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Abstract

Mixed linear regression (MLR) is a powerful
model to characterize nonlinear relationships
among observed data while still being simple and
computationally efficient. This paper investigates
the online learning and data clustering problem
for MLR model with an arbitrary number of sub-
models and arbitrary mixing weights. Previous
investigations mainly focus on offline learning
algorithms, and the convergence results are es-
tablished under the independent and identically
distributed (i.i.d.) input data assumption. To over-
come these fundamental limitations, we propose
a novel online learning algorithm for parameter
estimation based on the EM principle. By us-
ing Ljung’s ODE method and Lyapunov stability
theorem, we first establish the almost sure conver-
gence results of the proposed algorithm without
the traditional i.i.d. assumption on the input data.
Furthermore, by using the stochastic Lyapunov
function method, we also provide its convergence
rate analysis for the first time. Finally, we analyze
the performance of online data clustering based on
the parameter estimates, which is asymptotically
the same as that in the case of known parameters.

1. Introduction
Learning the input-output relationship based on the observed
data is a fundamental issue in various fields including statis-
tical learning, system identification, and computer science
(Hastie et al., 2009; Bishop & Nasrabadi, 2006). The mixed
linear regression (MLR) model is a powerful technique for
characterizing the nonlinear input-output relationship by
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utilizing a combination of multiple linear sub-models (Kong
et al., 2020; Diamandis et al., 2021; Pal et al., 2022). It
was first proposed as a generalization of “switching regres-
sion” (Quandt, 1972), and has found broad applications in
real-world scenarios including musical perception (Cohen,
1980), trajectory clustering (Gaffney & Smyth, 1999), mar-
ket segmentation (Wedel & Kamakura, 2000) and healthcare
analysis (Deb & Holmes, 2000). In MLR, each input-output
data is generated from one of the unknown linear regres-
sion models and the label of data, i.e., which sub-model the
data comes from, is also unknown. Developing algorithms
to learn the unknown parameters based on the observed
data and categorize the new data into the correct cluster are
crucial for the learning and prediction of MLR.

Related Works. The learning problem for MLR has at-
tracted much attention of researchers from various fields
including statistical learning (Balakrishnan et al., 2017),
computer science (Ingrassia et al., 2014) and biological
analysis (Sun et al., 2022), although it is acknowledged
to be NP-hard in the absence of statistical assumptions on
the observed data (Yi et al., 2014). Among the existing
research, tensor-based and expectation maximization (EM)-
based methods are two commonly used approaches to design
learning algorithms for MLR models, and their convergence
results are mostly established under the i.i.d. standard Gaus-
sian assumption on the input data.

The tensor-based method, first proposed by Anandkumar
et al. (2014), transfers the parameter learning problem to
an orthogonal decomposition of a symmetric tensor derived
from the moments. By the tensor-based method, the exact
recovery guarantee for MLR with multiple sub-models has
been established under some specific structural assumptions,
such as linearly independence or near orthonormality of the
sub-model parameters (Chaganty & Liang, 2013; Yi et al.,
2016). However, the tensor-based method suffers from high
sample and computational complexity, making it difficult
to apply in practice. In addition, the statistical error of the
estimator exhibits a scaling behavior relative to the norm of
the sub-model parameters.

The EM algorithm, consisting of E-step and M-step, is a
general technique for parameter learning of latent variable
models (Dempster et al., 1977). The E-step is used to com-
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pute the expectation of the log-likelihood function based
on current estimates, and the M-step is used to update pa-
rameter estimates by maximizing the function derived from
the E-step. The EM algorithm has the advantages of simple
expression and low computational complexity, while exhibit-
ing favorable performance in addressing MLR problems in
practice (De Veaux, 1989; Faria & Soromenho, 2010). In
the theoretical aspect, some progress has been made in the
EM algorithm to solve the learning problem of MLR models
under the i.i.d. standard Gaussian assumption on the input
data. Specifically, for the case of MLR with two sub-models
where the sub-model parameters, denoted as β∗

1 and β∗
2 , sat-

isfy the symmetric constraint β∗
1 = −β∗

2 , local convergence
results have been established by using the population EM al-
gorithm (Balakrishnan et al., 2017; Klusowski et al., 2019),
and further global convergence results have been established
(Kwon et al., 2019). For the asymmetric case of MLR with
two sub-models, a characterization of the local domain of at-
traction for the convergence of EM has been obtained in the
noise-less case (Yi et al., 2014). Furthermore, for the gen-
eral case of MLR with multiple sub-models and unknown
mixing weights, local convergence of the EM algorithm has
been established (Kwon & Caramanis, 2020), and in addi-
tion, a novel EM-type algorithm with a bounded learning
error guarantee has been proposed (Zilber & Nadler, 2023).

Limitations of Existing Work. To summarize, all the
above-mentioned theoretical investigations on the MLR
learning problem have several common features.

Firstly, the input data is required to be i.i.d. with a stan-
dard Gaussian distribution, which often fails to align with
real-world scenarios (Li & Liang, 2018). Here are two exam-
ples. One example comes from the trajectory clustering of
MLR model in real-world data sets including movements of
objects in video sequences (Gaffney & Smyth, 1999) and cy-
clone paths (Gaffney & Smyth, 2003), where the trajectory
data at the current time is affected by that at the previous
time and will in turn affect the future data, therefore the
i.i.d. data assumption is obviously not satisfied. The second
example comes from the MLR model in learning and model
prediction control of hybrid systems, where the dynamical
signals are also non-i.i.d. because of the existence of the
feedback control loops (Bemporad, 2023). Some efforts
have been made to relax the i.i.d. standard Gaussian data
assumption. For example, for the MLR learning problem, Li
and Liang (2018) assumed that the input data is i.i.d. Gaus-
sian with different covariances, while Sedghi et al. (2016)
assumed that the input data is i.i.d. with a known and con-
tinuous distribution. However, both of them still require
the independence assumption on the input data. Recently,
Liu et al. (2023) have relaxed the independence assumption
of the input data to stationary and ergodic, but they only
specifically focused on the MLR with two sub-models.

Secondly, the computational algorithms, such as the popu-
lation EM algorithm (Balakrishnan et al., 2017; Klusowski
et al., 2019) and the EM algorithm with a finite number of
samples (Kwon & Caramanis, 2020), are of off-line char-
acter. In fact, the population EM algorithm requires infi-
nite samples to approximate specific expectations at each
iteration, which makes it impractical. Although the EM
algorithm with a finite number of samples can reduce the
number of samples required at each iteration, it still remains
off-line and also introduces a statistical error associated with
the sample size. Furthermore, with the phenomenal growth
in big data sets in recent years, many real-world applica-
tions (e.g., social media) require a model to incrementally
learn from a non-i.i.d. stream of data. In those cases, offline
algorithms like population EM are infeasible as the whole
data set is needed at every E-step. In contrast to off-line
algorithms, online algorithms can be updated conveniently
based on both the current estimate and newly emerged input-
output observation, without requiring storage of all the old
data and with lower computational cost (Chen et al., 2018;
Karimi et al., 2018; 2019). Due to this advantage, online
learning has received extensive and increasing attention in
the machine learning community, besides its necessity in
adaptive signal processing and adaptive control problems.
Therefore, it is valuable to design an online learning algo-
rithm with a convergence guarantee.

The goal of this paper is to design an online learning al-
gorithm for MLR with multiple sub-models and further
establish its corresponding convergence results without the
i.i.d. input data assumption.

Challenges and Contributions. In this paper, we put for-
ward an online learning algorithm based on the EM princi-
ple for MLR with multiple sub-models and arbitrary mixing
weights. We remark that Ljung’s ODE method is a general
analysis framework for the convergence of online learning
algorithms (Ljung, 1977). By leveraging this method and
making efforts to establish the stability of corresponding
ordinary differential equations (ODEs) by the Lyapunov
stability theorem (Khalil, 2002), we are able to establish
the convergence result for the online parameter learning
algorithm without the i.i.d. input data assumption, and also
provide the convergence rate analysis. Furthermore, we
analyze the online data clustering performance based on the
proposed learning algorithm.

The main contributions can be summarized as follows:

• Based on the EM principle, we propose a novel on-
line learning algorithm for the parameter estimation of
MLR with multiple sub-models and arbitrary mixing
weight. The algorithm alternates between computing
the posterior probability of which cluster the new data
belongs to based on the current parameter estimates
and updating the parameter estimates using the incom-
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ing data and its corresponding posterior probability.

