmentation tasks.

Although improvements have been made, most of these methods
(1) are unaware of the background noise disturbance that some-
times impacts accuracy, and (2) suffer from inefficient segmentation
dealing with high-resolution images, which are very common in
the medical domain. Actually, the noise disturbance problem is
non-negligible in the medical images, as we visualized the PSNR of
some randomly sampled medical images in two datasets before and
after our de-noising operation in Fig. 1. We also offer a set of visual
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Figure 1: (a) Visualization of the flawed shape-aware segmen-
tation challenge and the boundary disturbance challenge. (b)
Computed the peak signal-to-noise ratio (PSNR) between the
random sampled 100 original images and the post-PMD de-
noising images for Kvasir-SEG (green) and ISIC 2016 (orange).
The PSNR values above 30dB are considered to indicate less
noise interference in the image, while those between 20-30dB
are considered to indicate acceptable image quality, but the
image is affected by noise.

comparison results to show that recent well-performed medical
image segmentation methods can still be impacted by irrelevant
noise and mistake these noise points for lesion areas. In addition,
once the image resolution is large, present methods often seem
inefficient, as compared in Fig. 2, due to the quadratic complex-
ity of transformer structures. Despite linear complexity designs,
their segmentation accuracy are still subordinate to some quadratic
complexity transformer-based methods.

To solve the efficiency challenge with the increase in image reso-
lution, we turn to Receptance Weighted Key Value (RWKV) [30] in
our network design and are the first to apply Receptance Weighted
Key Value (RWKV) [30] structure to the medical image analysis
domain. RWKV is a new basic network structure with linear com-
plexity and boasts very low computation complexity. To address
the challenge of noise disturbance for improved accuracy, we are
inspired by Perona-Malik Diffusion (PMD) [31]. Specifically, we pro-
pose a PMD RWKV block based on the discrete wavelet transform
(DWT) to suppress background noise disturbance while preserv-
ing the boundaries of the lesion target. This block describes the
process of evolution of the feature map to the final segmentation
mask in medical image segmentation from the perspective of pixel
diffusion. However, merely the RWKV design cannot sufficiently

extract enough local features to better preserve the lesion shape
features, so we further propose the Multi-Step Runge-Kutta convo-
lutional Block. The Multi-Step Runge-Kutta Block is used due to
its high-precision feature extraction capability. It intakes the target
body feature as well as the DWT-PMD RWKV Block boundary
output and integrates the two to improve the shape-aware seg-
mentation quality. Furthermore, we introduce a shape refinement
loss which incorporates frequency information. This loss helps the
model escape from local optima and further refines the mask when
the predicted mask and ground truth exhibit high similarity in the
spatial domain and are difficult to optimize.

Our contributions can be summarized in four folds:
• To the best of our knowledge, we are the first to apply
RWKV to the medical image task successfully, providing a
new benchmark and valuable insights for future advance-
ments in efficient and accurate RWKV-based methods.

• We devise a DWT-PMD RWKV Block to preserve the bound-
ary details of lesion areas while suppressing background
disturbances like noise.

• We propose a Multi-Step Runge-Kutta convolutional Block
to provide more local feature components by integrating
the preserved boundary cues with the main body features
of lesion areas. For further shape refinement, we propose a
shape refinement loss function by aligning predicted masks
with GTs in both spatial and frequency domains.

• Experiments on ISIC 2016 and Kvasir-SEG prove the superior
accuracy and efficiency of our method. Specifically, BSBP-
RWKV reduces complexity of 5.8 times compared with the
SOTA while also cutting down GPU memory usage by over
62.7% for each 1024 × 1024 image during inference.

2 Related Work
2.1 Medical Image Segmentation
Generally, medical image segmentation methods have two cate-
gories: CNN-based methods and Transformer-based methods. In
the past few years, CNN-based methods have received widespread
attention in the field of medical image segmentation due to CNN’s
powerful feature extraction capabilities. Among them, UNet [32]
has been pioneering and has shown promising results in various
medical image segmentation tasks. Subsequently, several variants
based on UNet have emerged, such as Attention UNet [28] and
UNet++ [44]. These methods propose different improvement tech-
niques on top of the U-shaped structure, enhancing the network’s
feature capture ability and cross-layer feature fusion capability. In
addition, there are also CNN-based methods specifically designed
for certain tasks, such as fundus images segmentation [16] and lung
infection images segmentation [15]. However, the limited receptive
field of CNNs makes it hard to capture long-range dependencies
[8]. Consequently, when dealing with larger targets, using CNNs
often results in incomplete segmentation.

