Corrections Meet Explanations: A Unified Framework for
Explainable Grammatical Error Correction

Anonymous ACL submission

Abstract

Grammatical Error Correction (GEC) faces the
important yet challenging issue of explainabil-
ity, especially when GEC systems are devel-
oped for language learners who often strug-
gle to understand the correction results without
reasonable explanations. Extractive evidence
words and grammatical error types are two cru-
cial factors of GEC explanations. However,
existing work focuses on extracting evidence
words and predicting grammatical error types
given a source sentence and/or a target sen-
tence as input, ignoring the interaction between
explanations and corrections. To bridge the
gap, we introduce EXGEC, a unified explain-
able GEC framework that jointly perform ex-
planation and correction tasks in a sequence-
to-sequence generation manner, hypothesizing
both tasks would benefit each other. Extensive
experiments enable us to fully understand and
establish the interaction between tasks. Espe-
cially, if models are required to jointly predict
corrections and explanations, the performance
of both tasks improves compared to their re-
spective single-task baselines. Additionally,
we observe that EXPECT, a recent explainable
GEC dataset, contains considerable noise that
may confuse model training and evaluation.
Therefore, we rebuild EXPECT to eliminate
the noise, leading to an objective training and
evaluation pipeline !.

1 Introduction

Writing is a learnt skill that is particularly chal-
lenging for second-language (L2) speakers, who
often struggle to create grammatical and compre-
hensible texts (Bryant et al., 2022). To address the
problem of ungrammatical writing, GEC systems
are designed to identify and correct all grammat-
ical errors in texts. Research in the field of GEC
has extended to include multi-language (Rothe

'All the source codes and data will be released after the review
anonymity period.

et al., 2021), multi-modality (Fang et al., 2023),
document-level (Yuan and Bryant, 2021) and do-
main adaptation (Zhang et al., 2023).

However, the explainability of GEC is still under-
developed due to its inherent challenges (Hanawa
et al., 2021; Kaneko et al., 2022). Since neu-
ral GEC systems are typically complex black-
box systems, their inner working mechanisms are
opaque (Zhao et al., 2023). The lack of explainabil-
ity can lead to insufficiency in an educational con-
text, where L2-speakers may struggle to thoroughly
grasp the writing skills from GEC systems without
understanding why a correction is needed. Equip-
ping corrections with explanations builds appropri-
ate trust by elucidating the linguistic knowledge
and reasoning mechanism behind model predic-
tions in an understandable manner, assisting peda-
gogically end users with elementary language profi-
ciency (Bitchener et al., 2005; Sheen, 2007). Addi-
tionally, explainability provides insight to identify
unintended biases and risks for researchers and
developers, acting as a debugging aid to quickly
advance model performance (Ludan et al., 2023).

To help language learners better understand why
GEC systems make a certain correction, Fei et al.
(2023) introduce EXPECT, a large dataset anno-
tated with evidence words and grammatical error
types. Evidence words, which are formally called
extractive rationales 2, provides specific clues for
corrections, helping L.2-speakers understand “why
to correct”. the error types in EXPECT cover 15
pragmatism-based categories (Skehan, 1998; Gui,
2004), facilitating L.2-speakers in inferring abstract
grammar rules from specific errors in an induc-
tive reasoning manner. However, Fei et al. (2023)
focus on explaining GEC given an ungrammati-
cal source and/or a corrected sentence, ignoring
the interaction between explanation and correction

*We use the term “evidence words” throughout the paper ex-
cept Section 6, following Fei et al. (2023).
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Figure 1: Comparison between correction, explanation (Fei et al., 2023) and our explainable GEC.

tasks, as shown in Figure 1. Previous studies have
shown that training models to jointly output task
predictions and explanations can improve the task
performance on vision-language tasks (Majumder
et al., 2022) and diversity downstream NLP tasks,
including text classification (Li et al., 2022a), com-
monsense reasoning (Veerubhotla et al., 2023), and
complaint detection (Singh et al., 2023).

To establish the interaction between explana-
tion and correction tasks, we propose EXGEC
(EXplainable Grammatical Error Correction), a
unified explainable GEC framework that reframes
the multi-task problem as a sequence-to-sequence
(Seq2Seq) generation task. With pointing mecha-
nism (Vinyals et al., 2015), EXGEC can extract ev-
idence words by directly generating source indexes
of an ungrammatical source sentence in an auto-
regressive manner. EXGEC can jointly correct un-
grammatical sentences, extract evidence words and
classify grammatical errors in a unified architec-
ture. To the best of our knowledge, we first propose
to jointly perform both correction and explanation
tasks. Our findings illustrate that learning correc-
tion and explanation tasks concurrently can benefit
each other. Specifically, pre-explaining models
achieve higher correction performance yet lower
explanation performance than post-explaining mod-
els. However, both models achieve better or compa-
rable correction and explanation performance than
their respective baselines.

Additionally, we observe that EXPECT is not a
well-specified dataset for explainable GEC. This
is due to the presence of considerable unidentified
grammatical errors in EXPECT, which hinder the
performance of both tasks. As a result, we rebuild
EXPECT to re-correct the unidentified errors while
ensuring that each sentence contains only a single
unique error, as described by Fei et al. (2023). By
training on rebuilt EXPECT, we significantly im-
prove the performance of both tasks, demonstrating
the effectiveness of our rebuild process.

