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Abstract

Grammatical Error Correction (GEC) faces the001
important yet challenging issue of explainabil-002
ity, especially when GEC systems are devel-003
oped for language learners who often strug-004
gle to understand the correction results without005
reasonable explanations. Extractive evidence006
words and grammatical error types are two cru-007
cial factors of GEC explanations. However,008
existing work focuses on extracting evidence009
words and predicting grammatical error types010
given a source sentence and/or a target sen-011
tence as input, ignoring the interaction between012
explanations and corrections. To bridge the013
gap, we introduce EXGEC, a unified explain-014
able GEC framework that jointly perform ex-015
planation and correction tasks in a sequence-016
to-sequence generation manner, hypothesizing017
both tasks would benefit each other. Extensive018
experiments enable us to fully understand and019
establish the interaction between tasks. Espe-020
cially, if models are required to jointly predict021
corrections and explanations, the performance022
of both tasks improves compared to their re-023
spective single-task baselines. Additionally,024
we observe that EXPECT, a recent explainable025
GEC dataset, contains considerable noise that026
may confuse model training and evaluation.027
Therefore, we rebuild EXPECT to eliminate028
the noise, leading to an objective training and029
evaluation pipeline 1.030

1 Introduction031

Writing is a learnt skill that is particularly chal-032

lenging for second-language (L2) speakers, who033

often struggle to create grammatical and compre-034

hensible texts (Bryant et al., 2022). To address the035

problem of ungrammatical writing, GEC systems036

are designed to identify and correct all grammat-037

ical errors in texts. Research in the field of GEC038

has extended to include multi-language (Rothe039

1All the source codes and data will be released after the review
anonymity period.

et al., 2021), multi-modality (Fang et al., 2023), 040

document-level (Yuan and Bryant, 2021) and do- 041

main adaptation (Zhang et al., 2023). 042

However, the explainability of GEC is still under- 043

developed due to its inherent challenges (Hanawa 044

et al., 2021; Kaneko et al., 2022). Since neu- 045

ral GEC systems are typically complex black- 046

box systems, their inner working mechanisms are 047

opaque (Zhao et al., 2023). The lack of explainabil- 048

ity can lead to insufficiency in an educational con- 049

text, where L2-speakers may struggle to thoroughly 050

grasp the writing skills from GEC systems without 051

understanding why a correction is needed. Equip- 052

ping corrections with explanations builds appropri- 053

ate trust by elucidating the linguistic knowledge 054

and reasoning mechanism behind model predic- 055

tions in an understandable manner, assisting peda- 056

gogically end users with elementary language profi- 057

ciency (Bitchener et al., 2005; Sheen, 2007). Addi- 058

tionally, explainability provides insight to identify 059

unintended biases and risks for researchers and 060

developers, acting as a debugging aid to quickly 061

advance model performance (Ludan et al., 2023). 062

To help language learners better understand why 063

GEC systems make a certain correction, Fei et al. 064

(2023) introduce EXPECT, a large dataset anno- 065

tated with evidence words and grammatical error 066

types. Evidence words, which are formally called 067

extractive rationales 2, provides specific clues for 068

corrections, helping L2-speakers understand “why 069

to correct”. the error types in EXPECT cover 15 070

pragmatism-based categories (Skehan, 1998; Gui, 071

2004), facilitating L2-speakers in inferring abstract 072

grammar rules from specific errors in an induc- 073

tive reasoning manner. However, Fei et al. (2023) 074

focus on explaining GEC given an ungrammati- 075

cal source and/or a corrected sentence, ignoring 076

the interaction between explanation and correction 077

2We use the term “evidence words” throughout the paper ex-
cept Section 6, following Fei et al. (2023).
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Correction:

As a result, I enjoy studying accounting.

Source:

As a result, I enjoy study accounting.

Evidence Words: enjoy

Error Type: Gerund

Correction

Source:

As a result, I enjoy study accounting.
Correction

Corrector

Explainer

Joint

Correction

Explanation

(Fei et al. 2023)

Explainable 
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Figure 1: Comparison between correction, explanation (Fei et al., 2023) and our explainable GEC.