• We establish the convergence results of the proposed
online learning algorithm without the i.i.d. input data
assumption. To the best of our knowledge, this is the
first convergence result of online algorithms for MLR
with multiple sub-models without the i.i.d. input data
assumption. Based on the convergence property of
the proposed algorithm and the stochastic Lyapunov
function method, we further establish the convergence
rate analysis for the first time.

• Based on the parameter estimates, we prove that the
data clustering performance, including the within-
cluster error and the probability that the new data can
be categorized into the correct cluster, is asymptotically
the same as that in the case of known parameters.

The remainder of this paper is organized as follows. Section
2 presents the problem formulation. The main results are
stated in Section 3. The proof sketch of the main results
is provided in Section 4 with its details in Appendix A.
A numerical example is given in Section 5. Finally, we
conclude the paper in Section 6.

2. Problem Formulation
2.1. Basic Notations

In this paper, [m] is used to denote the set {1, 2, · · · ,m}.
The symbol v ∈ Rd represents a d-dimensional column vec-
tor, vτ and ∥v∥ denote its transpose and Euclidean norm, re-
spectively. For a matrix A ∈ Rd×d, λmin(A) and λmax(A)
denote its smallest and largest eigenvalues respectively, ∥A∥
denotes the operator norm induced by the Euclidean norm,
i.e., (λmax(AA

τ ))1/2. We say that A is positive (negative)
semi-definite, denoted as A ≥ 0(A ≤ 0) if all its eigenval-
ues are non-negative (non-positive).

In a probability space (Ω,F , P ), Ω is the sample space,
the collection of events is referred to as the σ-algebra F
on Ω and P is a probability measure on (Ω,F). For an
F-measurable set A, its complement Ac is defined by
Ac = Ω − A. The indicator function IA on Ω is de-
fined by IA = 1 if the event A occurs and IA = 0
otherwise. The event A is said to happen almost surely
(a.s.) if P (A) = 1. Besides, a sequence of random vari-
ables {xk, k ≥ 0} is called uniformly intergrable (u.i.) if
lima→∞ supk≥1

∫
[|xk|>a]

|xk|dP = 0. According to the
convention, the mathematical expectation operator is de-
noted as E {·}, and the conditional mathematical expec-
tation operator given the event A is denoted as E {·|A}.
The notation x ∼ F indicates that the random variable x
follows the distribution F , N (µ, σ2) denotes the Gaussian
distribution with the mean µ and the variance σ2.

We need the following definition of asymptotically station-
ary and ergodic in the analysis:

Definition 2.1. Let {xk, k ≥ 1} be a sequence of random
variables. If for any ε > 0 and any set C ∈ B∞ with B∞

being the Borel set of R∞, there exists K > 0 such that

|P ([xk, xk+1, · · · ] ∈ C)−P ([xk+1, xk+2, · · · ] ∈ C)| ≤ ε,

for all k ≥ K, then we say that the sequence {xk} is asymp-
totically stationary. Furthermore, if lim

k→∞
E∥xk∥ exists and

lim
n→∞

1

n

n∑
k=1

xk = lim
k→∞

Exk, a.s.,

then we say it is also ergodic.

Remark 2.2. If both parameters ε and K in Definition 2.1
can take the value 0, then {xk, k ≥ 1} is called station-
ary and ergodic, which is consistent with the traditional
definition of stationarity and ergodicity in Stout (1974).

2.2. Problem Statement

Let us consider the following MLR model with multiple
sub-models:

yk+1 = β∗τ
zk
ϕk + wk+1, (1)

where zk ∈ [m] is the latent variable, namely, we do not
know which sub-model the data {ϕk, yk+1} comes from,
and m is the number of sub-models. Besides, β∗

i (i ∈ [m])
are unknown true parameters to be estimated, ϕk ∈ Rd,
yk+1 ∈ R and wk+1 ∈ R represent the regressor vector,
observation vector and the system noise at the time instant
k, respectively.

Given the streaming data {ϕk, yk+1}∞k=1, we aim at propos-
ing an online learning algorithm to estimate the true param-
eters β∗

i (i ∈ [m]), and then providing the corresponding
convergence guarantees for the learning algorithm. Based
on the estimates of β∗

i (i ∈ [m]), we further investigate the
data clustering performance.

2.3. Assumptions

For our purpose, we introduce the following assumptions
on the true parameters β∗

i (i ∈ [m]), the latent variable zk,
the noise wk+1, and the regressor ϕk:

Assumption 2.3. The true parameter β∗
i is an interior point

of a known and disjoint convex compact set Di for i ∈ [m].

Remark 2.4. Under the structural assumption that the true
parameters are linearly independent, tensor-based methods
can be used to learn the true parameters β∗

i (Chaganty &
Liang, 2013; Yi et al., 2016). The tensor-based method
requires an infinite number of samples at each iteration
to precisely estimate parameters in MLR model, which
brings high sample and computational complexity issues.
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However, the tensor operations based on finite samples can
help us derive a crude yet satisfactory initialization region
Di around the true parameters in the permutation sense.

Assumption 2.5. The sequence of latent variables {zk} is
i.i.d. with the distribution P (zk = i) = π∗

i > 0 for i ∈ [m]
and

∑m
i=1 π

∗
i = 1. Furthermore, zk is independent of ϕk

for each k ≥ 0.

Remark 2.6. Most previous investigations typically assume
that the mixture probabilities of each sub-model are equal
(Klusowski et al., 2019), and leverage this prior information
to facilitate the convergence analysis. This paper considers
a more challenging case where the proportions of each sub-
model, i.e., π∗

i (i ∈ [m]), can be unequal and their true
values can be unknown to us.

Assumption 2.7. The sequence of noise {wk+1} is i.i.d.
with Gaussian distribution N (0, σ2). Besides, wk+1 is in-
dependent of {zt, t ≤ k} and {ϕt, t ≤ k} for each k ≥ 0.

Remark 2.8. Most previous investigations assume that the
noise variance σ2 is known (Klusowski et al., 2019; Kwon &
Caramanis, 2020). In this paper, we also provide an online
learning algorithm for MLR with unknown σ2.

Assumption 2.9. The sequence of regressors {ϕk} is
asymptotically stationary and ergodic with the probability
density function (p.d.f) gk(x) satisfying limk→∞ gk(x) =
g(x) and

∫
xxτg(x)dx > 0, and there exists a non-random

positive definite matrix Σ such that g(Σ−1/2x) is a function
of ∥Σ−1/2x∥ only. Additionally, the sequence {∥ϕk∥4} is
uniformly integrable.

Remark 2.10. The stationary p.d.f g(x) of the regressor
in Assumption 2.9 can contain a variety of distributions,
such as Gaussian distribution N (0,Σ), uniform distribution,
Polynomial and Laplace distributions, the rotation-invariant
distributions (Qian et al., 2019) and the elliptically symmet-
ric distributions (Fang et al., 2018).
Remark 2.11. Assumption 2.9 is much weaker than the i.i.d.
Gaussian data assumption used in most previous works
(Kwon & Caramanis, 2020). Here we give an example of
{ϕk} that is not i.i.d. but satisfies our Assumption 2.9:

Example 1: Consider the following standard stochastic
linear dynamical system widely used in automatic control
and many other practical fields:

ϕk+1 = Aϕk + ek+1, (2)

where the matrix A is stable, and ek is i.i.d. with a Gaussian
distribution. It is easy to see that the observed state or output
signal sequence {ϕk} is stationary and ergodic, but not i.i.d.
because ϕk and ϕk+1 are strongly correlated.

2.4. Online Projected-EM Algorithm

In this subsection, we first construct an online learning
algorithm based on the EM principle for the MLR model (1)

with known noise variance σ2 and then we also provide an
online algorithm for the MLR model (1) with unknown σ2.

To start with, let Assumptions 2.5, 2.7 and 2.9 be satisfied
and the regressor be i.i.d.1 Then for the MLR model (1)
with the parameters β∗ = [ β∗τ

1 · · · β∗τ
m ]τ and π∗ =

[ π∗
1 · · · π∗

m ]τ , we can derive the likelihood function
of the observed data On = {y1, · · · , yn+1} given the input
data Un = {ϕ1, · · · , ϕn} as follows:

L(β∗, π∗) = P (On|Un) =

n∏
k=1

P (yk+1|ϕk)

=

n∏
k=1

m∑
i=1

[
π∗
i√
2πσ

exp

(
− (yk+1 − β∗τ

i ϕk)
2

2σ2

)]
.