Recently, transformer-based methods have become popular in
medical image segmentation tasks. Due to excels at modeling long-
range dependencies, transformer-basedmethods have outperformed
many CNN-based methods. Therefore, they are considered as al-
ternatives to CNNs. ViT [12] is the first work to use a pure trans-
former for image classification, achieving promising results. Then,
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Figure 2: (a), (b) BSBP-RWKV is more computation and memory efficient than present SOTA methods, H2Former [19] and
FCBFormer [34], in dealing with high-resolution medical images. Specifically, When the image resolution is 1024 x 1024,
BSBP-RWKV is 5.8× less in complexity and saves over 62.7% GPU memory per image than the SOTA FCBFormer [34]. (c) The
overall efficiency comparison on images of resolution 512 × 512, where larger bubbles denote higher computational cost.

many works based on ViT have been proposed for medical image
segmentation. Swin-UNet [3] builds upon the U-shaped structure
and reduces computational costs by incorporating local window
self-attention, resulting in good performance. TranUNet [4] and
H2Former [19] adopt a hybrid CNN-Transformer structure that
addresses the problem of pure Transformer structure lacking local
spatial information by combining local features from CNNs with
global features from Transformers.

However, transformer-based methods have high computational
complexity, which limits its application in medical image process-
ing. Receptance Weighted Key Value (RWKV) [30] was initially
proposed for natural language processing. It combines the parallel
training advantage of transformers with the efficient inference of
RNNs, making it a potential alternative to transformers. Vision-
RWKV (VRWKV) [13] extends RWKV to computer vision tasks
and is the first work to use RWKV for image classification, object
detection, and semantic segmentation, showing promising results
on these tasks. Therefore, we focus on RWKV-based methods, and
to the best of our knowledge, we are the first to introduce RWKV
into medical image domain.

The above work either focuses on feature fusion or on construct-
ing effective network modules, while ignoring that some back-
ground disturbance may impact segmentation quality and some
irregularly shaped lesion targets still cannot get finely segmented.
As a solution, in this paper, we describe the process of target pixel
refinement in medical image segmentation from the image pixel
diffusion perspective and achieve both background suppression
and boundary preservation. We also make further attempts for
continuous shape refinement through the network by building neu-
ral blocks based on the high-accuracy multi-step ODE solver and
proposing a novel loss function to align the shape prediction of
lesion targets with GTmasks in both spatial and frequency domains.

2.2 Perona-Malik Diffusion and Neural Network
Perona-Malik Diffusion is an image processing technique based on
partial differential equations. This method was originally proposed

by Perona and Malik [31] to address the issues of noise removal and
preservation of edge information in images by the introduction of
nonlinear anisotropic diffusion. The basic principle of this method
is to adjust the diffusion rate based on the gradient differences
between pixels in the image, in order to better preserve edge details.
The diffusion process of pixels is described by the Perona-Malik
equation. In the equation, (𝑥,𝑦) represents the position of the pixel,
which gradually diffuses over time 𝑡 under the guidance of the diffu-
sion coefficient function 𝑔 (). Ultimately, it reaches an equilibrium
state, resulting in the removal of background noise from the image
and the preservation of the edges of the targets. The Perona-Malik
equation describes how pixels change over time in space. Simi-
larly, in the process of medical image segmentation, as the depth of
the network increases, the target pixels gradually transition from
coarse to fine under the guidance of the loss function, eventually
reaching an equilibrium state.

