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Abstract
“Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of her trusty ship, the
Maelstrom’s Fury, gazing out at the endless sea. [...] Lyra’s eyes welled up with tears as she realized
the bitter truth – she had sacrificed everything for fleeting riches, and lost the love of her crew, her
family, and herself.” Although this story, generated by a large language model, is captivating, one
may wonder—how would the story have unfolded if the model had chosen “Captain Maeve” as the
protagonist instead? We cannot know. State-of-the-art large language models are stateless—they
maintain no internal memory or state. Given a prompt, they generate a sequence of tokens as an
output using an autoregressive process. As a consequence, they cannot reason about counterfactual
alternatives to tokens they have generated in the past. In this work, our goal is to enhance them
with this functionality. To this end, we develop a causal model of token generation that builds upon
the Gumbel-Max structural causal model. Our model allows any large language model to perform
counterfactual token generation at almost no cost in comparison with vanilla token generation, it is
embarrassingly simple to implement, and it does not require any fine-tuning nor prompt engineering.
We implement our model on Llama 3 8B-Instruct and Ministral-8B-Instruct, and
conduct a qualitative and a quantitative analysis of counterfactually generated text. We conclude
with a demonstrative application of counterfactual token generation for bias detection, unveiling
interesting insights about the model of the world constructed by large language models.
Keywords: Counterfactual reasoning, large language models, Gumbel-Max SCM

1. Introduction

Reasoning about “what might have been”, about alternatives to our own past actions, is a landmark
of human intelligence (Roese, 1997; Byrne, 2007; Van Hoeck et al., 2015). This type of reasoning,
known as counterfactual reasoning, has been shown to play a significant role in the ability that
humans have to learn from limited past experience and improve their decision making skills over
time (Epstude and Roese, 2008; Markman et al., 2008; Roese and Epstude, 2017), it provides the
basis for creativity and insight (Sternberg and Gastel, 1989), and it is tightly connected to the way
we attribute causality and responsibility (Lagnado et al., 2013; Gerstenberg et al., 2021; Xiang
et al., 2023; Tsirtsis et al., 2024). Can currently available large language models (LLMs) conduct
counterfactual reasoning about alternatives to their own outputs? In this work, we argue that they
cannot, by design.

* Authors contributed equally and are listed in alphabetical order.

© 2025 I. Chatzi, N. Corvelo Benz, E. Straitouri, S. Tsirtsis & M. Gomez-Rodriguez.



CHATZI CORVELO BENZ STRAITOURI TSIRTSIS GOMEZ-RODRIGUEZ

(a) Original generation (b) Interventional generation with
unmodified input

(c) Interventional generation with
modified input

(d) Counterfactual generation with
modified input

Figure 1: Illustrative examples of autoregressive token generation. In all panels, plain text
indicates the input provided to the LLM and highlighted text indicates the output generated by
the model. Each token in the output sequence is highlighted in a different color to represent the
(stochastic) state of the sampler.3 Panel (a) shows an LLM’s output to a user’s prompt using vanilla
autoregressive token generation. Panels (b, c) show an LLM’s output to an input comprising a
user’s prompt and an unmodified/modified part of the original output from Panel (a) using vanilla
autoregressive token generation. Panel (d) shows an LLM’s counterfactual output to an input
comprising a user’s prompt and a modified part of the output from Panel (a) using autoregressive
token generation augmented with the Gumbel-Max SCM.

Currently available LLMs are stateless—they maintain no internal memory or state. Given an
input prompt, they generate a sequence of tokens1 as output using an autoregressive process (Bengio
et al., 2000; Radford et al., 2019). At each time step, they first use a neural network to map the
prompt and the (partial) sequence of tokens generated so far to a token distribution. Then, they use
a sampler to draw the next token at random from the token distribution.2 Finally, they append the
next token to the (partial) sequence of tokens, and continue until a special end-of-sequence token is
sampled. To understand why this autoregressive process is insufficient to reason counterfactually
about alternatives to a previously generated sequence of tokens, we will use an illustrative example.

Consider that we ask an LLM to share its favorite color, as shown in Figure 1(a). Had the LLM
chosen a different color (e.g., purple instead of blue), what would the rest of its output have been? To
answer such a counterfactual question, we need to implement two actions: (i) modify the (partial)
sequence of tokens fed to the neural network used by the LLM and (ii) compel the sampler used by the
LLM to behave exactly as it did in the original generation. Using currently available LLMs, we can
readily implement the first action, which can be viewed as a causal intervention (Pearl, 2009; Peters
et al., 2017). We just need to replace “blue” with “purple” in the (partial) sequence of tokens fed to
the neural network. However, we cannot easily implement the second action, because the sampler
does not specify how it would have behaved after taking the first action while keeping everything
else equal. In fact, note that, if we provide the (modified) partial sequence up to and including the

1. Tokens are the units that make up sentences and paragraphs. Examples of tokens include (sub-)words, symbols,
numbers, and special end-of-sequence tokens.

2. Multiple lines of evidence suggest that, if an LLM is forced to output tokens deterministically, its performance
worsens (Holtzman et al., 2019).