(3)

Since the likelihood function is non-convex, it is hard to
obtain an explicit form of the maximum likelihood estima-
tion (MLE). Therefore, we adopt the classical EM algorithm
(Dempster et al., 1977) to approximate the MLE.

Denote βk = [βτ
k,1 · · · βτ

k,m]τ and πk = [πk,1 · · · πk,m]τ

with βk,i and πk,i being the estimates of β∗
i and π∗

i at the
time instant k, respectively. The EM algorithm is conducted
according to the following two steps:

1) E-step: compute the log-likelihood function Qk for the
complete data set {yt+1, zt, ϕt}kt=1 as follows:

Qk(β
∗, π∗) = k log(

1√
2πσ

)

+

m∑
i=1

k∑
t=1

αt,i

[
log(π∗

i )−
(yt+1 − β∗τ

i ϕt)
2

2σ2

]
,

(4)

where
αt,i = P (zt = i|ϕt, yt+1, βt)

=
πt,i exp

(
− (yt+1−βτ

t,iϕt)
2

2σ2

)
∑m

j=1 πt,j exp
(
− (yt+1−βτ

t,jϕt)2

2σ2

) (5)

is the probability that the data {ϕt, yt+1} belongs to the i-th
sub-model based on the current estimate βt and πt.

2) M-step: update the estimates of parameters β∗ and π∗

based on αk,i:

βk+1,i =argmax
β∗
i

Qk(β
∗, π∗)

=

(
k∑

t=1

αt,iϕtϕ
τ
t

)−1( k∑
t=1

αt,iϕtyt+1

)
, (6a)

πk+1,i = argmax

π∗
i ,

m∑
i=1

π∗
i =1

Qk(β
∗, π∗) =

1

k

k∑
t=1

αt,i. (6b)

1Note that the i.i.d. assumption on the regressor is used only
for the construction of our algorithm, which will not be used in the
theoretical analysis and main results of the algorithm.
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It is clear that the equation (6a) is like the standard formula
of LS with the input-output data {ϕ̄k, ȳk+1} with ϕ̄k =
αk,iϕk and ȳk+1 = αk,iyk+1. Thus, using the same way
as that in the derivation of the recursive LS (Lai & Wei,
1982), we can obtain the online version of (6a). Besides,
with simple calculations, we also obtain the online version
of (6b) as πk+1,i = πk,i + (αk,i − πk,i)/k. The whole
online EM algorithm is presented in Algorithm 1.

Algorithm 1 Online Projected-EM Algorithm
1: Initialization: β0,i, P0,i > 0, i ∈ [m].
2: At each time step k + 1, we have data {ϕk, yk+1}.
3: Recursively calculate the estimates for i ∈ [m]:

βk+1,i = ΠDi [βk,i + ak,iαk,iPk,iϕk(yk+1 − βτ
k,iϕk)],

Pk+1,i = Pk,i − ak,iαk,iPk,iϕkϕ
τ
kPk,i,

ak,i =
1

1 + αk,iϕτ
kPk,iϕk

,

πk+1,i = ΠDm+1 [πk,i +
1

k
(αk,i − πk,i)],

(7)
where αk,i is defined in (5), ΠDi

(·), i ∈ [m] and
ΠDm+1

(·) are the projection operators defined on the
convex compact set Di = {x|∥x− β∗

i ∥ ≤ di}, i ∈ [m]
and Dm+1 = {x|πmin ≤ x ≤ 1}, respectively.

Remark 2.12. Notice that the online learning algorithm
with only one sample at each iteration is susceptible to
unbound stochastic noise. In order to solve this problem, we
introduce a projection operator ΠDi

to restrict the estimates
within the given region Di(i ∈ [m+ 1]). Additionally, we
can choose πmin small enough such that π∗

i ∈ Dm+1 for
all i ∈ [m]. As mentioned in Remark 2.4, the region Di

can be obtained by the tensor-based method under linear
independent assumptions on the true parameters β∗

i .

When the noise variance σ2 is unknown, we can give its
estimate σ2

k at the time instant k as follows:

σ2
k+1 = σ2

k +
1

k

(yk+1 −
m∑
i=1

αk,iβ
τ
k,iϕk

)2

− σ2
k

 .

Based on this, we can update the estimates βk,i and πk,i,
i ∈ [m] by replacing the term σ2 with its estimate σ2

k at the
time instant k in Algorithm 1.

3. Main Results
In this section, we first establish the convergence and the
convergence rate results of Algorithm 1 for the MLR model
with known noise variance σ2 in Subsection 3.1, and then
present the performance analysis of data clustering based
on the parameter estimates in Subsection 3.2. The conver-
gence results and the corresponding analysis of the online

learning algorithm of MLR with unknown σ2 is similar to
that of MLR with known σ2, thus we omit them for space
limitations.

Before presenting the main results, we introduce the follow-
ing notations for i ∈ [m] and j ∈ [m]:

R∗
ij = ∥β∗

i − β∗
j ∥, R∗

min = min
i,j,i ̸=j

R∗
ij ,

R∗
max = max

i,j
R∗

ij , dmax = max
i

di,

where di is defined in Algorithm 1.

3.1. Convergence of Algorithm 1

We give the following main theorem on the convergence of
the online learning Algorithm 1.
Theorem 3.1. Under Assumptions 2.3-2.9, the estimates
βk,i and πk,i (i ∈ [m]) generated by Algorithm 1 will con-
verge locally to the true parameters, i.e.,

lim
k→∞

βk,i = β∗
i and lim

k→∞
πk,i = π∗

i , a.s.

Remark 3.2. Firstly, the almost sure convergence result for
MLR with multiple sub-models established in Theorem 3.1
is stronger than the convergence result in the high probability
sense established in most prior investigations. Secondly, for
the MLR learning problem, prior works (Balakrishnan et al.,
2017; Kwon & Caramanis, 2020) mainly focused on the
local convergence property of the population EM under
the i.i.d. standard Gaussian assumption of the input data.
Here we establish the convergence results for the online
learning algorithm without requiring this traditional i.i.d.
input data assumption. Thirdly, note that it is difficult to
determine which radius of local convergence in the prior
work and our work is larger, since 1) Both radii of local
convergence in the analysis are of existence rather than
constructiveness nature; 2) We have used a more general
assumption on the regressors, which is weaker than the i.i.d.
standard Gaussian assumption used in the prior work. Of
course, if the regressor is assumed to be i.i.d. Gaussian in
our work, we can obtain a radius of local convergence no
smaller than that in the prior work, even though we utilize
an online learning algorithm and the prior work adopts an
algorithm in an expectation form.
Remark 3.3. To our knowledge, the previous investigations
that need i.i.d. data assumption do not apply to the non-i.i.d.
data case in the analysis of the stochastic recursive algorithm
in our paper, because the analysis of the stochastic recursive
algorithm can no longer be reduced to the deterministic case
in the general non-i.i.d. case. To overcome this difficulty,
we have adopted Ljung’s ODE method (Ljung, 1977) in the
field of adaptive systems, where the system signals do not
satisfy the i.i.d. condition. However, to verify the conditions
required by the ODE method is still challenging, which
constitutes one of the main tasks of our paper.
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Remark 3.4. Note that the likelihood function (3) is non-
convex, thus without a satisfactory initialization region, the
EM algorithm, even the population EM, may not have a
desired convergence property in general. The requirement
on the initialization region Di ensures that only the true pa-
rameters are the stationary points in the initialization region,
which is a key point to establish the convergence result in
theory. From the proof of Theorem 3.1, it is evident that the
signal-to-noise ratio R∗

min/σ, the number of sub-models m
and also the smallest proportion of sub-models πmin signifi-
cantly influence the requirements of Di.
Remark 3.5. As mentioned in Remark 2.4, there are several
investigations focused on the derivation of Di by utilizing
the tensor-based method (Pearson, 1894; Yi et al., 2016;
Chaganty & Liang, 2013), which can help us to choose an
appropriate Di. These investigations are under two assump-
tions: 1) {ϕk} is i.i.d. with a standard Gaussian distribution;
2) β∗

i , i ∈ [m] are linearly independent, along with the fol-
lowing two key facts: E{y2(ϕϕτ −I)} =

∑m
i=1 2π

∗
i β

∗
i β

∗τ
i ,

E{y3ϕ⊗ ϕ⊗ ϕ} −
∑d

j=1 E{y3(ej ⊗ ϕ⊗ ej + ej ⊗ ej ⊗
ϕ+ ϕ⊗ ej ⊗ ej)} =

∑m
i=1 6π

∗
i β

∗
i ⊗ β∗

i ⊗ β∗
i . Therefore,

one can use the tensor-based method (Pearson, 1894; Zhong
et al., 2016) to recover the parameters to a given precision
with a requirement on the number of samples.