In recent years, researchers have attempted to establish connec-
tions between PMD and neural networks for specific tasks. Ning
Wen et al. [38] explored the combination of PMD with CNN for the
supervised classification of hyperspectral images. Haowen Zhang
et al. [41] integrated PMD into the neural network for low-dose CT
denoising. Similarly, Asem Khmag [25] combined the Perona-Malik
model with pulse-coupled neural networks for denoising natural
digital images. These works explore the potential of combining
PMD with a neural network. Ye et al.[40] proposed to combine
Mamba with PMD for efficient pediatric left ventricular echocardio-
graphic segmentation. Inspired by the above works, we propose the
DWT-PMD RWKV Block, which preserves the target edges while
suppressing background noise. This can provide a new perspective
on the evolution processes of medical image predicted masks.

2.3 Neural Ordinary Differential Equation
Weinan [37] is the first to explore the link between ODE and
ResNet [20] and introduced ODE into neural networks. Further-
more, [26, 27] also explained the network from the perspective of
ODE. Then, the network inspired by ODE has gained attention and
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has achieved remarkable success in image segmentation tasks due to
its high-precision feature extraction capabilities. One notable appli-
cation is its effectiveness in infrared small target detection [6, 7, 9].
However, to our knowledge, ODE has not been widely explored in
medical image segmentation tasks. [33] merely combines the classi-
cal one-step ODE methods with networks, which inevitably causes
some degrees of information loss since only the information from
the previous step is used for the prediction of the next step. [29]
also attempts to study organ segmentation from the perspective of
ODE, but their focus is on the intrinsic robustness of Neural-ODEs
rather than accuracy-related issues. Inspired by the above works,
we propose a Multi-Step Runge-Kutta Block. Compared with one-
step-method-based ODE neural blocks, ours embraces a multi-step
memory mechanism, thereby avoiding excessive information loss
and offering enhanced feature learning capabilities.

3 Method
3.1 Overview
Wepropose BSBP-RWKV, amedical image segmentation framework
based on PMD and the Multi-Step Runge-Kutta method. As shown
in Fig. 3, the encoder follows a dual-branch structure consisting of
a cascaded DWT-PMD RWKV Block feature extraction branch and
a parallel Multi-Step Runge-Kutta Block branch. The DWT-PMD
RWKV Block feature extraction branch is used to suppress back-
ground noise disturbance while preserving the boundaries of the
lesion targets, which helps shape-aware segmentation. The Multi-
Step Runge-Kutta Block branch aims to integrate the boundary
predictions from DWT-PMD RWKV Block branches with target
main body features with accurate location cues as a further shape
refinement. The shared stem is used to obtain the initial input for
the first DWT-PMD RWKV Block and a partial input for the first
Multi-Step Runge-Kutta Block. The input to the first Multi-Step
Runge-Kutta Block in each stage is composed of the output from
the DWT-PMD RWKV Block and the output from the previous
stage’s Multi-Step Runge-Kutta Block. The resulting feature map is
then fed into the plain decoder to progressively enlarge the fused
features by four stages until reaching a segmentation head to gen-
erate the final mask result. We design a specific loss function to
supervise the final prediction.

3.2 DWT-PMD RWKV Block
Perona-Malik Diffusion (PMD) is originally used in image de-noising
tasks. It can improve image quality by preserving image bound-
aries and suppressing noise disturbance. Medical images are often
corrupted by background noise disturbance and sometimes have
blurred lesion area boundaries, which pose great challenges for
accurate shape-aware medical segmentation. Therefore, we intend
to build a PMD-inspired RWKV block to act upon feature maps so
that the background disturbance can be filtered while some target
boundary cues can still be preserved.

Given an input feature map 𝑢, its PMD equation is:

𝜕𝑢

𝜕𝑡
= 𝑑𝑖𝑣 (𝑔 ( |∇𝑢 |) ∇𝑢) (1)

where 𝑔|∇𝑢 | is the diffusion coefficient; 𝑡 is the diffusion step and
can be regarded as the layer depth of where the feature map is; 𝑘

is a positive constant to control the degree of diffusion [17] and is
set to 1 by default in our experiments. Notably, Equation (1) is an
anisotropic diffusion equation: in the flat or smooth regions where
the gradient magnitude is small (|∇𝑢 | → 0), the diffusion coefficient
𝑔 is large, meaning that the diffusion is strong and Equation (1) acts
as Gaussian smoothing to remove the noise disturbance; in some-
where near the target’s boundary, where the gradient magnitude
is large (|∇𝑢 | → 1), the coefficient 𝑔 is near zero, which means the
diffusion is weak so the boundary details can be preserved.

