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Abstract

Aspect-based sentiment analysis (ABSA) is a
fine-grained sentiment analysis task which aims
to extract the aspects from sentences and iden-
tify their corresponding sentiments. Aspect
term extraction (ATE) is the crucial step for
ABSA. Due to the expensive annotation for as-
pect terms, we often lack labeled target domain
data for fine-tuning. To address this problem,
many approaches have been proposed recently
to transfer common knowledge in an unsuper-
vised way, but such methods have too many
modules and require expensive multi-stage pre-
processing. In this paper, we propose a sim-
ple but effective technique based on mutual
information maximization, which can serve as
an additional component to enhance any kind
of model for cross-domain ABSA and ATE.
Furthermore, we provide some analysis of this
approach. Experiment results show that our
proposed method outperforms the state-of-the-
art methods for cross-domain ABSA by 4.32%
Micro-F1 on average over 10 different domain
pairs. Apart from that, our method can be ex-
tended to other sequence labeling tasks, such
as named entity recognition (NER). Codes will
be released.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) (Liu,
2012; Pontiki et al., 2015) task can be split into
two sub-tasks: Aspect Term Extraction (ATE) and
Aspect Sentiment Classification (ASC). The former
extracts the aspect terms from sentences while the
latter aims to predict the sentiment polarity of every
aspect term. ATE is considered to be a crucial
step for ABSA because the errors of ATE may be
propagated to the ASC task in the following stage.
However, due to the expensive fine-grained token-
level annotation for aspect terms, we often lack
labeled training data for various domains, which
becomes the major obstacle for ATE.

To address such issue, previous studies
follow the Unsupervised Domain Adaptation

(UDA) (Ramponi and Plank, 2020) scenario, which
aims to transfer common knowledge from the
source domain to the target domain. In UDA set-
tings, we only have labeled source domain data
and unlabeled target domain data. However, most
aspect terms are strongly related to specific do-
mains. The distribution of aspect terms may be
significantly different across the domains, which
causes performance degradation when transferring
the domain knowledge. As shown in Figure 1, the
model trained on the source domain (laptop) does
not generalize well in the target domain (service).
The model can easily extract the aspects related
to laptop, such as "power plug", "power adaptor”
and "battery", but it fails to extract the aspect terms
"E*Trade" and "rating" that rarely appear in the
laptop domain. Therefore, how to accurately dis-
cover the aspect terms from the unlabeled target
domain data (raw texts) becomes the key challenge
for cross-domain ABSA or ATE.

Previous studies propose several approaches to
tackle this problem. However, these methods still
have some shortcomings in practical applications:
(1) Model Complexity. Many existing approaches
have multiple components, including domain clas-
sifier (Li et al., 2019b; Gong et al., 2020; Chen
and Qian, 2021), auto-encoder (Wang and Pan,
2018), syntactically-aware self-attention (Pereg
et al., 2020). Some studies introduce auxiliary
tasks such as opinion co-extraction (Ding et al.,
2017; Wang and Pan, 2018, 2019; Li et al., 2019b;
Pereg et al., 2020) and part-of-speech/dependency
prediction (Wang and Pan, 2018; Gong et al., 2020).
Adding too many training objectives to the model
may make it hard to optimize. Although these
approaches are fancy and novel, we still need to
seek for a simple but effective method according to
the principle of Ockham’s Razor. (2) Multi-Stage
Preprocessing. Many previous methods require
carefully designed multi-stage preprocessing, in-
cluding non-lexical features extraction (Jakob and
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Figure 1: Examples of cross-domain ATE. The model is trained on the laptop domain. The value in this figure
denotes the predicted probability of "a word belongs to an aspect” regardless of the sentiment polarity. The words
in red indicate the ground truth aspect terms. The result shows that the model fails to extract any aspects in this

sentence from service domain.

Gurevych, 2010; Li et al., 2012; Ding et al., 2017;
Wang and Pan, 2018; Pereg et al., 2020; Gong et al.,
2020; Chen and Qian, 2021) and target domain re-
view generation (Yu et al., 2021). However, these
preprocessing approaches are expensive when ap-
plied to real-world large scale datasets. Therefore,
a single-stage method in an end-to-end manner
is preferred. (3) Extensibility. All the above-
mentioned methods are specifically designed for
ABSA or ATE. However, essentially both ABSA
and ATE can be formulated as sequence tagging
tasks (Mitchell et al., 2013; Zhang et al., 2015). It’s
necessary to further investigate a unified technical
scheme which can solve some other cross-domain
extractive tagging tasks (e.g. named entity recogni-
tion (NER)).