3. In Section 2, we formally define the state of the sampler as an exogenous noise variable in an SCM.
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world “blue” (“purple”) as input to the LLM, there is no way to ensure that the LLM will generate an
output that matches (the structure of) the original output, as shown in Figures 1(a), 1(b) and 1(c).4

Our contributions. Our key idea is to augment the autoregressive process of token generation
underpinning an LLM, particularly the sampler used in the process, using a structural causal model
(SCM) (Pearl, 2009). More specifically, we define the sampler through a causal mechanism that
receives as input the distribution of the next token and a set of noise values, which determine
the sampler’s (stochastic) state. Importantly, the use of a causal mechanism specifies how the
sampler would have behaved under an intervention on the distribution of the next token and thus
allows us to answer counterfactual questions about a previously generated sequence of tokens, as
shown in Figure 1(d). Further, to instantiate our model, we use the Gumbel-Max SCM (Oberst and
Sontag, 2019), an SCM shown to satisfy a desirable counterfactual stability property which, in the
context of token generation, favors counterfactual output sequences that share similarities with the
original sequence. Along the way, we also introduce an efficient implementation of the augmented
autoregressive process that can generate counterfactual tokens at almost no cost in comparison
with vanilla token generation. As a proof of concept, we implement our model on Llama 3
8B-Instruct and Ministral-8B-Instruct, and we conduct experiments to qualitatively
and quantitatively analyze the similarity between an LLM’s original output and the one generated via
counterfactual token generation. Additionally, we demonstrate the use of our methodology for bias
detection, unveiling interesting insights about the model of the world constructed by large language
models. We conclude with a comprehensive discussion of the limitations of our model, including
additional avenues for applications.5

Further related work. Our work is closely related to a line of work on counterfactual text gen-
eration (Qin et al., 2019, 2020; Hao et al., 2021; Chen et al., 2022; Wang et al., 2024a,b; Nguyen
et al., 2024b; Zellers et al., 2019; Li et al., 2023; Nguyen et al., 2024a; Gat et al., 2024). In this
line of work, given pairs of factual statements and interventions over these statements, the goal is to
generate counterfactual statements that match those made by humans—counterfactual statements
that are consistent with the underlying model of the world shared by humans. To this end, existing
methods typically fine-tune an LLM using a dataset comprising factual statements, interventions
over these statements, and counterfactual statements made by humans. In contrast, in our work, our
goal is to generate counterfactual statements that are consistent with the underlying model of the
world constructed by a given LLM (Li et al., 2021, 2022; Patel and Pavlick, 2022; Vafa et al., 2024).
In this context, our work also relates to a rapidly increasing number of empirical studies assessing
the ability of LLMs to answer questions that require counterfactual reasoning (Frohberg and Binder,
2022; Jin et al., 2023; Kıcıman et al., 2023; Pawlowski et al., 2023; Jiang et al., 2023b; Betti et al.,
2023; Liu et al., 2023; Miao et al., 2023; Wu et al., 2023; Nie et al., 2024; Ortu et al., 2024; Liu et al.,
2024). Here, the LLMs are typically evaluated using multiple choice questions about a given set of
factual and counterfactual statements. However, similarly as in the line of work on counterfactual
text generation discussed previously, the counterfactual statements are made by humans.

The works by Ravfogel et al. (2025) and Bynum and Cho (2024), which have been undertaken
concurrently and independently of our work, also use SCMs to model the autoregressive process
underpinning LLMs as we do. The work by Ravfogel et al. (2025) is most closely related to ours;

4. Note that using the same random seed is not sufficient because the number of tokens of the input in Figure 1(a) and the
number of tokens of the inputs in Figures 1(b) and 1(c) differ.

5. An open-source implementation of our model on Llama 3 8B-Instruct and Ministral-8B-Instruct is
available at https://github.com/Networks-Learning/counterfactual-llms.
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Prompt: What is your favorite color? 
Response: My favorite color is blue.

S0 Si−1 Si SK
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Prompt: What is your favorite color? 
Response: My favorite color is Prompt: What is your favorite color? Prompt: What is your favorite color?  

Response: My favorite color is blue. 
It is the color of the sea.

Partial Output Sequence

SqPrompt

Figure 2: Causal graph of our proposed SCM M for token generation. Boxes represent en-
dogenous random variables and circles represent exogenous random (noise) variables. The value of
each endogenous variable is given by a function of the values of its ancestors in the causal graph,
as defined by Eq. 1. The value of each noise variable Ui is sampled independently from a given
distribution PU , and it determines the stochastic state of the LLM’s sampler during the generation of
token Ti (refer to Fig. 1).

they model autoregressive generation using the Gumbel-Max SCM and generate counterfactual
strings to visualize and analyze the effects of interventions within (the network of) an LLM. However,
in contrast to our work, they do not explicitly implement the sampler of an LLM as an SCM and
use the same set of noise values during factual and counterfactual generation, but they sample the
noise values using a posterior distribution inferred from the factual output. The work by Bynum
and Cho (2024) is fundamentally different to ours. In the context of a specific task, they utilize an
SCM to describe and quantify the causal relations between variables determined by the semantics
of that specific task. In this context, it is also relevant to note that the Gumbel-Max SCM has
previously been used to enable counterfactual reasoning in other domains such as Markov decision
processes (Tsirtsis et al., 2021), temporal point processes (Noorbakhsh and Gomez-Rodriguez, 2022),
and expert predictions (Benz and Gomez-Rodriguez, 2022).

