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Abstract
Aspect-based sentiment analysis (ABSA) is a001
fine-grained sentiment analysis task which aims002
to extract the aspects from sentences and iden-003
tify their corresponding sentiments. Aspect004
term extraction (ATE) is the crucial step for005
ABSA. Due to the expensive annotation for as-006
pect terms, we often lack labeled target domain007
data for fine-tuning. To address this problem,008
many approaches have been proposed recently009
to transfer common knowledge in an unsuper-010
vised way, but such methods have too many011
modules and require expensive multi-stage pre-012
processing. In this paper, we propose a sim-013
ple but effective technique based on mutual014
information maximization, which can serve as015
an additional component to enhance any kind016
of model for cross-domain ABSA and ATE.017
Furthermore, we provide some analysis of this018
approach. Experiment results show that our019
proposed method outperforms the state-of-the-020
art methods for cross-domain ABSA by 4.32%021
Micro-F1 on average over 10 different domain022
pairs. Apart from that, our method can be ex-023
tended to other sequence labeling tasks, such024
as named entity recognition (NER). Codes will025
be released.026

1 Introduction027

Aspect-Based Sentiment Analysis (ABSA) (Liu,028

2012; Pontiki et al., 2015) task can be split into029

two sub-tasks: Aspect Term Extraction (ATE) and030

Aspect Sentiment Classification (ASC). The former031

extracts the aspect terms from sentences while the032

latter aims to predict the sentiment polarity of every033

aspect term. ATE is considered to be a crucial034

step for ABSA because the errors of ATE may be035

propagated to the ASC task in the following stage.036

However, due to the expensive fine-grained token-037

level annotation for aspect terms, we often lack038

labeled training data for various domains, which039

becomes the major obstacle for ATE.040

To address such issue, previous studies041

follow the Unsupervised Domain Adaptation042

(UDA) (Ramponi and Plank, 2020) scenario, which 043

aims to transfer common knowledge from the 044

source domain to the target domain. In UDA set- 045

tings, we only have labeled source domain data 046

and unlabeled target domain data. However, most 047

aspect terms are strongly related to specific do- 048

mains. The distribution of aspect terms may be 049

significantly different across the domains, which 050

causes performance degradation when transferring 051

the domain knowledge. As shown in Figure 1, the 052

model trained on the source domain (laptop) does 053

not generalize well in the target domain (service). 054

The model can easily extract the aspects related 055

to laptop, such as "power plug", "power adaptor" 056

and "battery", but it fails to extract the aspect terms 057

"E*Trade" and "rating" that rarely appear in the 058

laptop domain. Therefore, how to accurately dis- 059

cover the aspect terms from the unlabeled target 060

domain data (raw texts) becomes the key challenge 061

for cross-domain ABSA or ATE. 062

Previous studies propose several approaches to 063

tackle this problem. However, these methods still 064

have some shortcomings in practical applications: 065

(1) Model Complexity. Many existing approaches 066

have multiple components, including domain clas- 067

sifier (Li et al., 2019b; Gong et al., 2020; Chen 068

and Qian, 2021), auto-encoder (Wang and Pan, 069

2018), syntactically-aware self-attention (Pereg 070

et al., 2020). Some studies introduce auxiliary 071

tasks such as opinion co-extraction (Ding et al., 072

2017; Wang and Pan, 2018, 2019; Li et al., 2019b; 073

Pereg et al., 2020) and part-of-speech/dependency 074

prediction (Wang and Pan, 2018; Gong et al., 2020). 075

Adding too many training objectives to the model 076

may make it hard to optimize. Although these 077

approaches are fancy and novel, we still need to 078

seek for a simple but effective method according to 079

the principle of Ockham’s Razor. (2) Multi-Stage 080

Preprocessing. Many previous methods require 081

carefully designed multi-stage preprocessing, in- 082

cluding non-lexical features extraction (Jakob and 083
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Figure 1: Examples of cross-domain ATE. The model is trained on the laptop domain. The value in this figure
denotes the predicted probability of "a word belongs to an aspect" regardless of the sentiment polarity. The words
in red indicate the ground truth aspect terms. The result shows that the model fails to extract any aspects in this
sentence from service domain.