2 Rebuilt EXPECT Dataset

In this paper, we utilize the EXPECT dataset (Fei
et al.,, 2023). The dataset comprises a total of
20,016 samples that are split into train, dev and
test sets. EXPECT is annotated based on the high-
quality GEC dataset, W&I+LOCNESS (Bryant
et al., 2019), which is designed to represent a much
wider range of English levels and abilities than pre-
vious corpora. To reduce the difficulty of the model
learning and evaluation, EXPECT is constructed
using a special process. Specifically, for a sentence
from W&I+LOCNESS with n grammatical errors,
the authors repeat the sentence n times and keep a
single unique error in each sentence. Considering
the challenges of explainable GEC, it is reasonable
and desirable as it smooths the task by classify-
ing a grammatical error and extracting evidence
words for a single unique grammatical error each
time, avoiding the confusion caused by multiple
interactive grammatical errors in a sentence.
However, we argue that the official EXPECT
dataset is not well-specified. Specifically, for
a sentence with n(n > 1) grammatical errors
from W&I+LOCNESS, the authors correct a sin-
gle grammatical error and leave the remaining
n — 1 errors unidentified, as shown in Table 1.
These unidentified grammatical errors may confuse
models, making it uncertain which error should
be corrected and explained, and leading to uncer-
tainty in model training and evaluation. To address
the problem, we re-correct the unidentified gram-
matical errors, while leaving the single original
grammatical error unchanged. The entire rebuild-
ing process is automatic since we re-correct all
the unidentified grammatical errors by comparing
sentences from EXPECT and W&I+LOCNESS.
We first retrieve the original parallel samples of
W&I+LOCNESS by using the open-source toolkit
TheFuzz 3, and then identify and correct the un-

Shttps://github.com/seatgeek/thefuzz
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W&I+LOCNESS Source

However I sometimes do a skipping to fit myself .

W&I+LOCNESS Target However , I sometimes do skipping to keep myself fit .

" EXPECT Source However I sometimes do skipping to keep myself .
EXPECT Target However I sometimes do skipping to keep myself fit .

" Rebuilt Source However , I sometimes do skipping to keep myself .
Rebuilt Target However , I sometimes do skipping to keep myself fit .
W&I+LOCNESS Source i have a dog it name ’s chente , it is a golden retriver .
W&I+LOCNESS Target [ have a dog and its name ’s Chente . It is a golden retriever .

" EXPECT Source i have a dog its name ’s chente , it is a golden retriver .
EXPECT Target i have a dog and its name ’s chente , it is a golden retriver .

" Rebuilt Source I have a dog its name ’s Chente . It is a golden retriever .
Rebuilt Target I have a dog and its name ’s Chente . It is a golden retriever .

Table 1: Examples of our rebuilt EXPECT. We mark grammatical errors in blue and corrections in red.

Train Dev Test

#Sent. 15,187 2413 2416
= #Evi. Sent. 11261 1426 1,444
g Perec. 74.15% 59.10% 59.77%
S Avg Words 28,68  29.06  29.23
Avg. Edits 1.03 1.08 1.07
Avg. EW/Sent.  2.59 3.00 3.01
#Sent. 15,187 2413 2416
= #Evi. Sent. 11261 1425 1443
2 Perc 74.15% 59.06% 59.73%
& Avg Words 2852 2953 29.72
Avg. Edits 1.03 1.08 1.07

Avg. EW/Sent.  2.59 3.00 3.00

Table 2: Statistics of the official and rebuilt EXPECT
datasets, including the number of sentences (#Sent.), the
average number of words per sentence (Avg. Words),
the average number of edits per sentence (Avg. Edits),
the number and percentage of sentences with annotated
evidence (#Evi. Sent. and Perc.), and the average num-
ber of evidence words per sentence (Avg. EW/Sent.).

derlying grammatical errors by leveraging GEC
evaluation toolkits ERRANT (Bryant et al., 2017). It
is worth noting that the evaluation for the official
and rebuilt EXPECT datasets are fairly comparable
since the grammatical errors and evidence words
are retained during the rebuild process, except for
a few extreme cases *. Totally, 277 (1.82%), 1,311
(54.33%), and 1,323 (54.76%) sentences in our re-
built train/dev/test sets differ from their original
sentences of official EXPECT. Detailed statistics
of both EXPECT datasets are listed in Table 2.

3 Methodology

3.1 Problem Definition

The goal of this work is to perform both correction
and explanation tasks jointly in a Seq2Seq-based

*One sample from the dev set and one sample from the test
set are free from evidence words since their evidence words
overlap with the unidentified grammatical errors.

generation approach. Formally, given an ungram-
matical source sentence X = {xzg,z1, - ,Zn},
where n is the length of the source sentence, joint
models are designed to learn both correction and
explanation tasks. The correction task involves
transforming the ungrammatical source into a gram-
matical target Y = {yo,y1, - , Ym ), Where m is
the length of the target. The explanation task con-
sists of two sub-tasks: 1) classifying grammatical
errors, and 2) extracting evidence words. The
classification task requires joint models to output
a grammatical error type label ¢ (¢ € C'), where C'
is the set of 15 candidate grammatical error type
classes defined in EXPECT. And the extraction
task requires models to extract evidence words
E(X) = {ep,e1, - ,ex} C X that can provide
informative and complete clues for corrections.

3.2 Explainable GEC as Generation Task

To investigate the interaction between explana-
tion and correction tasks, we propose four dif-
ferent training settings, as illustrated in Figure 3:
1) no explanations (Baseline), which is the con-
ventional setting, 2) explanations as additional in-
put (Infusion), 3) explanations as output (Expla-
nation), and 4) explanations as additional output
(Self-Rationalization). To enable all these settings
in a single architecture, we propose EXGEC, a uni-
fied generative framework for explainable GEC.
In the Infusion setting, we introduce a special to-
ken “<sep>" to separate the source sentence and
the following explanation, which includes evidence
words and an error type. In the Explanation set-
ting, the model generates an explanation given only
a source sentence. As for the Self-rationalization
setting, models are required to output a correction
and an explanation separated by the special token
“<sep>". The relative positions of corrections and
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Figure 2: Overview of our Seq2Seq-based Self-rationalization model. The decoder can 1) output corrections from
BART’s token vocabulary, 2) generate evidence words as source indexes by leveraging pointer mechanism, and 3)
predict an error type from the predefined set of error type classes.
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Figure 3: Comparison of four settings, all of which can
be implemented in our proposed unified architecture.

explanations can be reversed, which allows us to
understand the interaction between both tasks.
Without loss of generality, we clarify how our
EXGEC tackles tasks in a unified generative frame-
work in the Self-rationalization setting. Given an
ungrammatical source sentence X, the encoder en-
codes X into hidden representation H as follow:

H* = Encoder(X), (1)

where H¢ € R™*4 and d is the hidden size.