Equation (1) can also be rewritten to the following form:
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where 𝜕𝑢
𝜕𝑥 and 𝜕𝑢

𝜕𝑦 represent the gradients of the feature map in
horizontal and vertical directions.

On the other hand, the Discrete Wavelet Transform (DWT) of
an input feature map can can be expressed as:

𝑢𝑖 = 𝐷𝑊𝑇 (𝑢), 𝑖 ∈ {𝑢𝐿𝐿, 𝑢𝐿𝐻 , 𝑢𝐻𝐿, 𝑢𝐻𝐻 } (3)

where 𝑢𝐿𝐿 represents the low-frequency component, which primar-
ily reflects the basic structure of the targets in the image. 𝑢𝐿𝐻 , 𝑢𝐻𝐿

and 𝑢𝐻𝐻 represent the high-frequency components in horizontal,
vertical and diagonal directions of the image, which mainly capture
the boundary details. By approximating the derivative terms 𝜕𝑢

𝜕𝑥

with 𝑢𝐿𝐻 and 𝜕𝑢
𝜕𝑦 with 𝑢𝐻𝐿 and setting the diffusion step size 𝛿𝑡 to

one, we can convert Equation (2) to the discrete format:
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(4)

After enhancing the feature map by PMD, we feed the diffusion
output into a RWKV layer implemented by [13]. By piling mul-
tiple DWT-PMD RWKV Blocks (shown in Fig. 4) in all layers of
one encoder branch, our BSBP-RWKV is equipped with the ability
to suppress background noise disturbance while preserving the
boundary features of the lesion areas.

3.3 Multi-Step Runge-Kutta Block
ODE-based methods have been proven effective in segmentation
tasks [6, 33]. However, mostmethods are based on a single-stepODE
solver, which inevitably leads to certain degrees of target feature
loss since only the information of one former step is used to make
the next step prediction. Inspired by the Multi-Step Runge-Kutta
method, we propose the Multi-step Runge-Kutta Block (shown in
Fig. 5) that intakes and integrates the boundary output from DWT-
PMD RWKV Block and the target body location feature to further
refine the shape-aware segmentation quality.

Superior to the Euler method that ResNet is based on and the clas-
sic Runge-Kutta method, the Multi-Step Runge-Kutta method is a
multi-step ODE solver that achieves third-order prediction accuracy
with just two former step predictions. It not only allows for more
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Figure 3: Overall structure of our proposed BSBP-RWKV, which mainly includes a dual-branch encoder and a plain decoder.
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Figure 4: Structure of our proposed DWT-PMDRWKV Block.

refined approximations using previous values but has also been
demonstrated by [1] to outperform other commonly used multi-
step methods like the third-order Adams-Bashforth. The formula
of Multi-Step Runge-Kutta method is as follows:

𝑢𝑘+2 = 𝑢𝑘+1 +
(
2

𝑛1𝑛2
𝑛1 + 𝑛2

)
(5)

where
𝑛1 = ℎ𝑓 (𝑢𝑘+1)

𝑛2 = ℎ𝑓

(
𝑢𝑘+1 + 𝑛1 +

3
2
ℎ (𝑓 (𝑢𝑘+1) − 𝑓 (𝑢𝑘 ))

) (6)

𝑢𝑘
× -1

×3/2 × 2

𝑢k+1
𝑢k+2

Conv/BN/
ReLu

𝑛1 𝑛2

Figure 5: Structure of our proposed Multi-Step Runge-Kutta
Block.