We now describe the derivation of Di under the asymptoti-
cally stationary and ergodic assumption on the regressor by
the tensor-based method. There are some previous explo-
rations on this problem. For example, under the assumption
that the regressor is i.i.d. with a general continuous dis-
tribution, Sedgh et al. (2016) have constructed a novel
third-order cross-moments, which can be used to obtain Di

by the tensor decomposition method. The principle compo-
nent analysis result established by Chen (2002) implies that
under the asymptotically stationary and ergodic assumption
on the regressor, one can still obtain Di. By utilizing these
two results, it is possible to obtain the theoretical guaran-
tee for the tensor-based initialization technique under our
assumption, which will be considered in our future work.

For the convergence rate analysis, we need the following
additional but fairly general assumptions on the regressors:

Assumption 3.6. The sequence of regressor {ϕk} satisfies
the following conditions:

(1) inf
k≥0

E{ϕkϕ
τ
k|Fk−1} ≜ c > 0, sup

k≥0
E{∥ϕk∥4|Fk−1} ≜

c̄ < ∞;

(2) There exist positive constants γ, δ and b0 such that for
any 0 < b < b0 and any k ≥ 0, we have

sup
∥β∥=1

P ((βτϕk)
2 < b|Fk−1) ≤ γbδ. (8)

Remark 3.7. The condition (8) effectively says that the
conditional probability density function of ϕk given Fk−1

should be free of discrete and singular components, which
admits a quite large class of continuous distributions, e.g.,
Gaussian, uniform, etc. More discussions about (8) can be
found in (Niedzwiecki & Guo, 1991). We now give two
examples of Assumption 2.9 and 3.6:

Example 2: {ϕk} is i.i.d. with E{∥ϕ1∥4+κ} < ∞ for
a small constant κ > 0 and also satisfies the distribution
assumption required by Assumption 2.9.

Example 3: {ϕk} is generated by the stable dynamical
system (2), where {ek} is i.i.d. with a bounded elliptically
contoured distribution (Fang et al., 2018), e.g., the uniform
distribution defined on an ellipse.

Based on the convergence result in Theorem 3.1, we now
provide its convergence rate in the following theorem:

Theorem 3.8. Let the conditions of Theorem 3.1 and As-
sumption 3.6 hold. If πminR

∗
minc

σc̄ ≥ C > 0, then we have

∥β̃k,i∥2 = O

(
1

k
1
2−η

)
, ∥π̃k,i∥2 = O

(
1

k
1
2−η

)
, a.s.,

where β̃k,i = βk,i − β∗
i , π̃k,i = πk,i − π∗

i , i ∈ [m], η is an
arbitrary small positive constant, c and c̄ are the constants
defined in Assumption 3.6, and C is a constant related to
the local convergence property in Theorem 3.1.

3.2. Clustering Performance of Algorithm 1

Based on the estimate βk,i, we can categorize the new data
{ϕk, yk+1} to the cluster according to the following crite-
rion:

Ik = argmin
i∈[m]

{(yk+1 − βτ
k,iϕk)

2}. (9)

In order to evaluate the data clustering performance, we
introduce the following within-cluster error:

Jn =
1

n

n∑
k=1

(yk+1 − βτ
k,Ik

ϕk)
2, (10)

which is widely adopted in the analysis of the MLR prob-
lem (Yi et al., 2016). Then we give a lower bound to the
probability that the new data {ϕk, yk+1} is categorized to
the correct cluster and an upper bound of the within-cluster
error (10) in the following theorem:

Theorem 3.9. Let the conditions of Theorem 3.1 hold. Then
we have

lim
k→∞

P ({ϕk, yk+1} is categorized correctly)

≥1− E

{
max
j ̸=i

exp

(
−
((β∗

i − β∗
j )

τϕ)2

8σ2

)}
,

(11)

and
lim
n→∞

Jn ≤ σ2 + γ ≤ σ2, a.s., (12)
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where ϕ is a random vector with p.d.f g defined in As-
sumption 2.9, γ =

∑m
i=1 π

∗
i minj ̸=i E {γi,j(ϕ)} ≤ 0 with

γi,j(ϕ) = [(β∗
i − β∗

j )
τϕ]2Φ

(
−|(β∗

i − β∗
j )

τϕ|/(2σ)
)
−

2σ|(β∗
i − β∗

j )
τϕ|Φ′ (−|(β∗

i − β∗
j )

τϕ|/(2σ)
)
, Φ(x) =

P (t ≤ x) and Φ′(x) = E{tI{t≤x}} with t being a stan-
dard Gaussian random variable.

Remark 3.10. The above theorem demonstrates that the
data clustering performance is positively correlated with
the signal-to-noise ratio R∗

min

σ . Specifically, if the signal-
to-noise ratio R∗

min

σ tends to infinity, the probability that
{ϕk, yk+1} can be categorized correctly will tend to 1 and
the upper bound of the within-cluster error will tend to σ2.
In addition, from the proof of Theorem 3.9, one can see that
the bounds given in (11) and (12) are actually the same as
those for the case where the true parameters β∗

i are known.

4. Proof of Main Results
In this section, we give the proof of Theorems 3.1, 3.8-3.9.

4.1. Proof of Theorem 3.1

Ljung’s ODE method (Ljung, 1977) provides a general an-
alytical technique for the convergence analysis of recur-
sive algorithms by establishing the relationship between the
convergence properties of the recursive algorithm and the
stability of the corresponding ODEs.

In this subsection, we adopt this ODE method to establish
the convergence results of Algorithm 1. For this purpose,
we first rewrite (7) as follows:

xk+1 = ΠS

[
xk +

1

k
Q(xk, ϕk, yk+1)

]
, (13)

where xk = [βτ
k,1 πk,1 · · · βτ

k,m πk,m vecτ (Rk,1) · · ·
vecτ (Rk,m)]τ , the projected domain S is defined as

S =
{
x ∈ Rm(d+1)+d2

: βi ∈ Di, πi ∈ Dm+1, x =

[βτ
1 π1 · · · βτ

m πm vecτ (R1) · · · vecτ (Rm)]τ
}
,

the function Q(xk, ϕk, yk+1) is defined as

Q(xk,ϕk, yk+1) =
[
Q1,1(xk, ϕk, yk+1)

τ

Q1,2(xk, ϕk, yk+1) · · · Qm,1(xk, ϕk, yk+1)
τ

Qm,2(xk, ϕk, yk+1) vecτ (Q̄1(xk, ϕk, yk+1))

· · · vecτ (Q̄m(xk, ϕk, yk+1))
]τ
,

with

Qi,1(xk, ϕk, yk+1) = R−1
k+1,iαk,iϕk(yk+1 − βτ

k,iϕk),

Qi,2(xk, ϕk, yk+1) = αk,i − πk,i,

Q̄i(xk, ϕk, yk+1) = αk,iϕkϕ
τ
k −Rk,i, i ∈ [m],

(14)

where vec(·) denotes the operator by stacking the columns
of a matrix on top of one another. In order to analyze (13),
we construct the following ODEs,

d

dt
βi(t) = R−1

i (t)fi,1(x(t)), (15a)

d

dt
πi(t) = fi,2(x(t)), (15b)

d

dt
Ri(t) = Gi(x(t))−Ri(t), (15c)

where

fi,1(x(t)) = lim
k→∞

E{αk,iϕk (yk+1 − βi(t)
τϕk)},

fi,2(x(t)) = lim
k→∞

E{αk,i} − πi(t),

Gi(x(t)) = lim
k→∞

E{αk,iϕkϕ
τ
k}, i ∈ [m],

with x(t) = [βτ
1 (t) π1(t) · · · βτ

m(t) πm(t) vecτ (R1(t))
· · · vecτ (Rm(t))]τ .

We first give the main results related to Ljung’s ODE method
in the following proposition, which plays an important role
in the convergence analysis of this paper.

