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Abstract
Existing efforts to align multimodal large lan-
guage models (MLLMs) with human preferences
have only achieved progress in narrow areas, such
as hallucination reduction, but remain limited in
practical applicability and generalizability. To this
end, we introduce MM-RLHF, a dataset contain-
ing 120k fine-grained, human-annotated prefer-
ence comparison pairs. This dataset represents a
substantial advancement over existing resources,
offering superior size, diversity, annotation gran-
ularity, and quality. Leveraging this dataset, we
propose several key innovations to improve both
the quality of reward models and the efficiency
of alignment algorithms. Notably, we introduce
the Critique-Based Reward Model, which gen-
erates critiques of candidate texts before assign-
ing scores, offering enhanced interpretability and
more informative feedback compared to tradi-
tional reward models. Additionally, we propose
Dynamic Reward Scaling, a method that adjusts
the loss weight of each training sample according
to the reward signal, thereby optimizing the use
of high-quality comparison pairs. Our approach
is rigorously evaluated across 10 distinct dimen-
sions, encompassing 27 benchmarks, with results
demonstrating significant and consistent improve-
ments in model performance (Figure. 1).

1. Introduction
Although Multimodal Large Language Models (MLLMs)
have demonstrated remarkable potential in addressing com-
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plex tasks that involve the integration of vision, language,
and audio, state-of-the-art MLLMs today seldom undergo a
rigorous alignment stage (Wang et al., 2024a; Deitke et al.,
2024; Chen et al., 2024c; Dai et al., 2024; Agrawal et al.,
2024). Typically, these models only progress to the super-
vised fine-tuning (SFT) stage, leaving critical aspects such
as truthfulness, safety, and alignment with human prefer-
ences largely unaddressed. While recent efforts have begun
to explore MLLM alignment, they often focus on narrow
domains, such as mitigating hallucination or enhancing con-
versational capabilities, which fail to comprehensively im-
prove the model’s overall performance and reliability. This
raises a critical question:

Is alignment with human preferences only capable of
enhancing MLLMs in a limited set of tasks?

In this work, we confidently answer this question with a
resounding “No.”. We demonstrate that a well-designed
alignment pipeline can comprehensively enhance MLLMs
along multiple dimensions, including visual perception, rea-
soning, dialogue, and trustworthiness, thereby significantly
broadening their practical applicability. To achieve this, we
conduct in-depth investigations into three pivotal areas: data
curation, reward modeling, and alignment algorithms.

At first, we introduce MM-RLHF, a dataset designed to
advance Multimodal Reinforcement Learning from Human
Feedback (RLHF). The dataset spans three key domains: im-
age understanding, video understanding, and MLLM safety.
Constructed through a rigorous pipeline, MM-RLHF en-
sures high-quality, fine-grained human annotations. Dataset
creation process involves the following steps (Figure 2):

• Data Collection. We curate a diverse set of multimodal
tasks from various sources, totaling 10 million data
instances, ensuring broad representation across tasks.

• Data Selection. Through rigorous re-sampling, we
extract 30k representative queries, ensuring diversity
across a wide range of data types, such as real-world
scenarios, mathematical reasoning, chart understand-
ing, and other practical domains (Figure. 3).

• Model Response Generation. We utilize state-of-the-
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Figure 1. Performance gains achieved through alignment training on MM-RLHF and our alignment algorithm (MM-DPO), highlighting
significant improvements across various tasks and metrics.

art models, such as Claude 3.5-Sonnet and Qwen2-VL-
72B, to generate responses for various tasks.

• Fine-grained Human Annotation. We employ a
meticulous annotation process, involving over 50 an-
notators over two months, to score, rank, and provide
textual explanations for responses. This results in more
than 120k high-quality ranked comparison pairs.

Compared to existing datasets, MM-RLHF significantly
advances in diversity, response quality, and annotation gran-
ularity, providing a robust foundation for MLLM alignment.

Building on the MM-RLHF dataset, we investigate how
human-annotated data can enhance MLLM alignment, with
a focus on reward modeling and training optimization. Rec-
ognizing the pivotal role of reward models in providing feed-
back signals to guide the alignment process, we propose
a Critique-Based Reward Model (Figure 4). Traditional
reward models, which output scalar values, often lack inter-
pretability, while directly using MLLMs as reward models
place high demands on their instruction-following capabili-
ties, limiting their practicality. To address these limitations,
we first transform concise human annotations into detailed,
model-friendly formats using MLLMs. These enriched an-
notations serve as learning targets, guiding the reward model
to first generate critiques and then assign scores based on
the critiques. This approach enables the model to provide
fine-grained scoring explanations, significantly enhancing
the quality and interpretability of the reward signals. MM-
RLHF-Reward-7B achieves SOTA performance on several
benchmarks, outperforming several 72B-scale models.

Building on this high-quality reward model, we introduce
Dynamic Reward Scaling within the Direct Preference
Optimization (DPO) framework. Traditional DPO meth-
ods (Amini et al., 2024) use a fixed training weight for
all human-preferred and non-preferred training pairs. In

contrast, Dynamic Reward Scaling calculates a reward mar-
gin for each comparison pair using MM-RLHF-Reward-7B.
During training, it assigns higher weights to comparison
pairs with larger reward margins. This ensures that the most
informative samples have a stronger influence on model
updates. As a result, the training process becomes more
efficient, leading to improved model performance.

Finally, to rigorously evaluate our approach, we con-
struct two specialized benchmarks. The first, MM-RLHF-
RewardBench, is sampled from our dataset and consists
of meticulously human-annotated data for evaluating re-
ward models. The second, MM-RLHF-SafetyBench, is
curated and filtered from existing benchmarks and focuses
on safety-related tasks, including privacy protection, adver-
sarial attacks, jailbreaking, and harmful content detection.

We conduct extensive evaluations across ten key dimen-
sions, covering 27 benchmarks. The results demonstrate
that our training algorithm, combined with the high-quality
MM-RLHF dataset, leads to significant improvements in
model performance. Specifically, models fine-tuned with
our approach achieve an average 11% gain in conversational
abilities and a 57% reduction in unsafe behavior. The inte-
gration of our reward model further amplifies these gains,
highlighting the effectiveness of our alignment algorithm.

2. MM-RLHF-Dataset
In this section, we outline the construction of MM-RLHF,
as illustrated in Figure 2. This includes data collection, data
filtering, and human annotation.

2.1. Data Collection

Our goal is to construct a comprehensive post-training
dataset that covers a wide range of task types. To achieve
this, we categorize tasks into three main domains: image
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Figure 2. MM-RLHF Construction Pipeline. (1) Data Collection and Cleaning: Starting with 10 million instruction samples, we cluster
data based on image similarity, and uniformly sample across diverse categories. This results in a diverse dataset covering image-based
Q&A (e.g., multiple-choice, dialogues, and safety-related questions) and video Q&A formats. (2) Response Generation: We leverage
state-of-the-art models, including GPT-4o and Qwen2-VL-72B, to generate responses. (3) Human Annotation: We conduct comprehensive
manual annotation across nine categories, including scoring, ranking, and textual explanations, ensuring fine-grained evaluation.

understanding, video understanding, and multimodal safety.

For image understanding, we integrate data from multiple
sources, including LLaVA-OV (Li et al., 2024c), VLfeed-
back (Li et al., 2023d), LLaVA-RLHF (Sun et al., 2023b),
lrv-instruction (Liu et al., 2023a), and Unimm-Chat (Yu
et al., 2023). Since some datasets contain multi-turn dia-
logues, which are less suitable for response generation, we
decompose them into single-turn dialogues. This process
yields over 10 million dialogue samples, covering tasks such
as conversation, safety, multiple-choice questions, captions,
and commonsense reasoning.

For video understanding, the primary data source is
SharedGPT-4 video (Chen et al., 2024b).

For safety, data is primarily derived from VLGuard (Zong
et al., 2024) and self-constructed content. VLGuard contains
over 2,000 harmful samples, while additional red teaming,
safety, and robustness data are included. The pipeline for
constructing safety data is detailed in Appendix C.1.

2.2. Data Filtering and Model Response Generation

The core goal of data filtering is to reduce the number of sam-
ples while maintaining the diversity of the original dataset.
To achieve this, the following strategies are adopted:

Predefined Sampling Weights. For image understanding
tasks, we define three categories based on the nature of the
questions and the length of model responses: 1. Multiple-
choice questions (MCQ): questions with options such as
A, B, C, or D. These tasks include visual question answer-
ing, mathematics, OCR, and icon recognition, focusing on
the model’s reasoning and visual perception abilities. 2.
Long-text questions: questions for which GPT-4o gener-
ates responses exceeding 128 characters. These typically
involve detailed captions or complex descriptions, testing
the model’s conversational and descriptive capabilities. 3.
Short-text questions: questions for which GPT-4o generates
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Figure 3. Re-Sampling results from the clustering process. Due
to the large total number of samples, the clustered and deduplicated
results contain a rich diversity of categories. Selected samples
include topics such as mathematics, daily life, natural scenes,
medicine, electronic technology, and OCR scenarios, showcasing
a variety of problem-image pairs. The 2D features are obtained
via UMAP dimensionality reduction.

responses shorter than 128 characters. These require con-
cise answers, often involving simple image analysis, and
represent a broader range of task types.

The initial distribution of these three types in the image
understanding dataset is highly imbalanced, with propor-
tions of 12.17% (Long), 83.68% (Short), and 4.14% (MCQ).
To align with diversity goals, we adjust the sampling ra-
tio to 4:5:1, reducing disparities among task types while
maintaining a dominance of comprehensive samples. 1

Cluster-based Sampling. Text deduplication is not per-
formed because many questions, while similar in text, are
paired with different images, leading to substantially dif-
ferent outcomes—an intrinsic characteristic of multimodal

1For video understanding and safety tasks, MCQ samples are
fewer. After classifying into Long and Short types, the differences
are minimal, so no additional adjustments are made.
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Table 1. Dataset Composition Statistics
Image Safety Video Total

Long Short MCQ
9575 12063 2125 1999 4235 29997

data. Instead, we encode all images using CLIP 2, and for
videos, we use the feature of the first frame as a representa-
tive. We then apply KNN clustering with 100 cluster centers
and randomly sample N instances from each cluster. The
value of N is determined to satisfy the predefined sampling
ratios, ensuring a balanced representation of task diversity.

Data Statistics is summarized in Table 1, and the visualiza-
tion of the clustering results is shown in Figure 3, demon-
strating the rich diversity of data categories.