tasks, as shown in Figure 1. Previous studies have078

shown that training models to jointly output task079

predictions and explanations can improve the task080

performance on vision-language tasks (Majumder081

et al., 2022) and diversity downstream NLP tasks,082

including text classification (Li et al., 2022a), com-083

monsense reasoning (Veerubhotla et al., 2023), and084

complaint detection (Singh et al., 2023).085

To establish the interaction between explana-086

tion and correction tasks, we propose EXGEC087

(EXplainable Grammatical Error Correction), a088

unified explainable GEC framework that reframes089

the multi-task problem as a sequence-to-sequence090

(Seq2Seq) generation task. With pointing mecha-091

nism (Vinyals et al., 2015), EXGEC can extract ev-092

idence words by directly generating source indexes093

of an ungrammatical source sentence in an auto-094

regressive manner. EXGEC can jointly correct un-095

grammatical sentences, extract evidence words and096

classify grammatical errors in a unified architec-097

ture. To the best of our knowledge, we first propose098

to jointly perform both correction and explanation099

tasks. Our findings illustrate that learning correc-100

tion and explanation tasks concurrently can benefit101

each other. Specifically, pre-explaining models102

achieve higher correction performance yet lower103

explanation performance than post-explaining mod-104

els. However, both models achieve better or compa-105

rable correction and explanation performance than106

their respective baselines.107

Additionally, we observe that EXPECT is not a108

well-specified dataset for explainable GEC. This109

is due to the presence of considerable unidentified110

grammatical errors in EXPECT, which hinder the111

performance of both tasks. As a result, we rebuild112

EXPECT to re-correct the unidentified errors while113

ensuring that each sentence contains only a single114

unique error, as described by Fei et al. (2023). By115

training on rebuilt EXPECT, we significantly im-116

prove the performance of both tasks, demonstrating117

the effectiveness of our rebuild process.118

2 Rebuilt EXPECT Dataset 119

In this paper, we utilize the EXPECT dataset (Fei 120

et al., 2023). The dataset comprises a total of 121

20,016 samples that are split into train, dev and 122

test sets. EXPECT is annotated based on the high- 123

quality GEC dataset, W&I+LOCNESS (Bryant 124

et al., 2019), which is designed to represent a much 125

wider range of English levels and abilities than pre- 126

vious corpora. To reduce the difficulty of the model 127

learning and evaluation, EXPECT is constructed 128

using a special process. Specifically, for a sentence 129

from W&I+LOCNESS with n grammatical errors, 130

the authors repeat the sentence n times and keep a 131

single unique error in each sentence. Considering 132

the challenges of explainable GEC, it is reasonable 133

and desirable as it smooths the task by classify- 134

ing a grammatical error and extracting evidence 135

words for a single unique grammatical error each 136

time, avoiding the confusion caused by multiple 137

interactive grammatical errors in a sentence. 138

However, we argue that the official EXPECT 139

dataset is not well-specified. Specifically, for 140

a sentence with n(n > 1) grammatical errors 141

from W&I+LOCNESS, the authors correct a sin- 142

gle grammatical error and leave the remaining 143

n − 1 errors unidentified, as shown in Table 1. 144

These unidentified grammatical errors may confuse 145

models, making it uncertain which error should 146

be corrected and explained, and leading to uncer- 147

tainty in model training and evaluation. To address 148

the problem, we re-correct the unidentified gram- 149

matical errors, while leaving the single original 150

grammatical error unchanged. The entire rebuild- 151

ing process is automatic since we re-correct all 152

the unidentified grammatical errors by comparing 153

sentences from EXPECT and W&I+LOCNESS. 154

We first retrieve the original parallel samples of 155

W&I+LOCNESS by using the open-source toolkit 156

TheFuzz 3, and then identify and correct the un- 157

3https://github.com/seatgeek/thefuzz
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W&I+LOCNESS Source However I sometimes do a skipping to fit myself .
W&I+LOCNESS Target However , I sometimes do skipping to keep myself fit .
EXPECT Source However I sometimes do skipping to keep myself .
EXPECT Target However I sometimes do skipping to keep myself fit .
Rebuilt Source However , I sometimes do skipping to keep myself .
Rebuilt Target However , I sometimes do skipping to keep myself fit .

W&I+LOCNESS Source i have a dog it name ’s chente , it is a golden retriver .
W&I+LOCNESS Target I have a dog and its name ’s Chente . It is a golden retriever .
EXPECT Source i have a dog its name ’s chente , it is a golden retriver .
EXPECT Target i have a dog and its name ’s chente , it is a golden retriver .
Rebuilt Source I have a dog its name ’s Chente . It is a golden retriever .
Rebuilt Target I have a dog and its name ’s Chente . It is a golden retriever .

Table 1: Examples of our rebuilt EXPECT. We mark grammatical errors in blue and corrections in red.

Train Dev Test

O
ffi

ci
al

#Sent. 15,187 2,413 2,416
#Evi. Sent. 11,261 1,426 1,444

Perc. 74.15% 59.10% 59.77%
Avg. Words 28,68 29.06 29.23
Avg. Edits 1.03 1.08 1.07
Avg. EW/Sent. 2.59 3.00 3.01

R
eb

ui
lt

#Sent. 15,187 2,413 2,416
#Evi. Sent. 11,261 1,425 1,443

Perc. 74.15% 59.06% 59.73%
Avg. Words 28.52 29.53 29.72
Avg. Edits 1.03 1.08 1.07
Avg. EW/Sent. 2.59 3.00 3.00

Table 2: Statistics of the official and rebuilt EXPECT
datasets, including the number of sentences (#Sent.), the
average number of words per sentence (Avg. Words),
the average number of edits per sentence (Avg. Edits),
the number and percentage of sentences with annotated
evidence (#Evi. Sent. and Perc.), and the average num-
ber of evidence words per sentence (Avg. EW/Sent.).