Proposition 4.1. (Ljung, 1977) Let SA be an open, bounded
and connected set in Rd2+(d+1)m and S̄ be its compact sub-
set. If the ODEs (15) have an invariant set Sc with domain
of attraction SA ⊃ S̄, then we have xk → Sc as k → ∞
almost surely, provided that the following conditions are
satisfied:

C1) The function Q(x, ϕ, y) defined in (13) is locally Lips-
chitz continuous for x ∈ SA with fixed ϕ and y, that is, for
any x1, x2 ∈ U(x, ρ(x)) with ρ(x) > 0,

∥Q(x1, ϕ, y)−Q(x2, ϕ, y)∥ < R(x, ϕ, y, ρ(x))∥x1−x2∥,

where U(x, ρ(x)) is the ρ(x)-neighborhood of x, i.e.,
U(x, ρ(x)) = {x̄ : ∥x− x̄∥ < ρ(x)};

C2) 1
n

n∑
k=1

R(x, ϕk, yk+1, ρ(x)) converges to a finite limit

for any x ∈ SA as n → ∞;

C3) lim
k→∞

E {Q(x, ϕk, yk+1)} exists for x ∈ SA and also

lim
n→∞

1

n

n∑
k=1

Q(x, ϕk, yk+1) = lim
k→∞

E {Q(x, ϕk, yk+1)} .

where x =
[
βτ
1 π1 · · · βτ

m πm vecτ (R1) · · · vecτ (Rm)
]τ

.

We prove Theorem 3.1 by verifying all the conditions re-
quired by Ljung’s ODE method in Proposition 4.1. We
first verify Conditions C1)-C3) related to the function
Q(xk, ϕk, yk+1) in the following Lemma with its proof
given in Appendix A.1.
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Lemma 4.2. Under Assumptions 2.3-2.9, Conditions
C1)-C3) in Proposition 4.1 are satisfied on the set
SA = {x : ∥βi∥ < M,πi > πmin, Ri > 0, x =
[βτ

1 π1 · · · βτ
m πm vecτ (R1) · · · vecτ (Rm)]τ}, where M

can be chosen sufficiently large and πmin ∈ (0, 1) can be
sufficiently small.

By Lemma 4.2, the remaining key step in Ljung’s ODE
method is to establish the stability analysis of the ODEs
(15), which is illustrated in the following Lemma. Here we
let SA be sufficiently close to S̄.

Lemma 4.3. Under conditions of Theorem 3.1, the ODEs
(15) has an invariant set Dc = {x∗} with the domain of
attraction SA ⊃ S̄, where

x∗ = [β∗τ
1 π∗

1 · · · β∗τ
m π∗

m π∗
1vecτ (G) · · · π∗

mvecτ (G)]
τ
,

(16)
with G = E{ϕϕτ}, ϕ is a random vector with p.d.f g defined
in Assumption 2.9, and

S̄ = {x ∈ SA : βi ∈ Di, πi ∈ Dm+1, i ∈ [m], x =

[βτ
1 π1 · · · βτ

m πm vecτ (R1) · · · vecτ (Rm)]τ}.
(17)

Here we provide a proof sketch of this lemma and give the
proof details in Appendix A.1.

Proof Sketch of Lemma 4.3. Denote β̃i(t) = βi(t) − β∗
i ,

and π̃i(t) = πi(t)−π∗
i , i ∈ [m]. We consider the following

Lyapunov function:

V (x(t))

=
1

2

m∑
i=1

[β̃τ
i (t)Ri(t)β̃i(t) + π̃2

i (t) + ∥Ri(t)− π∗
i G∥2F ],

where G is defined in (16). Then we obtain the following
derivative of V (x(t)) along the trajectories of ODEs (15):

dV (x(t))

dt
=

m∑
i=1

[
β̃τ
i (t)fi,1(x(t)) + π̃i(t)fi,2(x(t))

+
1

2
β̃τ
i (t)(Gi(x(t))−Ri(t))β̃i(t) + vec(Ri(t)− π∗

i G)τ

× vec(Gi(x(t))−Ri(t))
]
≜

m∑
i=1

Ji(x(t)).

We proceed to show that Ji(x(t)) ≤ 0. For this, we first
define the following events for i ∈ [m] and j ∈ [m]\{i},

A = {ω : |w| ≤ ση,w ∼ N (0, σ2)}
Ai,j(t) = {ω : |β̃τ

i (t)ϕ| ∨ |β̃τ
j (t)ϕ| ≤ 0.25|(β∗

j − β∗
i )

τϕ|},

A′
i,j = {ω : |(β∗

j − β∗
i )

τϕ| ≥ 4
√
2ση},

Ai(t) = A ∩ (∩j ̸=iAi,j(t)) ∩ (∩j ̸=iA′
i,j),

Bi = {ω : y = β∗τ
i ϕ+ w,w ∼ N (0, σ2)},

where a ∨ b denotes max{a, b}, η is a parameter to be
determined, and ϕ is defined in Theorem 3.9. Besides, in
the following analysis, Ai,j(t) and Ai(t) are abbreviated as
Ai,j and Ai for simplicity of expression, respectively.

By Lemmas A.1-A.2 in Appendix A.1, with simple calcula-
tions, it is not difficult to obtain that

Ji(x(t)) ≤ −π∗
i P (Ai)E

{
αi(t)ϕϕ

τ
∣∣Ai ∩Bi

}
∥β̃i(t)∥2

− π̃2
i (t)− ∥Ri(t)− π∗

i G∥2F
+ β̃τ

i (t)E {ϕ(αi(t)− α∗
i ) (y − β∗τ

i ϕ)}

+ π̃i(t)E {αi(t)− α∗
i }+

1

2
β̃τ
i (t)[Gi(x(t))−Ri(t)]β̃i(t)

+ vec(Ri(t)− π∗
i G)τvec(E{(αi(t)− α∗

i )ϕϕ
τ}),

(18)
where α∗

i (αi(t)) with its explicit expression in (23)((22))
in the Appendix A.1 represents the posterior probabilities
that the data {ϕ, y} belongs to the i-th model with true
parameters x∗ in (16) (the parameter estimate x(t) in (15)).

We now analyze the right-hand-side (RHS) of (18) term by
term. On the event Ai ∩Bi, we have

αj(t) ≤ [πj(t)/πi(t)] exp(−η2), j ̸= i, (19)

and then αi(t) ≥ 1− 1−πmin

πmin
exp(−η2). Thus, it is easy to

see that the first term on the RHS of (18) has an upper bound
−c1π

∗
i P (Ai)[1 − 1−πmin

πmin
exp(−η2)]∥β̃i(t)∥2, where c1 is

a positive constant.

We then use the following three facts to bound the fourth,
fifth, and last terms on the RHS of (18). First, on the event
Ai∩Bi, there exist small positive constant δi,1, δi,2, i ∈ [m]

such that |αi(t) − α∗
i | ≤

∑m
i=1[δi,1∥β̃i(t)∥ + δi,2|π̃i(t)|].

Second, on the event Bc
i , without loss of generality, we as-

sume the data {ϕ, y} is generated by the j-th (j ̸= i) model.
Then similar to (19), we can see that on the event Bc

i ∩Aj ,
both αi(t) and α∗

i have an upper bound 1
πmin

exp(−η2).
Besides, by Lemma A.2, we know that P (Ac

j) has an up-
per bound O

(
(dmax + ση)/R∗

min + exp(−η2/2)
)
. Thus

we can obtain the upper bounds of fourth, fifth and last
terms on the event Bc

i . Third, on the event Ac
i , the fourth,

fifth and last terms can also be bound by the probability of
Ac

i , i.e., O
(
(dmax + ση)/R∗

min + exp(−η2/2)
)
. Based on

these three facts, we can obtain that if dmax and signal-to-
noise ratio R∗

min

σ satisfy the following condition: there exist
positive and suitable constants b1 and b2 such that

R∗
min ≥ b2mmax{σ[log(b1m/πmin)]

3/2, d3max, dmax},

then the fourth, fifth and last terms in (18) can be suppressed
by the first three terms of (18).

By (15c), it is clear that the sixth term on the RHS of (18)
will tend to zero. Hence we can obtain that dV (x(t))

dt ≤ 0
for x ∈ S̄. From LaSalle invariance principle, and the facts
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that
{
x ∈ S̄ : dV (x(t))

dt = 0
}
= {x∗} and SA is sufficiently

close to S̄, we can obtain the desired result.

Proof of Theorem 3.1. By Proposition 4.1, Lemma 4.2 and
Lemma 4.3, we can obtain that βk,i → β∗

i , πk,i → π∗
i , i ∈

[m], a.s., as k → ∞. Hence we complete the proof.