2. A Causal Model of Token Generation

To formally express autoregressive token generation, we adopt (part of) the notation introduced
by Duetting et al. (2024) in a different (non-causal) context. Let V denote the vocabulary (set) of
tokens available to the LLM, which includes an end-of-sequence token ⊥. Then, we denote by
V ∗ = V ∪ V 2 ∪ · · · ∪ V K the set of sequences of tokens up to maximum length K, and by ∅ the
empty token. An LLM takes as input a prompt sequence sq ∈ V ∗ and responds with an output
sequence s ∈ V ∗. The output sequence is generated using an autoregressive process. At each time
step i ∈ [K], the LLM first takes as input the concatenation of the prompt sequence sq and the
(partial) output sequence si−1 and generates a distribution over tokens di ∈ ∆(V ). Then, it samples
the next token ti ∼ di from the distribution di and creates the output sequence si = si−1 ◦ ti, where
◦ denotes the concatenation of a token or sequence with another sequence. Further, if ti = ⊥, it
terminates and returns s = si and, otherwise, it continues to the next step i+ 1 in the generation.
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Given any prompt sequence, the above autoregressive process determines what (factual) output
sequence the LLM generates as a response. However, given a generated output sequence, the above
process does not determine what counterfactual output sequence the LLM would have generated if
the prompt sequence, or some of the tokens in the output sequence, had been different. To address this
limitation, we augment the autoregressive process using a structural causal model (SCM) (Pearl, 2009;
Peters et al., 2017), which we denote as M. Our SCM M is defined by the following assignments6:

S0 = Sq, Di =

{
fD(Si−1) if last(Si−1) ̸= ⊥,

P∅ otherwise
, Ti =

{
fT (Di, Ui) if Di ̸= P∅,

∅ otherwise
,

Si = Si−1 ◦ Ti and S = SK ,

(1)

where Sq and U = (Ui)i∈{1,...,K} are independent exogenous random variables, with Sq ∼ PQ and
Ui ∼ PU , respectively, fD and fT are given functions, P∅ is the point mass distribution on ∅, and
last(Si−1) denotes the last token of the sequence Si−1. Here, the function fD is defined by the
architecture and parameters of the LLM and the choice of function fT and distribution PU determines
the exact mechanism that the LLM’s sampler uses to (stochastically) select the next token Ti. Note
that, there always exists a pair of fT and PU such that the distribution Di matches the distribution
PM(Ti) entailed by M (see Buesing et al. (2018), Lemma 2 for a technical argument). Moreover,
note that, in the SCM M, the output sequence S contains the prompt sequence to lighten the notation
regarding interventions. For an illustration of the SCM and its causal graph, refer to Figure 2.

Under this augmented autoregressive process, given an output sequence S = s and noise values
U = u, we can generate the counterfactual output sequence the LLM would have generated if the
prompt sequence, or some of the tokens in the output sequence had been different, deterministically.
More formally, given an intervention do[Si = s̃], with i ≤ |s|, the counterfactual output sequence
S = SK can be computed recursively using the following expression:

Sj =


sj if j < i

s̃ if j = i

Sj−1 ◦ fT (fD(Sj−1), uj) if j > i and last(Sj−1) ̸= ⊥
Sj−1 otherwise.

(2)

Note that the key element of this recursive expression for the counterfactual output sequence
is the use of the same realized noise values uj for j ∈ [K] that were used to generate the factual
output sequence s. However, without further assumptions, the counterfactual output sequence may be
non-identifiable. This is because there may be multiple noise distributions PU and functions fT under
which PM(Ti) = Di, but each pair produces a different counterfactual output sequence—Oberst
and Sontag (2019) make a similar argument in the context of Markov decision processes. In simpler
terms, without explicitly modeling the stochastic mechanism by which the sampler selects the next
token in the factual sequence, it is not possible to determine which tokens would have been selected
in the counterfactual output sequence. In the next section, we address this issue by focusing on the
class of Gumbel-Max SCMs to implement an LLM’s sampler.

6. We denote random variables with capital letters and realizations of random variables with lower case letters.
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3. Counterfactual Token Generation Using Gumbel-Max SCMs

Under the class of Gumbel-Max SCMs, the function fT that implements the sampling of the next
token in the SCM M adopts the following functional form (Oberst and Sontag, 2019):

fT (Di, Ui) = argmax
t∈V

{logDi,t + Ui,t}, (3)

where Ui,t ∼ Gumbel(0, 1) are independently distributed Gumbel variables that determine the
stochastic state of the LLM’s sampler during the generation of token Ti (refer to Fig. 1). Importantly,
this class of SCMs has been shown to satisfy a desirable counterfactual stability property that can be
intuitively expressed as follows. Assume that, at time step i, the augmented autoregressive process
sampled token ti given di = fD(si−1). Then, in a counterfactual scenario where Di = d′, it is
unlikely that, at time step i, the augmented autoregressive process would have sampled a token
t′ other than ti—the factual one—unless, under the token distribution d′, the relative chance of
generating token ti decreased compared to other tokens. More formally, for any token distribution
d′ ∈ ∆(V ) with d′ ̸= di such that

PM(Ti = ti |Di = d′)

PM(Ti = ti |Di = di)
≥ PM(Ti = t′ |Di = d′)

PM(Ti = t′ |Di = di)
,

it holds that, in the counterfactual scenario where Di = d′, the counterfactual token Ti ̸= t′.
To understand the intuition behind counterfactual stability, consider the following example. As-

sume that the vocabulary V contains 2 tokens “A” and “B”, the (factual) distribution di assigns values
0.6 and 0.4, respectively, and the Gumbel-Max SCM samples token “A”. Consider an intervention
that changes di to a distribution d′ that assigns values 0.7 and 0.3 to “A” and “B”, respectively. Then,
the property of counterfactual stability ensures that, during the counterfactual generation, token “A”
is also sampled because, in comparison to the factual generation, the relative odds are higher, i.e.,
0.7 to 0.3 vs. 0.6 to 0.4. In a way, counterfactual stability “prioritizes” the token sampled in the
factual generation, maintaining consistency between the factual and counterfactual text. For a further
discussion of the stability property and alternatives to the Gumbel-Max SCM, refer to Section 5 .