Gurevych, 2010; Li et al., 2012; Ding et al., 2017;084

Wang and Pan, 2018; Pereg et al., 2020; Gong et al.,085

2020; Chen and Qian, 2021) and target domain re-086

view generation (Yu et al., 2021). However, these087

preprocessing approaches are expensive when ap-088

plied to real-world large scale datasets. Therefore,089

a single-stage method in an end-to-end manner090

is preferred. (3) Extensibility. All the above-091

mentioned methods are specifically designed for092

ABSA or ATE. However, essentially both ABSA093

and ATE can be formulated as sequence tagging094

tasks (Mitchell et al., 2013; Zhang et al., 2015). It’s095

necessary to further investigate a unified technical096

scheme which can solve some other cross-domain097

extractive tagging tasks (e.g. named entity recogni-098

tion (NER)).099

In this paper, we get back to analyzing the intrin-100

sic reason for the performance degradation when101

transferring aspect terms. From Figure 1, we have102

two important observations: (1) Class Collapse.103

The predictions tend to collapse into one single104

class (not an aspect term). (2) Unconfident Pre-105

dictions. The predicted probabilities of ground106

truth aspects, namely "E*Trade" (0.047) and "rat-107

ing" (0.003), are both slightly higher than other108

words. It seems that the model has the potential to109

identify correct aspects, but the prediction is not so110

confident.111

Based on these two observations, in this paper,112

we propose a variant of the standard mutual infor-113

mation maximization technique (Shi and Sha, 2012;114

Li et al., 2020, 2021) named "FMIM" (means Fine-115

grained Mutual Information Maximization). The116

core idea is to maximize the token-level mutual117

information I(X; Ŷ ) = H(Ŷ )−H(Ŷ |X), where118

X denotes input tokens and Ŷ denotes their pre-119

dicted labels. We maximize H(Ŷ ) to prevent the120

model from collapsing into one class, and minimize 121

H(Ŷ |X) to enhance the confidence of model’s pre- 122

dictions. Since it’s difficult to precisely compute 123

H(Ŷ ) because the joint distribution of Ŷ is in- 124

tractable, FMIM uses a simple reduce mean ap- 125

proach to approximate it. FMIM is a general tech- 126

nique and can be added on top of any kinds of 127

backbones or methods for cross-domain ABSA and 128

ATE. Without adding any other modules or auxil- 129

iary tasks as the previous work did, all we do is to 130

simply introduce an additional mutual information 131

loss term, which achieves the model simplification 132

and does not require any preprocessing. 133

We find that FMIM is particularly effective for 134

cross-domain ABSA and ATE. The experiment re- 135

sults show that our method substantially exceeds 136

the state-of-the-art (Yu et al., 2021) by 4.32% 137

Micro-F1 (on average) over 10 domain pairs on 138

ABSA task. Moreover, our method can be extended 139

to other extractive tasks like cross-domain NER. 140

We explore the effectiveness of our approach on 141

cross-domain NER dataset and observe a consider- 142

able improvement over the state-of-the-art. 143

2 Related Work 144

Domain Adaptation For sentiment analysis, ex- 145

isting domain adaptation methods mainly focus on 146

coarse-grained sentiment classification: (1) Pivot- 147

based methods (Blitzer et al., 2006; Pan et al., 148

2010; Bollegala et al., 2012; Yu and Jiang, 2016; 149

Ziser and Reichart, 2016, 2018, 2019) designed 150

an auxiliary task of predicting pivots to transfer 151

domain-invariant knowledge. (2) Adversarial meth- 152

ods (Alam et al., 2018; Du et al., 2020) adopted Do- 153

main Adversarial Neural Network (DANN) (Ganin 154

et al., 2016), which introduces a domain classi- 155

fier to classify the domains of the instances. This 156
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method commonly serves as an important com-157