derlying grammatical errors by leveraging GEC158

evaluation toolkits ERRANT (Bryant et al., 2017). It159

is worth noting that the evaluation for the official160

and rebuilt EXPECT datasets are fairly comparable161

since the grammatical errors and evidence words162

are retained during the rebuild process, except for163

a few extreme cases 4. Totally, 277 (1.82%), 1,311164

(54.33%), and 1,323 (54.76%) sentences in our re-165

built train/dev/test sets differ from their original166

sentences of official EXPECT. Detailed statistics167

of both EXPECT datasets are listed in Table 2.168

3 Methodology169

3.1 Problem Definition170

The goal of this work is to perform both correction171

and explanation tasks jointly in a Seq2Seq-based172

4One sample from the dev set and one sample from the test
set are free from evidence words since their evidence words
overlap with the unidentified grammatical errors.

generation approach. Formally, given an ungram- 173

matical source sentence X = {x0, x1, · · · , xn}, 174

where n is the length of the source sentence, joint 175

models are designed to learn both correction and 176

explanation tasks. The correction task involves 177

transforming the ungrammatical source into a gram- 178

matical target Y = {y0, y1, · · · , ym}, where m is 179

the length of the target. The explanation task con- 180

sists of two sub-tasks: 1) classifying grammatical 181

errors, and 2) extracting evidence words. The 182

classification task requires joint models to output 183

a grammatical error type label c (c ∈ C), where C 184

is the set of 15 candidate grammatical error type 185

classes defined in EXPECT. And the extraction 186

task requires models to extract evidence words 187

E(X) = {e0, e1, · · · , ek} ⊂ X that can provide 188

informative and complete clues for corrections. 189

3.2 Explainable GEC as Generation Task 190

To investigate the interaction between explana- 191

tion and correction tasks, we propose four dif- 192

ferent training settings, as illustrated in Figure 3: 193

1) no explanations (Baseline), which is the con- 194

ventional setting, 2) explanations as additional in- 195

put (Infusion), 3) explanations as output (Expla- 196

nation), and 4) explanations as additional output 197

(Self-Rationalization). To enable all these settings 198

in a single architecture, we propose EXGEC, a uni- 199

fied generative framework for explainable GEC. 200

In the Infusion setting, we introduce a special to- 201

ken “<sep>” to separate the source sentence and 202

the following explanation, which includes evidence 203

words and an error type. In the Explanation set- 204

ting, the model generates an explanation given only 205

a source sentence. As for the Self-rationalization 206

setting, models are required to output a correction 207

and an explanation separated by the special token 208

“<sep>”. The relative positions of corrections and 209
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Figure 2: Overview of our Seq2Seq-based Self-rationalization model. The decoder can 1) output corrections from
BART’s token vocabulary, 2) generate evidence words as source indexes by leveraging pointer mechanism, and 3)
predict an error type from the predefined set of error type classes.

Input Output

SourceBaseline Correction

SourceExplanation Evidence Words Error Type

Source <sep> 

Evidence Words Error TypeInfusion Correction

SourceSelf-rationalization
Correction <sep> 

Evidence Words Error Type

Figure 3: Comparison of four settings, all of which can
be implemented in our proposed unified architecture.

explanations can be reversed, which allows us to210

understand the interaction between both tasks.211

Without loss of generality, we clarify how our212

EXGEC tackles tasks in a unified generative frame-213

work in the Self-rationalization setting. Given an214

ungrammatical source sentence X , the encoder en-215

codes X into hidden representation H as follow:216

He = Encoder(X), (1)217

where He ∈ Rn×d, and d is the hidden size.218

At each time step t, the decoder produces the219

hidden state hd
t ∈ Rd based on the previous output220

sequence Ŷ<t, which is computed as follow:221

hd
t = Decoder(He, Ŷ<t). (2)222

Next, the hidden state hd
t ∈ Rd is utilized to cal-223

culate three types of logits: 1) token logits, which224

are responsible for the correction part (Vaswani 225

et al., 2017), 2) pointer logits, used to determine 226

the probabilities of source indexes for evidence ex- 227

traction, and 3) type logits, utilized for error type 228

classification. Inspired by Yan et al. (2021), we 229

calculate the probability distribution Pt as follows: 230

Ee = TokenEmbed(X) ∈ Rn×d, (3) 231

232
H̄e = αEe + (1− α)MLP(He) ∈ Rn×d, (4) 233

234
Vd = TokenEmbed(V ) ∈ R|V |×d, (5) 235

236
Cd = TypeEmbed(C) ∈ R|C|×d, (6) 237

238
Pt = softmax([Vd ⊗ hd

t ; H̄
e ⊗ hd

t ;C
d ⊗ hd

t ]),
(7) 239

where TokenEmbed refers to the embeddings that 240

are shared between the encoder and decoder, α ∈ R 241

is a hyper-parameter responsible for balancing the 242

trade-off between embeddings and encoder hidden 243

representation, V represents the token vocabulary, 244

[· ; ·] denotes the concatenation operation in the 245

first dimension, the symbol ⊗ means the dot prod- 246

uct operation, and Pt ∈ R|V |+n+|C| represents the 247

probability distribution at the current time step t. 248

It is worth noting that the pointer index cannot 249

be directly inputted to the decoder, so we introduce 250

the Index2Token conversion to convert indexes into 251
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tokens (Yan et al., 2021). Additionally, we can re-252