In this paper, we get back to analyzing the intrin-
sic reason for the performance degradation when
transferring aspect terms. From Figure 1, we have
two important observations: (1) Class Collapse.
The predictions tend to collapse into one single
class (not an aspect term). (2) Unconfident Pre-
dictions. The predicted probabilities of ground
truth aspects, namely "E*Trade" (0.047) and "rat-
ing" (0.003), are both slightly higher than other
words. It seems that the model has the potential to
identify correct aspects, but the prediction is not so
confident.

Based on these two observations, in this paper,
we propose a variant of the standard mutual infor-
mation maximization technique (Shi and Sha, 2012;
Lietal., 2020, 2021) named "FMIM" (means Fine-
grained Mutual Information Maximization). The
core idea is to maximize the token-level mutual
information I(X;Y) = H(Y) — H(}/}|X), where
X denotes input tokens and Y denotes their pre-
dicted labels. We maximize H (}A/) to prevent the

model from collapsing into one class, and minimize
H(Y|X) to enhance the confidence of model’s pre-
dictions. Since it’s difficult to precisely compute
H(Y) because the joint distribution of ¥ is in-
tractable, FMIM uses a simple reduce mean ap-
proach to approximate it. FMIM is a general tech-
nique and can be added on top of any kinds of
backbones or methods for cross-domain ABSA and
ATE. Without adding any other modules or auxil-
iary tasks as the previous work did, all we do is to
simply introduce an additional mutual information
loss term, which achieves the model simplification
and does not require any preprocessing.

We find that FMIM is particularly effective for
cross-domain ABSA and ATE. The experiment re-
sults show that our method substantially exceeds
the state-of-the-art (Yu et al., 2021) by 4.32%
Micro-F1 (on average) over 10 domain pairs on
ABSA task. Moreover, our method can be extended
to other extractive tasks like cross-domain NER.
We explore the effectiveness of our approach on
cross-domain NER dataset and observe a consider-
able improvement over the state-of-the-art.

2 Related Work

Domain Adaptation For sentiment analysis, ex-
isting domain adaptation methods mainly focus on
coarse-grained sentiment classification: (1) Pivot-
based methods (Blitzer et al., 2006; Pan et al.,
2010; Bollegala et al., 2012; Yu and Jiang, 2016;
Ziser and Reichart, 2016, 2018, 2019) designed
an auxiliary task of predicting pivots to transfer
domain-invariant knowledge. (2) Adversarial meth-
ods (Alam et al., 2018; Du et al., 2020) adopted Do-
main Adversarial Neural Network (DANN) (Ganin
et al., 2016), which introduces a domain classi-
fier to classify the domains of the instances. This



method commonly serves as an important com-
ponent of many state-of-the-art DA methods (Du
et al., 2020; Chen and Qian, 2021). (3) Feature-
based methods (Fang and Xie, 2020; Giorgi et al.,
2020; Li et al., 2021) introduced contrastive learn-
ing to learn domain-invariant features. For the
sequence labeling task, we need token-level fine-
grained features for the sentences.

Cross-Domain ABSA Due to the accumulated
errors between the two sub-tasks of ABSA (namely
ATE and ASC), ABSA is typically combined to-
gether as a sequence labeling task (Mitchell et al.,
2013; Zhang et al., 2015; Li et al., 2019a). Thus we
need fine-grained domain adaptation for ABSA,
which is more difficult than the coarse-grained
one. Jakob and Gurevych (2010) studied the cross-
domain aspect extraction based on CRF. Another
line of work (Li et al., 2012; Ding et al., 2017;
Wang and Pan, 2018; Pereg et al., 2020; Gong et al.,
2020; Chen and Qian, 2021) utilized general syntac-
tic or semantic relations to bridge the domain gaps,
but they still relied on extra linguistic resources
(e.g. POS tagger or dependency parser). Li et al.
(2019b) proposed a selective adversarial training
method with a dual memory to align the words.
However, adversarial training has been proven to
be unstable (Fedus et al., 2017). FMIM considers
cross-domain ABSA task from a brand-new per-
spective. We proved that only adding a mutual
information maximization loss can substantially
outperform all the above-mentioned methods with
less complexity.