ponent of many state-of-the-art DA methods (Du158

et al., 2020; Chen and Qian, 2021). (3) Feature-159

based methods (Fang and Xie, 2020; Giorgi et al.,160

2020; Li et al., 2021) introduced contrastive learn-161

ing to learn domain-invariant features. For the162

sequence labeling task, we need token-level fine-163

grained features for the sentences.164

Cross-Domain ABSA Due to the accumulated165

errors between the two sub-tasks of ABSA (namely166

ATE and ASC), ABSA is typically combined to-167

gether as a sequence labeling task (Mitchell et al.,168

2013; Zhang et al., 2015; Li et al., 2019a). Thus we169

need fine-grained domain adaptation for ABSA,170

which is more difficult than the coarse-grained171

one. Jakob and Gurevych (2010) studied the cross-172

domain aspect extraction based on CRF. Another173

line of work (Li et al., 2012; Ding et al., 2017;174

Wang and Pan, 2018; Pereg et al., 2020; Gong et al.,175

2020; Chen and Qian, 2021) utilized general syntac-176

tic or semantic relations to bridge the domain gaps,177

but they still relied on extra linguistic resources178

(e.g. POS tagger or dependency parser). Li et al.179

(2019b) proposed a selective adversarial training180

method with a dual memory to align the words.181

However, adversarial training has been proven to182

be unstable (Fedus et al., 2017). FMIM considers183

cross-domain ABSA task from a brand-new per-184

spective. We proved that only adding a mutual185

information maximization loss can substantially186

outperform all the above-mentioned methods with187

less complexity.188

Mutual Information Maximization Mutual In-189

formation (MI) is a measure of the mutual depen-190

dency of two random variables in information the-191

ory (Shannon, 1948). Mutual Information Maxi-192

mization (MIM) serves as a powerful technique for193

self-supervised learning (Oord et al., 2018; Hjelm194

et al., 2018; Tschannen et al., 2019) as well as195

semi-supervised learning (Grandvalet et al., 2005).196

Therefore, MIM can help to learn domain-invariant197

features for domain adaptation approaches. Shi198

and Sha (2012) first proposed to maximize the MI199

between the target domain data and their estimated200

labels to learn discriminative clustering. Different201

from this approach, FMIM jointly optimizes the202

MI on both the source and target domains, which203

serves as an implicit alignment between the two204

domains. Moreover, most of the existing meth-205

ods (Shi and Sha, 2012; Khan and Heisterkamp,206

2016; Li et al., 2020, 2021) only adopt MIM tech- 207

nique to deal with cross-domain image or sentiment 208

classification tasks. To the best of our knowledge, 209

this is the first work that illustrates the effectiveness 210

of MIM for cross-domain sequence labeling tasks. 211

3 Methodology 212

In this section, we first formulate our domain adap- 213

tation problem and introduce some notations. Then 214

we present the proposed mutual information loss 215

term and provide some analysis on it from both 216

theoretical and empirical perspectives. 217

3.1 Fine-Grained Mutual Information 218

Maximization (FMIM) 219

Let Ds and Dt denote the source domain train- 220

ing data and the target domain unlabeled data, re- 221

spectively. For each sentence X = {x1, ..., xn}, 222

where x1, ..., xn denote the tokens, we have the 223

predicted labels Ŷ = {y1, ..., yn}. Each yi is the 224

label predicted by a model and yi ∈ S, where 225

S = {t0, t1, ..., tT−1} is the tag set and T = |S|. 226

Specifically, for ABSA, the tag set is {O, POS, 227

NEU, NEG}1, while for NER, the tag set is {O, 228

PER, ORG, LOC, MISC}. Theoretically, the mu- 229

tual information between a token x and predicted 230

label y can be formulated as follows (x, y are ran- 231

dom variables here): 232

I(x; y) = H(y)−H(y|x)
= −Ey[log p(y)] + E(x,y)[log p(y|x)]

(1) 233

However, Eq 1 is too complex to be precisely 234

computed. We can use a mini-batch of data to 235

approximate it. At each iteration of the training pe- 236

riod, we randomly sample a mini-batch of data Bs 237

from Ds, and sample a mini-batch of data Bt from 238

Dt. Then, we collect and concatenate the model’s 239

outputs (the probability distributions over the tag 240

set after softmax activation) of all samples from Bs 241

and Bt. After concatenation, we obtain an N × T 242

tensor M , where N equals to the sum of the token 243

numbers of all samples. For illustration, we denote 244

Xconcat = {x1, ..., xN} as the concatenation of to- 245

kens of all samples. Then, the (i, k)-entry of the 246

tensor M indicates the conditional probability of 247

the predicted label being tag tk given i-th token in 248

Xconcat, denoted as M(i,k). 249

1Different from the previous work (Li et al., 2019b; Gong
et al., 2020), we adopt a different unified tagging scheme for
ABSA instead of using {B, I, O} to mark the aspect boundary.
We extract the consecutive POS/NEU/NEG phrases as our
final predictions.
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For the first term of Eq 1 (information entropy250