arrange the generation order of corrections and ex-253

planations, which may provide helpful insight into254

further understanding the interaction of both tasks.255

In the Baseline and Infusion settings, the probabil-256

ity distribution is limited to the token vocabulary.257

However, in the Explanation setting, the probability258

distribution is limited to the combination of pointer259

indexes and error type classes.260

3.3 Loss Weighting261

Taking into account the heterogeneity of correction262

and explanation tasks, we construct the overall loss263

function in the form of weighted sum, which is264

defined as follow:265

L = Lcor + λ · Lexp

= −
m∑
i=0

[
I(yi ∈ V ) log pi + λI(yi ̸∈ V ) log pi

]
,

(8)266

where λ is responsible for balancing both tasks,267

and I is the indicator function. During the inference268

stage, we generate the entire target sequence in an269

autoregressive manner and then separate different270

parts from the target.271

4 Experiments272

4.1 Experimental Settings273

Backbone model. We adopt the Seq2Seq-based274

pre-trained model BART-Large (Lewis et al., 2020)275

as our backbone model. All experiments are con-276

ducted using the open-source sequence model-277

ing toolkit Fairseq (Ott et al., 2019), and sub-278

words are obtained using the byte-pair-encoding279

(BPE) (Sennrich et al., 2016) algorithm. It is worth280

noting that adopting BART is non-trivial because281

the BPE tokenization may split a word into sev-282

eral BPEs, making it tricky to extract evidence283

words. Considering evidence words are usually284

short and not always contiguous, we stipulate that285

the pointer indexes should contain all BPEs of the286

evidence words. In other words, if a word is an287

evidence word, models in the Explanation and Self-288

rationalization settings are desired to output the289

pointer indexes of all its BPEs. If an instance290

has no evidence word, the target skips the predic-291

tion of pointer indexes. Additionally, we apply the292

Dropout-Src mechanism (Junczys-Dowmunt et al.,293

2018) to source-side word embeddings following294

previous work (Zhang et al., 2022). Detailed hyper- 295

parameter settings are provided in Appendix A. 296

Training Settings. As discussed in Section 3.2, 297

we attempt to conduct experiments on four distinct 298

training settings leveraging a single unified frame- 299

work with minimal modification. Notably, the Self- 300

rationalization setting can be further divided into 301

two settings based on the generation order of the 302

correction and explanation parts: 1) pre-explaining 303

models first output the explanation part and then 304

the correction part, while 2) post-explaining mod- 305

els work in reverse order. In general, we extract 306

evidence words first and then predict error types 307

since we find that the generation order of evidence 308

words and error types does not significantly affect 309

the performance in our preliminary experiments. 310

Evaluation. We evaluate the model performance 311

in three aspects. 1) Correction. Following the au- 312

thors of the W&I+LOCNESS dataset (Bryant et al., 313

2019), we report correction performance evaluated 314

by ERRANT (Bryant et al., 2017). 2) Extraction 315

of evidence words. Following Fei et al. (2023), we 316

also employ token-level evaluation metrics such 317

as Precision, Recall, F1 and F0.5. However, we 318

do not adopt the exact match (EM) metric since it 319

is reported to be the least correlated with human 320

evaluation 5. The findings (Fei et al., 2023) show 321

that the F0.5 score achieves the highest correlation 322

with human evaluation in terms of Pearson coeffi- 323

cient, followed by the F1 score. 3) Classification 324

of grammatical errors. We report label accuracy as 325

the classification performance of grammatical error 326

types. Unlike previous work (Fei et al., 2023), we 327

disentangle the evaluation of extraction and classi- 328

fication, which might provide a clearer perspective 329

on aspects of model performance. Specifically, we 330

deem an evidence word as a True Positive (TP) if 331

all of its BPEs are extracted, which is not in line 332

with the previous evaluation (Fei et al., 2023) that 333

considers an evidence word as a TP only if both 334

BPEs and its error type are correctly predicted. The 335

results are averaged over three runs with different 336

random seeds, and the EXPECT-dev set serves as 337

the validation set in all experiments. 338

4.2 Experiments on Rebuilt Datasets 339

To demonstrate the effectiveness of our rebuild 340

process, we first respectively train post-explaining 341

5Surprisingly, we find that do-nothing systems achieve higher
EM scores than almost all well-trained systems, but 0 F1 and
F0.5 scores.
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EXPECT-dev EXPECT-test
System Cor. (P / R / F0.5) Exp. (P / R / F1 / F0.5 / Acc) Cor. (P / R / F0.5) Exp. (P / R / F1 / F0.5 / Acc)
BART Baseline 36.14 / 34.87 / 35.88 - 36.33 / 35.49 / 36.16 -
BERT Explanation - 53.60 / 35.46 / 42.68 / 48.63 / 52.09 - 51.73 / 36.34 / 42.69 / 47.69 / 50.83
BART Explanation - 44.43 / 32.93 / 37.82 / 41.53 / 33.36 - 42.34 / 33.13 / 37.18 / 40.11 / 26.95
Infusion