where 𝑢 represents the feature map, 𝑘 denotes the forward-
ing layer number, and ℎ𝑓 (.) represents the basic residual part in
ResNet [20]. It is worth noting that we use the boundary output
of the current stage’s DWT-PMD RWKV Block and the previous
layer’s Multi-Step Runge-Kutta Block output as 𝑢𝑘 and 𝑢𝑘+1 when
predicting 𝑢𝑘+2. The advanced multi-step memory mechanism of
the Multi-Step Runge-Kutta Block enables the network to utilize
more previously predicted target shape cues so that the lesion
shapes can be progressively refined to better align with the ground
truth masks. In this way, the boundary details and the body location
feature of the predicted lesion areas get well integrated.
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3.4 Shape Refinement Loss
Medical image segmentation is a pixel-level classification problem
that aims to accurately classify each pixel in an image as either
the target or the background. Typically, this problem is addressed
using cross-entropy loss and Dice loss, with the latter being pro-
posed by Carole H Sudre et al [36]. for medical image segmentation
tasks to address the issue of class imbalance. However, existing loss
functions for medical image segmentation are defined in the spatial
domain. When the predicted lesion area is iteratively refined to
be similar in shape to the GT, it becomes challenging to further
optimize the model in the spatial domain, leading to a potential risk
of getting stuck in local optima.

To address the above issue, we propose the shape refinement
loss by combining a particular frequency loss L𝑓 𝑟𝑒𝑞 with present
spatial loss based on DWT, which can be used to highlight the
difference between the predicted mask and ground truth using
frequency clues to jump out of the local optimumwhen they become
similar in the spatial domain and the model is difficult to further
optimize, especially for the boundaries of the lesion area. This is
because frequency domain clues are more sensitive to gradient
discrepancies at the boundaries of the target and background. Our
proposed L𝑓 𝑟𝑒𝑞 is defined as follows:

L𝑓 𝑟𝑒𝑞 =
∑︁
𝑖∈𝐼

𝛼 (𝜙1 (𝑦𝑖 ) − 𝜙1 (𝑦𝑖 ))2 + 𝛽 (𝜙2 (𝑦𝑖 ) − 𝜙2 (𝑦𝑖 ))2 (7)

where 𝜙1 and 𝜙2 denotes the operations of retaining only the low-
frequency components and high-frequency components by DWT,
respectively. 𝛼 and 𝛽 are hyper-parameters, and their sum is con-
strained to be equal to 1. 𝑦 and 𝑦𝑖 represent the ground truth and
predicted mask, respectively. 𝑖 ∈ 𝐼 refers to a pixel in the 𝑦 and 𝑦𝑖 .

The spatial loss adopts the combination of cross-entropy loss
and Dice loss commonly used in medical image segmentation tasks
and are are respectively defined as follows:

L𝑠𝑝𝑎𝑐𝑒 = (0.3L𝑐𝑒 + 0.7L𝑑𝑖𝑐𝑒 ) (8)

L𝑐𝑒 = −
∑︁
𝑖∈𝐼

𝑦𝑖𝑙𝑜𝑔 (𝑦𝑖 ) + (1 − 𝑦𝑖 ) 𝑙𝑜𝑔 (1 − 𝑦𝑖 ) (9)

L𝑑𝑖𝑐𝑒 = 1 − 2
∑
𝑖∈𝐼 𝑦𝑖𝑦𝑖∑

𝑖∈𝐼 𝑦𝑖 +
∑
𝑖∈𝐼 𝑦𝑖

(10)

Then we can define our proposed shape refinement loss L𝑠𝑟 as
follows:

L𝑠𝑟 = L𝑠𝑝𝑎𝑐𝑒 + 𝜆L𝑓 𝑟𝑒𝑞 (11)

where 𝜆 represents the balance coefficient between the spatial do-
main loss and the frequency domain loss and is set to 0.8. The
overall loss function L of our BSBP-RWKV includes L𝑂𝑢𝑡 as the
primary loss andL𝐷𝑊𝑇−𝑃𝑀𝐷 as the auxiliary boundary loss.L𝑂𝑢𝑡

follows the L𝑠𝑟 form and L𝐷𝑊𝑇−𝑃𝑀𝐷 follows the L𝑠𝑝𝑎𝑐𝑒 form.
The overall loss L is defined as:

L = L𝑂𝑢𝑡 + L𝐷𝑊𝑇−𝑃𝑀𝐷 (12)

4 Experiments
4.1 Experimental Settings
4.1.1 Datasets. Skin lesion dataset [18]. We use the ISIC 2016
skin lesion segmentation dataset, which serves as a benchmark

challenge for automated diagnosis of skin cancer. It contains 900
training images and 379 test images.
Kvasir-SEG dataset [23]. This is a largest-scale challenging dataset
for gastrointestinal polyp segmentation containing 1000 polyp im-
ages. Since the official split setting for training and testing is not
provided, we follow the same split setting as in [2], 80% for training
and 20% for testing.