of y), we first calculate the distribution of the tags251

within the mini-batch Bs and Bt. We define a tag252

probability p(y = tk) by the reduce-mean of the253

model outputs:254

p(y = tk) ≜
1

N

N∑
i=1

M(i,k) (2)255

Therefore, the first term can be approximated as:256

∆1 = −
T−1∑
k=0

p(y = tk) log p(y = tk) (3)257

For the second term (negative conditional en-258

tropy), we can approximate it by the model’s output259

probabilities as well:260

∆2 =
1

N

N∑
i=1

T−1∑
k=0

M(i,k) logM(i,k) (4)261

Then we define our mutual information loss262

which is equivalent to the negative approximated263

mutual information. In practice, we do not expect264

∆1 to be as large as possible. Thus, as suggested265

by Li et al. (2020, 2021), we only maximize ∆1266

when it is smaller than a pre-defined threshold ρ:267

LMI =

{
−(∆1 +∆2), ∆1 < ρ

−∆2, ∆1 ≥ ρ
(5)268

The overall training objective is simply to jointly269

optimize the proposed MI loss LMI and the origi-270

nal cross entropy loss LCE for sequence labeling.271

We use a hyperparameter α to balance these two272

loss terms:273

Ltrain = LCE + αLMI (6)274

3.2 Analysis275

We can understand FMIM from the following three276

perspectives:277

Firstly, by minimizing LMI (i.e. maximizing ∆1278

if ∆1 < ρ), we keep ∆1 larger than a certain value279

ρ. We push the distribution of the predicted label y280

(in mini-batches from both source and target) away281

from the 0-1 distribution p(y = t0) = 1 where282

∆1 = 0. Consequently, we prevent the model from283

collapsing to a particular class and increase the di-284

versity of the outputs (Cui et al., 2020). The model285

can extract more aspects in target domain, which286

can enhance the recall without reducing precision.287

Thus we solve the problem of the class collapse in 288

section 1. 289

Secondly, by minimizing LMI (i.e. maximizing 290

∆2, namely, minimizing the conditional entropy). 291

We encourage the model to make more confident 292

predictions. Thus we solve the problem of uncon- 293

fident predictions in section 1. Moreover, mini- 294

mizing the conditional entropy intuitively enlarges 295

the margin between different classes, which makes 296

the decision boundary learned on source domain 297

data easier to fall into the margin (Grandvalet et al., 298

2005; Li et al., 2020, 2021). This is beneficial to 299

the domain transferring. 300

Thirdly, MIM is a commonly used technique in 301

unsupervised learning or self-supervised learning 302

(SSL). According to the results given by Oord et al. 303

(2018), mutual information is an upper bound of 304

negative InfoNCE which is a loss function widely 305

used in contrastive learning (He et al., 2019; Chen 306

et al., 2020): 307

I(X;Y ) ≥ C − LNCE(X,Y ) (7) 308

where C is a constant. Therefore minimizing the 309

InfoNCE is equivalent to maximizing mutual infor- 310

mation. In other words, introducing LMI can be 311

viewed as an implicit way of contrastive learning. 312

4 Experiments 313

To evaluate the effectiveness of FMIM technique 314

introduced in Section 3, we apply our method to 315

cross-domain ABSA, ATE and NER datasets. 316

4.1 Experiment Setup 317

Datasets Our experiment is conducted on four 318

benchmarks with different domains: Laptop (L), 319

Restaurant (R), Device (D), and Service (S). L 320

and R are from SemEval ABSA challenge (Pontiki 321

et al., 2014, 2015, 2016). D is provided by Hu and 322

Liu (2004) and contains digital product reviews. S 323

is provided by Toprak et al. (2010) and contains 324

reviews from web services. 325

It’s worth noting that there two different dataset 326

settings in previous studies, so we evaluate our 327

method on both of them. For ABSA task, previous 328

work (Li et al., 2019a,b; Gong et al., 2020; Yu et al., 329

2021) conducted experiments for 10 domain pairs 330

on the above-mentioned four domains. For ATE 331

task only, previous work (Wang and Pan, 2018, 332

2019; Pereg et al., 2020; Chen and Qian, 2021) 333

conducted experiments for 6 domain pairs on L, 334

R and D. They use three different data splits with 335
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Domain Sentences Train Test
Laptop (L) 3845 3045 800
Restaurant (R) 6035 3877 2158
Device (D) 3836 2557 1279
Service (S) 2239 1492 747

Table 1: Statistics of our cross-domain ABSA datasets.

Domain Sentences Train Test
Laptop (L) 3845 2884 961
Restaurant (R) 5841 4381 1460
Device (D) 3836 2877 959

Table 2: Statistics of our cross-domain ATE datasets.

Domain CoNLL2003 CBS News
Train (labeled) 15.0K -
Train (unlabeled) - 398,990
Dev 3.5K -
Test 3.7K 2.0K

Table 3: Statistics of our cross-domain NER datasets.