+ Evidence 45.78 / 44.55 / 45.53 - 46.02 / 44.13 / 45.63 -
+ Type 35.31 / 47.87 / 35.22 - 36.00 / 35.37 / 35.87 -
+ Evidence&Type 44.28 / 47.55 / 44.90 - 44.96 / 47.50 / 45.44 -

Self-rationalization
Pre-explaining 38.25 / 34.18 / 37.36 36.01 / 35.58 / 35.79 / 35.92 / 26.56 38.68 / 35.41 / 37.98 36.77 / 36.85 / 36.81 / 36.79 / 26.24
Post-explaining 36.34 / 40.15 / 37.05 48.95 / 42.72 / 45.63 / 47.56 / 40.32 36.52 / 40.41 / 37.24 49.43 / 44.10 / 46.61 / 48.26 / 39.86

Table 3: Results of different settings for the single model. All models except “BERT Explanation” are initialized
with pre-trained BART weights.

Official EXPECT-dev
Cor. (P / R / F0.5) Exp. (P / R / F1 / F0.5 / Acc)

30.94 / 35.49 / 31.75 45.92 / 38.42 / 41.84 / 44.19 / 37.63

Rebuilt EXPECT-dev
Cor (P / R / F0.5) Exp (P / R / F1 / F0.5 / Acc)

36.34 / 40.15 / 37.05 48.95 / 42.72 / 45.65 / 47.56 / 40.32

Table 4: Comparison of post-explaining models trained
on the official and rebuilt EXPECT datasets. We have
similar findings on other settings, which are listed in
Appendix B.1.

models on the official and our rebuilt EXPECT342

datasets. The results in Table 4 indicate that our343

rebuilt EXPECT dataset can significantly improve344

the performance of both correction and explana-345

tion tasks. This is because we have identified and346

corrected grammatical errors that were previously347

overlooked. As a results, we conduct the remaining348

experiments on the rebuilt EXPECT dataset.349

4.3 Main Results350

Here, we examine and analyze the interaction be-351

tween the correction and explanation tasks by con-352

ducting experiments with various training settings.353

We first explore the Infusion setting, where we ap-354

pend different additional explanation information355

to the input source. Infusion models can be con-356

sidered as oracle baselines since human-annotated357

explanations are usually unavailable in real appli-358

cations, through which we can understand how359

explanations benefit the correction task. We also360

train a sequence labeling-based BERT model by re-361

producing the baseline provided in (Fei et al., 2023)362

under the same training and evaluation conditions363

as our other experiments. The results presented in364

Table 3 illustrate the following conclusions.365

Evidence words, rather than grammatical er-366

ror types, can provide invaluable information367

for corrections. Recent studies have highlighted368

that incorporating human-annotated explanations 369

as additional input can enhance task performance 370

to a certain degree (Hase et al., 2020; Yao et al., 371

2023), and we have also observed similar results 372

in the “Infusion” block of Table 3. Specifically, 373

we notice that the additional information provided 374

by grammatical error types does not improve cor- 375

rection performance. However, on the other hand, 376

the information provided by evidence words can 377

increase the F0.5 score by approximately 10 points, 378

even though about only 60% of the samples in the 379

dev and test sets are annotated with evidence words, 380

demonstrating that ground truth evidence words are 381

very helpful for the correction task. 382

Jointly learning correction and explanation 383

tasks is beneficial for each task. Practically, ex- 384

planations are usually unavailable during the in- 385

ference stage, so Self-rationalization models are 386

responsible for answering whether training with 387

explanations as additional output could improve 388

correction performance. Interestingly, experiments 389

show that pre-explaining and post-explaining mod- 390

els perform differently. Specifically, pre-explaining 391

models achieve better correction performance at the 392

cost of decreased explanation performance com- 393

pared to the “BART Explanation” single-task base- 394

line, demonstrating that even noisy predicted expla- 395

nations can still provide benefits towards the correc- 396

tion task. On the other hand, post-explaining mod- 397

els achieve comparable correction performance but 398

very high explanation performance, indicating that 399

predicted corrections are very beneficial towards 400

the explanation task. 401

We also notice that the performance of grammati- 402

cal error type classification for BART-based models 403

is greatly lower than that of BERT-based models. 404

We speculate that this may be due to the inner bias 405

induced by the distinction between BART’s genera- 406

tive denoising and BERT’s masked language model 407
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γ Cor. (P / R / F0.5) Exp. (P / R / F1 / F0.5 / Acc)
0.5 36.16 / 35.68 / 36.06 57.00 / 06.87 / 12.26 / 23.18 / 19.15
0.8 35.47 / 36.92 / 35.74 51.77 / 21.63 / 30.51 / 40.49 / 23.46
1.0 35.10 / 36.96 / 35.46 48.82 / 26.55 / 34.40 / 41.81 / 25.94
1.5 36.12 / 36.34 / 36.16 50.95 / 22.01 / 30.74 / 40.34 / 24.66
2.0 35.93 / 35.38 / 35.82 52.48 / 22.29 / 31.29 / 41.29 / 28.06

Table 5: Results of sequence labeling-based multi-task
BART baselines for varying loss weights γ on rebuilt
EXPECT-dev.