Mutual Information Maximization Mutual In-
formation (MI) is a measure of the mutual depen-
dency of two random variables in information the-
ory (Shannon, 1948). Mutual Information Maxi-
mization (MIM) serves as a powerful technique for
self-supervised learning (Oord et al., 2018; Hjelm
et al., 2018; Tschannen et al., 2019) as well as
semi-supervised learning (Grandvalet et al., 2005).
Therefore, MIM can help to learn domain-invariant
features for domain adaptation approaches. Shi
and Sha (2012) first proposed to maximize the MI
between the target domain data and their estimated
labels to learn discriminative clustering. Different
from this approach, FMIM jointly optimizes the
MI on both the source and target domains, which
serves as an implicit alignment between the two
domains. Moreover, most of the existing meth-
ods (Shi and Sha, 2012; Khan and Heisterkamp,

2016; Li et al., 2020, 2021) only adopt MIM tech-
nique to deal with cross-domain image or sentiment
classification tasks. To the best of our knowledge,
this is the first work that illustrates the effectiveness
of MIM for cross-domain sequence labeling tasks.

3 Methodology

In this section, we first formulate our domain adap-
tation problem and introduce some notations. Then
we present the proposed mutual information loss
term and provide some analysis on it from both
theoretical and empirical perspectives.

3.1 Fine-Grained Mutual Information
Maximization (FMIM)

Let D, and D; denote the source domain train-
ing data and the target domain unlabeled data, re-
spectively. For each sentence X = {x1,...,xn},
where x1, ..., ¢, denote the tokens, we have the
predicted labels Y = {y1,..-,yn}. Each y; is the
label predicted by a model and y; € S, where
S = {to,t1,...,tr—1} is the tag set and 7" = |S]|.
Specifically, for ABSA, the tag set is {O, POS,
NEU, NEG}!, while for NER, the tag set is {O,
PER, ORG, LOC, MISC}. Theoretically, the mu-
tual information between a token = and predicted
label y can be formulated as follows (x, y are ran-
dom variables here):
I(z;y) = H(y) — H(y|x)
= —Ey[logp(y)] + E(zy) [logp(y\ﬂf)](l)
However, Eq 1 is too complex to be precisely
computed. We can use a mini-batch of data to
approximate it. At each iteration of the training pe-
riod, we randomly sample a mini-batch of data ;
from D;, and sample a mini-batch of data B; from
D;. Then, we collect and concatenate the model’s
outputs (the probability distributions over the tag
set after softmax activation) of all samples from B,
and B;. After concatenation, we obtain an N x T
tensor M, where N equals to the sum of the token
numbers of all samples. For illustration, we denote
Xeconcat = {1, ..., zn } as the concatenation of to-
kens of all samples. Then, the (i, k)-entry of the
tensor M indicates the conditional probability of
the predicted label being tag ¢; given ¢-th token in
Xconeat, denoted as M, (i.k)-

'Different from the previous work (Li et al., 2019b; Gong
et al., 2020), we adopt a different unified tagging scheme for
ABSA instead of using {B, I, O} to mark the aspect boundary.
We extract the consecutive POS/NEU/NEG phrases as our
final predictions.



For the first term of Eq 1 (information entropy
of y), we first calculate the distribution of the tags
within the mini-batch B, and ;. We define a tag
probability p(y = t;) by the reduce-mean of the
model outputs:

N
1
ply =tr) = I E M 1 (2)
i=1

Therefore, the first term can be approximated as:

T-1

Ar==Y ply=t)logply =tr) 3)
k=0

For the second term (negative conditional en-
tropy), we can approximate it by the model’s output
probabilities as well:

M logMiry (4

Then we define our mutual information loss
which is equivalent to the negative approximated
mutual information. In practice, we do not expect
Aj to be as large as possible. Thus, as suggested
by Li et al. (2020, 2021), we only maximize A
when it is smaller than a pre-defined threshold p:

Loy = { (A1 +A9), A1 <p 5)
—Ag, Ay >p

The overall training objective is simply to jointly
optimize the proposed MI loss £, and the origi-
nal cross entropy loss Lo g for sequence labeling.
We use a hyperparameter « to balance these two
loss terms:

Etrain = »CC’E + OZLMI (6)

3.2 Analysis

We can understand FMIM from the following three
perspectives:

Firstly, by minimizing £y (i.e. maximizing A;
if A; < p), we keep A; larger than a certain value
p. We push the distribution of the predicted label y
(in mini-batches from both source and target) away
from the 0-1 distribution p(y = to) = 1 where
A; = 0. Consequently, we prevent the model from
collapsing to a particular class and increase the di-
versity of the outputs (Cui et al., 2020). The model
can extract more aspects in target domain, which
can enhance the recall without reducing precision.