a fixed train-test ratio 3:1. Apart from that, the336

amount of sentences of some domains are different.337

Detailed statistics are shown in Table 1 and 2.338

For cross-domain NER, following the same339

dataset setting of Jia et al. (2019); Jia and Zhang340

(2020), we take CoNLL2003 English dataset (Sang341

and De Meulder, 2003) and CBS SciTech News342

dataset collected by Jia et al. (2019) as the source343

and target domain data, respectively. Detailed344

statistics of the datasets are shown in Table 3.345

Settings For hyperparameter settings, we con-346

duct grid search over 5 hyperparameters: loss bal-347

ance factor α, threshold ρ, batch size, learning rate348

and weight decay. Detailed settings are presented349

in Appendix A.350

Evaluation For ABSA, all the experiments are351

repeated 5 times with 5 different random seeds and352

we report the Micro-F1 over 5 runs, which is the353

same as the previous work. Only correct aspect354

terms with correct sentiment predictions can be355

considered to be true positive instances. For ATE,356

following Chen and Qian (2021), we report the357

mean F1-scores of aspect terms over three splits358

with three random seeds (9 runs for each domain359

pair). For NER, we report the F1-score of named360

entities.361

4.2 Baselines & Compared Methods362

Cross-Domain ABSA Hier-Joint (Ding et al.,363

2017) use manually designed syntactic rule-based364

auxiliary tasks. RNSCN (Wang and Pan, 2018) is365

based on a novel recursive neural structural corre- 366

spondence network. And an auxiliary task is de- 367

signed to predict the dependency relation between 368

any two adjacent words. AD-SAL (Li et al., 2019b) 369

dynamically learn an alignment between words 370

by adversarial training. BERT-UDA (Gong et al., 371

2020) incorporates masked POS prediction, depen- 372

dency relation prediction and instance reweight- 373

ing. BERT-Base (Devlin et al., 2019) indicates 374

directly fine-tuning BERT-base-uncased model on 375

the source training data. BERT-DANN (Gong et al., 376

2020) performs adversarial training on each word 377

in the same way as Ganin et al. (2016). CDRG (Yu 378

et al., 2021) generates the target domain reviews 379

with independent and merge training strategies. 380

Cross-Domain ATE BERT-UDA can be modi- 381

fied for ATE by remapping the B/I/O labels. SA- 382

EXAL (Pereg et al., 2020) incorporates syntac- 383

tic information with attention mechanism. BERT- 384

Cross (Xu et al., 2019) conducts BERT post- 385

training on a combination of Yelp and Amazon 386

corpus. BaseTagger (Chen and Qian, 2021) is a 387

strong baseline which takes CNN as its backbone. 388

SemBridge (Chen and Qian, 2021) uses semantic 389

relations to bridge the domain gap. 390

Cross-Domain NER Cross-Domain LM (Jia 391

et al., 2019) designs parameter generation network 392

and performs cross-domain language modeling. 393

Multi-Cell LSTM (Jia and Zhang, 2020) designs 394

a multi-cell LSTM structure to model each entity 395

type using a separate cell state. 396

4.3 Results for Cross-Domain ABSA 397

The overall results for cross-domain ABSA are 398

shown in Table 4. As the previous work did, we 399

conduct our experiments on 10 different domain 400

pairs. We observe that BERT-Base+FMIM outper- 401

forms the state-of-the-art method CDRG (Yu et al., 402

2021) in most of domain pairs except when L is the 403

target domain. Our approach achieve 1.3%∼9.47% 404

absolute improvement of Micro-F1 compared to 405

CDRG (Merge). When taking S as the target do- 406

main, we can obtain 7.64%, 5.06% and 9.47% im- 407

provement respectively. 408

Following Gong et al. (2020); Yu et al. (2021), 409

we also provide the results for the ATE sub-task 410

in Table 5. We can observe that FMIM can consis- 411

tently improve the performance of ATE on most of 412

the domain pairs and achieves an average improve- 413

ment of 5.23% Micro-F1 compared to CDRG. 414
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Methods S→R L→R D→R R→S L→S D→S R→L S→L R→D S→D Avg.

Hier-Joint (Ding et al., 2017) 31.10 33.54 32.87 15.56 13.90 19.04 20.72 22.65 24.53 23.24 23.71
RNSCN (Wang and Pan, 2018) 33.21 35.65 34.60 20.04 16.59 20.03 26.63 18.87 33.26 22.00 26.09
AD-SAL (Li et al., 2019b) 41.03 43.04 41.01 28.01 27.20 26.62 34.13 27.04 35.44 33.56 33.71

BERT-Base∗ (Devlin et al., 2019) 44.76 26.88 36.08 19.41 27.27 27.62 28.95 29.20 29.47 33.96 30.36
BERT-Base (Gong et al., 2020) 44.66 40.38 40.32 19.48 25.78 30.31 31.44 30.47 27.55 33.96 32.43
BERT-DANN (Gong et al., 2020) 45.84 41.73 34.68 21.60 25.10 18.62 30.41 31.92 34.41 23.97 30.83
BERT-UDA (Gong et al., 2020) 47.09 45.46 42.68 33.12 27.89 28.03 33.68 34.77 34.93 32.10 35.98
CDRG (Indep) (Yu et al., 2021) 44.46 44.96 39.42 34.10 33.97 31.08 33.59 26.81 25.25 29.06 34.27
CDRG (Merge) (Yu et al., 2021) 47.92 49.79 47.64 35.14 38.14 37.22 38.68 33.69 27.46 34.08 38.98
BERT-Base + FMIM (ours) 50.20 53.24 54.98 42.78 43.20 46.69 38.20 32.49 35.87 35.38 43.30†

Table 4: The results for cross-domain ABSA task2. The evaluation metric is based on Micro-F1. BERT-base∗ is our
implementation by using a vanilla BERT. † indicates that our result significantly outperforms CDRG (Merge) based
on t-test (p < 0.01).