(MLM) pre-training objectives. This is supported408

by the experiments in Section 5.1, which indicate409

that sequence labeling is not the crucial factor for410

grammatical error type classification.411

5 Analysis412

5.1 Does Sequence Labeling Help?413

Motivated by recent studies in multi-task GEC414

frameworks (Zhao et al., 2019; Yuan et al., 2021),415

which combine a sequence labeling task with a416

sentence-level correction task, we also develop417

a multi-task baseline for explainable GEC, keep-418

ing the experimental setup the same as our other419

experiments. Specifically, we append a random-420

initialized tagging head after the encoder to per-421

form the explanation task as a sequence labeling422

task, like BERT-based models. To predict each423

token’s tag, we pass the encoder’s hidden represen-424

tation He through a softmax after an affine trans-425

formation, which is computed as follow:426

P (T | X) = softmax(W⊤He), (9)427

where T is the resulting tagging sequence in BIO428

scheme. The token-level sequence labeling task429

is introduced to replace the role of pointer mecha-430

nism, so we conduct only the correction task at the431

decoder side. Similarly, we introduce loss weight-432

ing to trade-off the losses of correction generation433

and sequence labeling, which is defined as follow:434

L = Lcor + γ · Ltag (10)435

where γ represents the trade-off factor, and we436

minimize the cross-entropy between predicted to-437

kens/labels and ground truth tokens/labels.438

The results of varying γ selected from the al-439

ternative set {0.5, 0.8, 1.0, 1.5, 2.0} are shown in440

Table 5. Compared to Self-rationalization models,441

sequence labeling-based multi-task models achieve442

lower correction performance but mediate explana-443

tion performance between pre-explaining models444

and post-explaining models. Therefore, we can445

conclude that our proposed EXGEC is more effec- 446

tive than sequence labeling-base baselines. 447

5.2 Position Leakage 448

One may suspect that the enhancement of Infusion 449

models is due to the leakage effect of evidence 450

words’ positions, since it is reported that a signifi- 451

cant number of instances have at least one evidence 452

word within the first or second-order nodes of cor- 453

rection words in the dependency parsing tree (Fei 454

et al., 2023). To address this concern, we synthesize 455

datasets with artifact explanations in two ways: 1) 456

random explanations, which are randomly selected 457

from the entire source tokens, and 2) adjacent ex- 458

planations, which are randomly chosen from can- 459

didate source tokens located within a distance of 460

1∼5 from the correction. Given that a substantial 461

number of samples lack annotated evidence words, 462

we generate an equal number of synthesized ev- 463

idence words as the ground truth ones to ensure 464

the fairness of our experiments. We train models 465

using synthesized evidence words, but evaluation 466

is performed with ground truth evidence words, al- 467

lowing us to investigate whether the models learn to 468

extract evidence words through this unsupervised 469

approach.The results are presented in Table 6. 470

For the Infusion setting, it is no surprise that ran- 471

dom evidence words would not improve correction 472

performance as expected. However, we observe 473

that adjacent synthesized evidence words do make 474

a noticeable impact, resulting in a moderate im- 475

provement compared to random evidence words 476

but still lower than the benefits provided by ground 477

truth evidence words. This suggests that the leak- 478

age effect of positions does indeed exists. However, 479

it is important to note that this effect alone is un- 480

able to fully capture all the advantages offered by 481

ground truth evidence words. 482

For the pre-explaining and post-explaining set- 483

tings, it seems that learning to output adjacent evi- 484

dence words can improve correction performance 485

to some extent. However, it falls short of sur- 486

passing the performance achieved by incorporating 487

ground truth evidence words. This reaffirms the 488

importance of joint learning for both correction and 489

explanation tasks. On the contrary, the inclusion 490

of random evidence words does not contribute to 491

the improvement of correction performance. Fur- 492

thermore, the models’ explanation performance re- 493

veals their inclination to disregard the influence of 494

these random evidence words. Additionally, we 495

observe a significant decrease in explanation per- 496
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EXPECT-dev EXPECT-test
System Cor. (P / R / F0.5) Exp. (P / R / F1 / F0.5 / Acc) Cor. (P / R / F0.5) Exp. (P / R / F1 / F0.5 / Acc)
BART Baseline 36.14 / 34.87 / 35.88 - 36.33 / 35.49 / 36.16 -
Infusion

+ G.T. Evidence 45.78 / 44.55 / 45.53 - 46.02 / 44.13 / 45.63 -
+ Ran. Evidence 35.88 / 33.26 / 35.33 - 36.44 / 33.20 / 35.74 -
+ Adj. Evidence 38.46 / 42.81 / 39.26 - 39.66 / 43.01 / 40.28 -