At each time step ¢, the decoder produces the
hidden state h{ € R? based on the previous output
sequence ?<t, which is computed as follow:

h¢ = Decoder(H®, Y.;). )

Next, the hidden state h{ € R? is utilized to cal-
culate three types of logits: 1) foken logits, which

are responsible for the correction part (Vaswani
et al., 2017), 2) pointer logits, used to determine
the probabilities of source indexes for evidence ex-
traction, and 3) type logits, utilized for error type
classification. Inspired by Yan et al. (2021), we
calculate the probability distribution P; as follows:

E° = TokenEmbed(X) € R"™%, 3)
H® = aE° + (1 — a) MLP(H®) € R™?,  (4)
V% = TokenEmbed(V) e RVI¥4  (5)
C? = TypeEmbed(C) € RICI*?, (6)

P, = softmax([V? @ h%; H® ® h{; C? ® h¥)),
@)
where TokenEmbed refers to the embeddings that
are shared between the encoder and decoder, o € R
is a hyper-parameter responsible for balancing the
trade-off between embeddings and encoder hidden
representation, V' represents the token vocabulary,
[ ; -] denotes the concatenation operation in the
first dimension, the symbol ® means the dot prod-
uct operation, and P, € RIVI+7+ICl represents the

probability distribution at the current time step .
It is worth noting that the pointer index cannot
be directly inputted to the decoder, so we introduce
the Index2Token conversion to convert indexes into



tokens (Yan et al., 2021). Additionally, we can re-
arrange the generation order of corrections and ex-
planations, which may provide helpful insight into
further understanding the interaction of both tasks.
In the Baseline and Infusion settings, the probabil-
ity distribution is limited to the token vocabulary.
However, in the Explanation setting, the probability
distribution is limited to the combination of pointer
indexes and error type classes.

3.3 Loss Weighting

Taking into account the heterogeneity of correction
and explanation tasks, we construct the overall loss
function in the form of weighted sum, which is
defined as follow:

L= Ecor +A- Eezp

== Z [H(yi e V)logp; + ANl(y; € V) logpi],
1=0
(8)

where A is responsible for balancing both tasks,
and I is the indicator function. During the inference
stage, we generate the entire target sequence in an
autoregressive manner and then separate different
parts from the target.

4 Experiments

4.1 Experimental Settings

Backbone model. We adopt the Seq2Seq-based
pre-trained model BART-Large (Lewis et al., 2020)
as our backbone model. All experiments are con-
ducted using the open-source sequence model-
ing toolkit Fairseq (Ott et al., 2019), and sub-
words are obtained using the byte-pair-encoding
(BPE) (Sennrich et al., 2016) algorithm. It is worth
noting that adopting BART is non-trivial because
the BPE tokenization may split a word into sev-
eral BPEs, making it tricky to extract evidence
words. Considering evidence words are usually
short and not always contiguous, we stipulate that
the pointer indexes should contain all BPEs of the
evidence words. In other words, if a word is an
evidence word, models in the Explanation and Self-
rationalization settings are desired to output the
pointer indexes of all its BPEs. If an instance
has no evidence word, the target skips the predic-
tion of pointer indexes. Additionally, we apply the
Dropout-Src mechanism (Junczys-Dowmunt et al.,
2018) to source-side word embeddings following

previous work (Zhang et al., 2022). Detailed hyper-
parameter settings are provided in Appendix A.

Training Settings. As discussed in Section 3.2,
we attempt to conduct experiments on four distinct
training settings leveraging a single unified frame-
work with minimal modification. Notably, the Self-
rationalization setting can be further divided into
two settings based on the generation order of the
correction and explanation parts: 1) pre-explaining
models first output the explanation part and then
the correction part, while 2) post-explaining mod-
els work in reverse order. In general, we extract
evidence words first and then predict error types
since we find that the generation order of evidence
words and error types does not significantly affect
the performance in our preliminary experiments.

Evaluation. We evaluate the model performance
in three aspects. 1) Correction. Following the au-
thors of the W&I+LOCNESS dataset (Bryant et al.,
2019), we report correction performance evaluated
by ERRANT (Bryant et al., 2017). 2) Extraction
of evidence words. Following Fei et al. (2023), we
also employ token-level evaluation metrics such
as Precision, Recall, F; and Fy 5. However, we
do not adopt the exact match (EM) metric since it
is reported to be the least correlated with human
evaluation °. The findings (Fei et al., 2023) show
that the Fy 5 score achieves the highest correlation
with human evaluation in terms of Pearson coeffi-
cient, followed by the F; score. 3) Classification
of grammatical errors. We report label accuracy as
the classification performance of grammatical error
types. Unlike previous work (Fei et al., 2023), we
disentangle the evaluation of extraction and classi-
fication, which might provide a clearer perspective
on aspects of model performance. Specifically, we
deem an evidence word as a True Positive (TP) if
all of its BPEs are extracted, which is not in line
with the previous evaluation (Fei et al., 2023) that
considers an evidence word as a TP only if both
BPEs and its error type are correctly predicted. The
results are averaged over three runs with different
random seeds, and the EXPECT-dev set serves as
the validation set in all experiments.

4.2 Experiments on Rebuilt Datasets

To demonstrate the effectiveness of our rebuild
process, we first respectively train post-explaining
>Surprisingly, we find that do-nothing systems achieve higher

EM scores than almost all well-trained systems, but 0 F; and
Fo.5 scores.