Methods S→R L→R D→R R→S L→S D→S R→L S→L R→D S→D AVG

Hier-Joint (Ding et al., 2017) 46.39 48.61 42.96 27.18 25.22 29.28 34.11 33.02 34.81 35.00 35.66
RNSCN (Wang and Pan, 2018) 48.89 52.19 50.39 30.41 31.21 35.50 47.23 34.03 46.16 32.41 40.84
AD-SAL (Li et al., 2019b) 52.05 56.12 51.55 39.02 38.26 36.11 45.01 35.99 43.76 41.21 43.91

BERT-Base∗ (Devlin et al., 2019) 54.93 30.98 40.15 22.92 31.63 31.27 35.07 36.96 32.08 38.17 35.42
BERT-Base (Gong et al., 2020) 54.29 46.74 44.63 22.31 30.66 33.33 37.02 36.88 32.03 38.06 37.59
BERT-DANN (Gong et al., 2020) 54.32 48.34 44.63 25.45 29.83 26.53 36.79 39.89 33.88 38.06 37.77
BERT-UDA (Gong et al., 2020) 56.08 51.91 50.54 34.62 32.49 34.52 46.87 43.98 40.34 38.36 42.97
CDRG (Indep) (Yu et al., 2021) 53.79 55.13 50.07 41.74 44.14 37.10 40.18 33.22 30.78 34.97 42.11
CDRG (Merge) (Yu et al., 2021) 56.26 60.03 52.71 42.36 47.08 41.85 46.65 39.51 32.60 36.97 45.60
BERT-Base + FMIM (ours) 59.24 63.41 57.29 51.35 54.92 52.85 49.42 42.44 39.72 37.62 50.83†

Table 5: The results for the sub-task of ATE based on Micro-F1. † indicates that our result significantly outperforms
CDRG (Merge) based on t-test (p < 0.01).

Furthermore, from the results in Tables 4 and 5,415

we have the following observations:416

(1) The vanilla BERT-base model (Devlin et al.,417

2019) can beat the previous models based on RNN418

or LSTM (Hier-Joint (Ding et al., 2017), RN-419

SCN (Wang and Pan, 2018)) and it has a competi-420

tive performance with AD-SAL (Li et al., 2019b),421

which shows that the language model pre-trained422

on large-scale corpora has the generalization ability423

across domains to some extent. But this result still424

can be improved by some specific domain adapta-425

tion techniques.426

(2) The improvement of BERT-DANN is quite427

marginal and inconsistent across 10 domain pairs428

compared to the vanilla BERT-base model. This429

is reasonable because BERT-DANN discriminates430

the domains in word level, which cannot capture431

the semantic relations between words. Moreover,432

many common words may appear in both source433

and target domain, and classifying the domains of434

these words unavoidably introduces too much noise435

to the model and makes the training process more436

unstable.437

(3) FMIM substantially outperforms CDRG (Yu438

et al., 2021), the state-of-the-art method for cross- 439

domain ABSA. We think the reason for this im- 440

provement is that simply generating target domain 441

review data may not directly address the class col- 442

lapse and unconfident predictions problems. How- 443

ever, FMIM is entirely orthogonal with CDRG, so 444

adding it on the top of CDRG can possibly achieve 445

better performance. 446

4.4 Results for Cross-Domain ATE 447

Table 6 shows the results for cross-domain ATE. 448

In this section, we illustrate the effectiveness of 449

adding FMIM to other methods. All the meth- 450

ods with FMIM outperforms the BERT-UDA, SA- 451

EXAL and BERT-Cross baselines. When adding 452

on top of BaseTagger, we can observe an abso- 453

lute improvement of 1.21%. For the state-of-the- 454

art SemBridge method, we improve the F1-score 455

by 1.45%, 2.69%, 0.31% on L → R, D → R, 456

L → D. When taking the vanilla BERT-base as 457

our backbone, FMIM can achieve an improvement 458

of 13.85%. This results illustrates that FMIM can 459

serve as an effective technique to enhance common 460

cross-domain ATE models. 461
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Methods Embedding R→L L→R R→D D→R L→D D→L Avg.