Pre-explaining
+ G.T. Evidence 38.25 / 34.18 / 37.36 36.01 / 35.58 / 35.79 / 35.92 / 26.56 38.68 / 35.41 / 37.98 36.77 / 36.85 / 36.81 / 36.79 / 26.24
+ Ran. Evidence 36.17 / 33.72 / 35.65 13.60 / 00.40 / 00.77 / 01.79 / 15.83 37.63 / 34.83 / 37.04 14.38 / 00.53 / 01.02 / 02.31 / 15.02
+ Adj. Evidence 36.53 / 38.73 / 36.95 26.97 / 03.37 / 06.00 / 11.23 / 17.03 37.09 / 39.52 / 37.55 29.00 / 04.02 / 07.06 / 12.93 / 16.02

Post-explaining
+ G.T. Evidence 36.34 / 40.15 / 37.05 48.95 / 42.72 / 45.63 / 47.56 / 40.32 36.52 / 40.41 / 37.24 49.43 / 44.10 / 46.61 / 48.26 / 39.86
+ Ran. Evidence 36.36 / 34.37 / 35.95 14.39 / 00.45 / 00.86 / 02.00 / 16.04 36.86 / 34.87 / 36.44 07.45 / 00.16 / 00.32 / 00.74 / 15.02
+ Adj. Evidence 36.36 / 34.14 / 35.89 23.68 / 02.53 / 04.57 / 08.86 / 15.79 37.34 / 35.18 / 36.88 26.74 / 03.28 / 05.84 / 11.00 / 15.48

Table 6: Results of models trained on ground truth (G.T.), random (Ran.) or adjacent (Adj.) evidence words.

formance when learning without ground truth evi-497

dence words, indicating the inherent challenge of498

explaining with alignment to human preference in499

an unsupervised way.500

6 Related Works501

Explainable GEC. Currently, most GEC sys-502

tems are trained to correct errors without providing503

explanations. To bridge the gap, recent studies have504

explored several methods to facilitate the explain-505

ability of GEC systems. One such method is the506

feedback comment generation (FCG) task (Nagata,507

2019; Nagata et al., 2021), which is designed to508

automatically generate feedback comments such509

as hints or explanatory notes for writing learning.510

Hanawa et al. (2021) investigate three different ar-511

chitectures for FCG and highlight the challenges512

of the task. Another approach is Example-based513

GEC (Kaneko et al., 2022; Vasselli and Watan-514

abe, 2023), which improves explainability by re-515

trieving examples similar to an input instance ac-516

cording to pre-defined grammar rules. Kaneko517

and Okazaki (2023) explore generating natural lan-518

guage explanations by prompting large language519

models (LLMs), showing the feasibility of elicit-520

ing controlled and comprehensive explanations for521

grammatical errors from LLMs. However, there522

has been no work systematically exploring the in-523

teraction between correction and explanation tasks.524

Learning with Explanations. As an important525

part of this work, Self-rationalization models526

jointly generate task predictions and correspond-527

ing explanations, aiming to improve explainabil-528

ity or task performance of neural networks. Two529

approaches that currently predominate the build-530

ing of self-rationalization models are 1) extract-531

ing highlight input tokens responsible for task pre-532

dictions, known as extractive rationals (DeYoung 533

et al., 2020), and 2) generating natural language 534

explanations (Narang et al., 2020), which pro- 535

vide a natural interface between machine compu- 536

tation and human end-users. To improve upon the 537

task performance and trustworthiness of Seq2Seq 538

models, Lakhotia et al. (2021) develop an extrac- 539

tive fusion-in-decoder architecture in the ERASER 540

benchmark (DeYoung et al., 2020), which is a pop- 541

ular benchmark for rationale extraction across mul- 542

tiple datasets and tasks. Li et al. (2022a) propose 543

a joint text classification and rationale extraction 544

model to improve explainability and robustness. 545

Recognizing the complementarity of extractive 546

rationals and natural language explanations, Ma- 547

jumder et al. (2022) combine both ingredients in a 548

unified self-rationalization framework. 549

Powered by in-context learning (Brown et al., 550

2020) and chain-of-thought (CoT) reasoning (Wei 551

et al., 2022; Chu et al., 2023) of LLMs, recent 552

works leverage the natural language explanations 553

generated by LLMs with chain-of-thought prompt- 554

ing (Lampinen et al., 2022; Li et al., 2023) to en- 555

hance the training of small reasoners using knowl- 556

edge distillation for task performance (Li et al., 557

2022b; Ho et al., 2023; Hsieh et al., 2023) or faith- 558

fulness (Wang et al., 2023) improvement. 559

7 Conclusion 560

In this paper, we propose a unified generative 561

framework, EXGEC, designed to jointly perform 562

both correction and explanation tasks. EXGEC is 563

designed to be compatible with multiple training 564

settings, enabling us to understand and establish 565

the interaction between tasks. Additionally, we re- 566

build the existing noisy explainable GEC dataset, 567

EXPECT. Our experiments demonstrate the effec- 568

tiveness of our rebuild process and EXGEC. 569
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Limitations570