Model Response Generation. To generate high-quality
responses, we select state-of-the-art models from both open-
source and closed-source domains. For image understanding
and safety-related tasks, we use Qwen2-VL-72B (Wang
et al., 2024a), LLaVA-OV-72B (Li et al., 2024c), GPT-4o3,
and Claude 3.5-sonnet4. For video understanding tasks, we
employ GPT-4o, LLaVA-Video-72B (Zhang et al., 2024b),
and Qwen2-VL-72B (Wang et al., 2024a). These models
are chosen for their advanced capabilities and performance,
ensuring a comprehensive evaluation of leading solutions in
multimodal understanding.

2.3. Annotation

The annotation process follows rigorous standards to ensure
comprehensive and fine-grained evaluations of MLLM re-
sponses. Detailed standards are provided in Appendix B,
and the scoring and annotation structure are illustrated in
Figure 2. Additionally, we design a web UI to streamline
the annotation process, as shown in Figure 6.

Compared to prior work, our annotation approach intro-
duces two significant advantages: richness and granular-
ity. First, the evaluation incorporates three core dimen-
sions—Helpfulness, Faithfulness, and Ethical Consider-
ations—to comprehensively capture model performance.
Helpfulness ensures that responses are relevant and provide
meaningful assistance aligned with the user’s intent. Faith-
fulness evaluates the accuracy of responses in describing
visual elements, such as objects, relationships, and attributes,
ensuring alignment with the ground truth while avoiding hal-
lucinated content. Ethical Considerations assess adherence
to ethical principles, including safety, privacy, fairness, and

2https://huggingface.co/openai/
clip-vit-base-patch32

3https://openai.com/index/hello-gpt-4o/
4https://www.anthropic.com/news/

claude-3-5-sonnet

harm avoidance, ensuring responses are free from harmful
or biased content. Annotators score each dimension while
documenting the reasoning behind their assessments, adding
valuable context for understanding model performance.

Second, annotators are required to assign an overall rank-
ing to the responses, along with justifications for their rank-
ings. This ranking mechanism provides a transparent and
nuanced comparison of model outputs. Additionally, inno-
vative strategies are employed to enhance data quality:

Constructing Positive Samples for Poor Quality Ties.
When multiple responses are equally poor, annotators pro-
vide correct answers to create positive examples. This en-
sures challenging samples contribute to the training dataset,
addressing issues that no valid model responses exist.

Constructing Negative Samples for High-Quality Ties.
When multiple responses are of equally high quality, anno-
tators introduce deliberate errors to create negative samples.
This prevents ties from reducing the utility of the data and
allows for more efficient use in training.

We employ over 50 annotators supervised by 8 multimodal
experts to ensure high-quality annotations, addressing the
fine-grained requirements of MLLM alignment tasks. While
human annotation incurs significant costs, it offers sub-
stantial advantages over machine annotation, particularly
in capturing nuanced perceptual differences and providing
professional-grade reasoning. For a detailed comparison of
human and machine annotation, see Appendix D.

3. MM-RLHF-Reward Model
In this section, we explore how to train a high-quality reward
model using MM-RLHF, to provide a robust supervision
signal for subsequent model alignment. The reward model
is designed to combine critique generation and scoring (Fig-
ure 4), ensuring a comprehensive evaluation process.

3.1. Background of Standard Reward Models

Reward models are a key component for aligning model
outputs with human preferences. Typically, a reward model
starts with a pretrained LLM ϕ, where the LLM head hl is
replaced with a linear reward head lr, enabling the model
to output a scalar reward. These models are trained using
pairwise comparisons. Given a query x, a preferred response
yw, and a less preferred response yl, the reward model is
optimized to assign higher rewards to preferred responses:

ℓReward(θ) = Ex,yw,yl

[
− log σ

(
r(yw|x)− r(yl|x)

)]
, (1)

where r(y|x) is the reward and σ is the sigmoid function.

Standard reward models face significant limitations. First,
they fail to fully utilize the rich feedback provided by high-
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Based on the map shown, California
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The response accurately identifies that California has a
higher poverty rate than Alaska as indicated by the map.
However, the description provided in the answer contains

an error regarding the shading ranges. Specifically, the map
uses different shading ranges to represent the poverty rates

by age across various states. According to the map's
legend, California falls within the dark shading range
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Figure 4. Illustration of the multi-task reward model training process. The process begins with a user query and corresponding model
responses, which are ranked and annotated by humans. Human annotations are expanded using GPT-4o to provide enhanced rationales.
The reward model is trained with two objectives: (1) Learning to Provide Critique, where the model learns to provide detailed critiques
and evaluations for model responses, and (2) Learning Scoring, where the model learns to assign scores based on the model response and
critique. The integration of these tasks ensures a robust evaluation framework for improving model outputs.

quality human annotations, such as textual explanations
and nuanced reasoning. Second, scalar rewards lack trans-
parency, making it difficult for humans to understand how
the reward is generated. These challenges highlight the
need for a more interpretable and robust reward model that
leverages critiques as intermediate reasoning steps.

3.2. Critique-Based Reward Model Training

Extending to Critique-Based Training. To overcome
the limitations of traditional reward models, we propose
a critique-based training framework: the model first gener-
ates a critique c conditioned on the query x. This critique
serves as an intermediate reasoning step, providing context
for scoring responses. The critique-based reward model
comprises two components: 1. Critique Head (hl): Gen-
erates critiques cw and cl for the preferred (yw) and less
preferred (yl) responses, respectively, based on the query x.
2. Scoring Head (hr): Assigns scalar rewards based on the
generated critiques, enabling more fine-grained evaluation.

Learning to Provide Critique from Enhanced Annota-
tion. The hl is trained to align with human-provided anno-
tations. The loss function for critique generation is:

ℓCritique(θ) = Ex,y,c

[
−

|c|∑
t=1

log πθ(ct|c<t, x, y)
]
, (2)

where ct is the t-th token in the critique c, c<t denotes the
tokens preceding ct, and πθ(ct|c<t, x, y) is the probability
of token ct given its context, query x, and response y.

However, as shown in Figure 4, while human-provided scor-
ing reasons are highly accurate, they tend to be concise. Di-
rectly using these concise annotations as training targets for
the reward model’s language head does not yield significant
performance improvements. To address this issue, we use
GPT-4o to augment the human annotations by adding more

details and improving the fluency of the critiques. These en-
hanced scoring reasons are then used as the training targets
for the language head. To prevent GPT-4o from introducing
hallucinated content or irrelevant analysis, we impose strict
constraints in the prompt (Table. 7), to ensure the model
only expands on the original content without introducing
speculative or uncertain information.

Scoring Loss with Teacher-Forcing. hr computes scalar
rewards based on the query x, response y, and critique c.
During training, we adopt a teacher-forcing strategy, where
the scoring head uses ground truth critiques instead of cri-
tiques generated by itself. This avoids potential noise from
model-generated critiques in the early stages of training.
The scoring loss is defined as:

ℓScore(θ) = Ex,yw,yl

[
−log σ

(
r(x, yw, cw)−r(x, yl, cl)

)]
,

(3)
where: cw and cl are the ground truth critiques for the
responses yw, yl, respectively, r(x, y, c) is the reward score
computed from x, y, and c.

Joint Training Objective. The overall training objective
combines the critique generation loss and the scoring loss:
ℓTotal(θ) = ℓCritique(θ) + ℓScore(θ).

Inference. During inference, the critique head (hl) gener-
ates a critique c conditioned on the query x and response
y. The scoring head (hr) then uses x, y, and the generated
critique c to compute the final reward score r(x, y, c). This
two-step process mirrors the human evaluation process by
explicitly reasoning about critiques before scoring.

In Section E, we discuss the differences and connections be-
tween the MM-RLHF-Reward Model and existing works.

MM-RLHF-RewardBench. To evaluate the effectiveness
of the signals provided by our reward model in guiding sub-
sequent model training, we randomly sample 10 examples
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from each category of the MM-RLHF dataset to create a
test set. Each example includes multiple model responses
and their corresponding rankings, enabling the generation of
several comparison pairs. This results in a total of 170 pairs
for evaluation. We design two evaluation metrics: 1. Tradi-
tional Accuracy (ACC): Measures the proportion of cases
where the model correctly identifies the preferred response.
2. ACC+: Measures the proportion of cases where the
model correctly ranks all response pairs for a given sample.
This metric emphasizes the model’s ability to handle chal-
lenging cases, such as those with small ranking differences
or hard-to-distinguish pairs.

4. MM-DPO
In this section, we propose MM-DPO, an extension of the
traditional DPO framework. MM-DPO introduces Dynamic
Reward Scaling, which dynamically adjusts the update
strength based on the confidence of training pairs, ensuring
effective utilization of high-quality samples while mitigating
the impact of noisy or low-confidence data.

4.1. Background: Direct Preference Optimization

The DPO framework is a preference-based learning method
that optimizes model parameters θ by aligning model
outputs with human preferences. Given a query x and
corresponding responses yw (positive) and yl (negative),
the DPO loss is defined as: ℓDPO(θ) = Ex,yw,yl

[
−

log σ
(
β
(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)

))]
, where πθ is the

optimal policy, πref is the reference policy, β is a scaling
factor, and σ(·) is the sigmoid function (Amini et al., 2024).
Traditional DPO treats all training pairs equally, regardless
of their quality differences. This uniform scaling fails to
prioritize high-quality pairs with clear preference distinc-
tions, leading to inefficient use of informative samples and
suboptimal optimization.

4.2. MM-DPO: Key Contributions and Improvements

Training on all possible comparison pairs instead of the
hardest pairs. Unlike many recent MLLM alignment ap-
proaches that prioritize training on the hardest comparison
pairs, MM-DPO incorporates all possible comparison pairs
for a single query into the training process. Specifically, for
any query with multiple responses, every response pair with
differing ranks is treated as a valid comparison pair. This
comprehensive approach captures more nuanced ranking
information, allowing the model to learn from a broader
set of preferences. However, this strategy also introduces
a challenge: pairs involving responses with similar ranks
(e.g., rank 3 and rank 4) often have lower reward margins
compared to pairs with more distinct rankings (e.g., rank 1
and rank 4). Treating all pairs equally exacerbates the issue

of uniform scaling and underutilizes the high-confidence
information contained in larger reward margins. To address
this, MM-DPO introduces Dynamic Reward Scaling, which
dynamically adjusts the update strength based on the reward
margin to prioritize high-confidence training pairs.

Definition of Dynamic Reward Scaling. Reward mod-
els can naturally provide a pairwise reward margin, which
serves as a straightforward signal for scaling. However, two
critical aspects must be addressed: (1) ensuring the signal
quality is sufficiently high, and (2) bounding the signal to
prevent overly aggressive updates that destabilize training.

Regarding the first aspect, our experiments reveal that pub-
licly available models, such as GPT-4o and LLaVA-Critic,
perform inadequately in scoring our dataset. Conversely,
our trained MM-RLHF-Reward-7B model surpasses several
publicly available 72B models, offering a reliable and robust
reward signal. We use this model to compute the reward
margin: δ = r(yw)− r(yl), where r(yw) and r(yl) are the
scores assigned to the positive and negative samples.