BERT-UDA (Gong et al., 2020) BERTB 44.24 50.52 40.04 53.39 41.48 52.33 47.00
SA-EXAL (Pereg et al., 2020) BERTB 47.59 54.67 40.50 54.54 42.19 47.72 47.87
BERT-Cross (Xu et al., 2019) BERTE 46.30 51.60 43.68 53.15 44.22 50.04 48.17

BaseTagger (Chen and Qian, 2021) Word2vec 48.86 61.42 40.56 57.67 43.75 51.95 50.70
BaseTagger + FMIM Word2vec 49.74 65.60 40.64 59.38 44.22 51.87 51.91

SemBridge (Chen and Qian, 2021) Word2vec 51.53 65.96 43.03 60.61 45.37 53.77 53.38
SemBridge + FMIM Word2vec 49.00 67.41 43.10 63.30 45.68 53.00 53.58

BERT-Base (Devlin et al., 2019) BERTB 33.89 42.74 35.30 36.86 43.54 46.06 39.73
BERT-Base + FMIM BERTB 52.00 71.63 38.73 65.18 44.62 49.46 53.58

Table 6: The results for cross-domain ATE task. BERTB indicates BERT-Base model and BERTE is post-trained
by Xu et al. (2019). The metric is mean F1-score over 9 runs for each domain pair.

Methods Micro-F1 Raw Texts of Target Domain

Cross-Domain LM (Jia et al., 2019) 73.59 18,474K
Multi-Cell LSTM (Jia and Zhang, 2020) 72.81 1.931K
Multi-Cell LSTM (All) (Jia and Zhang, 2020) 73.56 8,664K
BERT-Base (Devlin et al., 2019) 74.23 -
BERT-Base + FMIM (ours) 75.32 ≤45K

Table 7: The results for cross-domain NER task based on Micro-F1. "Multi-Cell LSTM (All)" indicates using full
set of the target domain raw texts for language modeling (Jia and Zhang, 2020). Despite that we have 399K target
domain raw text as shown in Table 3, there are only no more than 45K of them will be fed into the model. The
reason is that we only randomly sample a part of raw texts (15K, the same amount as source training data) at each
epoch and we train for only 3 epochs.

Figure 2: Results for ABSA and ATE with different α.

4.5 Results for Cross-Domain NER462

The experiment results on unsupervised domain463

adaptation of NER are presented in Table 7. Due464

to the similarity of NER task and aspect term ex-465

traction task, FMIM based on BERT-Base (Devlin466

et al., 2019) can still outperform the state-of-the-art467

cross-domain NER model Multi-Cell LSTM (Jia468

and Zhang, 2020) by 1.76% F1-scores. FMIM also469

exceeds the baseline of directly using BERT-Base470

by 1.09% F1-scores. It’s worth noting that the471

amount the raw texts of target domain we used is472

192 times less than that of Jia and Zhang (2020),473

which shows the great data efficiency of FMIM.474

Figure 3: Results for ABSA and ATE with different ρ.

4.6 Ablation Study 475

Since FMIM has only one single component, we 476

can still investigate the effect of the hyperparame- 477

ters. There are two crucial hyperparameters in our 478

MI loss (see Eq 5 and Eq 6): the loss balancing 479

factor α and the entropy threshold ρ. We test the 480

performance of the model with different values of 481

α and ρ on L → S setting. 482

On one hand, we keep ρ = 0.5 and alter the 483

value of α in the range from 0 to 0.045. As il- 484

lustrated in Figure 2, our method degenerates into 485

BERT-Base baseline when setting α = 0, which 486

results in worse performance. For ABSA, the 487

Micro-F1 reaches the peak (43.20) when setting 488

α = 0.025. Moreover, we find FMIM’s robustness 489
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Method H(Ŷ ) H(Ŷ |X) I(X; Ŷ ) Predictions

Sentence: Trading through e*trade is fairly easy.
BERT-Base 0.54 0.33 0.21 None×

BERT-Base + FMIM (ours) 0.88 0.04 0.84 Trading (POS)✓, e*trade (POS)✓

Sentence: The few problems that I have had with Etrade are mainly concerning delayed trade confirmations.
BERT-Base 0.22 0.13 0.09 None×

BERT-Base + FMIM (ours) 0.74 0.06 0.68 Etrade (NEG)✓, trade confirmations (NEG)✓

Table 8: Two examples from the test set of service domain in L → S settings. The words in bold are the ground
truth aspect terms. "POS" and "NEG" are the sentiment predictions.

E1: facilities including a comprehensive [glossary]× of [terms]× , [FAQs]✓ , and a [forum]✓.
E2: The [faculty in]× OH was great and so was the administration .
E3: [ETrade]✓ gives you a $75 bonus upon establishing an account .