In practice, in addition to solving the non-identifiability issues discussed previously, the use of
Gumbel-Max SCMs allows for an efficient procedure to sample a sequence of counterfactual tokens
with minimal additional memory requirements compared to vanilla token generation. We summarize
the procedure in Algorithm 1. Recall that, to generate the counterfactual output sequence, one needs
to use the same values uj for the noise variables that were used during the factual generation and
then perform an autoregressive computation based on Equation 2. Instead of storing the values uj
for all time steps j ∈ [K], whose dimensionality matches the size of the vocabulary V , Algorithm 1
employs a simple idea: it stores the state of the random number generator rj used at each time step
j ∈ [K] of the factual generation. Then, during the counterfactual generation, it regenerates the
values uj = GenGumbel(rj) on the fly.7

Remarks on implementation aspects of LLMs. In practice, to avoid sampling tokens with very
low probability, LLMs may not directly sample from the distribution over tokens di at each time
step i. Instead, a common practice is to sample from a distribution d̂i ∈ ∆(Vi), where d̂i,t ∝ di,t

7. Storing the realized values of the Gumbel variables requires storing O(KV ) float values since uj ∈ RV . On the other
hand, the states of random number generators rj take values in Nd, where, for instance, d = 16 in pytorch (Paszke
et al., 2019). Thus, our approach requires O(K) additional integer memory compared to vanilla token generation.

6
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ALGORITHM 1: It returns a counterfactual sequence of tokens using a Gumbel-Max SCM
Input: Random number generator states r, factual output sequence s, intervention (i, s̃).
Output: Counterfactual output sequence s′.
for j = 1, . . . ,K do

if j < i then
s′j = sj

else if j = i then
s′j = s̃

else if j > i ∧ last(s′j−1) ̸= ⊥ then
uj = GenGumbel(rj)
d′j,t = fD(s

′
j−1)

tj = argmaxt∈V {log d′j,t + uj,t}
s′j = s′j−1 ◦ tj

else
s′j = s′j−1

end
end
Return s′K

if t ∈ Vi and d̂i,t = 0 otherwise, where Vi is either the set of most likely tokens of size k under
di—known as “top-k” sampling—or the set of most likely tokens whose cumulative probability
exceeds a given value p under di—known as “top-p” or “nucleus” sampling (Holtzman et al., 2019).
We can readily implement top-k sampling and top-p sampling in the SCM M by restricting the
argmax in Equation 3 to the respective set Vi. However, in general, the resulting model is not
guaranteed to satisfy counterfactual stability.

In all state-of-the-art LLMs, to ensure that the distribution di over tokens at each time step i is
a valid probability distribution, the final layer in their neural network is a softmax layer. A crucial
feature of this layer is the temperature parameter, τ , which controls the level of uncertainty in di.
Intuitively, higher values of τ result in a more uniform distribution, while as τ approaches zero,
the distribution concentrates increasingly on the most probable next token. In the next section,
we perform a series of experiments in which we analyze the performance of counterfactual token
generation, examining the effects of varying temperature values, as well as the application of top-k
and top-p sampling.

4. Experiments

In this section, we experiment with an implementation of our model on Llama 3 8B-In-
struct (Dubey et al., 2024) and Ministral-8B-Instruct (Jiang et al., 2023a), two popular
open-weights large language models. We start by qualitatively analyzing an example of counterfactual
story generation. Next, we quantitatively analyze the similarity between factual and counterfactual
text. We conclude with an application of counterfactual token generation in detecting model biases
towards demographic groups.8

8. All experiments ran on an cluster of machines, each equipped with 24 Intel(R) Xeon(R) 3GHz CPU cores, 1024GBs
of memory and 2 NVIDIA A100 80GB GPUs.
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(a) Factual story

(b) Story generated with interventional token generation

(c) Story generated with counterfactual token generation

Figure 3: Examples of factual, interventional and counterfactual stories. Panel (a) shows a factual
story, as given by the LLM. Panels (b) and (c) show variants of the story resulting from interventional
and counterfactual token generation, respectively. In panels (b), (c), we give as input to the LLM the
original prompt along with the first sentence of the factual output (non-highlighted text), modified by
replacing “Lyra” with “Maeve”. Blue (green)-highlighted text indicates the tokens of the output that
are identical in the factual story and its interventional (counterfactual) counterpart. Red-highlighted
text indicates the differences. In both panels, the temperature parameter is set to τ = 0.9.

4.1. How would the story have unfolded for “Captain Maeve”?

As discussed in Section 3, by using the Gumbel-Max SCM, our approach to counterfactual token
generation is guaranteed to satisfy the property of counterfactual stability—counterfactual token
generation “prioritizes” selecting the same tokens Ti that were selected during the factual generation.
As a consequence, we expect the counterfactual text generated using counterfactual token generation
to be similar to the factual text. Here, we investigate this qualitatively through an anecdotal example
of story generation.