For the second factor, we control the scaling factor β(δ)
using the following formulation: β(δ) = βori

(
1 + w

(
1 −

e−kδ
))

, where βori is the initial default scaling factor, w is a
parameter balancing the dynamic component’s contribution,
and k is a hyperparameter that adjusts β(δ)’s sensitivity to
changes in δ. The function 1 − e−kδ is bounded between
[0, 1], and a smaller k value keeps most β(δ) values near
βori, with slow growth as δ increases. In contrast, a larger
k makes β(δ) highly responsive to changes in δ, quickly
reaching its maximum. To avoid aggressive updates, we
constrain β(δ) within [βori, (1 + w)βori]. Overall, Dynamic
Reward Scaling significantly enhances MM-DPO by lever-
aging high-quality reward signals and tailoring optimization
steps to the confidence level of training pairs. This results
in improved robustness, efficiency, and effectiveness of the
framework. We discuss the similarities and differences be-
tween our approach and existing methods in Appendix F.

5. Experiments
In this section, we evaluate our data and algorithms on 10
tasks across 20+ benchmarks. The key findings are:

1. Alignment training on the MM-RLHF dataset consis-
tently improves performance across nearly all benchmarks
for various baselines. The integration of reward signals in
MM-DPO further amplifies these improvements, demon-
strating the effectiveness of our approach.

2. The MM-RLHF-Reward-7B model achieves state-of-
the-art performance on reward model benchmarks among
open-source models, surpassing even several 72B models.
This highlights the efficiency and scalability of our method.
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Figure 5. Performance improvements achieved through alignment training. † indicates the use of our dataset and alignment algorithm.

Table 2. Performance comparison across metrics and methods on MM-RLHF-RewardBench. MM-RLHF-Reward (w/o. Task 1)
represents training the LLaVA-OV-7B model to score pair-wise samples while excluding Task 1. MM-RLHF-Reward (w/o. enhanced
annotations) involves learning human-provided annotations, followed by scoring. MM-RLHF-Reward (inference w. GT annotation) uses
ground truth annotations during inference.

Method LLaVA-OV-7B LlaVA-Critic
(Pointwise)

LlaVA-Critic
(Pairwise) GPT-4o MM-RLHF-Reward

(w/o. Task 1)

MM-RLHF-Reward
(w/o. enhanced

annotations)
MM-RLHF-Reward

MM-RLHF-Reward
(inference w.

GT annotation)
Metric ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+

Mcq 0.14 0.00 0.38 0.10 0.23 0.00 0.69 0.20 0.90 0.80 0.83 0.70 0.93 0.70 1.00 1.00
Long 0.11 0.00 0.49 0.20 0.54 0.30 0.95 0.90 0.70 0.40 0.92 0.80 1.00 1.00 1.00 1.00
Short 0.29 0.20 0.38 0.20 0.24 0.10 0.56 0.40 0.79 0.60 0.68 0.40 0.71 0.50 1.00 1.00
Safety 0.41 0.00 0.62 0.17 0.28 0.17 0.72 0.33 0.69 0.33 0.69 0.17 0.66 0.17 0.69 0.17
Video 0.32 0.10 0.40 0.20 0.52 0.20 0.80 0.60 0.70 0.60 0.80 0.60 0.92 0.80 0.92 0.90
Overall 0.24 0.07 0.45 0.17 0.35 0.15 0.74 0.50 0.75 0.50 0.79 0.57 0.85 0.67 0.93 0.87

3. We conduct extensive ablation studies and analyses, such
as investigating the importance of critique learning for re-
ward models and the sensitivity to hyperparameters. Addi-
tionally, we identify several experimental phenomena that
challenge mainstream perspectives, such as the observation
that small-scale MLLMs struggle to perform effective self-
improvement. Due to space constraints, experimental setups
and additional findings are provided in Appendix G.

5.1. Evaluation of MM-RLHF and MM-DPO

Figures 1 and 5 illustrate the alignment performance of
LLaVA-OV-7B and InternVL-1B using our dataset and
alignment algorithm, where the scores for each evaluation
dimension are averaged across their respective benchmarks.
We also conduct experiments on LLaVA-OV-0.5B, with de-
tailed benchmark results provided in Appendix Table 8 (for
understanding tasks) and Table 9 (for safety tasks).

Significant improvements in conversational ability and
safety. The alignment process of LLaVA-OV-7B leads to
substantial improvements in these two aspects without re-
quiring hyperparameter tuning. The average improvement
in conversational benchmarks exceeds 15%, while unsafe
behaviors are reduced by 65%. Additionally, in WildsVision,
the win rate increases by 144%. This suggests that existing
MLLMs lack explicit optimization for these dimensions,
and our dataset effectively fills this gap.

Broad enhancements in hallucination, mathematical rea-
soning, multi-image, and video understanding. The
aligned models also exhibit notable improvements in these
areas. Interestingly, despite the lack of dedicated multi-
image data in our dataset, the model’s performance in multi-
image tasks improves significantly. This indicates that the di-
versity of our alignment data enhances generalization across
multiple dimensions.

Model-specific preferences for data and hyperparam-
eter selection. Different models exhibit varying perfor-
mance trends during alignment, with distinct preferences
for hyperparameter settings across different benchmarks.
For instance, in our training of InternVL-1B, we found that
excluding the SFT loss led to better results. Additionally,
while InternVL-1B demonstrates significant improvements
in general knowledge tasks, its relative enhancement in OCR
tasks is less pronounced compared to the LLaVA-OV se-
ries. These differences largely stem from variations in the
models’ pretraining datasets and strategies, necessitating
tailored hyperparameter adjustments for optimal alignment.

Limited gains in high-resolution benchmarks. The model
shows no significant improvement on high-resolution bench-
marks, likely because our dataset contains relatively few
ultra-high-resolution images. Additionally, our filtering
strategy is based on image similarity rather than resolution,
meaning the alignment process does not explicitly optimize
for high-resolution tasks. As a result, performance gains in
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this area remain limited.

Ablation studies and sensitivity analysis. To further vali-
date the effectiveness of our approach, we provide detailed
ablation studies in the appendix, analyzing the impact of
different alignment parameters and the improvements intro-
duced by our dataset and MM-DPO.

5.2. Evaluation of MM-RLHF-Reward

In this section, we evaluate the effectiveness of MM-RLHF-
Reward and highlight several noteworthy experimental ob-
servations. The results are presented in Table 2 and Table 3.

Existing reward models exhibit significant overfitting.
As shown in Table 2, LLaVA-Critic’s performance on
MM-RLHF-RewardBench is suboptimal, with a consid-
erable gap compared to GPT-4o. This can likely be at-
tributed to the overfitting of existing reward models to their
training data, which predominantly consists of conversa-
tional datasets and real-world images. Consequently, while
LLaVA-Critic demonstrates notable improvements over its
baseline, LLaVA-OV-7B5, its performance in other cate-
gories, such as MCQ, remains limited.

Closed-source models consistently deliver competitive
performance. Across both Table 2 and Table 3, closed-
source models such as GPT-4o demonstrate superior gener-
alization capabilities compared to open-source alternatives,
even those with significantly larger parameter sizes. This
observation underscores the robustness of closed-source
approaches in handling diverse multimodal tasks and main-
taining high performance across various metrics.

MM-RLHF-Reward establishes a new standard for open-
source models. In both benchmarks, MM-RLHF-Reward
achieves results comparable to or exceeding GPT-4o, while
significantly outperforming most open-source models, such
as Qwen2-VL-72B-Instruct. Notably, on our custom bench-
mark, MM-RLHF-Reward demonstrates a substantial lead
over GPT-4o, further justifying its selection as the reward
signal for training algorithms. Its robust performance across
diverse metrics highlights its effectiveness and adaptability.

Importance of effective critics in reward modeling. The
results in Table 2 highlight the critical role of effective crit-
ics in reward modeling. Training the reward head directly on
pairwise datasets yields an ACC+ of around 50%. By incor-
porating human annotations as learning targets—enabling
the model to first learn evaluation reasoning before scor-
ing—ACC+ consistently improves by 5%. However, human
annotations alone may not suffice as optimal training targets

5Both models use identical prompts for tasks such as captioning
and long-form dialogue.

Table 3. Performance comparison of our reward model
(MM-RLHF-Reward) with existing open-source and private
MLLMs. MM-RLHF-Reward-7B outperforms existing 72B open-
source MLLMs and several competitive closed-source models.

Model General Hallucination Reasoning Avg

VITA-1.5 (Fu et al., 2025) 18.55 8.93 22.11 16.48
SliME-8B (Zhang et al., 2024c) 7.23 27.09 18.6 19.04
deepseek-vl2 (Wu et al., 2024b) 29.70 23.80 50.90 34.80
Phi-3.5-vision-instruct (Abdin et al., 2024) 28.00 22.40 56.60 35.67
llava-onevision-qwen2-7b-ov (Li et al., 2024c) 32.20 20.10 57.10 36.47
Molmo-7B-D-0924 (Deitke et al., 2024) 31.10 31.80 56.20 39.70
Pixtral-12B-2409 (Agrawal et al., 2024) 35.60 25.90 59.90 40.47
Qwen2-VL-72B-Instruct (Wang et al., 2024a) 38.10 32.80 58.00 42.97
NVLM-D-72B (Dai et al., 2024) 38.90 31.60 62.00 44.17
InternVL2-26B (Chen et al., 2024c) 39.30 36.90 60.80 45.67

Private models
GPT-4o-mini (2024-07-18) 41.70 34.50 58.20 44.80
Claude-3.5-Sonnet (2024-06-22) 43.40 55.00 62.30 53.57
GPT-4o (2024-08-06) 49.10 67.60 70.50 62.40
Gemini-1.5-Pro (2024-09-24) 50.80 72.50 64.20 62.50

Ours
MM-RLHF-Reward-7B 45.04 50.45 57.55 50.15

due to their brevity or conversational style. To address this,
we enrich human annotations using GPT-4o, significantly
enhancing reward model training quality and achieving a
17% improvement in ACC+ over the baseline. Notably,
when human annotations are directly used as critics during
evaluation (i.e., scoring is based on human-provided evalua-
tions rather than model-generated critiques), both ACC and
ACC+ reach approximately 90%, underscoring the pivotal
role of critique quality in reward model effectiveness.