EXPECT-dev EXPECT-test

System Cor. (P/R/Fy5) Exp. (P/R/F,/Fy5/Acc) Cor. (P/R/Fy5) Exp. P/R/F,/Fy5/Acc)
BART Baseline 36.14 /34.87 /35.88 - 36.33/35.49/36.16 -
BERT Explanation - 53.60/35.46 / 42.68 / 48.63 / 52.09 - 51.73/36.34 / 42.69 / 47.69 / 50.83
BART Explanation 44.43/32.93/37.82/41.53/33.36 42.34/33.13/37.18/40.11 /26.95
Infusion

+ Evidence 45.78 1 44.55 1 45.53 - 46.02/44.13 /45.63 -

+ Type 35.31/47.87/35.22 - 36.00/35.37/35.87 -

+ Evidence&Type 44.28 /47.55/44.90 - 44,96 /1 47.50/ 45.44 -

Self-rationalization
Pre-explaining
Post-explaining

38.25/34.18/37.36  36.01/35.58/35.79/35.92/26.56 38.68/35.41/37.98 36.77/36.85/36.81/36.79/26.24
36.34/40.15/37.05 48.95/42.72/45.63/47.56/40.32 36.52/40.41/37.24 49.43/44.10/46.61 /48.26 / 39.86

Table 3: Results of different settings for the single model. All models except “BERT Explanation” are initialized

with pre-trained BART weights.

Official EXPECT-dev
Cor. (P/R/Fy5) Exp. (P/R/F,/Fy5/Acc)
30.94/35.49/31.75 45.92/38.42/41.84/44.19/37.63

Rebuilt EXPECT-dev
Cor (P/R/Fy5) Exp (P/R/F;/Fy5/Acc)
36.34/40.15/37.05 48.95/42.72 /45.65/ 47.56 / 40.32

Table 4: Comparison of post-explaining models trained
on the official and rebuilt EXPECT datasets. We have
similar findings on other settings, which are listed in
Appendix B.1.

models on the official and our rebuilt EXPECT
datasets. The results in Table 4 indicate that our
rebuilt EXPECT dataset can significantly improve
the performance of both correction and explana-
tion tasks. This is because we have identified and
corrected grammatical errors that were previously
overlooked. As a results, we conduct the remaining
experiments on the rebuilt EXPECT dataset.

4.3 Main Results

Here, we examine and analyze the interaction be-
tween the correction and explanation tasks by con-
ducting experiments with various training settings.
We first explore the Infusion setting, where we ap-
pend different additional explanation information
to the input source. Infusion models can be con-
sidered as oracle baselines since human-annotated
explanations are usually unavailable in real appli-
cations, through which we can understand how
explanations benefit the correction task. We also
train a sequence labeling-based BERT model by re-
producing the baseline provided in (Fei et al., 2023)
under the same training and evaluation conditions
as our other experiments. The results presented in
Table 3 illustrate the following conclusions.

Evidence words, rather than grammatical er-
ror types, can provide invaluable information
for corrections. Recent studies have highlighted

that incorporating human-annotated explanations
as additional input can enhance task performance
to a certain degree (Hase et al., 2020; Yao et al.,
2023), and we have also observed similar results
in the “Infusion” block of Table 3. Specifically,
we notice that the additional information provided
by grammatical error types does not improve cor-
rection performance. However, on the other hand,
the information provided by evidence words can
increase the Fy 5 score by approximately 10 points,
even though about only 60% of the samples in the
dev and test sets are annotated with evidence words,
demonstrating that ground truth evidence words are
very helpful for the correction task.

Jointly learning correction and explanation
tasks is beneficial for each task. Practically, ex-
planations are usually unavailable during the in-
ference stage, so Self-rationalization models are
responsible for answering whether training with
explanations as additional output could improve
correction performance. Interestingly, experiments
show that pre-explaining and post-explaining mod-
els perform differently. Specifically, pre-explaining
models achieve better correction performance at the
cost of decreased explanation performance com-
pared to the “BART Explanation” single-task base-
line, demonstrating that even noisy predicted expla-
nations can still provide benefits towards the correc-
tion task. On the other hand, post-explaining mod-
els achieve comparable correction performance but
very high explanation performance, indicating that
predicted corrections are very beneficial towards
the explanation task.

We also notice that the performance of grammati-
cal error type classification for BART-based models
is greatly lower than that of BERT-based models.
We speculate that this may be due to the inner bias
induced by the distinction between BART’s genera-
tive denoising and BERT’s masked language model



¥ Cor. (P/R/Fy5)

0.5 36.16/35.68/36.06
0.8 35.47/36.92/35.74
1.0 35.10/36.96/35.46
1.5 36.12/36.34/36.16
2.0 35.93/35.38/35.82

Exp. (P/R/F;/Fg5/Acc)
57.00/06.87/12.26/23.18/19.15
51.77/21.63/30.51/40.49/23.46
48.82/26.55/34.40 / 41.81/25.94
50.95/22.01/30.74 / 40.34 / 24.66
52.48/22.29/31.29/41.29/28.06

Table 5: Results of sequence labeling-based multi-task
BART baselines for varying loss weights « on rebuilt
EXPECT-dev.

(MLM) pre-training objectives. This is supported
by the experiments in Section 5.1, which indicate
that sequence labeling is not the crucial factor for
grammatical error type classification.

5 Analysis

5.1 Does Sequence Labeling Help?

Motivated by recent studies in multi-task GEC
frameworks (Zhao et al., 2019; Yuan et al., 2021),
which combine a sequence labeling task with a
sentence-level correction task, we also develop
a multi-task baseline for explainable GEC, keep-
ing the experimental setup the same as our other
experiments. Specifically, we append a random-
initialized tagging head after the encoder to per-
form the explanation task as a sequence labeling
task, like BERT-based models. To predict each
token’s tag, we pass the encoder’s hidden represen-
tation H® through a softmax after an affine trans-
formation, which is computed as follow:

P(T | X) = softmax(W "H¢), ©)

where T is the resulting tagging sequence in BIO
scheme. The token-level sequence labeling task
is introduced to replace the role of pointer mecha-
nism, so we conduct only the correction task at the
decoder side. Similarly, we introduce loss weight-
ing to trade-off the losses of correction generation
and sequence labeling, which is defined as follow:

L= Leor + v Emg (10)

where v represents the trade-off factor, and we
minimize the cross-entropy between predicted to-
kens/labels and ground truth tokens/labels.

The results of varying ~ selected from the al-
ternative set {0.5,0.8,1.0,1.5,2.0} are shown in
Table 5. Compared to Self-rationalization models,
sequence labeling-based multi-task models achieve
lower correction performance but mediate explana-
tion performance between pre-explaining models
and post-explaining models. Therefore, we can

conclude that our proposed EXGEC is more effec-
tive than sequence labeling-base baselines.