We use the implementation of our model on Llama 3 8B-Instruct with the system prompt
“Be creative and keep your response as short as possible.” and a query prompt “Tell me a fantasy
story about a captain. The story should have either a happy or a sad ending.” Figure 3(a) shows the
(factual) generated story about Captain Lyra, her ship the Maelstrom’s Fury, and her quest to find a
treasure on the Golden Isle. Then, we use the original prompt along with part of the factual output
(i.e., the first sentence of the story) as input to the model, modifying the protagonist’s name from
“Lyra” to “Maeve”, and we regenerate the rest of the output using two approaches:

8
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Interventional Token Generation Counterfactual Token Generation
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(b) Top-p Gumbel-Max SCM
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(c) Top-k Gumbel-Max SCM

Figure 4: Comparison between interventional and counterfactual token generation. The panels
show the edit distance between the factual token sequence and the sequence generated by interven-
tional and counterfactual token generation using (a) the Gumbel-Max SCM defined in Equation 3, (b)
the top-p Gumbel-Max SCM, and (c) the top-k Gumbel-Max SCM discussed at the end of Section 3,
against various values of the temperature parameter τ , p and k, respectively. In panels (b, c) the
temperature parameter is set to τ = 0.6. In all three panels, the edit distance is averaged over
4,000 output sequences, resulting from two independent interventions per factual sequence, and
shaded areas represent 95% confidence intervals. The icons and indicate results for Llama 3
8B-Instruct and Ministral-8B-Instruct respectively.

1. Interventional token generation (see Fig 1(c)): it regenerates the second part of the output
using vanilla autoregressive token generation, i.e., it samples new noise values uj for the
second part of the output using different states rj for the random number generator from those
used in the factual generation.

2. Counterfactual token generation (see Fig 1(d)): it regenerates the second part of the output
using Algorithm 1, i.e., it reuses the same states rj for the random number generator and,
hence, the same noise values uj as the ones used in the factual generation.

Figures 3(b), 3(c) present two alternative versions of the factual story generated using the
methods mentioned above. These stories reveal several interesting insights. The story generated with
interventional token generation starts diverging from the factual story after only a few tokens, as
the method lacks memory of the noise values uj that resulted in the original output. In contrast, the
initial part of the counterfactual output remains identical to the factual output, as expected, due to
the counterfactual stability property of the Gumbel-Max SCM and the minor nature of changing the
protagonist’s name. Although one may expect this to apply for the rest of the counterfactual output,
thinking that the protagonist’s name would be irrelevant to the narrative of this particular story, this is
not the case. Perhaps surprisingly, the use of “Maeve” instead of “Lyra” results in a partially different
output, illustrating that the LLM’s probability distributions over next tokens are sensitive even to
minor changes. In Appendix A, we also observe differences between the factual and counterfactual
outputs resulting from other seemingly irrelevant interventions, such as changing the name of the
ship, removing the adjective “trusty” or replacing the word “sea” with “blue”.

4.2. How similar is counterfactually generated text to the factual one?

In the previous section, we demonstrated through an example that counterfactual token generation
results in text that is (partially) similar to the factual text, as expected due to the property of

9
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counterfactual stability. Here, we empirically verify this expectation using a quantitative analysis
and explore how it is affected by the model parameters.

Experimental setup. We first use the implementation of our model on Llama 3 8B-Instruct
and Ministral-8B-Instruct to generate (factual) outputs to 2,000 question prompts sourced
from the LMSYS Chat 1M dataset (Zheng et al., 2023). As a system prompt we use “Keep your
replies short and to the point.”. Further, for each factual output, we perform two interventions where
we replace a randomly selected token ti with a token t′ ̸= ti.9 One of the two interventions restricts
the choice of ti to the first half of the output sequence and the other restricts it to the second half.
Then, for each intervened factual output, we feed the concatenation of the question prompt and the
first part of the intervened factual output up to and including token t′ as input to our model. We
regenerate the second part of the output after token t′ using (i) interventional token generation and (ii)
counterfactual token generation, as described in Section 4.1. Finally, we measure the lexicographic
similarity between the regenerated second part of the output and its factual counterpart using their
(normalized) Levenshtein edit distance (Levenshtein, 1966). In our experiments, we implement our
model using the Gumbel-Max SCM defined in Equation 3 as well as the top-p Gumbel-Max SCM
and top-k Gumbel-Max SCM discussed at the end of Section 3.

Results. Figure 4 summarizes the results, which show that, across different SCMs and LLMs, the
output sequences generated using counterfactual token generation are more similar to the factual
sequences (i.e., the edit distance is lower) than the output sequences generated using interventional
token generation. This suggests that, even though the top-p and top-k Gumbel-Max SCMs are not
guaranteed to satisfy counterfactual stability, in practice, counterfactual token generation under both
SCMs does “prioritize” selecting the same tokens Ti that were selected during the factual generation.
Although this pattern is consistent across the two LLMs, we observe that output sequences generated
by both interventional and counterfactual token generation are more similar to their respective factual
sequences for Llama 3 8B-Instruct than Ministral-8B-Instruct.

4.3. Does counterfactual token generation reveal model biases?

Common approaches to addressing questions of bias and fairness rely on making counterfactual
comparisons based on sensitive attributes (Kusner et al., 2017). For example, would a person’s
income have been the same if their race or sex were different? In this section, we focus on a census
data generation task, and demonstrate the use of counterfactual token generation to investigate
potential biases of an LLM towards demographic groups.