Multiple sampling of critiques does not yield perfor-
mance gains. While prior research in LLMs suggests that
sampling multiple critiques and averaging their scores can
improve performance (Yu et al., 2024d), our experiments
show that this approach leads to performance degradation
when applied to our model. This is because lowering the
sampling temperature occasionally produces inaccurate cri-
tiques. Since our model, aligned with human annotations,
already generates reasonably accurate critiques, the addi-
tional sampling process is not only time-consuming but also
counterproductive, negatively impacting performance.

Table 4. Comparison of DPO baselines, where all models are
trained on the MM-RLHF training dataset.

Method LLaVA-Wild OCRBench DocVQA MathVista MMHal
LLaVA-Ov-7B 90.70 62.30 84.34 60.10 3.22

DPO 95.20 66.30 85.72 60.90 3.88
beta-DPO 94.40 66.50 85.44 60.00 3.44

SimPO 93.00 64.50 84.50 59.10 3.30
LLaVA-Critic 97.90 64.20 84.31 58.74 3.95

MIA-DPO 95.00 66.50 85.60 60.00 3.80
MPO 95.30 66.20 85.88 61.10 3.72

MM-DPO 97.90 69.30 86.11 61.60 4.08

5.3. Comparison of DPO Baselines and Other
Alignment Datasets

We compared several baselines including DPO (Amini et al.,
2024), LLaVA-Critic (Xiong et al., 2024), beta-DPO (Wu
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Table 5. Comparison of preference datasets, where all models
are trained using the DPO algorithm.

Dataset LLaVA-Wild OCRBench DocVQA MathVista MMHal
No Alignment 90.70 62.30 84.34 60.10 3.22
LLava-RLHF 94.20 61.10 84.00 58.20 3.38
VL Feedback 93.60 64.10 84.72 58.70 3.03

RLAIF 92.30 64.00 84.44 60.00 3.18
LLaVA-Critic 94.70 62.50 83.40 59.50 3.44

MPO-Data 93.20 60.80 82.30 63.40 3.48
MM-RLHF 97.90 69.30 86.11 61.60 4.08

et al., 2024a), SIMPO (Meng et al., 2024), MIA-DPO (Liu
et al., 2024b), MPO (Wang et al., 2024b), and others. All
methods underwent grid search to select the best results, as
shown in Table 4.

First, the beta-DPO loss function for pure text domains is
somewhat similar to our idea, as it adjusts the β parameter
for samples. However, directly applying it to the MM-
RLHF dataset does not yield good results. SIMPO is highly
sensitive to hyperparameters. Despite our extensive tuning,
we did not observe significant improvements in performance,
and it even became detrimental.

LLaVA-Critic is essentially a multi-stage DPO. We selected
a three-stage DPO similar to the one in the original paper,
constantly generating results with the base model, filtering
with our own reward model, and forming new DPO pairs.
After three stages of DPO, the model showed some improve-
ment on simpler benchmarks like LLaVA-Wild and MMHal.
However, performance dropped on MathVista and OCR-
Bench. In fact, we also analyzed this phenomenon in Figure
12 of the original paper. For smaller models, the quality of
self-generated responses is limited by the model’s capability,
so for challenging tasks, it is likely unable to sample the
correct results, leading to negative optimization.

Next, MIA-DPO was designed for multi-image tasks and
performed poorly on single-image tasks, which is consis-
tent with the observations in the original paper. Finally,
there is the recent work MPO, which combines DPO with
SFT loss and adds a Quality Loss. This loss intuitively
helps the model understand the absolute quality of individ-
ual responses, contributing somewhat to performance but
not as significantly as the performance gains from directly
adjusting β in MM-DPO.

We also compared the results of training with DPO across
multiple datasets, which is shown in Table 5. The com-
pared datasets include LLava-RLHF (Sun et al., 2023b),
VL Feedback (Li et al., 2024e), RLAIF (Yu et al., 2024b),
LLaVA-Critic (Xiong et al., 2024), and MPO-Data (Wang
et al., 2024b). For LLaVA-Critic data, we constructed a
DPO pair for training by scoring each instruction and asso-
ciating it with different responses according to annotations.
Its data scale is large, but most of the data comes from exist-
ing datasets, so it does not show significant improvements

in OCR, mathematical reasoning, and other domains. More-
over, due to the quality limitations of existing datasets, its
improvement in dialogue and hallucination is far from MM-
RLHF. The latest comparison with MPO focuses more on
mathematical reasoning. Most of the data is related to math-
ematical reasoning, so it slightly outperforms MM-RLHF
in this aspect but falls far behind in terms of diversity.

6. Conclusion and Future Work
In this work, we introduce MM-RLHF, a high-quality, fine-
grained dataset specifically designed to advance the align-
ment of MLLMs. Unlike prior works that focus on specific
tasks, our dataset and alignment approach aim to holisti-
cally improve performance across diverse dimensions. With
preliminary improvements to reward modeling and optimiza-
tion algorithms, we observe significant and consistent gains
across almost all evaluation benchmarks, underscoring the
potential of comprehensive alignment strategies.

Looking ahead, we see great opportunities to further unlock
the value of our dataset. Its rich annotation granularity, such
as per-dimension scores and ranking rationales, remains
underutilized in current alignment algorithms. Future work
will focus on leveraging this granularity with advanced op-
timization techniques, integrating high-resolution data to
address limitations in specific benchmarks, and scaling the
dataset efficiently using semi-automated strategies. We be-
lieve these efforts will not only push MLLM alignment to
new heights but also set a foundation for broader, more
generalizable multimodal learning frameworks.

Impact Statement
This work advances the alignment of MLLM with human
preferences, aiming to enhance their reliability, safety, and
performance across diverse applications. By introducing
novel methods for human preference alignment, our re-
search contributes to the ethical development of MLLMs,
ensuring they better align with human values and societal
norms. The societal implications of this work are signif-
icant. Improved alignment can foster greater trust in AI
systems by reducing risks associated with unsafe, biased, or
unreliable outputs. These advancements pave the way for
the responsible adoption of AI technologies, enabling their
broader and more beneficial integration into society.
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MM-RLHF

————Appendix————

A. Related Work
Multimodal large language models have seen remarkable progress in recent years, with significant advancements in
both performance and capabilities. Leveraging cutting-edge LLMs such as GPTs (OpenAI., 2023; Brown et al., 2020),
LLaMA (Touvron et al., 2023a;b), Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), and Mistral (Jiang et al.,
2023), MLLMs are increasingly demonstrating enhanced multimodal capabilities, especially through end-to-end training
approaches. These advancements have been crucial in enabling models to handle a range of multimodal tasks, including
image-text alignment, reasoning, and instruction following, while addressing challenges related to data fusion across different
modalities. Recent open-source MLLMs such as Otter (Li et al., 2023c), mPLUG-Owl (Ye et al., 2023), LLaVA (Liu
et al., 2023b), Qwen-VL (Bai et al., 2023a), Cambrian-1 (Tong et al., 2024), Mini-Gemini (Li et al., 2024g), MiniCPM-V
2.5 (Hu et al., 2024a), DeepSeek-VL (Lu et al., 2024a), SliME (Zhang et al., 2024c) and VITA (Fu et al., 2024b; 2025) have
contributed to solving some of the most fundamental multimodal problems, such as improving vision-language alignment,
reasoning, and following instructions. These models focus on enhancing multimodal understanding by integrating vision with
language, allowing for more nuanced and context-aware interactions. Some of the most notable open-source models, such as
InternLM-XComposer-2.5 (Zhang et al., 2023) and InternVL-2 (Chen et al., 2023), have exhibited impressive progress in
multimodal understanding, closely competing with proprietary models across a range of multimodal benchmarks. However,
despite these achievements, there is still a noticeable gap in security and alignment when compared to closed-source models.
As highlighted by recent studies (Zhang et al., 2024e), most open-source MLLMs have not undergone rigorous, professional
alignment processes, which has hindered their ability to effectively align with human preferences. This gap in alignment
remains one of the key challenges for open-source models, and improving model safety and alignment to human values will
be a crucial area of future research.

MLLM Alignment (Yu et al., 2025). With the rapid development of MLLMs, various alignment algorithms have emerged,
showcasing different application scenarios and optimization goals. For instance, in the image domain, Fact-RLHF (Sun et al.,
2023b) is the first multimodal RLHF algorithm, and more recently, LLAVA-CRITIC (Xiong et al., 2024) has demonstrated
strong potential with an iterative DPO strategy. These algorithms have shown significant impact on reducing hallucinations
and improving conversational capabilities (Zhang et al., 2024d; Yu et al., 2024b; Zhang et al., 2025), but they have not led to
notable improvements in general capabilities. There have also been some preliminary explorations in the multi-image and
video domains, such as MIA-DPO and PPLLaVA. However, alignment in image and video domains is still fragmented, with
little research done under a unified framework. We believe that the main limitation hindering the development of current
alignment algorithms is the lack of a high-quality, multimodal alignment dataset. Few existing manually annotated MLLM
alignment datasets are available, and most contain fewer than 10K samples (Sun et al., 2023b; Yu et al., 2024b;a), which
is significantly smaller than large-scale alignment datasets in the LLM field. This small dataset size makes it difficult to
cover multiple modalities and diverse task types. Furthermore, machine-annotated data faces challenges related to quality
assurance. Therefore, in this paper, we have invested considerable effort into constructing a dataset, MM-RLHF, which
surpasses existing works in both scale and annotation quality.

MLLM Evaluation. With the development of MLLMs, a number of benchmarks have been built (Duan et al., 2024; Fu
et al., 2024c). For instance, MME (Fu et al., 2023) constructs a comprehensive evaluation benchmark that includes a total
of 14 perception and cognition tasks. All QA pairs in MME are manually designed to avoid data leakage, and the binary
choice format makes it easy to quantify. MMBench (Liu et al., 2023c) contains over 3, 000 multiple-choice questions
covering 20 different ability dimensions, such as object localization and social reasoning. It introduces GPT-4-based
choice matching to address the MLLM’s lack of instruction-following capability and a novel circular evaluation strategy to
improve the evaluation robustness. Seed-Bench (Li et al., 2023b) is similar to MME and MMBench but consists of 19, 000
multiple-choice questions. The larger sample size allows it to cover more ability aspects and achieve more robust results.
SEED-Bench-2 (Li et al., 2023a) expands the dataset size to 24, 371 QA pairs, encompassing 27 evaluation dimensions
and further supporting the evaluation of image generation. MMT-Bench (Ying et al., 2024) scales up the dataset even
further, including 31, 325 QA pairs from various scenarios, such as autonomous driving and embodied AI. It encompasses
evaluations of model capabilities such as visual recognition, localization, reasoning, and planning. Additionally, other
benchmarks focus on real-world usage scenarios (Fu et al., 2024d; Lu et al., 2024c; Bitton et al., 2023) and reasoning
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Figure 6. The user interface for data annotation, featuring image/video display, questions, outputs from each model, detailed scoring
criteria, and a section for reviewers to verify the accuracy of the scores.

capabilities (Yu et al., 2024c; Bai et al., 2023b; Han et al., 2023; Yan et al., 2024). MME-RealWorld (Zhang et al., 2024e)
places greater emphasis on quality and difficulty compared to its predecessor, containing the largest manually annotated QA
pairs and the largest image resolution. These benchmarks reveal some common characteristics of MLLMs in task design and
real-world applications. However, benchmarks specifically focused on reward models (Li et al., 2024d) and those dedicated
to evaluating safety and robustness remain relatively scarce. To further promote a comprehensive evaluation of MLLM
alignment, this paper contributes two benchmarks: one for reward models through self-construction and data cleaning, and
another more comprehensive safety benchmark.