Thus we solve the problem of the class collapse in
section 1.

Secondly, by minimizing £y (i.e. maximizing
Ao, namely, minimizing the conditional entropy).
We encourage the model to make more confident
predictions. Thus we solve the problem of uncon-
fident predictions in section 1. Moreover, mini-
mizing the conditional entropy intuitively enlarges
the margin between different classes, which makes
the decision boundary learned on source domain
data easier to fall into the margin (Grandvalet et al.,
2005; Li et al., 2020, 2021). This is beneficial to
the domain transferring.

Thirdly, MIM is a commonly used technique in
unsupervised learning or self-supervised learning
(SSL). According to the results given by Oord et al.
(2018), mutual information is an upper bound of
negative InfoNCE which is a loss function widely
used in contrastive learning (He et al., 2019; Chen
et al., 2020):

I(X:Y)>C — Lyop(X,Y) @)

where C' is a constant. Therefore minimizing the
InfoNCE is equivalent to maximizing mutual infor-
mation. In other words, introducing £;; can be
viewed as an implicit way of contrastive learning.

4 Experiments

To evaluate the effectiveness of FMIM technique
introduced in Section 3, we apply our method to
cross-domain ABSA, ATE and NER datasets.

4.1 Experiment Setup

Datasets Our experiment is conducted on four
benchmarks with different domains: Laptop (L),
Restaurant (R), Device (D), and Service (S). L
and R are from SemEval ABSA challenge (Pontiki
et al., 2014, 2015, 2016). D is provided by Hu and
Liu (2004) and contains digital product reviews. S
is provided by Toprak et al. (2010) and contains
reviews from web services.

It’s worth noting that there two different dataset
settings in previous studies, so we evaluate our
method on both of them. For ABSA task, previous
work (Li et al., 2019a,b; Gong et al., 2020; Yu et al.,
2021) conducted experiments for 10 domain pairs
on the above-mentioned four domains. For ATE
task only, previous work (Wang and Pan, 2018,
2019; Pereg et al., 2020; Chen and Qian, 2021)
conducted experiments for 6 domain pairs on L,
R and D. They use three different data splits with



Domain Sentences | Train | Test
Laptop (L) 3845 3045 800
Restaurant (R) 6035 3877 | 2158
Device (D) 3836 2557 | 1279
Service (S) 2239 1492 747

Table 1: Statistics of our cross-domain ABSA datasets.

Domain Sentences | Train | Test
Laptop (L) 3845 2884 961
Restaurant (IR) 5841 4381 1460
Device (D) 3836 2877 959

Table 2: Statistics of our cross-domain ATE datasets.

Domain CoNLL2003 | CBS News
Train (labeled) 15.0K -
Train (unlabeled) - 398,990
Dev 3.5K -
Test 3.7K 2.0K

Table 3: Statistics of our cross-domain NER datasets.

a fixed train-test ratio 3:1. Apart from that, the
amount of sentences of some domains are different.
Detailed statistics are shown in Table 1 and 2.

For cross-domain NER, following the same
dataset setting of Jia et al. (2019); Jia and Zhang
(2020), we take CoNLL2003 English dataset (Sang
and De Meulder, 2003) and CBS SciTech News
dataset collected by Jia et al. (2019) as the source
and target domain data, respectively. Detailed
statistics of the datasets are shown in Table 3.

Settings For hyperparameter settings, we con-
duct grid search over 5 hyperparameters: loss bal-
ance factor «, threshold p, batch size, learning rate
and weight decay. Detailed settings are presented
in Appendix A.

Evaluation For ABSA, all the experiments are
repeated 5 times with 5 different random seeds and
we report the Micro-F1 over 5 runs, which is the
same as the previous work. Only correct aspect
terms with correct sentiment predictions can be
considered to be true positive instances. For ATE,
following Chen and Qian (2021), we report the
mean F1-scores of aspect terms over three splits
with three random seeds (9 runs for each domain
pair). For NER, we report the F1-score of named
entities.