5.2 Position Leakage

One may suspect that the enhancement of Infusion
models is due to the leakage effect of evidence
words’ positions, since it is reported that a signifi-
cant number of instances have at least one evidence
word within the first or second-order nodes of cor-
rection words in the dependency parsing tree (Fei
etal., 2023). To address this concern, we synthesize
datasets with artifact explanations in two ways: 1)
random explanations, which are randomly selected
from the entire source tokens, and 2) adjacent ex-
planations, which are randomly chosen from can-
didate source tokens located within a distance of
1~5 from the correction. Given that a substantial
number of samples lack annotated evidence words,
we generate an equal number of synthesized ev-
idence words as the ground truth ones to ensure
the fairness of our experiments. We train models
using synthesized evidence words, but evaluation
is performed with ground truth evidence words, al-
lowing us to investigate whether the models learn to
extract evidence words through this unsupervised
approach.The results are presented in Table 6.

For the Infusion setting, it is no surprise that ran-
dom evidence words would not improve correction
performance as expected. However, we observe
that adjacent synthesized evidence words do make
a noticeable impact, resulting in a moderate im-
provement compared to random evidence words
but still lower than the benefits provided by ground
truth evidence words. This suggests that the leak-
age effect of positions does indeed exists. However,
it is important to note that this effect alone is un-
able to fully capture all the advantages offered by
ground truth evidence words.

For the pre-explaining and post-explaining set-
tings, it seems that learning to output adjacent evi-
dence words can improve correction performance
to some extent. However, it falls short of sur-
passing the performance achieved by incorporating
ground truth evidence words. This reaffirms the
importance of joint learning for both correction and
explanation tasks. On the contrary, the inclusion
of random evidence words does not contribute to
the improvement of correction performance. Fur-
thermore, the models’ explanation performance re-
veals their inclination to disregard the influence of
these random evidence words. Additionally, we
observe a significant decrease in explanation per-



EXPECT-dev

EXPECT-test

System Cor. (P/R/Fy5) Exp. (P/R/F;/Fy5/Acc) Cor. (P/R/Fy5) Exp. (P/R/F,/Fy5/Acc)
BART Baseline 36.14 /34.87 /35.88 - 36.33/35.49/36.16 -
Infusion

+ G.T. Evidence
+ Ran. Evidence
+ Adj. Evidence

45.78 /1 44.55 / 45.53
35.88/33.26/35.33
38.46/42.81/39.26

46.02/44.13 / 45.63
36.44 /33.20/35.74
39.66/43.01/40.28

Pre-explaining
+ G.T. Evidence
+ Ran. Evidence
+ Adj. Evidence

38.25/34.18/37.36
36.17/33.72/35.65
36.53/38.73/36.95

36.01/35.58/35.79 / 35.92 / 26.56
13.60/00.40/00.77/01.79/15.83
26.97/03.37/06.00/11.23/17.03

38.68/35.41/37.98
37.63/34.83/37.04
37.09/39.52/37.55

36.77/36.85/36.81/36.79 / 26.24
14.38/00.53/01.02/02.31/15.02
29.00/04.02/07.06 /12.93/16.02

Post-explaining
+ G.T. Evidence
+ Ran. Evidence
+ Adj. Evidence

36.34/40.15/ 37.05
36.36/34.37/35.95
36.36/34.14/ 35.89

48.95/42.72/ 45.63 / 47.56 / 40.32
14.39/00.45 /00.86 / 02.00 / 16.04
23.68/02.53/04.57/08.86/15.79

36.52/40.41/37.24
36.86/34.87/36.44
37.34/35.18/36.88

49.43/44.10/46.61 / 48.26 / 39.86
07.45/00.16 /00.32/00.74 / 15.02
26.74/03.28/05.84/11.00/15.48

Table 6: Results of models trained on ground truth (G.T.), random (Ran.) or adjacent (Adj.) evidence words.

formance when learning without ground truth evi-
dence words, indicating the inherent challenge of
explaining with alignment to human preference in
an unsupervised way.

6 Related Works

Explainable GEC. Currently, most GEC sys-
tems are trained to correct errors without providing
explanations. To bridge the gap, recent studies have
explored several methods to facilitate the explain-
ability of GEC systems. One such method is the
feedback comment generation (FCG) task (Nagata,
2019; Nagata et al., 2021), which is designed to
automatically generate feedback comments such
as hints or explanatory notes for writing learning.
Hanawa et al. (2021) investigate three different ar-
chitectures for FCG and highlight the challenges
of the task. Another approach is Example-based
GEC (Kaneko et al., 2022; Vasselli and Watan-
abe, 2023), which improves explainability by re-
trieving examples similar to an input instance ac-
cording to pre-defined grammar rules. Kaneko
and Okazaki (2023) explore generating natural lan-
guage explanations by prompting large language
models (LLMs), showing the feasibility of elicit-
ing controlled and comprehensive explanations for
grammatical errors from LLMs. However, there
has been no work systematically exploring the in-
teraction between correction and explanation tasks.

Learning with Explanations. As an important
part of this work, Self-rationalization models
jointly generate task predictions and correspond-
ing explanations, aiming to improve explainabil-
ity or task performance of neural networks. Two
approaches that currently predominate the build-
ing of self-rationalization models are 1) extract-
ing highlight input tokens responsible for task pre-

dictions, known as extractive rationals (DeYoung
et al., 2020), and 2) generating natural language
explanations (Narang et al., 2020), which pro-
vide a natural interface between machine compu-
tation and human end-users. To improve upon the
task performance and trustworthiness of Seq2Seq
models, Lakhotia et al. (2021) develop an extrac-
tive fusion-in-decoder architecture in the ERASER
benchmark (DeYoung et al., 2020), which is a pop-
ular benchmark for rationale extraction across mul-
tiple datasets and tasks. Li et al. (2022a) propose
a joint text classification and rationale extraction
model to improve explainability and robustness.
Recognizing the complementarity of extractive
rationals and natural language explanations, Ma-
jumder et al. (2022) combine both ingredients in a
unified self-rationalization framework.