Experimental setup. We first use the implementation of our model on Llama 3 8B-Instruct
and Ministral-8B-Instruct to generate (factual) census data. For each model, we use the
same input prompt three times with different seeds (see Appendix B for details), requesting 50
individuals each time. The attributes of generated individuals include their age, sex, citizenship, race,
ethnicity, marital status, number of children, occupation, income, and education, in this given order,
and we discard individuals for whom the generated income is exactly zero. The factual data generated
by the models result in a corpus of 114 and 158 fictional individuals for Llama 3 8B-Instruct
and Ministral-8B-Instruct, respectively.

For each fictional person, we consider all possible interventions on each of the sensitive attributes
of sex and race. For each intervention on sex and race, we concatenate the input prompt with the

9. To select t′, we set the probability of ti in di to 0, re-scale the values of di and use top-p sampling with p = 0.9.
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Figure 5: Comparison between factual and counterfactual income. Panel (a) shows the change in
income of male (female) individuals had they been female (male), while keeping fixed the rest of
their attributes preceding income in the output sequence. Panel (b) shows the change in income of
male (female) individuals had they been female (male), while keeping fixed the attributes preceding
sex but allowing the attributes between sex and income to change in the output sequence. Panel
(c) shows the factual distributions of income of female and male individuals and the counterfactual
distribution of income of female individuals under the same intervention as in panel (b). Enlarged
points in panels (a, b) and dashed lines in panel (c) correspond to the median income. In all panels,
we use Llama 3 8B-Instruct and set the temperature parameter to τ = 0.8.

initial part of the output that includes the fictional person’s description up to and including the
intervened sensitive attribute. This concatenated input is then used by our model to regenerate
the latter part of the output, following the intervention, using counterfactual token generation (i.e.,
Algorithm 1). Then, we compare the factual and counterfactual values of income, education and
occupation to measure the total effect of sex and race on those attributes. In addition, for each
intervention on sex, we also measure the direct effect of sex on income. To this end, we concatenate
the input prompt with the initial part of the output that includes the intervened value of sex and the
factual values of all other attributes preceding income. This concatenated input is then used by our
model to regenerate the latter part of the output starting from the income attribute.10

Results. Figure 5 summarizes the results with respect to the effect of sex on income using Llama 3
8B-Instruct. For both the direct and the total effect of sex on income, Figures 5(a) and 5(b) show
that the generated income for most male (female) individuals would have remained unchanged or
decreased (increased) had they been female (male), however, the total effect exhibits larger variance.
This suggests that, in the LLM’s world model, both the direct and total effects of sex on income are
present, but at a moderate level. Interestingly, the (potentially biased) effect of sex on income cannot
be identified solely from the factual distributions of female and male income, which present exactly
the same median, as shown in Figure 5(c). For additional results using Llama 3 8B-Instruct
and Ministral-8B-Instruct, refer to Appendix C.

Figure 6 summarizes the results with respect to the effect of race on education and occupation
using Ministral-8B-Instruct. Figure 6(a) shows that, for individuals of all (generated)
races, there exists at least one other race that, had they belonged to it, they would have experienced

10. For further details regarding the difference between total and direct effects, refer to Pearl (2009), Chapter 4.
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Figure 6: Comparison between factual and counterfactual education and occupation. Panel
(a) shows the average difference in the education level of individuals of each race had their race
been different. Here, positive values indicate an improvement in education and negative values
indicate a decline. Panel (b) shows the distribution shift of occupations among Asian American
individuals had they been Black or African American. Green (red) sections indicate the counterfactual
increase (decrease) in the number of individuals that practice each occupation. In both panels, we
use Ministral-8B-Instruct and set the temperature parameter to τ = 0.8.

a significant increase or decrease in their education level (refer to Appendix B for the assignment
of each education level to a numerical value and for the factual distribution of individuals across
races). Specifically, we observe a consistent pattern in which the LLM would have increased the
level of education for (i) American Indian or Alaska Native (Native) and (ii) Native Hawaiian or
Other Pacific Islander (Hawaiian) individuals had they belonged to any other race. In contrast, it
would have decreased the level of education for Asian American (Asian) individuals.11 Figure 6(b)
shows that, for Asian American individuals, their occupation would have shifted from STEM to
humanities-related occupations had they been Black or African American. In Appendix C, we present
qualitatively similar results using Llama 3 8B-Instruct.

5. Discussion and Limitations

In this section, we discuss several assumptions and limitations of our work, pointing out avenues for
future research.

Methodology. Our causal model of the autoregressive process underpinning large language models
operationalizes the counterfactual stability property using the Gumbel-Max SCM. It would be
interesting to understand the sensitivity of counterfactual token generation to this specific choice of
SCM and implement counterfactual token generation using alternative SCMs obeying counterfactual
stability (Lorberbom et al., 2021; Haugh and Singal, 2023). In this context, it is also important
to acknowledge that, while counterfactual stability is somewhat an appealing property, Haugh and
Singal (2023) have recently argued that its appropriateness depends on the application and should
be justified by domain specific knowledge. Moreover, they have shown that there are cases where
counterfactual stability may permit counterfactuals that it was designed to exclude. Motivated by this

11. The terms for races in parentheses and in Figure 6(a) are shortened descriptions, which we use for brevity. Refer to
Appendix B for a list of all official descriptions.
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observation, in Appendix D, we include additional experiments on counterfactual token generation
using a classical sampler for categorical distributions, which can be viewed as an SCM that does not
satisfy counterfactual stability.