4.2 Baselines & Compared Methods

Cross-Domain ABSA Hier-Joint (Ding et al.,
2017) use manually designed syntactic rule-based
auxiliary tasks. RNSCN (Wang and Pan, 2018) is

based on a novel recursive neural structural corre-
spondence network. And an auxiliary task is de-
signed to predict the dependency relation between
any two adjacent words. AD-SAL (Li et al., 2019b)
dynamically learn an alignment between words
by adversarial training. BERT-UDA (Gong et al.,
2020) incorporates masked POS prediction, depen-
dency relation prediction and instance reweight-
ing. BERT-Base (Devlin et al., 2019) indicates
directly fine-tuning BERT-base-uncased model on
the source training data. BERT-DANN (Gong et al.,
2020) performs adversarial training on each word
in the same way as Ganin et al. (2016). CDRG (Yu
et al., 2021) generates the target domain reviews
with independent and merge training strategies.

Cross-Domain ATE BERT-UDA can be modi-
fied for ATE by remapping the B/I/O labels. SA-
EXAL (Pereg et al., 2020) incorporates syntac-
tic information with attention mechanism. BERT-
Cross (Xu et al., 2019) conducts BERT post-
training on a combination of Yelp and Amazon
corpus. BaseTagger (Chen and Qian, 2021) is a
strong baseline which takes CNN as its backbone.
SemBridge (Chen and Qian, 2021) uses semantic
relations to bridge the domain gap.

Cross-Domain NER Cross-Domain LM (Jia
et al., 2019) designs parameter generation network
and performs cross-domain language modeling.
Multi-Cell LSTM (Jia and Zhang, 2020) designs
a multi-cell LSTM structure to model each entity
type using a separate cell state.

4.3 Results for Cross-Domain ABSA

The overall results for cross-domain ABSA are
shown in Table 4. As the previous work did, we
conduct our experiments on 10 different domain
pairs. We observe that BERT-Base+FMIM outper-
forms the state-of-the-art method CDRG (Yu et al.,
2021) in most of domain pairs except when L is the
target domain. Our approach achieve 1.3%~9.47%
absolute improvement of Micro-F1 compared to
CDRG (Merge). When taking S as the target do-
main, we can obtain 7.64%, 5.06% and 9.47% im-
provement respectively.

Following Gong et al. (2020); Yu et al. (2021),
we also provide the results for the ATE sub-task
in Table 5. We can observe that FMIM can consis-
tently improve the performance of ATE on most of
the domain pairs and achieves an average improve-
ment of 5.23% Micro-F1 compared to CDRG.



Methods | SR L—R D—R|R—=S L—S D—S|R-L S—L|R=D S—D | Avg
Hier-Joint (Ding et al., 2017) 3110 3354 3287 | 1556 1390 19.04 [ 20.72 22.65 | 24.53 23.24 | 2371
RNSCN (Wang and Pan, 2018) | 3321 35.65 34.60 | 20.04 1659 20.03 | 26.63 18.87 | 33.26 22.00 | 26.09
AD-SAL (Li et al., 2019b) 41.03 43.04 4101 | 2801 2720 26.62 | 34.13 27.04 | 3544 33.56 | 3371
BERT-Base* (Devlinetal., 2019) | 4476 26.88 36.08 | 19.41 2727 27.62 | 28.95 29.20 | 29.47 33.96 | 30.36
BERT-Base (Gong et al., 2020) | 44.66 40.38 40.32 | 1948 2578 3031 | 3144 3047 | 27.55 33.96 | 3243
BERT-DANN (Gong et al., 2020) | 45.84 41.73  34.68 | 21.60 25.10 18.62 | 30.41 31.92 | 3441 23.97 | 30.83
BERT-UDA (Gongetal,, 2020) | 47.09 4546 42.68 | 33.12 27.89 28.03 | 33.68 34.77 | 34.93 32.10 | 35.98
CDRG (Indep) (Yuetal.,2021) | 4446 4496 39.42 | 3410 3397 31.08 | 3359 26.81 | 2525 29.06 | 34.27
CDRG (Merge) (Yuetal,, 2021) | 47.92 49.79 47.64 | 3514 3814 3722 | 38.68 33.69 | 2746 34.08 | 38.98
BERT-Base + FMIM (ours) 50.20 53.24 5498 | 4278 4320 46.69 | 3820 3249 | 3587 35.38 | 43.301

Table 4: The results for cross-domain ABSA task?. The evaluation metric is based on Micro-F1. BERT-base* is our
implementation by using a vanilla BERT. { indicates that our result significantly outperforms CDRG (Merge) based

on t-test (p < 0.01).