4.1.2 Implementation Details. All experiments were implemented
in the Pytorch and performed on NVIDIA GeForce RTX 3090 GPU.
The model was iterated for 250 epochs using the AdamW optimizer
with initial learning rate 10−4, weight decay 10−4, which is reduced
by the “Poly” strategy. The batch size for training is 8. All images
and masks are resized to 512 × 512.

4.1.3 Evaluation Metrics. For the performance evaluation metrics
of the model. We use Dice and IoU, where Dice and IoU repre-
sent Dice Similariy Coefficient and Intersection-over-Union, re-
spectively. They are used to measure the similarity between the
predicted mask and the ground truth, which can be computed as
follows:

𝐷𝑖𝑐𝑒 =
2𝑇𝑃

(𝑇𝑃 + 𝐹𝑁 ) + (𝑇𝑃 + 𝐹𝑃) (13)

𝐼𝑜𝑈 =
𝑇𝑃

𝐹𝑁 + 𝐹𝑃 +𝑇𝑃 (14)

where FN, TP, and FP represent false negative, true positive and
false positive predictions, respectively.

4.2 Comparisons With Other Methods
The quantitative comparison result with other methods is shown
in Table 1, where our method achieves the best performances. To
be more specific, our BSBP-RWKV achieves a Dice score of 93.51%
and an IoU score of 88.47% on the ISIC 2016 dataset, surpassing the
second-ranked method FCBFormer by 0.89% and 1.35%, respectively.
On the Kvasir-SEG dataset, BSBP-RWKV achieves a Dice score of
92.74% and an IoU score of 87.92%, surpassing the second-ranked
method TGDAUNet by 0.67% and 0.93%, respectively. Compared
to the Vision-RWKV method, which is also of RWKV type, our
approach exceeds it by 3. 28% in terms of Dice score and 4.16% in
terms of IoU in the ISIC 2016 dataset. Additionally, on the Kvasir-
SEG dataset, our method outperforms Vision-RWKV by 3.3% in
Dice score and 4.6% in IoU. The reason why other methods have
weaker segmentation performance compared to BSBP-RWKV is
that these methods tend to ignore that some image background
noise disturbance may disturb the segmentation effect and the
importance of target edges. The reason analysis is demonstrated
by our visual results shown in Fig. 6 (a), where our BSBP-RWKV is
undisturbed by background disturbance and can produce promising
segmentation results. Fig. 6 (b) visualizes the effect of our DWT-
PMD RWKV Block in boundary preservation and the effect of our
Multi-Step Runge-Kutta Block in shape refinement. Equipped with
both parts, our loss function brings the best segmentation results.

4.3 Ablation Study
The ablation study of each component in BSBP-RWKV is presented
in Table 2. From the experiments, we can observe that when the
DWT-PMD RWKV Block was used alone, it exhibited an improve-
ment in performance compared to the baseline. This improvement
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Figure 6: Result visualization of (a) different medical image segmentation methods (b) intermediate branch outputs of BSBP-
RWKV.

Type Method ISIC 2016 Kvasir-SEG
Dice↑ IoU↑ Dice↑ IoU↑

CNN

UNet 89.56 83.61 87.96 82.34
UNet++ 89.46 83.63 87.01 78.84
PSPNet 90.22 83.87 87.95 82.62
PraNet 90.20 84.73 89.80 84.00
nnUNet 90.45 84.52 89.75 83.59

DeepLabv3+ 90.12 84.35 87.04 82.05
ViG-UNet 92.06 85.58 81.88 71.04

Trans Swin-UNet 90.12 83.21 70.71 60.96
MISSFormer 88.37 80.75 71.56 61.17

Hybrid

TransUNet 91.31 84.96 89.21 83.73
CvT 90.42 84.25 88.13 82.04

TGDAUNet 92.15 86.32 92.07 86.99
FCBFormer 92.62 87.12 91.43 86.03
H2Former 92.41 86.45 91.80 86.29