B. Annotation Guidelines for Evaluating MLLM Responses
This document provides detailed annotation guidelines for evaluating responses generated by MLLMs. Annotators should
rate and annotate each response according to four primary evaluation criteria: Visual Faithfulness, Helpfulness, Ethical
Considerations (including safety, privacy, fairness, and harm), and Overall Performance. Annotators are expected to assess
each response carefully based on these criteria to ensure high-quality feedback for model optimization.
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B.1. I. Visual Faithfulness Evaluation

Definition: This criterion evaluates whether the generated response accurately reflects the objects and relationships in the
image, ensuring consistency with the objects, relationships, and attributes of the true answer.

Guidelines:

1. Object Description Accuracy. Ensure that the generated response accurately describes objects as in the true answer,
avoiding references to non-existent objects and preventing errors in descriptions of existing objects.

2. Object Relationship Accuracy. Evaluate whether the spatial, structural, or functional relationships between objects
described in the response are correct. Minimize errors and misleading information in object relationship descriptions.

3. Object Attribute Accuracy. Confirm that the response accurately describes the physical features, color, size, and state
of objects, avoiding discrepancies with the true answer.

4. Overall Accuracy. Assess the accuracy and consistency of the response in describing visual elements (objects,
relationships, and attributes) in the image.

Rating Scale:

• Severely Inaccurate. Major errors in object descriptions, relationships, or attributes, or references to non-existent
objects.

• Partially Inaccurate. Object descriptions, relationships, or attributes are mostly correct, but some details are inaccurate.

• Moderately Accurate. Descriptions of objects, relationships, and attributes are generally accurate, with minor errors.

• Accurate. Descriptions of objects, relationships, and attributes are correct and match the true answer.

• Highly Accurate. Descriptions of objects, relationships, and attributes are exceptionally precise and include useful
additional details.

B.2. II. Helpfulness Evaluation

Definition. Carefully review the user prompt to ensure that the response provides valuable insights and relevant information
that aid the user in understanding the image or task.

Guidelines.

1. Assess whether the response provides useful context, insights, or relevant information to help the user better understand
the image or task.

2. Check if the model follows the specific instructions or guidelines provided by the user.

3. Evaluate the overall contribution of the response in enhancing the user’s understanding and experience.

Rating Scale:

• Not Helpful. The response does not address the user’s prompt, providing entirely irrelevant information.

• Partially Helpful. The response contains some useful information, but overall help is limited.

• Moderately Helpful. The response is somewhat helpful but may lack important information.

• Helpful. The response effectively addresses the user’s prompt and provides valuable insights.

• Very Helpful. The response is highly useful, offering rich insights that significantly enhance the user’s understanding.
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B.3. III. Ethical Considerations Evaluation (Safety, Privacy, Fairness, and Harm)

Definition: This criterion evaluates whether the model adheres to ethical standards regarding safety, privacy protection,
fairness, and avoiding harmful content.

Guidelines:

1. Ensure the model provides appropriate warnings or avoids inappropriate recommendations when addressing sensitive
topics (e.g., medical images).

2. Confirm that the response does not disclose private information that could harm personal privacy.

3. Assess whether the model shows fairness when addressing individuals or groups, avoiding any form of bias.

4. Ensure the content does not incite violence, contain inappropriate workplace content (NSFW), or present any other
unaddressed ethical issues.

Rating Scale:

• Highly Unsafe/Privacy Infringing/Unfair/Harmful. The response contains severely inappropriate content that
violates ethical standards.

• Unsafe/Privacy Issues/Unfair/Potentially Harmful. The response may pose safety risks, privacy issues, or show
unfairness.

• Moderately Ethical. The response mostly adheres to ethical standards, with minor safety or fairness issues.

• Ethically Compliant. The response aligns with ethical standards, following safety, privacy protection, and fairness
requirements.

• Highly Ethical/Safe/Privacy Protected/Fair/Non-Harmful. The response fully meets ethical standards, respecting
privacy, fairness, and free from harmful content.

B.4. Annotation Requirements

1. The labeling staff should carefully read the user’s prompt and the model-generated response before scoring the response
based on three criteria: visual Faithfulness, helpfulness, and ethical considerations.

2. Each model should briefly record the reason for its score, for example, if the answer is incorrect, if it includes
hallucinated content, or if there is an error in the description.

3. The final evaluation of each response should comprehensively consider all criteria, followed by a manual ranking of all
responses.

4. Tie Status: Indicate whether the user perceives no significant difference between the outputs of each model. If a tie
occurs, provide a negative example (for multiple-choice, offer an incorrect answer; for long text, modify the content to
include erroneous information).

5. Ranking Basis: Briefly explain the reasoning behind the ranking.

C. Safety and Trustworth Dataset and Benchmark Construction
C.1. Training Data Construction Details

The self-constructed content is divided into 850 safety samples and 500 adversarial samples. The safety data is sourced from
the following datasets: Red Teaming VLM (Li et al., 2024f), CelebA (Liu et al., 2015), and VLSBench (Hu et al., 2024b).
The adversarial data, on the other hand, is generated using the AnyAttack (Zhang et al., a) method.

To ensure data diversity, the safety data is comprised of five categories:
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• 200 samples from Jailbreak,

• 200 samples from privacy and discrimination,

• 150 samples from hacking,

• 200 samples from violence,

• 100 samples from self-injury.

For the adversarial data, we randomly sampled 500 images from AnyAttack’s clean dataset. For each image, we then
generate an adversarial image by pairing it with another, using ϵ = 8/255 and other parameters set to their original values.
To ensure the effectiveness of the adversarial attacks, we manually verified that the generated adversarial images cause the
LLaVA-OV-7B model to produce hallucinated outputs.

Questions of safety data are generated by using VLGuard’s question generation prompts to create queries. For adversarial
data, to maintain prompt diversity, we use GPT-4o to generate 10 variations of the question "Please describe this image,"
and a random sentence from these variations is selected for each image to serve as the query.

C.2. Benchmark Construction Details

We constructed our benchmark by selecting a total of 9 tasks from the Multitrust (Zhang et al., b) benchmark, which includes
adversarial evaluations (both targeted and non-targeted), risk identification, typographic jailbreak, multimodal jailbreak,
and cross-modal jailbreak tasks. Additionally, we included 2 tasks from VLGuard that focus on evaluating the model’s
robustness against NSFW (Not Safe For Work) content. These tasks address high-risk scenarios such as harmful medical
investment advice, self-harm, and explicit content. Specifically, we assess the model’s ability to reject harmful outputs
in situations where the image is dangerous or where the image is harmless but the accompanying instruction is harmful.
Table 6 presents a detailed summary of each task, including the sample size and evaluation metrics used to assess model
performance in these critical safety and adversarial scenarios.

D. Why We Need Large-Scale Human Annotation?
Annotation Workers and Costs. We employ over 50 annotators supervised by 8 multimodal research experts with strong
English proficiency and academic backgrounds. The annotation process, completed within two months, includes periodic
quality checks and interactive reviews to ensure reliability and accuracy. Low-quality samples are re-annotated to maintain
high standards. Due to the fine-grained nature of the task, annotating a single question in image perception tasks can take
over 8 minutes on average, reflecting the complexity and precision required.

Why Human Annotation? While many MLLM alignment datasets rely on model-generated annotations for cost-
effectiveness and scalability, human annotation is essential for tasks requiring fine-grained perceptual capabilities and
sensitivity to subtle differences. Current models, including state-of-the-art ones like GPT-4o, struggle with nuanced compar-
isons and lack the ability to provide professional-grade scoring or well-reasoned explanations. Human annotators excel in
these areas, ensuring the precision and reasoning needed for high-quality datasets. In this section, we present representative
cases from multi-modal data that highlight the challenges models face and the advantages of human intervention. All human
annotations are sourced from our dataset, while GPT-4o annotations are generated based on our ranking criteria.

We also acknowledge that the cost of human annotation poses scalability challenges. However, our high-quality alignment
dataset enables the training of a powerful reward model. In the future, by combining this reward model with human
annotators in a collaborative framework, we can significantly reduce annotation costs and scale up the dataset efficiently.
This hybrid approach not only maintains the precision of human annotation but also enhances scalability, making it a
practical solution for large-scale MLLM alignment.

D.1. Misleading and Incomplete Questions

Since training data is commonly annotated by models, maintaining perfect quality assurance is challenging, often resulting
in some confusing or incomplete questions that cannot be answered accurately. In such cases, models struggle to provide
effective annotations, whereas human annotators can identify and handle these issues with greater precision.
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Hint: Please answer the question and provide the correct 
option letter, e.g., A, B, C, D, at the end.
Question: Which color is darker, Mint or Dark Gray?
Choices: (A) no (B) yes

To determine which color is darker between Mint and Dark Gray, I'll compare their positions on the y-axis, which represents the 
color value (likely brightness or lightness). Looking at the legend and the plot: Mint is represented by green dots Dark Gray is
represented by gray dots Observing their positions: Mint dots are consistently lower on the y-axis compared to the Dark Gray 
dots throughout the graph. Lower positions on the y-axis typically indicate darker colors in color plots.
Therefore, Mint appears to be the darker color compared to Dark Gray in this representation. The correct answer is: B) yes

Dark Gray is darker than Mint.
(B) yes

The answer is A.

Rank from GPT-4o Rank from Human

Reason: Based on the given options, GPT-4's response (Dark 
Gray is darker than Mint. (B) yes) provides a straightforward
and accurate answer. 

Positive response: The options provided do not match the 
question, so the question is confused and cannot be answered.