Methods | SR L—R D—R|R—=S L—S D-S|R—L S—L|R—=D S—D | AVG
Hier-Joint (Ding et al., 2017) 4639 48.61 4296 | 27.18 2522 2928 | 34.11 33.02 | 3481 35.00 | 35.66
RNSCN (Wang and Pan, 2018) | 48.89 52.19 5039 | 3041 3121 3550 | 4723 34.03 | 46.16 3241 | 40.84
AD-SAL (Li et al., 2019b) 5205 56.12 51.55 | 39.02 3826 36.11 | 4501 3599 | 43.76 41.21 | 4391
BERT-Base* (Devlinetal., 2019) | 5493 3098 40.15 | 2292 31.63 3127 | 3507 36.96 | 32.08 38.17 | 35.42
BERT-Base (Gong etal., 2020) | 5429 46.74 44.63 | 2231 30.66 3333 | 37.02 36.88 | 32.03 38.06 | 37.59
BERT-DANN (Gong et al., 2020) | 5432 48.34 44.63 | 2545 29.83 2653 | 36.79 39.89 | 33.88 38.06 | 37.77
BERT-UDA (Gong etal., 2020) | 56.08 5191 50.54 | 34.62 3249 3452 | 46.87 43.98 | 40.34 3836 | 4297
CDRG (Indep) (Yuetal.,2021) | 53.79 55.13  50.07 | 41.74 44.14 37.10 | 40.18 33.22 | 30.78 34.97 | 42.11
CDRG (Merge) (Yuetal., 2021) | 56.26 60.03 5271 | 4236 47.08 41.85 | 46.65 39.51 | 32.60 36.97 | 45.60
BERT-Base + FMIM (ours) 59.24 6341 57.29 | 51.35 5492 52.85 | 49.42 4244 | 3972 37.62 | 50.831

Table 5: The results for the sub-task of ATE based on Micro-F1. } indicates that our result significantly outperforms

CDRG (Merge) based on t-test (p < 0.01).

Furthermore, from the results in Tables 4 and 5,
we have the following observations:

(1) The vanilla BERT-base model (Devlin et al.,
2019) can beat the previous models based on RNN
or LSTM (Hier-Joint (Ding et al., 2017), RN-
SCN (Wang and Pan, 2018)) and it has a competi-
tive performance with AD-SAL (Li et al., 2019b),
which shows that the language model pre-trained
on large-scale corpora has the generalization ability
across domains to some extent. But this result still
can be improved by some specific domain adapta-
tion techniques.

(2) The improvement of BERT-DANN is quite
marginal and inconsistent across 10 domain pairs
compared to the vanilla BERT-base model. This
is reasonable because BERT-DANN discriminates
the domains in word level, which cannot capture
the semantic relations between words. Moreover,
many common words may appear in both source
and target domain, and classifying the domains of
these words unavoidably introduces too much noise
to the model and makes the training process more
unstable.

(3) FMIM substantially outperforms CDRG (Yu

et al., 2021), the state-of-the-art method for cross-
domain ABSA. We think the reason for this im-
provement is that simply generating target domain
review data may not directly address the class col-
lapse and unconfident predictions problems. How-
ever, FMIM is entirely orthogonal with CDRG, so
adding it on the top of CDRG can possibly achieve
better performance.

4.4 Results for Cross-Domain ATE

Table 6 shows the results for cross-domain ATE.
In this section, we illustrate the effectiveness of
adding FMIM to other methods. All the meth-
ods with FMIM outperforms the BERT-UDA, SA-
EXAL and BERT-Cross baselines. When adding
on top of BaseTagger, we can observe an abso-
lute improvement of 1.21%. For the state-of-the-
art SemBridge method, we improve the F1-score
by 1.45%, 2.69%, 0.31% on L. — R, D — R,
L. — D. When taking the vanilla BERT-base as
our backbone, FMIM can achieve an improvement
of 13.85%. This results illustrates that FMIM can
serve as an effective technique to enhance common
cross-domain ATE models.