Powered by in-context learning (Brown et al.,
2020) and chain-of-thought (CoT) reasoning (Wei
et al., 2022; Chu et al., 2023) of LLMs, recent
works leverage the natural language explanations
generated by LLMs with chain-of-thought prompt-
ing (Lampinen et al., 2022; Li et al., 2023) to en-
hance the training of small reasoners using knowl-
edge distillation for task performance (Li et al.,
2022b; Ho et al., 2023; Hsieh et al., 2023) or faith-
fulness (Wang et al., 2023) improvement.

7 Conclusion

In this paper, we propose a unified generative
framework, EXGEC, designed to jointly perform
both correction and explanation tasks. EXGEC is
designed to be compatible with multiple training
settings, enabling us to understand and establish
the interaction between tasks. Additionally, we re-
build the existing noisy explainable GEC dataset,
EXPECT. Our experiments demonstrate the effec-
tiveness of our rebuild process and EXGEC.



Limitations

Inherent nature of Seq2Seq-based models. We
have noticed that our adopted backbone, BART,
falls short in explanation performance, including
extracting evidence words and classifying gram-
matical errors, compared to BERT-based models.
This can be attributed to BART’s inherent nature as
a sequence-to-sequence generative model. These
limitations may have a negative impact on correc-
tion performance, particularly for post-explaining
models that correct sentences based on previously
predicted explanations. In our future work, we in-
tend to explore a more effective approach to handle
and integrate both tasks.

Inflexibility of structured explanations. In the
era of large language models (LLMs), it has be-
come increasingly practical and favorable to ex-
press explanations as free-form natural language
texts. However, in this particular paper, we focus
our studies on structured explanations due to the
limited availability of free-form explanations in the
field of GEC. Nevertheless, we are committed to
advancing the development of explainable GEC
datasets in our future work, aiming to incorporate
more sophisticated and comprehensive approaches.

Ethics Statement

In this paper, we have identified significant noise
in the official EXPECT dataset, which has the po-
tential to create confusion during model training
and evaluation. To address this issue, we recon-
struct the EXPECT dataset to remove the noise,
resulting in an objective training and evaluation
pipeline. For our methods, we have exclusively uti-
lized source data from publicly accessible project
resources on legitimate websites, ensuring the ab-
sence of sensitive information. Furthermore, all the
baselines and datasets utilized in our experiments
are publicly available, and we have given credit to
the corresponding authors by citing their work.

References

John Bitchener, Stuart Young, and Denise Cameron.
2005. The effect of different types of corrective feed-
back on esl student writing. Journal of second lan-
guage writing, 14(3):191-205.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

learners. Advances in neural information processing
systems, 33:1877-1901.

Christopher Bryant, Mariano Felice, @Qistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 5275,
Florence, Italy. Association for Computational Lin-
guistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793-805, Vancouver, Canada. Association for
Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2022. Grammatical error correction: A survey of the
state of the art. arXiv preprint arXiv:2211.05166.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang
Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu,
Bing Qin, and Ting Liu. 2023. A survey of chain of
thought reasoning: Advances, frontiers and future.
arXiv preprint arXiv:2309.15402.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443—-4458, Online.
Association for Computational Linguistics.

Tao Fang, Jinpeng Hu, Derek F. Wong, Xiang Wan,
Lidia S. Chao, and Tsung-Hui Chang. 2023. Improv-
ing grammatical error correction with multimodal
feature integration. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
9328-9344, Toronto, Canada. Association for Com-
putational Linguistics.

Yuejiao Fei, Leyang Cui, Sen Yang, Wai Lam, Zhen-
zhong Lan, and Shuming Shi. 2023. Enhancing gram-
matical error correction systems with explanations.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 7489-7501, Toronto, Canada.
Association for Computational Linguistics.

Shichun Gui. 2004. A cognitive model of corpus-based
analysis of chinese learners’ errors of english. Mod-
ern Foreign Languages(Quarterly), 27(2):129-139.

Kazuaki Hanawa, Ryo Nagata, and Kentaro Inui. 2021.
Exploring methods for generating feedback com-
ments for writing learning. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 9719-9730, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.


https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2023.findings-acl.594
https://doi.org/10.18653/v1/2023.findings-acl.594
https://doi.org/10.18653/v1/2023.findings-acl.594
https://doi.org/10.18653/v1/2023.findings-acl.594
https://doi.org/10.18653/v1/2023.findings-acl.594
https://doi.org/10.18653/v1/2023.acl-long.413
https://doi.org/10.18653/v1/2023.acl-long.413
https://doi.org/10.18653/v1/2023.acl-long.413
https://doi.org/10.18653/v1/2021.emnlp-main.766
https://doi.org/10.18653/v1/2021.emnlp-main.766
https://doi.org/10.18653/v1/2021.emnlp-main.766

Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal.
2020. Leakage-adjusted simulatability: Can models
generate non-trivial explanations of their behavior
in natural language? In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
43514367, Online. Association for Computational
Linguistics.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14852—14882, Toronto, Canada.
Association for Computational Linguistics.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alex Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. 2023. Dis-
tilling step-by-step! outperforming larger language
models with less training data and smaller model
sizes. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 8003-8017,
Toronto, Canada. Association for Computational Lin-
guistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 595-606, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Masahiro Kaneko and Naoaki Okazaki. 2023. Con-
trolled generation with prompt insertion for natural
language explanations in grammatical error correc-
tion. arXiv preprint arXiv:2309.11439.

Masahiro Kaneko, Sho Takase, Ayana Niwa, and Naoaki
Okazaki. 2022. Interpretability for language learners
using example-based grammatical error correction.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 71767187, Dublin, Ireland.
Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kushal Lakhotia, Bhargavi Paranjape, Asish Ghoshal,
Scott Yih, Yashar Mehdad, and Srini Iyer. 2021. FiD-
ex: Improving sequence-to-sequence models for ex-
tractive rationale generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 3712-3727, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Andrew Lampinen, Ishita Dasgupta, Stephanie Chan,
Kory Mathewson, Mh Tessler, Antonia Creswell,
James McClelland, Jane Wang, and Felix Hill. 2022.