Figure 7. Example of a confusing question.
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Question: In the given figure, if the length of AC is represented by the variable 'x' (x = 20.0), and AF is 
represented by the variable 'u', what is the value of u?
Choices: A: 4.0 B: 21.0 C: 16.0 D: 4.0

Let's approach this step-by-step:1) The figure shows a triangle ABC with two additional points D and F on the sides.\n\n2) 
We're given that AC = x = 20.0.\n\n3) We need to find AF, which is represented by u.\n\n4) However, we don't have enough 
information to directly calculate AF. We need more relationships or ratios between the segments. \n\n5) Without additional 
information about the ratios of the segments or angles in the triangle, it's impossible to determine the exact value of u. \n\n6)
None of the given answer choices can be definitively proven correct with the information provided. \n\n7) It's worth noting that 
option A and D are the same (4.0), which is unusual in a multiple-choice question and might indicate a typo.\n\nGiven the lack 
of sufficient information to solve for u, we cannot select any of the given answers with certainty.\n\nAnswer: There is not enough 
information provided to determine the correct answer.

I'm sorry, I can't answer the question based on the image.

To find the value of u, we can use the similarity of triangles ABD and AEF. Since angle B = angle F 
and angle ADB = angle AEF, we have triangle ABD similar to triangle AEF. Therefore, AB/AF = 
AD/AC. Given that AB = 2AD and AC = 20, we can substitute these values into the equation to get 
2/u = 1/2. Solving for u, we find that u = 4. Therefore, the value of the unknown variable u is 4.  
Therefore, the answer is option A.\nAnswer:A"

Rank from GPT-4o Rank from Human

Reason: Qwen-2VL provided the correct solution with clear 
reasoning, Claude 35 offered a detailed but incorrect
conclusion, and GPT-4o failed to respond adequately.

Reason: GPT-4o determined that the known conditions of the
question were insufficient, Qwen2-vl gave a series of incorrect 
inferences and wrong answers, and Claude 35 discovered the
shortcomings of the known variables but made incorrect 
analyses, such as misidentifying ABC as a triangle.

Figure 8. Example of an incomplete question.

• Confusing Questions. As shown in Fig. 7, conflicts between the question and the provided choices can lead to
confusion and misinterpretation. Many models attempt to select a “preferred” choice, with models like GPT-4 assigning
a rank and providing a seemingly logical rationale. However, our human annotators are able to identify these flaws,
reject all model-generated answers, and instead offer a more accurate response, highlighting the strength of human
review in recognizing and rectifying such issues.

• Incomplete Questions. Similar to confusing questions, issues with data quality often result in questions that lack
essential information. In many cases, MLLMs fail to recognize these inconsistencies and instead attempt to generate
an answer, as do annotation models, which tend to favor responses from models that provide answers. As shown in
Fig. 8, this question requires calculating the length of side AF; however, the given conditions are insufficient to solve
the problem. Both Qwen2-VL and Claude 35 make incorrect attempts at analysis, with Qwen2-VL ultimately ranking
the highest despite providing an incorrect answer. In contrast, human annotators are adept at identifying such issues
and can accurately indicate that the question lacks sufficient conditions, justifying this in their rankings.

D.2. Difficult-to-Distinguish Answers

The limitations of model-based annotation extend beyond question quality issues. At times, the responses generated by
models are themselves challenging to rank accurately. This difficulty arises in two primary scenarios:

• All Models Fail to Identify the Correct Answer. Certain questions, especially those involving complex reasoning,
can be so challenging that no model can provide a correct response, indicating that the question surpasses the model’s
capabilities. Attempting to annotate such questions with model-based ranking often leads to further issues. For instance,
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What is latitude when 2010 population is 24 and water is more than 0.319?

To find the latitude where the 2010 population is 24 and water is more than 0.319, I'll scan the table 
for rows meeting both criteria:\n\n1. Population (2010) column = 24\n2. Water (sqmi) column > 
0.319\n\nScanning the table, I find one matching row:\n\nTownship: Linden\nCounty: Cavalier\nPop. 
(2010): 25 (close to 24, assuming this is the intended row)\nWater (sqmi): 1.816 (which is > 
0.319)\nLatitude: 48.945472\n\nTherefore, the latitude for the township meeting these criteria (or 
coming closest) is 48.945472.

The latitude where the 2010 population is 24 and the water area is more than 0.319 is 48.084507.

48.240571

Rank from GPT-4o Rank from Human

Reason: Qwen2-VL provides a response that's more precise 
with the correct latitude from the closest matching township
(Lake Ibsen).

Positive: By inspecting the table, we find that there are no rows
that meet both conditions. Therefore, the correct answer is 
"None".

Figure 9. Example of a difficult question for model annotation.
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in the high-resolution perception task shown in Fig. 9, the required information specified in the question does not
actually appear in the image. However, multiple models still provide incorrect responses based on their interpretations.
During scoring, the models tend to select the answer that aligns most closely with their understanding6. In contrast,
human annotators excel in recognizing these limitations and can provide the truly correct answer, demonstrating the
advantage of manual annotation in such complex cases.

• Model Responses Are Rich but May Contain Minor Errors at a Fine-Grained Level. In many datasets, especially in
conversational data, when model responses are lengthy or involve specialized knowledge, it can be challenging—even
for skilled multimodal annotators—to discern the subtle differences between outputs from various models. Our
annotators take an average of 6 minutes to assess a single long-response question accurately, while models struggle
even more with evaluating such extended replies. For instance, in Fig. 10, the differences among models are confined
to specific sections, where minor errors in visual perception or judgment occur (highlighted in red). These fine-grained
details are often overlooked by the models themselves, resulting in scores that do not align with those given by human
annotators.

E. Discussion of MM-RLHF-Reward model
In the MLLM community, there is currently no unified paradigm for the design of reward models. Some approaches rely on
traditional reward models (Sun et al., 2023b), which lack interpretability due to their reliance on scalar outputs. Others
directly use LLMs to generate rankings (Xiong et al., 2024), which heavily depend on instruction-following capabilities and
often exhibit high variance in scoring. In the broader LLM community, works such as (Yu et al., 2024d) explore reward
models that first generate critiques. However, their focus is primarily on improving the reliability of model-generated
critiques, such as increasing scoring confidence through multiple sampling—a goal distinct from ours. To the best of our
knowledge, this is the first study to explore how MLLMs can effectively leverage human annotations to enhance both
interpretability and the final model’s scoring ability.

F. Comparison to Existing Methods on Beta Adjustment in LLMs and MLLMs
Dynamic adjustment of the beta parameter is not a completely new concept, but its application in large multimodal language
models has been relatively unexplored. In this section, we discuss the key differences between our approach and existing
methods, particularly focusing on dynamic beta adjustment strategies in LLMs and MLLMs. Several studies have been
conducted in the LLM domain, with many papers showing that common LLM DPO datasets contain a significant number of
noisy samples (Wu et al., 2024a; Chowdhury et al., 2024; Amini et al., 2024). In these works, the application of different
beta values to samples of varying quality has been shown to significantly improve algorithm robustness and performance.

Our approach differs from the existing works in two primary ways:

First Exploration of Dynamic Beta Adjustment in MLLMs. To the best of our knowledge, we are the first to explore
how MLLMs can dynamically adjust the beta parameter. We find that existing dynamic beta methods developed for LLMs
cannot be directly adapted to the MLLM setting (Wu et al., 2024a). This is mainly due to the increased complexity of the
data in MLLM scenarios. Most existing methods (Wu et al., 2024a; Amini et al., 2024) utilize implicit rewards during the
training process of DPO algorithms to select higher-quality samples. However, in MLLMs, the signal discriminability of the
model itself is weaker and cannot guide the selection of β (Figure. 11 (a)). Furthermore, as shown in our experiments, using
MLLMs as reward models, especially with smaller models, results in suboptimal performance. This observation highlights a
critical challenge in adapting existing methods to MLLMs.

Leveraging a High-Quality Reward Model for Beta Adjustment. Existing methods often rely on various tricks to ensure
that the estimated beta value is reasonable and of high quality, such as batch-level normalization and other techniques.
Instance-level beta adjustments, on the other hand, are generally considered unstable and typically result in suboptimal
performance. However, our approach challenges this conventional wisdom. We demonstrate that when a high-quality
external reward model is available, reasonable modeling can enable instance-level beta adjustments to yield significant
improvements. By leveraging a robust reward model, we show that even fine-grained adjustments to the beta parameter at
the instance level can effectively enhance the model’s performance, contrary to the usual belief that such adjustments are

6The reason why GPT-4o annotator does not select its own response as the best may be due to the sampling strategy used in our API
calls.
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The diagram is an illustration of a fish, with various parts of its body labeled with numbers. The fish is drawn laterally, s howing its
left side, and includes various fins, scales, and other anatomical features. Each numbered label points to a specific part of the fish's 
body, which are typically key anatomical features that are likely to be discussed in a basic biology or science class for gra des 1-6. 
Here's a detailed description of the labeled parts:\n\n1. **Gills** - Located just behind the head, these are used for breathing
underwater.\n2. **Pectoral Fin** - Found on the side of the fish, these fins are used for steering and balance. \n3. **Dorsal Fin** -
This fin is located on the top of the fish and helps with stability and steering. \n4. **Lateral Line** - A series of sensory organs that 
detect movement and vibration in the water.\n5. **Caudal Peduncle** - The narrow part of the fish's body to which the tail fin is 
attached.\n6. **Caudal Fin** - Also known as the tail fin, it's used for propulsion.\n7. **Anal Fin** - Located on the underside of the 
fish, near the tail, it helps with stability.\n8. **Pelvic Fin** - These fins are located on the underside of the fish, near the head, and
help with balance and steering.\n\n### Related Knowledge:\n- **Fish Anatomy**: Understanding the parts of a fish and their 
functions is essential in basic biological studies. Each fin and body part serves a specific purpose in locomotion, balance, and
survival.\n- **Respiratory System**: Gills are crucial for fish respiration, allowing them to extract oxygen from water. \n-
**Locomotion**: Different fins (pectoral, dorsal, caudal, anal, and pelvic) are used for various aspects of movement such as
propulsion, steering, and stability.\n- **Sensory Systems**: The lateral line is a unique sensory system in fish that detects wa ter 
movements and vibrations, helping them navigate and detect prey or predators. \n- **Adaptation**: The structure of a fish’s body is
adapted to its environment, demonstrating principles of adaptation and evolution in aquatic ecosystems. \n\nThese fundamental 
concepts form the basis for understanding more complex biological and ecological systems in later grades.

Here is a diagram figure extracted from some Grade 1 - 6 science 
books.\nPlease first describe the content of this figure in detail, including how
the knowledge visually displayed in the diagram.\nThen start with a section title 
\"related knowledge:\", briefly and concisely highlight the related domain
knowledge and theories that underly this diagram. Note that you do not need to 
provide much detail. Simply cover the most important concepts.