Methods | Embedding | R—L | L»R | R—D | D=R | L»D | D—L | Avg.
BERT-UDA (Gong et al., 2020) BERTp 44.24 | 50.52 | 40.04 | 53.39 | 41.48 | 52.33 | 47.00
SA-EXAL (Pereg et al., 2020) BERTp 47.59 | 54.67 | 40.50 | 54.54 | 42.19 | 47.72 | 47.87
BERT-Cross (Xu et al., 2019) BERTE 46.30 | 51.60 | 43.68 | 53.15 | 44.22 | 50.04 | 48.17
BaseTagger (Chen and Qian, 2021) | Word2vec | 48.86 | 61.42 | 40.56 | 57.67 | 43.75 | 51.95 | 50.70
BaseTagger + FMIM Word2vec | 49.74 | 65.60 | 40.64 | 59.38 | 44.22 | 51.87 | 51.91
SemBridge (Chen and Qian, 2021) Word2vec 51.53 | 65.96 | 43.03 | 60.61 | 45.37 | 53.77 | 53.38
SemBridge + FMIM Word2vec | 49.00 | 67.41 | 43.10 | 63.30 | 45.68 | 53.00 | 53.58
BERT-Base (Devlin et al., 2019) BERTp 33.89 | 42.74 | 35.30 | 36.86 | 43.54 | 46.06 | 39.73
BERT-Base + FMIM BERT 52.00 | 71.63 | 38.73 | 65.18 | 44.62 | 49.46 | 53.58

Table 6: The results for cross-domain ATE task. BERT i indicates BERT-Base model and BERT; is post-trained
by Xu et al. (2019). The metric is mean F1-score over 9 runs for each domain pair.

Methods

| Micro-F1 | Raw Texts of Target Domain

Cross-Domain LM (Jia et al., 2019)
Multi-Cell LSTM (Jia and Zhang, 2020)
Multi-Cell LSTM (All) (Jia and Zhang, 2020)
BERT-Base (Devlin et al., 2019)

BERT-Base + FMIM (ours)

73.59 18,474K
72.81 1.931K
73.56 8,664K
74.23 -
75.32 <45K

Table 7: The results for cross-domain NER task based on Micro-F1. "Multi-Cell LSTM (All)" indicates using full
set of the target domain raw texts for language modeling (Jia and Zhang, 2020). Despite that we have 399K target
domain raw text as shown in Table 3, there are only no more than 45K of them will be fed into the model. The
reason is that we only randomly sample a part of raw texts (15K, the same amount as source training data) at each

epoch and we train for only 3 epochs.
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Figure 2: Results for ABSA and ATE with different «.

4.5 Results for Cross-Domain NER

The experiment results on unsupervised domain
adaptation of NER are presented in Table 7. Due
to the similarity of NER task and aspect term ex-
traction task, FMIM based on BERT-Base (Devlin
et al., 2019) can still outperform the state-of-the-art
cross-domain NER model Multi-Cell LSTM (Jia
and Zhang, 2020) by 1.76% F1-scores. FMIM also
exceeds the baseline of directly using BERT-Base
by 1.09% Fl-scores. It’s worth noting that the
amount the raw texts of target domain we used is
192 times less than that of Jia and Zhang (2020),
which shows the great data efficiency of FMIM.
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Figure 3: Results for ABSA and ATE with different p.

4.6 Ablation Study

Since FMIM has only one single component, we
can still investigate the effect of the hyperparame-
ters. There are two crucial hyperparameters in our
MI loss (see Eq 5 and Eq 6): the loss balancing
factor v and the entropy threshold p. We test the
performance of the model with different values of
o and p on L — S setting.

On one hand, we keep p = 0.5 and alter the
value of « in the range from O to 0.045. As il-
lustrated in Figure 2, our method degenerates into
BERT-Base baseline when setting « = 0, which
results in worse performance. For ABSA, the
Micro-F1 reaches the peak (43.20) when setting
o = 0.025. Moreover, we find FMIM’s robustness



Method | HY) HYX) I(X:Y) | Predictions

Sentence: Trading through e*trade is fairly easy.

BERT-Base 0.54 0.33

0.21 None

BERT-Base + FMIM (ours) | 0.88 0.04

0.84 Trading (POS),, e*trade (POS),

Sentence: The few problems that I have had with Etrade are mainly concerning delayed trade confirmations.

BERT-Base 0.22 0.13

0.09 None

BERT-Base + FMIM (ours) | 0.74 0.06

0.68 Etrade (NEG)./, trade confirmations (NEG),

Table 8: Two examples from the test set of service domain in . — S settings. The words in bold are the ground
truth aspect terms. "POS" and "NEG" are the sentiment predictions.

El: facilities including a comprehensive [glossary] of [terms], , [FAQs], , and a [forum],.
E2: The [faculty in] OH was great and so was the administration .
E3: [ETrade], gives you a $75 bonus upon establishing an account .