Further, there are reasons to believe that counterfactual statements generated using our model
may be inconsistent with the underlying causal model of the world shared by humans (Li et al., 2021,
2022; Patel and Pavlick, 2022; Vafa et al., 2024) and this may render them unreliable for certain uses
cases. An interesting future direction would be to explore the use of our methodology in conjunction
with human feedback to train (or fine-tune) LLMs that better understand causal relationships.
Applications. Counterfactual token generation may be useful for understanding the inner workings of
an LLM. For example, it may be used as a tool for evaluating causal dependencies among physical or
social attributes within the world model learned by an LLM, as in our bias experiments in Section 4.3,
or quantifying the “importance” of different parts of a model’s output in reaching a final conclusion,
similarly as in feature attribution (Ribeiro et al., 2016; Adebayo et al., 2018). Further, counterfactual
token generation may also be useful for creating novel interfaces for LLM-human collaborations. For
example, it could be used in scenarios in which a user is satisfied with a portion of an LLM’s output
but wishes to modify a few words while maintaining similarity between the subsequent text and the
original output. Additionally, counterfactual token generation may be proven useful in (applications
in) linguistics and cognitive science.
Evaluation. We have implemented our model on two LLMs, namely Llama 3 8B-Instruct
and Ministral-8B-Instruct. It would be useful to implement our model on other LLMs and
use counterfactual token generation to reveal similarities and differences between the underlying
models of the world constructed by different LLMs. In this context, it would be insightful to see
whether the sensitivity of an LLM’s counterfactual output changes as its number of parameters
increases.

6. Conclusions

In this work, we have proposed a causal model of token generation. Using the Gumbel-Max SCM,
we have introduced a methodology that enhances state-of-the-art LLMs with the ability to perform
counterfactual token generation, allowing them to reason about past alternatives to their own outputs.
We have experimentally analyzed the similarity between an LLM’s original output and the one
generated by counterfactual token generation, and we have demonstrated the use of our methodology
in bias detection.
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Appendix A. Additional counterfactual stories

(a) Factual story

(b) Story generated with counterfactual token generation, after modifying the ship’s name

(c) Story generated with counterfactual token generation, after changing “sea” to “blue”

(d) Story generated with counterfactual token generation, after deleting the word “trusty”

Figure 7: Comparison between the factual story and counterfactual variants. Panel (a) shows
the same factual story as in Section 4.1. Panels (b, c, d) show the story resulting from various
interventions. In each case, the first sentence (non-highlighted text) is provided as input to the LLM,
with the word(s) in bold (or left empty) representing the intervention. The remainder of the output is
regenerated using counterfactual token generation. Text highlighted in green indicates the tokens of
the output that are identical in the factual story and its counterfactual counterpart. Red-highlighted
text indicates the differences. In all panels, the temperature parameter is set to τ = 0.9.
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Appendix B. Additional details on the experimental setup of Section 4.3

In this section, we provide additional details about the census generation experiment discussed in
Section 4.3.
Data generation. Figure 8 shows the complete system and user prompts used to generate the census
data. For race and ethnicity, we instructed the two LLMs, through the system prompt, to select
values among those reported in the latest (2020) US Census. We used this prompt three times with
different seeds. Despite our request for 50 individuals per generation, Llama 3 8B-Instruct
only generated 45, 34 and 48 individuals each time, resulting in a total of 127 individuals, and
Ministral-8B-Instruct generated 72, 42 and 44 individuals each time, resulting in a total
of 158 individuals. The census data for Llama 3 8B-Instruct included individuals for whom
the generated income is exactly zero, which we discarded, resulting in a total of 114 individuals.
Additionally, for some interventions, the models generated incomplete counterfactual outputs; we
excluded those cases from further analysis. Table 3 and figure 9 show the factual distributions of sex
and race for the individuals generated by each model.

System: Return only the following information: Age, Sex, Citizenship, Race, Ethnicity, Marital Status, Number of Children, 
Occupation, Income, Education. For Race, choose only between following options: White American, Black or African 
American, American Indian or Alaska Native, Asian American, Native Hawaiian or Other Pacific Islander, Other or Two or 
more races (multiracial). For Ethnicity, choose only between following options: Non-Hispanic/Latino or Hispanic/Latino. 
Return a list in json format delimited by “```”. 
User: Generate census data of 50 fictional people.

Figure 8: The prompt used for census data generation.

Description of race values and education level. Table 1 contains the full description of each race
attribute value, of which shortened versions were used in Figure 6(a). Table 2 lists the numerical
values assigned to the (categorical) education attribute values, which were used to compute the
difference in education level shown in Figure 6(a).

Short Full

Native American Indian or Alaska Native
Asian Asian American
African Black or African American
Hawaiian Native Hawaiian or Other Pacific Islander
Other/2+ Other or Two or more races (multiracial)
White White American

Table 1: Short and full description of all races
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Education Numerical Value

High school diploma, High school, 1
High School Diploma, High School

Associate’s degree, Associate’s Degree,
Associate degree, Associate Degree,
Associate’s, Associate, Undergraduate, 2
Some college, Some College, College,
Vocational Training

Bachelor’s degree, Bachelor’s Degree, 3
Bachelor’s, Nursing Degree

Master’s degree, Master’s Degree, 4
Master’s

Ph.D., PhD, Doctorate degree,
Doctorate Degree, Doctorate,
Doctoral degree, Doctoral Degree,
JD, Juris Doctor, Juris Doctor (JD), 5
Law degree, Law degree, PharmD,
Pharmacy Degree, Dental degree,
Dental Degree, Dentistry degree,
MD, Medical degree, Medical Degree