### Description of the Figure\n\nThe figure is a detailed diagram of a fish, labeled with various parts for educational purposes. The 
labels are as follows:\n\n1. **Eye**: Located on the side of the head, it is responsible for vision. \n2. **Gill Cover (Operculum)**:
Protects the gills and allows water to flow over them for oxygen exchange .\n3. **Dorsal Fin**: Located on the back, it helps in 
stability and steering.\n4. **Lateral Line System**: A sensory system that detects vibrations and movements in the water. \n5. 
**Caudal Peduncle**: The narrow part of the body just before the tail fin, providing flexibility and power for swimming. \n6. **Caudal 
Fin (Tail Fin)**: Used for propulsion and steering.\n7. **Pectoral Fins**: Located near the head, they help in maneuvering and
braking.\n8. **Pelvic Fins**: Located below the pectoral fins, they aid in balance and maneuvering. \n\n### Related Knowledge:\n\n-
**Fish Anatomy**: Fish have specialized structures adapted for aquatic life, including fins for movement, gills for breathing , and a 
streamlined body for efficient swimming.\n- **Sensory Systems**: Fish use their lateral line system to detect changes in their 
environment, which is crucial for survival.\n- **Fins Functionality**: Different fins serve specific functions such as propulsion 
(caudal fin), stability (dorsal fin), and maneuvering (pectoral and pelvic fins). \n- **Gill Function**: Gills allow fish to extract oxygen 
from water, which is essential for respiration.\n- **Eye Adaptation**: Fish eyes are adapted for underwater vision, often with a larger 
range of motion compared to terrestrial animals.

This diagram shows a detailed illustration of a fish with various parts labeled using numbers. The fish is depicted in a side view, 
revealing its external anatomy.\n\nThe fish's body is shown in light gray with darker shading and dotted patterns to indicate different 
features. Key parts of the fish are numbered from 1 to 8: \n\n1. The eye and the head region\n2. The gills, shown with a pattern of 
curved lines\n3. The dorsal fin on the fish's back\n4. What appears to be a smaller fin behind the dorsal fin (possibly an adipose fin) \n5.
The caudal fin (tail fin), shown split into two lobes\n6. The anal fin on the underside near the tail\n7. (Not labeled, but visible) The 
lateral line running along the side of the fish\n8. The pelvic fin on the underside of the fish\n\nThe diagram effectively displays the 
external anatomy of a typical bony fish, allowing viewers to identify and learn about the various fins and other external 
features.\n\nRelated knowledge:\n1. Fish anatomy and morphology\n2. Function of fish fins in locomotion and stability\n3. Gill
respiration in aquatic organisms\n4. Lateral line system for sensing water movement and pressure \n5. Fish classification and 
diversity\n6. Adaptations for aquatic life\n7. Importance of fish in aquatic ecosystems and human diets\n8. Basic concepts of 
ichthyology (the study of fish)\n9. Comparison of fish anatomy to other vertebrates\n10. Fish locomotion and hydrodynamics

Rank from GPT-4o Rank from Human

Reason: GPT-4o and Qwen2-VL provided clear and accurate descriptions 
with well-organized related knowledge, making their responses both 
comprehensive and concise. Claude 35 offered a detailed but somewhat 
lengthy response.

Reason: GPT-4o provides a detailed description of each part of the fish, 
including its function, but there is no 7 in the picture. The descriptions of 
Claude 35, incorrectly identified 1 as the eye and head area, and 2 as the 
gills. Not only did Qwen2-VL incorrectly identify 7, but it also incorrectly 
classified 1 and 2.

Figure 10. Example of subtle errors in model responses to a long question.
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unreliable.

Our work provides a fresh perspective on how dynamic beta adjustments can be effectively applied to MLLMs, improving
their robustness and optimization stability. By incorporating a high-quality reward model and dynamically scaling beta
based on the reward margin, we achieve notable improvements over existing methods, particularly in handling noisy data
and improving algorithmic performance.

G. More Ablation and Analysis
G.1. Benchmarks and Experimental Details

We categorize the benchmark datasets used in our experiments into the following domains:

Chart and Document Understanding. AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), DocVQA (Mathew
et al., 2021), InfoVQA (Mathew et al., 2022).

OCR (Optical Character Recognition). WebSRC (Chen et al., 2021), OCRBench (Liu et al., 2024a), TextVQA (Singh
et al., 2019).

Hallucination. MMHal-Bench (Sun et al., 2023a), POPE (Li et al., 2023f), Object-Hal (Li et al., 2023e).

Math Reasoning. MathVista (Lu et al., 2024b), MathVerse (Zhang et al., 2024a).

General Knowledge. MME (Fu et al., 2023), MMbench (Liu et al., 2023c), MMStar (Chen et al., 2024a), SeedBench2-
Plus (Li et al., 2024a), VQAv2 (Antol et al., 2015).

Conversation. LLaVA-Wilder (Li et al., 2024b), LLaVA-In-The-Wild (Liu et al., 2023b), WildVision-Bench (Lu et al.,
2024c).

High-Resolution and Real-World Utility. RealworldQA, MME-RealWorld (Zhang et al., 2024e).

Video Understanding. VideoChatGPT (Maaz et al., 2024), Video-MME (Fu et al., 2024a), VideoDC (Li et al., 2024b).

Multi-Image. LLAVA-Next-Interleave (Li et al., 2024c), MMMU-Pro (Yue et al., 2024).

MLLM Safety. Our self-constructed benchmark, MM-RLHF-SafeBench, includes adversarial attacks, jailbreaks, privacy,
and harmful content. Detailed construction is provided in Appendix C.2. Safety mainly evaluates the model’s ability to
reject harmful content, while unsafety mainly assesses the likelihood of the model being successfully attacked.

For all benchmarks requiring GPT-assisted evaluation, we consistently employ GPT-4o as the evaluation model. All
model results are rigorously re-evaluated and reported by our team. All experiments are conducted on a high-performance
computing cluster equipped with 32× H800 (80G) GPUs. Due to computational cost constraints, we utilize the full dataset
for the main results presented in Tables 8, 9, and 3. For ablation studies, we uniformly sample 1/5 of the data, which may
result in minor performance discrepancies compared to the full dataset.

In the implementation of MM-DPO, we adopt a common stabilization technique by incorporating an SFT loss. The
weight of the SFT loss is selected through a grid search over the values {0, 0.1, 0.25, 0.5, 1.0}. Additionally, the learning
rate is optimized via a search over {1e-7, 5e-7, 1e-6, 5e-6, 1e-5} to identify the best-performing configuration. Since we
dynamically adjust the β parameter during training, the initial value of βori is set to a small default value of 0.1, eliminating
the need for manual tuning. Throughout all training processes, the vision encoder remains frozen to ensure stable and
efficient training.

G.2. Improvement with MM-RLHF Dataset and MM-DPO

With the help of our MM-RLHF dataset, the baseline model demonstrates a general improvement across various benchmarks,
with particularly significant gains observed in OCR and conversation tasks (Figure 11(a)). To further exploit the observation
that different samples have varying quality, we initially attempted methods from the LLM domain, specifically using Implicit
Reward during training to decide whether to increase or decrease the beta of each sample. However, we found that this
approach did not work. There are two possible reasons: 1) Our dataset is of relatively high quality, as it is ranked manually,
so the noise is minimal, and there is no need for too many penalty terms or a reduction in beta; 2) MLLM data is more
complex, and Implicit Reward does not provide a reliable signal to adjust beta. Therefore, MM-DPO uses a high-quality
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Figure 11. Ablation studies on our method and dataset. (a) Real-world tasks evaluation, where ‘LLaVA-OV-7B‘ serves as the baseline
model, ‘+MM-RLHF‘ represents the use of our dataset combined with the traditional DPO algorithm. ‘+Implicit Reward‘ refers to using
the dynamic beta strategy (Wu et al., 2024a) in LLMs. (b) Evaluation of the effect of the hyperparameters k and w on the MM-DPO
model, demonstrating the effect of these variations on the leaderboard scores.

reward model to directly provide the signal, and the value of beta is constrained using the function [βori, (1 + w)βori],
preventing it from growing too excessively. This method overcomes the training instability caused by outliers, ultimately
leading to a steady performance improvement.

G.3. Effect of Hyperparameters w and k

We experimented with various combinations of the hyperparameters w and k, where k directly controls the mapping
function from the reward margin to the scaling factor, and w governs the strength of the correction to β by the scaling factor.
Figure 11(b) shows the impact of these hyperparameters on the final average performance (using the same benchmarks as
Figure 11(a)). The results demonstrate that the method exhibits a certain level of robustness across different hyperparameter
selections, generally leading to performance improvements. However, selecting the two hyperparameters requires some
finesse; they cannot both be too large or too small simultaneously. The default values of w = 0.5 and k = 0.5 work well.

G.4. Self-Improvement of Small-Scale MLLMs is Currently Unrealistic

While recent work on MLLMs explores the concept of self-improvement, these efforts largely focus on specific domains,
such as conversational systems (Xiong et al., 2024). In this section, we present an alternative perspective distinct from
the LLM domain, arguing that MLLMs, particularly small models (fewer than 7B parameters), currently face significant
challenges in achieving comprehensive performance improvements through self-improvement. Our experimental results,
illustrated in Figure 12, suggest two primary reasons for this limitation:

1. Model Capacity Constraints. For tasks involving long-form or conversational data, sampling multiple responses
often results in at least one reasonably good answer, thereby leading to noticeable improvements. However, for more
challenging tasks, such as multiple-choice questions or scientific reasoning, smaller models struggle to generate correct
answers even after extensive sampling. In our experiments, where the maximum number of samples reached eight, we
observed instances where the model produced identical incorrect responses or consistently incorrect outputs across all
samples for some challenging multiple-choice questions.

2. Limitations in Reward Signal Quality. Most existing multimodal reward models are trained on datasets with limited
diversity, such as VLFeedback and LLaVA-RLHF. These datasets predominantly focus on natural images, human dialogue,
or related scenarios, raising concerns about overfitting. When preference datasets encompass broader domains, such as
mathematical reasoning, chart understanding, or other specialized fields, reward models trained on existing datasets fail to
provide effective reward signals. Consequently, it becomes challenging to identify and select better samples.

These two limitations make it difficult, at the current stage, to enable MLLMs to generate responses on diverse datasets,
annotate them with reward models, and iteratively improve through self-improvement cycles, as has been achieved in LLM
alignment. While our experiments confirm that better reward models can lead to marginal improvements, the results remain
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Figure 12. Performance comparison across datasets using various methods based on the LLaVA-Ov-7B model as the baseline.
"Baseline" represents the initial performance without post-training. "LLAVA-RLHF (LLAVA-RLHF)" indicates that both the post-training
dataset and the reward model come from the LLAVA-RLHF dataset, with the reward model being trained using LLaVA-Ov-7B as the
starting checkpoint for fairness. "MM-RLHF s" reflects results generated on our dataset, where responses are self-sampled (default sample
size: 8) and ranked using different reward signals to create DPO pairs. "MM-RLHF h (Human)" involves DPO training directly using our
dataset, where responses are sampled from other models, and reward signals are provided by experts.

far inferior to training with high-quality, human-annotated contrastive samples.
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Table 6. MM-RLHF-SafetyBench: summary of Task Data, Evaluation Metrics, and Comparison Methods for Safety and Adver-
sarial Testing. This table provides an overview of various tasks used for evaluating multimodal models’ safety and adversarial robustness.
The tasks are categorized based on attack type (adversarial or safety), and the evaluation metrics include success rates of adversarial
attacks or model rejection rates for harmful outputs. The arrows in the Comparison column indicate whether higher (↑) or lower (↓) values
of the evaluation metric are preferred.