4.2. Proof of Theorem 3.8

From Theorem 3.1, we know that the estimates βk,i and πk,i

are convergent almost surely. Based on this fact, by follow-
ing the Lyapunov analysis idea of the classical least-squares
for linear regression models (e.g., Guo (1995)) and using the
martingale convergence theorem (Chow & Teicher, 2003)
to estimate the cumulative effect of random martingale dif-
ference sequence, we can obtain the desired convergence
rate result in Theorem 3.8. The proof details are provided
in Appendix A.2.

4.3. Proof of Theorem 3.9

Based on the convergence results in Theorem 3.1 and As-
sumption 2.5-2.9, especially the asymptotically stationary
and ergodic property of {ϕk}, it is not difficult to obtain
the data clustering performance in Theorem 3.9. The proof
details are provided in Appendix A.3.

5. Simulation Results
In this section, we conduct a simulation to illustrate the
effectiveness of our algorithm.

Consider the input-output data {ϕk, yk+1}∞k=1 are generated
by the following dynamical system:

yk+1 = β∗τ
zk
ϕk + wk+1,

ϕk+1 = 0.5ϕk + ek+1,

where the true parameters β∗
1 = [1 15 13]τ , β∗

2 = [−10 −
11 − 12]τ and β∗

3 = [3 4 3]τ , the latent variable {zk}
is i.i.d. with P (zk = 1) = 0.2, P (zk = 1) = 0.5 and
P (zk = 3) = 0.3, the state noise {ek+1} is i.i.d. with
N (0, I) and the measurement noise {wk+1} is i.i.d. with
N (0, 1). We can see that the input data {ϕk} is not i.i.d.,
and all assumptions in Theorem 3.1 are satisfied.

We first use the robust tensor method (Anandkumar et al.,
2014) with N = 5000 samples at each iteration and a total
iteration step T = 10 to obtain the estimate of initialization
regions Di(i ∈ [m + 1]). Then we conduct the online Al-
gorithm 1 to estimate the unknown true parameters. The
estimation error measured by ∥βk,i−β∗

i ∥2 and the clustering
performance evaluated by the within-cluster error (10) are
plotted in Figure 1, respectively. The convergence of estima-
tion and clustering errors can demonstrate the effectiveness
of our algorithm.
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Figure 1. Estimation error (left) and clustering performance (right)
of Algorithm 1.

6. Conclusion
This paper considers the parameter learning and data clus-
tering problem for MLR with multiple sub-models and arbi-
trary mixing weights. To deal with the data streaming case,
we propose an online learning algorithm to estimate the un-
known parameters. By utilizing Ljung’s ODE method, we
establish the almost sure convergence results of this MLR
problem without the traditional i.i.d. assumption on the
input data for the first time. Based on the convergence prop-
erty and using the classical stochastic Lyapunov function
method, we also obtain the convergence rate analysis of the
proposed algorithm for the first time. In addition, the data
clustering can asymptotically achieve the same performance
as the case with known parameters. Future work will con-
sider how to relax the asymptotically stationary and ergodic
assumption on the input data, and how to design algorithms
with global convergence performance for the MLR problem.
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A. Proof of Main Results
In this section, we provide proof details of Theorems 3.1, 3.8-3.9.

A.1. Proof of Theorem 3.1

In the following, we verify all the conditions in Proposition 4.1 to establish the convergence result of Algorithm 1 in Theorem
3.1. For this purpose, we first provide a related lemma on the properties of the regressor, the latent variable and the noise.

Lemma A.1. Under Assumptions 2.5-2.9, {dk ≜ [ zk ϕτ
k wk+1 ]τ , k ≥ 1} is an asymptotically stationary and ergodic

process with bounded fourth moment. In addition, any measurable function of dk is also an asymptotically stationary and
ergodic stochastic process.

This lemma can be easily obtained by Assumptions 2.5-2.9 and the ergodicity theorem of the stationary process, and the
proof details are omitted.

We now provide the proof of Lemma 4.2, where Conditions C1)-C3) in Proposition 4.1 are verified.

Proof of Lemma 4.2. From the fact ∂R−1

∂R = −R−1 ⊗R−1 (Gentle, 2008), we have
∥∥∥∂R−1

∂R

∥∥∥ =
∥∥R−1 ⊗R−1

∥∥ = 1
λ2
min(R)

,

where ⊗ is the Kronecker product for matrices. Besides, for a matrix A ∈ Rd with q row partitions and s column partitions, it
is clear that ∥A∥ ≤ ∥A∥F ≤

∑q
i=1

∑s
j=1 ∥Aij∥F ≤

√
d
∑q

i=1

∑s
j=1 ∥Aij∥, where Aij(i ∈ [q], j ∈ [s]) is the sub-matrix

and ∥ · ∥F is the Frobenius norm of matrix. Then by (13) and (14), we have

1√
d

∥∥∥∥∂Q(x, ϕ, y)

∂x

∥∥∥∥
≤

m∑
i=1

 m∑
j=1

2∑
l=1

[∥∥∥∥∂Qi,l(x, ϕ, y)

∂βj

∥∥∥∥+ ∥∥∥∥∂Qi,l(x, ϕ, y)

∂πj

∥∥∥∥]+ ∥∥∥∥∂Qi,1(x, ϕ, y)

∂Ri

∥∥∥∥


+

m∑
i=1

 m∑
j=1

[∥∥∥∥∂Q̄i(x, ϕ, y)

∂βj

∥∥∥∥+ ∥∥∥∥ Q̄i(x, ϕ, y)

∂πj

∥∥∥∥]+ ∥∥∥∥∂Q̄i(x, ϕ, y)

∂Ri

∥∥∥∥


≤
m∑
i=1

1

λmin(Ri)

{[
αi(y − βτ

i ϕ)
2∥ϕ∥2

σ2
+ αi∥ϕ∥2 +

m∑
j=1

αiαj |y − βτ
i ϕ||y − βτ

j ϕ|∥ϕ∥2

σ2
+

αi|y − βτ
i ϕ|∥ϕ∥

πmin

+

m∑
j=1

αiαj |y − βτ
i ϕ|∥ϕ∥

πmin
+

αi|y − βτ
i ϕ|∥ϕ∥

σ2
+

m∑
j=1

αiαj |y − βτ
j ϕ|∥ϕ∥

σ2
+ 1 +

αi

πmin
+

m∑
j=1

αiαj

πmin

]

+
αi|y − βτ

i ϕ|∥ϕ∥
λmin(Ri)

}
+

m∑
i=1

αi|y − βτ
i ϕ|∥ϕ∥

σ2
+

m∑
j=1

αiαj |y − βτ
j ϕ|∥ϕ∥

σ2
+

αi

πmin
+

m∑
j=1

αiαj

πmin

+m∥Id ⊗ Id∥

≤ 1

λ̄min

[
2(m+ 1)∥ϕ∥2(y2 +M2∥ϕ∥2)

σ2
+ ∥ϕ∥2 + (m+ 1)(σ2 + πmin)

σ2πmin
∥ϕ∥(|y|+M∥ϕ∥) +m+

m+ 1

πmin

]
+

∥ϕ∥(|y|+M∥ϕ∥)
λ̄2
min

+
(m+ 1)(|y|+M∥ϕ∥)∥ϕ∥

σ2
+

m+ 1

πmin
+m

≜R(x, ϕ, y, ρ(x)),

(20)

where λ̄min = mini∈[m] λmin(Ri). For x ∈ SA, choose ρ(x) sufficiently small such that any point x̄ in the area U(x, ρ(x))
has the property that λ̄min > 0. By (20), for any fixed ϕ and y, we can obtain that R(x, ϕ, y, ρ(x)) is bounded, i.e.,
Q(x, ϕ, y, ρ(x)) is locally Lipschitz continuous, thus Condition C1) is verified.

For Condition C2), we only need to verify its upper bound to satisfy C2) since R(x, ϕ, y, ρ(x)) is defined as the Lipschitz
constant. It is obvious because ∥ϕk∥, ∥ϕk∥yk+1, ∥ϕk∥2y2k+1 and ∥ϕk∥4 are all asymptotically stationary and ergodic by
Lemma A.1.

The verification of Condition C3) is straightforward by Lemma A.1 and model (1), and the details are omitted. This
completes the proof of this lemma.
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We now provide the proof of the stability analysis of the ODEs (15) established in Lemma 4.3. For this, we first give some
useful lemmas below.