10

Can language models learn from explanations in con-
text? In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 537-563,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Dongfang Li, Baotian Hu, Qingcai Chen, Tujie Xu, Jing-
cong Tao, and Yunan Zhang. 2022a. Unifying model
explainability and robustness for joint text classifi-
cation and rationale extraction. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 10947-10955.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xi-
ang Ren, Kai-Wei Chang, and Yejin Choi. 2023.
Symbolic chain-of-thought distillation: Small mod-
els can also" think" step-by-step. arXiv preprint
arXiv:2306.14050.

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen,
Xinlu Zhang, Zekun Li, Hong Wang, Jing Qian,
Baolin Peng, Yi Mao, et al. 2022b. Explanations
from large language models make small reasoners
better. arXiv preprint arXiv:2210.06726.

Josh Magnus Ludan, Yixuan Meng, Tai Nguyen,
Saurabh Shah, Qing Lyu, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Explanation-based fine-
tuning makes models more robust to spurious cues.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4420-4441, Toronto, Canada.
Association for Computational Linguistics.

Bodhisattwa Prasad Majumder, Oana Camburu, Thomas
Lukasiewicz, and Julian Mcauley. 2022. Knowledge-
grounded self-rationalization via extractive and nat-
ural language explanations. In International Con-
ference on Machine Learning, pages 14786—14801.
PMLR.

Ryo Nagata. 2019. Toward a task of feedback comment
generation for writing learning. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 32063215, Hong Kong,
China. Association for Computational Linguistics.

Ryo Nagata, Masato Hagiwara, Kazuaki Hanawa,
Masato Mita, Artem Chernodub, and Olena Nahorna.
2021. Shared task on feedback comment generation
for language learners. In Proceedings of the 14th
International Conference on Natural Language Gen-
eration, pages 320-324, Aberdeen, Scotland, UK.
Association for Computational Linguistics.


https://doi.org/10.18653/v1/2020.findings-emnlp.390
https://doi.org/10.18653/v1/2020.findings-emnlp.390
https://doi.org/10.18653/v1/2020.findings-emnlp.390
https://doi.org/10.18653/v1/2020.findings-emnlp.390
https://doi.org/10.18653/v1/2020.findings-emnlp.390
https://doi.org/10.18653/v1/2023.acl-long.830
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/2023.findings-acl.507
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/2022.acl-long.496
https://doi.org/10.18653/v1/2022.acl-long.496
https://doi.org/10.18653/v1/2022.acl-long.496
https://doi.org/10.18653/v1/2021.emnlp-main.301
https://doi.org/10.18653/v1/2021.emnlp-main.301
https://doi.org/10.18653/v1/2021.emnlp-main.301
https://doi.org/10.18653/v1/2021.emnlp-main.301
https://doi.org/10.18653/v1/2021.emnlp-main.301
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2022.findings-emnlp.38
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2023.acl-long.242
https://doi.org/10.18653/v1/2023.acl-long.242
https://doi.org/10.18653/v1/2023.acl-long.242
https://doi.org/10.18653/v1/D19-1316
https://doi.org/10.18653/v1/D19-1316
https://doi.org/10.18653/v1/D19-1316
https://aclanthology.org/2021.inlg-1.35
https://aclanthology.org/2021.inlg-1.35
https://aclanthology.org/2021.inlg-1.35

Sharan Narang, Colin Raffel, Katherine Lee, Adam
Roberts, Noah Fiedel, and Karishma Malkan. 2020.
Wit5?! training text-to-text models to explain their
predictions. arXiv preprint arXiv:2004.14546.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. arXiv preprint arXiv:1904.01038.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 702-707,
Online. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Younghee Sheen. 2007. The effect of focused writ-
ten corrective feedback and language aptitude on esl
learners’ acquisition of articles. TESOL quarterly,
41(2):255-283.

Apoorva Singh, Raghav Jain, Prince Jha, and Sri-
parna Saha. 2023. Peeking inside the black box:
A commonsense-aware generative framework for ex-
plainable complaint detection. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
7333-7347, Toronto, Canada. Association for Com-
putational Linguistics.

Peter Skehan. 1998. A cognitive approach to language
learning. Oxford University Press.

Justin Vasselli and Taro Watanabe. 2023. A closer look
at k-nearest neighbors grammatical error correction.
In Proceedings of the 18th Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA 2023), pages 220-231, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Aditya Srikanth Veerubhotla, Lahari Poddar, Jun Yin,
Gyorgy Szarvas, and Sharanya Eswaran. 2023. Few
shot rationale generation using self-training with dual
teachers. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 4825-4838,
Toronto, Canada. Association for Computational Lin-
guistics.

11

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Advances in neural infor-
mation processing systems, 28.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao,
Bing Yin, and Xiang Ren. 2023. SCOTT: Self-
consistent chain-of-thought distillation. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5546-5558, Toronto, Canada. Association for
Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various NER subtasks. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5808-5822, Online.
Association for Computational Linguistics.

Bingsheng Yao, Prithviraj Sen, Lucian Popa, James
Hendler, and Dakuo Wang. 2023. Are human expla-
nations always helpful? towards objective evaluation
of human natural language explanations. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14698-14713, Toronto, Canada. Association
for Computational Linguistics.

Zheng Yuan and Christopher Bryant. 2021. Document-
level grammatical error correction. In Proceedings
of the 16th Workshop on Innovative Use of NLP for
Building Educational Applications, pages 75-84, On-
line. Association for Computational Linguistics.

Zheng Yuan, Shiva Taslimipoor, Christopher Davis, and
Christopher Bryant. 2021. Multi-class grammatical
error detection for correction: A tale of two systems.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
87228736, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Yue Zhang, Bo Zhang, Haochen Jiang, Zhenghua Li,
Chen Li, Fei Huang, and Min Zhang. 2023. NaSGEC:
a multi-domain Chinese grammatical error correction
dataset from native speaker texts. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 9935-9951, Toronto, Canada. Associa-
tion for Computational Linguistics.