Table 9: Three different error types that BERT-Base+FMIM still has on the L — S setting. The words in bold are

the ground truth aspect terms.

to the change of «. The performance keeps in a rel-
atively stable range of 40.81~43.20 when varying
o from 0.005 to 0.045. For ATE sub-task, we can
observe that the performance maintains an upward
trend with the increasing of a.. This demonstrates
that FMIM’s effectiveness in ATE task. However,
since ATE is a sub-task, improving ATE does not
necessarily improve ABSA. One can try to find a
trade-off between them by tuning « carefully.

On the other hand, we keep o = 0.01 and
change the value of p from 0 to 0.9. As illustrated
in Figure 3, FMIM achieves the best performance
when setting p = 0.5. Similar to the phenomenon
shown in Figure 2, the performance of our model
maintains stable when p > 0.3. FMIM collapses
when p < 0.2, because setting an extremely small
p is equivalent to only optimizing the conditional
entropy H (Y| X)) without optimizing H(Y), which
may make the wrong predictions more confident.
In practice, simply setting p = 0.5 can observe a
fairly competitive performance.

4.7 Case Study & Error Analysis

In this section, we further study some cases to suf-
ficiently illustrate our model’s effectiveness quali-
tatively. With comparison to BERT-Base baseline,
we calculate the two terms of mutual information
(i.e. entropy of predicted labels H (17) and condi-
tional entropy H (Y| X)) to demonstrate the neces-
sity of maximizing it.

Table 8 shows two sentences extracted from the
service domain test data in L. — S setting. For

BERT-Base method, the model fails to give any

predictions with a lower H(Y'), a higher H(Y | X)
and a lower mutual information. While our FMIM
method substantially increases the mutual informa-
tion of the two sentences by 0.63 and 0.59, which
lowers H(Y) and increases H(Y|X). This leads
to the correct final predictions.

We further study the errors that our approach
still makes to provide some suggestions for future
research. There are three main error types. (1)
discontinuous extraction, which may predict "glos-
sary" and "terms" as aspects but omit "of" in the
middle. (2) over-extraction, which may view the
following "in" as part of the aspects. (3) under-
recall, which may omit some aspects that require
complex semantic relations. The inconsistent anno-
tation of the dataset may also be a reason for this
phenomenon.

5 Conclusion

In this paper, we propose using the fine-grained
mutual information maximization (FMIM) tech-
nique to improve unsupervised domain adaptation
for ABSA, ATE and NER. Our method is simple
but has incredibly significant improvements over
the strong baselines.

The question of how to efficiently transfer do-
main knowledge remains unanswered. In the future,
we plan to evaluate our method on more different
tasks. Moreover, our proposed FMIM technique
only introduces an additional loss term, which is
orthogonal to all the previous domain adaptation
methods for ABSA and NER. The effect of jointly
using them still needs to be further explored.
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A Implementation Details

Hyperparameter | R—L | L-R | R—D | D=R | L»D | D—L

« 0.015 | 0.01 | 0.015 | 0.01 | 0.015 | 0.01
p 0.7 0.5 0.2 0.5 0.2 0.5
weight decay 0.1 0.1 1 0.1 1 0.1

batch size 16 16 16 16 16 16

Table 10: Hyperparameter settings for ATE.

For all the tasks, we use the pre-trained BERT-
base-uncased (Devlin et al., 2019) model provided
by HuggingFace (Wolf et al., 2019) as our feature
extractor. The maximum input length of BERT is
128. Our sentiment classifier is a MLP with two
hidden layers with hidden size 384. We take ReLU
as the activation function. For the optimization of
model parameters, we use the AdamW (Loshchilov
and Hutter, 2018) as the optimizer with a fixed
learning rate of 2e — 5 or le — 5. We train the
model for 20 epochs for ABSA and 3 epochs for
NER.

For ABSA, we set o 0.005,p = 0.5 for
R =D, a=001,p=025forS - L, o =
0.015,p = 0.7forR = L, o = 0.025,p = 0.5
for . — S and a = 0.01, p = 0.5 for the rest of
domain pairs. We set o = 0.009, p = 0.5 for cross-
domain NER. Our results can be easily improved
by tuning the hyperparameters more carefully, but
this is not the point we mainly focus on.

For ATE, the hyperparameter settings are pre-
sented in Table 10.
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