Lemma A.2. For a random variable y ∼
∑m

i=1 π
∗
i N (ai, σ

2) with ai and π∗
i ∈ (0, 1) being constants, and also

∑m
i=1 π

∗
i =

1, we have

E


y exp

(
− (y−ai)

2

2σ2

)
∑m

j=1 π
∗
j exp

(
− (y−aj)2

2σ2

)2
 = ai, E


π∗
i exp

(
− (y−ai)

2

2σ2

)
∑m

j=1 π
∗
j exp

(
− (y−aj)2

2σ2

)2
 = π∗

i , i ∈ [m].

Proof. It can be easily obtained by using the distribution of y.

Lemma A.3. Let w ∼ N (0, σ2) and ϕ ∈ Rd be a random vector with p.d.f being g(ϕ) defined in Assumption 2.9. Then we
have the following properties:

(i) P (|w| ≥ ση) ≤ 2 exp
(
−η2

2

)
;

(ii) There exist positive constants c0, c1 and c2 such that E{ϕϕτ} = c0Σ and c1I ≤ c0Σ ≤ c2I , where Σ is defined in
Assumption 2.9. Besides, there exists a constant c3 such that E{∥ϕ∥4} < c3;

(iii) For any fixed vector v ∈ Rd and positive constant M , there exists a constant c ∈
(
0, ∥Σ1/2v∥

M

)
such that P (|ϕτv| ≤

M) = cM
∥Σ1/2v∥ ;

(iv) For any two fixed vectors u, v ∈ Rd satisfying ∥Σ1/2u∥ ≥ ∥Σ1/2v∥, we have P (|ϕτu| ≤ |ϕτv|) ≤ ∥Σ1/2v∥
∥Σ1/2u∥ ≤ c2∥v∥

c1∥u∥ .
Besides, we have E {ϕϕτ ||ϕτu| ≥ |ϕτv|} ≤ 2c2.

Proof. The property (i) can be easily obtained by the Gaussian property of w.

We now verify the properties (ii) and (iii). Denote ϕ̄ = Σ−1/2ϕ. By Assumption 2.9, we know that the p.d.f of ϕ̄ has the
rotation-invariant property and thus we have E{ϕ̄ϕ̄τ} = c0I with c0 being a positive constant (Fang et al., 2018).

The first part of (ii) can be obtained by the positive-definiteness and boundedness of Σ and the second part of (ii) holds by
the u.i. property of {∥ϕk∥4}. Thus the property (ii) can be verified.

Denote ϕ̄(i) as the i-th element of ϕ̄. From the rotation-invariant property of ϕ̄, we have

P (|ϕτv| ≤ M) = P (|ϕ̄τ (Σ1/2v)| ≤ M) = P (|ϕ̄(1)|∥Σ1/2v∥ ≤ M) = F

(
M

∥Σ1/2v∥

)
− F

(
− M

∥Σ1/2v∥

)
=

cM

∥Σ1/2v∥
,

where F denotes the marginal distribution function of the p.d.f of ϕ̄(1). Thus (iii) is proved.

Moreover, by Lemmas 6 and 7 in (Yi et al., 2016) and the rotation invariant property of the p.d.f of ϕ̄, (iv) can be obtained.
This completes the proof of Lemma A.3.

We now provide the proof details of Lemma 4.3.

Proof of Lemma 4.3. We now study the stability of ODEs (15). For this, consider the following Lyapunov function:

V (x(t)) =
1

2

m∑
i=1

[β̃τ
i (t)Ri(t)β̃i(t) + π̃2

i (t) + ∥Ri(t)− π∗
i G∥2F ],

where β̃i(t) = βi(t)− β∗
i , π̃i(t) = πi(t)− π∗

i , i ∈ [m], G = E{ϕϕτ}, ϕ is a random vector with its p.d.f being g defined
in Assumption 2.9. We then have the following derivative of V (x(t)) along the trajectories of ODEs (15):

dV (x(t))

dt
=

m∑
i=1

[
β̃τ
i (t)fi,1(x(t)) + π̃i(t)fi,2(x(t)) +

1

2
β̃τ
i (t)(Gi(x(t))−Ri(t))β̃i(t)

]

+ vec(Ri(t)− π∗
i G)τvec(Gi(x(t))−Ri(t))

]
≜

m∑
i=1

Ji(x(t)),

(21)
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where fi,1(x(t)) = E [αi(t)ϕ (y − βτ
i (t)ϕ)], fi,2(x(t)) = E [αi(t)]− πi(t), Gi(x(t)) = E [αi(t)ϕϕ

τ ] with

αi(t) =
πi(t) exp

(
− (y−βτ

i (t)ϕ)
2

2σ2

)
∑m

j=1 πj(t) exp
(
− (y−βτ

j (t)ϕ)
2

2σ2

) , (22)

and the random variable y given ϕ obeys the distribution
∑m

i=1 π
∗
i N (β∗τ

i ϕ, σ2).

By Lemma A.2, we have fi,1(x
∗) = 0. Denote

α∗
i =

π∗
i exp

(
− (y−β∗τ

i ϕ)2

2σ2

)
∑m

j=1 π
∗
j exp

(
− (y−β∗τ

j ϕ)2

2σ2

) . (23)

By Lemma A.2, we also have E[a∗i ] = π∗
i and it follows that fi,2(x∗) = 0. Thus we have

Ji(x(t)) = β̃τ
i (t) (fi,1(x(t))− fi,1(x

∗)) + π̃i(t) (fi,2(x(t))− fi,2(x
∗)) +

1

2
β̃τ
i (t)(Gi(x(t))−Ri(t))β̃i(t)

+ vec(Ri(t)− π∗
i G)τvec(Gi(x(t))−Ri(t)) ≜

4∑
j=1

Ji,j(x(t)).
(24)

We now analyze the RHS of (24) term by term. Without loss of generality, we only provide the analysis for the case i = 1.

Step 1: Analysis of the term J1,1(x(t)). First, by the mean-value theorem, we have

J1,1(x(t)) = −E
{
α1(t)(β̃

τ
1 (t)ϕ)

2
}
+ E

{
β̃τ
1 (t)ϕ(α1(t)− α∗

1) (y − β∗τ
1 ϕ)

}
=− E

{
α1(t)(β̃

τ
1 (t)ϕ)

2
}
+

1

σ2
E
{
(β̃τ

1 (t)ϕ)
2α1u(t)(1− α1u(t)) (y − βτ

1u(t)ϕ) (y − β∗τ
1 ϕ)

}
− 1

σ2

m∑
j=2

E
{
β̃τ
1 (t)ϕϕ

τ β̃j(t)α1u(t)αju(t)(y − βτ
ju(t)ϕ)(y − β∗τ

1 ϕ)
}

+
π̃1(t)

π1u(t)
E
{
β̃τ
1 (t)ϕα1u(t)(1− α1u(t))(y − β∗τ

1 ϕ)
}
−

m∑
j=2

π̃j(t)

πju(t)
E
{
β̃τ
1 (t)ϕα1u(t)αju(t)(y − β∗τ

1 ϕ)
}

(25)

where βτ
iu(t)ϕ is between βτ

i (t)ϕ and β∗τ
i ϕ, πiu(t) is between πi(t) and π∗

i , and αiu(t) =

πiu(t) exp
(
− (y−βτ

iu(t)ϕ)
2

2σ2

)
/
(∑m

j=1 πju(t) exp
(
− (y−βτ

ju(t)ϕ)
2

2σ2

))
, i ∈ [m].

We proceed to analyze the RHS of (25) term by term. For this, we introduce the following events for j = 2, · · · ,m,

A1 = {ω : |w| ≤ ση,w ∼ N (0, σ2)},
A2,j = {ω : |ϕτ (β1(t)− β∗

1)| ∨ |ϕτ (βj(t)− β∗
j )| ≤ 0.25|ϕτ (β∗

j − β∗
1)|},

A3,j = {ω : |ϕτ (β∗
j − β∗

1)| ≥ 4
√
2ση}.