Yue Zhang, Bo Zhang, Zhenghua Li, Zuyi Bao, Chen Li,
and Min Zhang. 2022. SynGEC: Syntax-enhanced
grammatical error correction with a tailored GEC-
oriented parser. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2518-2531, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.


https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2023.acl-long.404
https://doi.org/10.18653/v1/2023.acl-long.404
https://doi.org/10.18653/v1/2023.acl-long.404
https://doi.org/10.18653/v1/2023.acl-long.404
https://doi.org/10.18653/v1/2023.acl-long.404
https://doi.org/10.18653/v1/2023.bea-1.19
https://doi.org/10.18653/v1/2023.bea-1.19
https://doi.org/10.18653/v1/2023.bea-1.19
https://doi.org/10.18653/v1/2023.findings-acl.297
https://doi.org/10.18653/v1/2023.findings-acl.297
https://doi.org/10.18653/v1/2023.findings-acl.297
https://doi.org/10.18653/v1/2023.findings-acl.297
https://doi.org/10.18653/v1/2023.findings-acl.297
https://doi.org/10.18653/v1/2023.acl-long.304
https://doi.org/10.18653/v1/2023.acl-long.304
https://doi.org/10.18653/v1/2023.acl-long.304
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2023.acl-long.821
https://doi.org/10.18653/v1/2023.acl-long.821
https://doi.org/10.18653/v1/2023.acl-long.821
https://doi.org/10.18653/v1/2023.acl-long.821
https://doi.org/10.18653/v1/2023.acl-long.821
https://aclanthology.org/2021.bea-1.8
https://aclanthology.org/2021.bea-1.8
https://aclanthology.org/2021.bea-1.8
https://doi.org/10.18653/v1/2021.emnlp-main.687
https://doi.org/10.18653/v1/2021.emnlp-main.687
https://doi.org/10.18653/v1/2021.emnlp-main.687
https://doi.org/10.18653/v1/2023.findings-acl.630
https://doi.org/10.18653/v1/2023.findings-acl.630
https://doi.org/10.18653/v1/2023.findings-acl.630
https://doi.org/10.18653/v1/2023.findings-acl.630
https://doi.org/10.18653/v1/2023.findings-acl.630
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2023. Explainability for
large language models: A survey. arXiv preprint
arXiv:2309.01029.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume I (Long and
Short Papers), pages 156-165, Minneapolis, Min-
nesota. Association for Computational Linguistics.

A Experiment Hyper-Parameters

We list the main hyper-parameters in Table 7.
For the training stage, we follow the same hyper-
parameters as described in (Zhang et al., 2022).
The total training time is about 4 hours.

Configuration Value

Training
Backbone BART-large (Lewis et al., 2020)
Devices 1 Tesla A100 GPU (80GB)
Epochs 60
Batch size per GPU 4096 tokens
Gradient Accumulation 4

Adam (Kingma and Ba, 2014)

Optimizer (Br = 0.9, B2 = 0.999, ¢ = 1 x 10-8)
Learning rate 3x107°
‘Warmup updates 500
Max source length 256
Dropout 0.3
Dropout-src 0.1

o 0.5
Loss weight A 1.0

Inference

Beam size 12
Max length 256

Table 7: Hyper-parameter values used in our experi-
ments.

B Extra Analyses

B.1 Detailed Results on EXPECT Datasets

We report the detailed results on the official and
our rebuilt EXPECT dasetes in Table 9. All the
models trained on our rebuilt EXPECT achieve
better performance of both correction and explana-
tion tasks, demonstrating the effectiveness of our
rebuild process.

B.2 Impact of Loss Weighting

In this section, we investigate the trade-off of learn-
ing on both correction and explanation task by vary-
ing the loss weight A. Considering the promising
performance of post-explaining models on both
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A

0.5
1.0
1.5
2.0

Cor. (P/R/Fq5)
35.40/38.03/35.90
36.34/40.15/37.05
36.03/38.42/36.49
35.41/38.61/36.00

Exp. (P/R/F;/Fg5/Acc)
39.77/38.88/39.32/39.59/32.02
48.95/42.72/ 45.63 / 47.56 / 40.32
43.90/42.82/43.35/43.68/36.88
47.98/42.86/45.28 /1 46.86 / 40.07

Table 8: Results of post-explaining models for varying
loss weights A on rebuilt EXPECT-dev.

correction and explanation tasks, we train post-
explaining models with the loss weight A alterna-
tively selected from {0.5,1.0,1.5,2.0} and report
the results on EXPECT-dev in Table 8. The re-
sults show that giving preference to either tasks
harms the performance of both tasks. We spec-
ulate that the supervised explanation information
during training is too weak to guide the dynamics
of correction learning if X is small. On the other
hand, a large A\ value might neglect correction learn-
ing, thus leading to lower explanation performance
since explanation of post-explaining models are
produced based on predicted corrections.
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Official EXPECT-dev

System Cor. (P/R/Fy5)

Rebuilt EXPECT-dev

Cor. (P /R/ Fo's)

EXp. (P/ R/ F1 /FQ,{, /ACC)

EX]J. (P/R/F1 /F()_,; /ACC)

BART Baseline 30.59/33.72/31.17 36.14 /34.87 / 35.88

Infusion
+ Evidence 40.72/43.31/41.22 - 45.78 / 44.55 / 45.53 -
+ Type 31.15/35.14/31.87 - 35.31/47.87/35.22 -
+ Evidence&Type 40.79/42.50/41.11 - 44.28 / 47.55 1/ 44.90 -

Self-rationalization

Pre-explaining 32.62/31.29/32.35 33.75/44.12/38.25/35.41/28.22 38.25/34.18/37.36 36.01/35.58/35.79/35.92/26.56
Post-explaining 30.94/3549/31.75 45.92/38.42/41.84/44.19/37.63 36.34/40.15/37.05 48.95/42.72/45.63/47.56/40.32

Table 9: Further comparison of models trained on the official and rebuilt EXPECT datasets.
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