RWKV Vision-RWKV 90.23 84.31 89.44 83.32
BSBP-RWKV 93.51 88.47 92.74 87.92

Table 1: Quantitative results of different methods on ISIC
2016 and Kvasir-SEG in terms of Dice(%), IoU(%).

can be attributed to the DWT-PMD RWKV Block can effectively
suppress background noise while preserving boundaries, leading
to significant enhancements in the segmentation results. Similarly,
when the Multi-Step Runge-Kutta Block was used alone, it also
demonstrated an improvement over the baseline. This suggests
that the Multi-Step Runge-Kutta Block, with its multi-step mem-
ory mechanism, can more accurately extract lesion body features

and thereby improve segmentation results. When the DWT-PMD
RWKVBlock andMulti-Step Runge-Kutta Block were used together,
the segmentation results reached optimum. This suggests that the
Multi-Step Runge-Kutta Block can integrate the boundary infor-
mation learned by the DWT-PMD RWKV Block to achieve better
shape-aware segmentation results and also shows the complemen-
tary properties of the two modules.

The ablation study on the number of DWT-PMD RWKV Block is
shown in Table 3. In this study, we varied the number of blocks in
different stages while keeping the total number of blocks in the four
stages constant. Experimental results demonstrated that increasing
the number of blocks in the intermediate stages, particularly in the
third stage, led to improvements in the segmentation performance,
rather than evenly distributing them.

Additionally, we ablate the effect of our Multi-Step Runge-Kutta
Blcok in Table 4. We compare the performance of Multi-Step Runge-
Kutta Blcok with the Single-Step Runge-Kutta Block (SSRK) and
the Euler-based Resblock. The performance improvement of the
Single-Step Runge-Kutta Block over the Euler-based Resblock is
marginal, while the Multi-Step Runge-Kutta Block exhibits a sig-
nificant performance improvement compared to the Single-Step
Runge-Kutta Block. The experiments demonstrate that our Multi-
Step Runge-Kutta Blcok with multi-step memory mechanism to
integrate target boundary and main body features shows more
promising segmentation results.

Fig. 7 ablates the proportion of low-frequency and high-frequency
components in the frequency loss (L𝑓 𝑟𝑒𝑞 ) part of our L𝑠𝑟 . The re-
sults show that when the low-frequency loss component accounts
for around 50% (𝛼 = 0.5) of the total loss, the segmentation perfor-
mance is optimal. However, when the low-frequency component
is completely absent (𝛼 = 0) or the high-frequency component
is completely missing (𝛼 = 1), there is a significant decrease in
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Method ISIC 2016 Kvasir-SEG
Dice↑ IoU↑ Dice↑ IoU↑

Baseline 90.91 85.14 89.62 83.75
Baseline+MSRK 92.64 87.17 90.58 85.36

Baseline+DWT-PMD 92.93 87.82 91.86 86.81
Baseline+DWT-PMD+MSRK 93.51 88.47 92.74 87.92

Table 2: Ablation study ofDWT-PMDRWKVBlock andMulti-
Step Runge-Kutta Block on ISIC 2016 and Kvasir-SEG in
terms of Dice(%), IoU(%). The baseline is RWKV, which fol-
lows a U-shaped architecture.

DWT-PMD Num ISIC 2016 Kvasir-SEG
Dice↑ IoU↑ Dice↑ IoU↑

5, 5, 5, 5 92.67 87.14 91.77 86.65
3, 5, 10, 2 93.17 87.98 92.32 87.38
2, 3, 12, 3 93.36 88.28 92.67 87.73
3, 4, 12, 1 93.51 88.47 92.74 87.92

Table 3: Ablation study of DWT-PMD RWKV Block number
on ISIC 2016 and Kvasir-SEG in terms of Dice(%), IoU(%).