Table 2: Numerical value assigned to each (categorical) value of the education attribute

Model Male Female

Llama 3 8B-Instruct 72 55
Ministral-8B-Instruct 79 79

Table 3: Number of male and female individuals generated by each model
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Figure 9: Factual distributions of race. The panels show the empirical factual dis-
tributions of race for the individuals generated by Llama 3 8B-Instruct (left) and
Ministral-8B-Instruct (right).
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Figure 10: Comparison between factual and counterfactual income. The left (right) panel shows
the factual distributions of income of female (male) individuals and their counterfactual distribution
of income under two interventions: (i) had they been male (female), while keeping fixed the rest
of their attributes preceding income in the output sequence, and (ii) had they been male (female),
while keeping fixed the attributes preceding sex but allowing the attributes between sex and income
to change in the output sequence. In both panels, dashed lines correspond to the median income.
Here, we use Llama 3 8B-Instruct and set the temperature parameter to τ = 0.8.

Appendix C. Additional experimental results on bias detection

Here, we present experimental results complementing those in Section 4.3, regarding the direct and
total effects of sex on income and the total effects of race on education and occupation. Figure 10
complements Figure 5(c); it shows the distributions of the factual and counterfactual incomes of the
individuals generated by Llama 3 8B-Instruct, under all possible interventions on their sex.
Figure 11 complements Figure 5; it summarizes the results regarding direct and total effects of sex
on income for the individuals generated by Ministral-8B-Instruct. Figure 12 complements
Figure 6; it summarizes the results regarding total effects of race on education and occupation for the
individuals generated by Llama 3 8B-Instruct.
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(c) Distributions of factual and counterfactual income

Figure 11: Comparison between factual and counterfactual income. Panel (a) shows the change
in income of male (female) individuals had they been female (male), while keeping fixed the rest of
their attributes preceding income in the output sequence. Panel (b) shows the change in income of
male (female) individuals had they been female (male), while keeping fixed the attributes preceding
sex but allowing the attributes between sex and income to change in the output sequence. Panel (c)
shows the factual distributions of income of female and male individuals and their counterfactual
distributions of income under the same interventions as in panels (a) and (b). Enlarged points in
panels (a, b) and dashed lines in panel (c) correspond to the median income. In all panels, we use
Ministral-8B-Instruct and set the temperature parameter to τ = 0.8.
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Figure 12: Comparison between factual and counterfactual education and occupation. Panel (a)
shows the average difference in the education level of individuals of each race had their race been
different. Here, positive values indicate an improvement in education and negative values indicate a
decline. Panel (b) shows the distribution shift of occupations among Asian American individuals
had they been Black or African American. Green (red) sections indicate the counterfactual increase
(decrease) in the number of individuals that practice each occupation. In both panels, we use Llama
3 8B-Instruct and set the temperature parameter to τ = 0.8.
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Figure 13: Comparison between interventional and counterfactual token generation under two
different SCMs. The plot shows the edit distance between the factual sequence of tokens and the
sequence generated by interventional and counterfactual token generation using the Gumbel-Max
SCM (GM) defined by Eq. 3 and the SCM based on inverse transform sampling (ITS) defined by
Eq. 4, against various values of the temperature parameter τ . The edit distance is averaged over
4,000 output sequences, resulting from two independent interventions per factual sequence, and error
bars represent 95% confidence intervals. In this panel, we use Llama 3 8B-Instruct.

Appendix D. Additional experiments using a sampler that does not satisfy
counterfactual stability

In this section, we conduct counterfactual token generation using a classical sampler for categorical
distributions, which can be viewed as an SCM that is not guaranteed to satisfy counterfactual stability.
Experimental setup. We experiment with two different SCMs to implement the function fT
responsible for sampling the next token on Llama 3 8B-Instruct: (i) the Gumbel-Max SCM
defined in Eq. 3 and (ii) an SCM based on inverse transform sampling defined as follows:

fT (Di, Ui) = argmin
j∈{1,2,...,|V |}

{
j · 1

[
j∑

k=1

Di,k ≥ Ui

]}
. (4)

Under the SCM based on inverse transform sampling, the next token is sampled as follows. Let
the tokens t ∈ V follow a fixed order across time steps i. To generate a token Ti, for each position
j ∈ {1, 2, . . . , |V |}, the SCM based on inverse transform sampling computes the cumulative sum of
probabilities in the distribution Di corresponding to the tokens in positions k ≤ j. Then, it samples a
unidimensional noise variable Ui ∼ Uniform(0, 1) and selects the first token in the vocabulary V
whose corresponding cumulative sum is greater than or equal to Ui.

Similarly as in Section 4.2, we compare the edit distance between factual output sequences and
sequences generated through interventional and counterfactual token generation using the Gumbel-
Max SCM and the SCM given by Eq. 4.
Results. Figure 13 summarizes the results, which show that, under both SCMs, the output sequences
generated using counterfactual token generation remain more similar to their respective factual
sequence (i.e., exhibit lower edit distance) compared to the sequences generated using interventional
token generation. Moreover, as expected, the counterfactual output sequences generated using the
SCM defined by Eq. 4, which does not satisfy the property of counterfactual stability, exhibit an edit
distance higher than those generated using the Gumbel-Max SCM.
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