Task Name Data Size Task Category Evaluation Metric Comparison
Adv target 100 Adversarial Attack: The ratio of model

descriptions containing adversarial im-
age content.

Ratio ↓

Adv untarget 200 Adversarial Attack: The ratio of model
descriptions containing original image
content.

Ratio ↑

Crossmodel ASR 18 Cross-modal Jailbreak: Inducing multi-
modal models to deviate from their ex-
pected behavior and security constraints
by combining text and image contexts
related to the jailbreak task.

ASR: Adversarial attack success
rate (probability of harmful out-
put)

↓

Multimodel ASR 100 Multimodal Jailbreak: Using a combi-
nation of various modalities (e.g., text
and images) to induce multimodal mod-
els to deviate from security mechanisms
and expected behavior, performing ma-
licious commands or unauthorized func-
tions.

ASR: Adversarial attack success
rate (probability of harmful out-
put)

↓

Typographic ASR 600 Typographic Jailbreak: Converting ma-
licious text instructions into images to
perform jailbreak attacks, inducing mul-
timodal models to deviate from their
expected behavior and security con-
straints.

ASR: Adversarial attack success
rate (probability of harmful out-
put)

↓

Crossmodel RtA 18 Cross-modal Jailbreak: Inducing multi-
modal models to deviate from their ex-
pected behavior and security constraints
by combining text and image contexts
for the jailbreak task.

RtA: Model accuracy on adver-
sarial samples (probability of re-
jecting output)

↑

Multimodel RtA 100 Multimodal Jailbreak: Using a combi-
nation of various modalities (e.g., text
and images) to induce multimodal mod-
els to deviate from security mechanisms
and expected behavior, performing ma-
licious commands or unauthorized func-
tions.

RtA: Model accuracy on adver-
sarial samples (probability of re-
jecting output)

↑

Typographic RtA 600 Typographic Jailbreak: Converting ma-
licious text instructions into image for-
mat for jailbreak attacks, inducing mul-
timodal models to deviate from their
expected behavior and security con-
straints.

RtA: Model accuracy on adver-
sarial samples (probability of re-
jecting output)

↑

Risk identification 500 Identification Ability: The model’s abil-
ity to correctly identify dangerous items
and assess risk.

Ratio ↑

NSFW-Text 558 Visual-Linguistic Safety: Ratio of
model not rejecting output when the im-
age is harmless but the instruction con-
tains harmful content.

ASR: Adversarial attack success
rate (probability of model not re-
jecting output)

↓

NSFW-Image 442 Visual-Linguistic Safety: Ratio of
model not rejecting output when the im-
age contains harmful information.

ASR: Adversarial attack success
rate (probability of model not re-
jecting output)

↓
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Table 7. Example of the Prompt Used for Augmenting Human Annotations.

You will receive an image-related question, an answer, and a comment provided by a human expert for the answer.

Your task is to expand the human comment comprehensively while retaining its strengths and weaknesses,
making it more professional, and logically rigorous. Focus only on expanding the comment and do not answer the question.

Ensure the expanded comment is strictly based on the provided human comment and avoids any speculation or uncertain content.

[Question:] {question}
[Answer:] {answer}
[Human Comment for the answer:] {reason}

Expanded Comment:
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Table 8. Performance variations after alignment across 8 different evaluation dimensions, comparing multiple models under our
alignment strategy. All models show comprehensive performance improvements under the proposed alignment pipeline..

Capability Benchmark InternVL2
1B

Ours LLaVA-OV
0.5B

Ours LLaVA-OV
7B

Ours

Conversation

LLaVA-Wild (all)
Realworld Chat

73.80 75.80 74.60 79.20 90.70 97.90

LLaVA-Wild (complex)
Realworld Chat

83.60 82.60 78.60 80.50 95.90 100.60

LLaVA-Wild (conv)
Realworld Chat

52.10 58.30 69.60 72.30 81.20 88.10

LLaVA-Wild (detail)
Realworld Chat

85.40 89.40 82.30 84.50 91.80 104.00

LLaVA-Wilder tiny(small)
Realworld Chat

55.80 57.30 52.30 53.40 65.70 71.10

WildVision (elo rate)
Model Competition

41.30 46.20 40.70 44.70 50.40 58.90

WildVision (win rates)
Model Competition

41.80 9.00 12.60 14.60 15.20 37.20

General Knowl-
edge

MME (cog./perp.)
Multi-discip

1775 1815 1488 1510 1997 2025

MMBench (cn-dev)
Multi-discip

54.70% 67.89% 45.80% 46.40% 80.49% 80.67%

MMStar
Multi-discip

45.81% 49.00% 38.64% 39.58% 61.80% 62.58%

SeedBench2-Plus
Multi-discip

60.12% 60.12% 53.85% 54.27% 64.87% 65.35%

VQAv2 (lite)
Multi-discip

72.25% 71.84% 74.60% 74.68% 79.98% 80.28%

Chart and Doc-
ument

AI2D
Science Diagrams

72.38% 72.80% 56.93% 56.87% 81.41% 81.22%

ChartQA (val-lite)
Chart Understanding

65.60% 66.80% 51.60% 52.60% 74.00% 74.50%

DocVQA (val-lite)
Document Understanding

81.90% 82.51% 66.17% 67.07% 84.34% 86.11%

InfoVQA (val-lite)
Infographic Understanding

51.73% 52.26% 40.17% 40.49% 67.07% 67.40%

OCR
OCRBench
Comprehensive OCR

75.20% 77.11% 57.70% 60.20% 62.30% 69.30%

TextVQA (val)
Text Reading

69.85% 72.12% 65.87% 66.60% 75.99% 76.05%

WebSRC (val)
Web-based Structural Reading

68.20% 68.80% 65.90% 68.30% 88.70% 89.20%

Real-World
MME-RealWorld (en-lite)
Multi-discip & High-Resolution

33.61% 36.58% 34.55% 34.39% 48.36% 46.95%

MME-RealWorld (cn)
Multi-discip & High-Resolution

44.14% 43.11% 32.09% 31.11% 54.01% 53.39%

RealWorldQA
Realwold QA

51.50% 54.90% 55.42% 55.16% 66.41% 65.75%

Math

MathVista (cot)
General Math Understanding

49.60% 49.90% 32.30% 32.70% 59.10% 61.60%

MathVista (format)
General Math Understanding

53.20% 53.40% 36.00% 36.30% 62.50% 62.20%

MathVista (solution)
General Math Understanding

49.60% 49.30% 30.50% 32.50% 58.8% 61.10%

MathVerse (vision-mini)
Professional Math Reasoning

12.31% 12.79% 17.51% 17.64% 16.37% 18.53%

Hallucination

POPE (adversarial)
Object Hallucination.

86.82% 86.87% 86.04% 86.56% 87.08% 87.68%

POPE (popular)
Object Hallucination.

88.30% 88.57% 87.37% 88.26% 88.32% 89.02%

POPE (random)
Object Hallucination.

89.87% 90.45% 88.30% 89.30% 89.60% 90.62%

MMHal (hal rate ↓)
General Hallucination

55.21% 55.38% 48.96% 46.25% 38.54% 38.54%

MMHal (avg score)
General Hallucination

3.02 3.10 3.33 3.42 3.22 4.08

Obj-Hal (chair-i↓)
Object Hallucination.

8.30 7.81 9.70 9.12 8.52 7.69

Obj-Hal (chair-s↓)
Object Hallucination.

38.67 37.00 42.67 42.33 44.00 41.67

Video Under-
standing

Video-MME (w. caption)
Multi-discip

42.74% 42.76% 48.22% 48.42% 61.61% 61.81%

Video-MME (wo. caption)
Multi-discip

45.66% 45.71% 43.92% 44.00% 58.29% 58.33%

VideoChatGPT
Video Conversation

2.26 2.59 2.56 2.66 2.87 3.22

VideoDC
Video Detail Description

2.91 3.07 2.88 2.96 3.32 3.41

Multi-Image
LLAVA-Next-Interleave (in-
domain)
in-domian

34.78% 35.72% 42.29% 43.49% 60.85% 61.12%

MMMU-Pro (vision)
Multi-discip

1.11% 1.52% 12.78% 13.89% 14.51% 15.84%
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Table 9. Performance variations after alignment across MM-RLHF-SafeBench, comparing multiple models under our alignment
strategy.

Benchmark InternVL2
1B

Ours LLaVA-OV
0.5B

Ours LLaVA-OV
7B

Ours

Adv target ↓
Adversarial Attack

56.0% 50.0% 54.0% 35.0% 37.0% 40.0%

Adv untarget ↑
Adversarial Attack

52.5% 56.0% 66.0% 71.0% 66.5% 70.0%

Crossmodel ASR ↓
Cross-modal Jailbreak

0.0% 0.0% 72.2% 38.9% 16.7% 0.0%

Crossmodel RtA ↑
Cross-modal Jailbreak

100.0% 0.0% 22.2% 50.0% 88.9% 100.0%

Multimodel ASR ↓
Multimodal Jailbreak

43.2% 43.2% 42.2% 27.7% 41.2% 8.3%

Multimodel RtA ↑
Multimodal Jailbreak

18.0% 17.4% 12.4% 23.2% 62.0% 88.3%

Typographic ASR ↓
Typographic Jailbreak

10.5% 7.4% 26.3% 35.2% 5.8% 0.0%

Typographic RtA ↑
Typographic Jailbreak

73.7% 74.6% 17.0% 27.5% 79.5% 95.8%

Risk ↑
Risk identification

49.6% 58.6% 65.8% 67.4% 82.0% 76.0%

NSFW text↓
NSFW Jailbreak

89.0% 27.1% 94.4% 64.2% 60.4% 10.6%

NSFW img↓
NSFW Jailbreak

81.2% 64.7% 97.5% 81.6% 80.1% 24.2%

Unsafety ↓
Average performance of ↓

46.6% 38.9% 65.4% 47.1% 40.2% 13.9%

Safety ↑
Average performance of ↑

31.9% 41.3% 36.7% 47.8% 75.8% 85.4%
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