Method ISIC 2016 Kvasir-SEG
Dice↑ IoU↑ Dice↑ IoU↑

Baseline+ResBlock 90.84 85.17 89.78 83.77
Baseline+SSRK 91.25 85.29 90.13 84.14
Baseline+MSRK 92.64 87.17 90.58 85.36

Table 4: Comparing with other ODE-inspired block on ISIC
2016 and Kvasir-SEG in terms of Dice(%), IoU(%). The baseline
is RWKV, which follows a U-shaped architecture.

performance. This is because low-frequency elements represent the
body region of the lesion, while high-frequency elements represent
the boundary texture of the lesion area. The complementary nature
of the body region and boundary texture is crucial for design of
shape refinement loss. We also ablate the shape refinement loss. We
also ablate the hyper-parameter 𝜆 in L𝑂𝑢𝑡 on ISIC 2016 in terms
of Dice(%) and IoU(%). Using only L𝑠𝑝𝑎𝑐𝑒 in L𝑂𝑢𝑡 yields a Dice of
93.16% and IoU of 87.88%. Incorporating both L𝑠𝑝𝑎𝑐𝑒 and L 𝑓 𝑟𝑒𝑞

into L𝑂𝑢𝑡 enhances Dice to 93.51% and IoU to 88.47%.

4.4 Model Complexity
We also compared BSBP-RWKV with recent methods in terms of
computational efficiency and accuracy, as summarized in Table 5. In
the last columnwe present the average IoU (aIoU) results in the ISIC
2016 and Kvasir-SEG datasets. Among these methods, PSPNet has
the fewest parameters, while U-Net has the fastest Inference speed.
However, their segmentation accuracy performances are mediocre.
Similarly, FCBFormer has the highest FLOPs due to its usage of
the transformer structure. For Swin-UNet, CvT, and H2Former,
although their parameters are similar to ours, their FLOPs are higher

Method FLOPs↓ Params↓ Inference Time↓ aIoU↑
UNet 33.39G 23.63M 28.87ms 82.98
PSPNet 57.88G 14.26M 50.39ms 83.25

Swin-UNet 36.98G 27.27M 34.82ms 72.09
MISSFormer 109.45G 42.33M 92.86ms 70.96
TransUNet 56.66G 109.54M 48.65ms 84.35

CvT 58.45G 32.33M 49.71ms 83.15
FCBFormer 157.24G 52.96M 118.62ms 86.58
H2Former 33.56G 33.71M 29.02ms 86.37

BSBP-RWKV 29.61G 28.09M 33.24ms 88.20
Table 5: Comparison study on computational efficiency and
accuracy. The image for inference is in size of 512 × 512.

Figure 7: Effect study of 𝛼 in L𝑓 𝑟𝑒𝑞 on ISIC 2016 and Kvasir-
SEG in terms of Dice(%), IoU(%).

than ours, and their inference speeds are comparable to or slower
than ours. Swin-UNet, CvT, and H2Former have parameters similar
to ours, but their FLOPs are higher and their inference speeds
are slower than ours. Additionally, their segmentation accuracy is
significantly worse than ourmethod. In general, we can observe that
our BSBP-RWKV achieves the best trade-off between segmentation
fineness and model efficiency. This makes BSBP-RWKV suitable
for both accuracy-oriented and efficiency-oriented applications.

5 Conclusion
To solve the challenges of background noise disturbance and in-
efficient segmentation, we turn to RWKV in our network design
and propose BSBP-RWKV for efficient medical image segmentation.
Specifically, we devise DWT-PMD RWKV Block to eliminate back-
ground disturbance while preserving lesion target boundaries. We
also propose the Multi-Step Runge-Kutta Block based on an ODE
solver to integrate the accurately located target main body feature
with DWT-PMD RWKV Block boundary outputs as a further shape
refinement manner. In addition, we design a shape refinement loss
to evade the network from getting stuck into a local optima in
spatial domain during shape refinement. Experimental results on
ISIC 2016 and Kvasir-SEG demonstrate the SOTA performance and
efficiency of our network. Specifically, BSBP-RWKV reduces the
complexity of 5.8 times compared to the SOTA while also reducing
GPUmemory usage by more than 62. 7% for each 1024 × 1024 image
during inference.
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