Table 9: Three different error types that BERT-Base+FMIM still has on the L → S setting. The words in bold are
the ground truth aspect terms.

to the change of α. The performance keeps in a rel-490

atively stable range of 40.81∼43.20 when varying491

α from 0.005 to 0.045. For ATE sub-task, we can492

observe that the performance maintains an upward493

trend with the increasing of α. This demonstrates494

that FMIM’s effectiveness in ATE task. However,495

since ATE is a sub-task, improving ATE does not496

necessarily improve ABSA. One can try to find a497

trade-off between them by tuning α carefully.498

On the other hand, we keep α = 0.01 and499

change the value of ρ from 0 to 0.9. As illustrated500

in Figure 3, FMIM achieves the best performance501

when setting ρ = 0.5. Similar to the phenomenon502

shown in Figure 2, the performance of our model503

maintains stable when ρ ≥ 0.3. FMIM collapses504

when ρ ≤ 0.2, because setting an extremely small505

ρ is equivalent to only optimizing the conditional506

entropy H(Ŷ |X) without optimizing H(Ŷ ), which507

may make the wrong predictions more confident.508

In practice, simply setting ρ = 0.5 can observe a509

fairly competitive performance.510

4.7 Case Study & Error Analysis511

In this section, we further study some cases to suf-512

ficiently illustrate our model’s effectiveness quali-513

tatively. With comparison to BERT-Base baseline,514

we calculate the two terms of mutual information515

(i.e. entropy of predicted labels H(Ŷ ) and condi-516

tional entropy H(Ŷ |X)) to demonstrate the neces-517

sity of maximizing it.518

Table 8 shows two sentences extracted from the519

service domain test data in L → S setting. For520

BERT-Base method, the model fails to give any521

predictions with a lower H(Ŷ ), a higher H(Ŷ |X) 522

and a lower mutual information. While our FMIM 523

method substantially increases the mutual informa- 524

tion of the two sentences by 0.63 and 0.59, which 525

lowers H(Ŷ ) and increases H(Ŷ |X). This leads 526

to the correct final predictions. 527

We further study the errors that our approach 528

still makes to provide some suggestions for future 529

research. There are three main error types. (1) 530

discontinuous extraction, which may predict "glos- 531

sary" and "terms" as aspects but omit "of" in the 532

middle. (2) over-extraction, which may view the 533

following "in" as part of the aspects. (3) under- 534

recall, which may omit some aspects that require 535

complex semantic relations. The inconsistent anno- 536

tation of the dataset may also be a reason for this 537

phenomenon. 538

5 Conclusion 539

In this paper, we propose using the fine-grained 540

mutual information maximization (FMIM) tech- 541

nique to improve unsupervised domain adaptation 542

for ABSA, ATE and NER. Our method is simple 543

but has incredibly significant improvements over 544

the strong baselines. 545

The question of how to efficiently transfer do- 546

main knowledge remains unanswered. In the future, 547

we plan to evaluate our method on more different 548

tasks. Moreover, our proposed FMIM technique 549

only introduces an additional loss term, which is 550

orthogonal to all the previous domain adaptation 551

methods for ABSA and NER. The effect of jointly 552

using them still needs to be further explored. 553
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A Implementation Details 811

Hyperparameter R→L L→R R→D D→R L→D D→L

α 0.015 0.01 0.015 0.01 0.015 0.01
ρ 0.7 0.5 0.2 0.5 0.2 0.5
weight decay 0.1 0.1 1 0.1 1 0.1
batch size 16 16 16 16 16 16

Table 10: Hyperparameter settings for ATE.

For all the tasks, we use the pre-trained BERT- 812

base-uncased (Devlin et al., 2019) model provided 813

by HuggingFace (Wolf et al., 2019) as our feature 814

extractor. The maximum input length of BERT is 815

128. Our sentiment classifier is a MLP with two 816

hidden layers with hidden size 384. We take ReLU 817

as the activation function. For the optimization of 818

model parameters, we use the AdamW (Loshchilov 819

and Hutter, 2018) as the optimizer with a fixed 820

learning rate of 2e − 5 or 1e − 5. We train the 821

model for 20 epochs for ABSA and 3 epochs for 822

NER. 823

For ABSA, we set α = 0.005, ρ = 0.5 for 824

R → D, α = 0.01, ρ = 0.25 for S → L, α = 825

0.015, ρ = 0.7 for R → L, α = 0.025, ρ = 0.5 826

for L → S and α = 0.01, ρ = 0.5 for the rest of 827

domain pairs. We set α = 0.009, ρ = 0.5 for cross- 828

domain NER. Our results can be easily improved 829

by tuning the hyperparameters more carefully, but 830

this is not the point we mainly focus on. 831

For ATE, the hyperparameter settings are pre- 832

sented in Table 10. 833
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