Inherent nature of Seq2Seq-based models. We571

have noticed that our adopted backbone, BART,572

falls short in explanation performance, including573

extracting evidence words and classifying gram-574

matical errors, compared to BERT-based models.575

This can be attributed to BART’s inherent nature as576

a sequence-to-sequence generative model. These577

limitations may have a negative impact on correc-578

tion performance, particularly for post-explaining579

models that correct sentences based on previously580

predicted explanations. In our future work, we in-581

tend to explore a more effective approach to handle582

and integrate both tasks.583

Inflexibility of structured explanations. In the584

era of large language models (LLMs), it has be-585

come increasingly practical and favorable to ex-586

press explanations as free-form natural language587

texts. However, in this particular paper, we focus588

our studies on structured explanations due to the589

limited availability of free-form explanations in the590

field of GEC. Nevertheless, we are committed to591

advancing the development of explainable GEC592

datasets in our future work, aiming to incorporate593

more sophisticated and comprehensive approaches.594

Ethics Statement595

In this paper, we have identified significant noise596

in the official EXPECT dataset, which has the po-597

tential to create confusion during model training598

and evaluation. To address this issue, we recon-599

struct the EXPECT dataset to remove the noise,600

resulting in an objective training and evaluation601

pipeline. For our methods, we have exclusively uti-602

lized source data from publicly accessible project603

resources on legitimate websites, ensuring the ab-604

sence of sensitive information. Furthermore, all the605

baselines and datasets utilized in our experiments606

are publicly available, and we have given credit to607

the corresponding authors by citing their work.608
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A Experiment Hyper-Parameters916

We list the main hyper-parameters in Table 7.917

For the training stage, we follow the same hyper-918

parameters as described in (Zhang et al., 2022).919

The total training time is about 4 hours.920

Configuration Value
Training

Backbone BART-large (Lewis et al., 2020)
Devices 1 Tesla A100 GPU (80GB)
Epochs 60
Batch size per GPU 4096 tokens
Gradient Accumulation 4

Optimizer
Adam (Kingma and Ba, 2014)

(β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8)
Learning rate 3× 10−5

Warmup updates 500
Max source length 256
Dropout 0.3
Dropout-src 0.1
α 0.5
Loss weight λ 1.0

Inference
Beam size 12
Max length 256

Table 7: Hyper-parameter values used in our experi-
ments.

B Extra Analyses921

B.1 Detailed Results on EXPECT Datasets922

We report the detailed results on the official and923

our rebuilt EXPECT dasetes in Table 9. All the924

models trained on our rebuilt EXPECT achieve925

better performance of both correction and explana-926

tion tasks, demonstrating the effectiveness of our927

rebuild process.928

B.2 Impact of Loss Weighting929

In this section, we investigate the trade-off of learn-930

ing on both correction and explanation task by vary-931

ing the loss weight λ. Considering the promising932

performance of post-explaining models on both933

λ Cor. (P / R / F0.5) Exp. (P / R / F1 / F0.5 / Acc)
0.5 35.40 / 38.03 / 35.90 39.77 / 38.88 / 39.32 / 39.59 / 32.02
1.0 36.34 / 40.15 / 37.05 48.95 / 42.72 / 45.63 / 47.56 / 40.32
1.5 36.03 / 38.42 / 36.49 43.90 / 42.82 / 43.35 / 43.68 / 36.88
2.0 35.41 / 38.61 / 36.00 47.98 / 42.86 / 45.28 / 46.86 / 40.07

Table 8: Results of post-explaining models for varying
loss weights λ on rebuilt EXPECT-dev.

correction and explanation tasks, we train post- 934

explaining models with the loss weight λ alterna- 935

tively selected from {0.5, 1.0, 1.5, 2.0} and report 936

the results on EXPECT-dev in Table 8. The re- 937

sults show that giving preference to either tasks 938

harms the performance of both tasks. We spec- 939

ulate that the supervised explanation information 940

during training is too weak to guide the dynamics 941

of correction learning if λ is small. On the other 942

hand, a large λ value might neglect correction learn- 943

ing, thus leading to lower explanation performance 944

since explanation of post-explaining models are 945

produced based on predicted corrections. 946
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Official EXPECT-dev Rebuilt EXPECT-dev
System Cor. (P / R / F0.5) Exp. (P / R / F1 / F0.5 / Acc) Cor. (P / R / F0.5) Exp. (P / R / F1 / F0.5 / Acc)
BART Baseline 30.59 / 33.72 / 31.17 - 36.14 / 34.87 / 35.88 -
Infusion

+ Evidence 40.72 / 43.31 / 41.22 - 45.78 / 44.55 / 45.53 -
+ Type 31.15 / 35.14 / 31.87 - 35.31 / 47.87 / 35.22 -
+ Evidence&Type 40.79 / 42.50 / 41.11 - 44.28 / 47.55 / 44.90 -

Self-rationalization
Pre-explaining 32.62 / 31.29 / 32.35 33.75 / 44.12 / 38.25 / 35.41 / 28.22 38.25 / 34.18 / 37.36 36.01 / 35.58 / 35.79 / 35.92 / 26.56
Post-explaining 30.94 / 35.49 / 31.75 45.92 / 38.42 / 41.84 / 44.19 / 37.63 36.34 / 40.15 / 37.05 48.95 / 42.72 / 45.63 / 47.56 / 40.32

Table 9: Further comparison of models trained on the official and rebuilt EXPECT datasets.
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