(26)

(In our analysis, events (e.g., A2,j) may be related to the variable t, and we do not express this relationship explicitly for
simplicity of expression.) Then by Lemma A.3, we have

P (Ac
1) ≤ 2 exp

(
−η2

2

)
, P (Ac

2,j) ≤
8c2dmax

c1R∗
min

, P (Ac
3,j) ≤

4
√
2cc0ση

c1R∗
min

. (27)

We now give the upper bound of the first term on the RHS of (25). For this, let us first denote Ei{·} as the abbreviation to
Ey∼N (β∗τ

i ϕ,σ2){·}, i ∈ [m] and yj as the random variables with distribution N (β∗τ
j ϕ, σ2) given ϕ. Then we have

M1(x(t)) ≜E
{
α1(t)(β̃

τ
1 (t)ϕ)

2
}
=

m∑
j=1

π∗
jEj

{
α1(t)(β̃

τ
1 (t)ϕ)

2
}
≥ π∗

1E1

{
α1(t)(β̃

τ
1 (t)ϕ)

2
}
. (28)
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Denote A1 = A1 ∩ A2,2 · · · ∩ A2,m ∩ A3,2 · · · ∩ A3,m. Then on the event A1, we have

1− α1(t) =

m∑
l=2

αl(t) =

m∑
l=2

πl(t) exp
(
− (y1−βτ

l (t)ϕ)
2

2σ2

)
∑m

j=1 πj(t) exp
(
− (y1−βτ

j (t)ϕ)
2

2σ2

)
≤

m∑
l=2

πl(t)

π1(t)
exp

(
(β∗τ

1 ϕ− βτ
1 (t)ϕ+ w)2

2σ2
− (β∗τ

1 ϕ− βτ
l (t)ϕ+ w)2

2σ2

)
≤

m∑
l=2

πl(t)

π1(t)
exp(−η2) ≤ δ1 exp(−η2),

(29)

where δ1 = 1−πmin

πmin
. Besides, by Lemma A.3 and the independence property between ϕ and w, we have

E1 {ϕϕτ |A1} = E1 {ϕϕτ} ≤ c2I, E1 {ϕϕτ |A2,j} ≤ 2c2I, E1 {ϕϕτ |A3,j} ≤ c2I, j = 2, · · · ,m, (30)

then it follows that

E1 {ϕϕτ IA1
} ≤ E1 {ϕϕτ IA1

}+
m∑
j=2

(
E1

{
ϕϕτ IAc

2,j

}
+ E1

{
ϕϕτ IAc

3,j

})

≤

P (Ac
1) +

m∑
j=2

(
2P (Ac

2,j) + P (Ac
3,j)
) c2I.

(31)

By (29) and (31), we have

E1 {α1(t)ϕϕ
τ} ≥ E1 {α1(t)ϕϕ

τ IA1
} ≥ (1− δ1 exp(−η2))E1 {ϕϕτ IA1

}
≥(1− δ1 exp(−η2))

(
E1 {ϕϕτ} − E1

{
ϕϕτ IAc

1

})
≥(1− δ1 exp(−η2))

(
c1I −

[
P (Ac

1) +
∑m

j=2

(
2P (Ac

2,j) + P (Ac
3,j)
)]

c2I
)
.

(32)

Then by (27) and (28), we can obtain

M1(x(t)) ≥ π∗
1(1− δ1 exp(−η2))

(
c1 − c2

[
P (Ac

1) +
∑m

j=2

(
2P (Ac

2,j) + P (Ac
3,j)
)])

∥β̃1(t)∥2 ≥ m̄∥β̃1(t)∥2, (33)

where m̄ = π∗
1(1− δ1 exp(−η2))

(
c1 − 2c2

[
exp

(
−η2

2

)
+

(m−1)(8c2dmax+2
√
2cc0ση)

c1R∗
min

])
.

We now consider the second term on the RHS of (25). For this, let us denote M2(x(t)) =

E
{
(β̃τ

1 (t)ϕ)
2α1u(t)(1− α1u(t)) (y − βτ

1u(t)ϕ) (y − β∗τ
1 ϕ)

}
, then we have

M2(x(t)) =

m∑
j=1

π∗
jEj

{
(β̃τ

1 (t)ϕ)
2α1u(t)(1− α1u(t)) (y − βτ

1u(t)ϕ) (y − β∗τ
1 ϕ)

}
∆
=

m∑
j=1

π∗
jM2,j(x(t)). (34)

For the term M2,1(x(t)), on the event A1 = A1 ∩A2,2 · · · ∩A2,m ∩A3,2 · · · ∩A3,m, similar to (29), we have 1−α1u(t) ≤
δ1 exp(−η2). Besides, we have

∣∣y1 − βτ
1u(t)ϕ

∣∣ ≤ 1
4∥ϕ∥R

∗
max + ση. Then it follows that

L1(x(t)) = E1

{(
β̃τ
1 (t)ϕ

)2
α1u(t)(1− α1u(t)) (y − βτ

1u(t)ϕ) (y − β∗τ
1 ϕ) IA1

}
≤E1

{(
β̃τ
1 (t)ϕ

)2
δ1 exp(−η2)

(
1

4
∥ϕ∥R∗

maxση + σ2η2
)
IA1

}
≤δ1 exp(−η2)ση

(
1

4
R∗

maxc
3/4
3 + dc2ση

)
∥β̃1(t)∥2.

(35)

On the event Ac
1, by Lemma A.3 and the independence property between ϕ and w, we have

L2(x(t)) = E1

{(
β̃τ
1 (t)ϕ

)2
α1u(t)(1− α1u(t)) (y − βτ

1u(t)ϕ) (y − β∗τ
1 ϕ) IAc

1

}
≤
(
E1

{(
dmax∥ϕ∥3|w|+ ∥ϕ∥2w2

)
IAc

1

}
+ E1

{(
dmax∥ϕ∥3|w|+ ∥ϕ∥2w2

)
IA2,2···∩A2,m∩A3,2···∩A3,m

})
∥β̃1(t)∥2

≤
(
(
√
3σ2dc2 + dmaxc

3/4
3 σ)

√
P (Ac

1) + (dmaxσc
3/4
3 + σ2dc2)P (A2,2 · · · ∩ A2,m ∩ A3,2 · · · ∩ A3,m)

)
∥β̃1(t)∥2.

(36)
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Thus from (27), (35) and (36), we have

M2,1(x(t)) = L1(x(t)) + L2(x(t)) ≤ m1∥β̃1(t)∥2, (37)

where

m1 = δ1 exp(−η2)ση

(
1

4
R∗

maxc
3/4
3 + dc2ση

)
+
√
2(
√
3σ2dc2 + dmaxc

3/4
3 σ) exp

(
−η2

4

)
+ (dmaxσc

3/4
3 + σ2dc2)

(m− 1)
(
8c2dmax + 4

√
2cc0ση

)
c1R∗

min

.

(38)

Similarly, for the term M2,j(x(t)) with j ̸= 1, let us denote A1 = A1 ∩ A2,j ∩ A3,j . On the event A1, we have

α1u(t) =
π1u(t) exp

(
− (yj−βτ

1u(t)ϕ)
2

2σ2

)
∑m

j=1 πju(t) exp
(
− (yj−βτ

ju(t)ϕ)
2

2σ2

)
≤π1u(t)

πju(t)
exp

(
(β∗τ

j ϕ− βτ
ju(t)ϕ+ w)2

2σ2
−

(β∗τ
j ϕ− βτ

1u(t)ϕ+ w)2

2σ2

)
≤ π1u(t)

πju(t)
exp(−η2) ≤ exp(−η2)

πmin
,

(39)

|yj − βτ
1u(t)ϕ| ≤ 5

4∥ϕ∥R
∗
max + ση and |yj − β∗τ

1 ϕ| ≤ ∥ϕ∥R∗
max + ση, then it follows that

L′
1(x(t)) = Ej

{(
β̃τ
1 (t)ϕ

)2
α1u(t)(1− α1u(t)) (y − βτ

1u(t)ϕ) (y − β∗τ
1 ϕ) IA1

}
≤exp(−η2)

πmin

(
5

4
R∗2

maxEj

{
∥ϕ∥4IA1

}
+

9

4
R∗

maxσηEj

{
∥ϕ∥3IA1

}
+ σ2η2Ej

{
∥ϕ∥2IA1

})
∥β̃1(t)∥2

≤exp(−η2)

πmin

(
5

4
R∗2

maxc3 +
9

4
R∗

maxσηc
3/4
3 + σ2η2dc2

)
∥β̃1(t)∥2.

(40)

On the event Ac
1, we have |yj − βτ

1u(t)ϕ| ≤ ∥ϕ∥(R∗
max + dmax) + |w| and |yj − β∗τ

1 ϕ| ≤ ∥ϕ∥R∗
max + |w|, then it follows

that

L′
2(x(t)) = Ej

{(
β̃τ
1 (t)ϕ

)2
α1u(t)(1− α1u(t)) (y − βτ

1u(t)ϕ) (y − β∗τ
1 ϕ) IAc

1

}
≤
(
(R∗2

max +R∗
maxdmax)Ej

{
∥ϕ∥4IAc

1

}
+ (2R∗

max + dmax)Ej

{
∥ϕ∥3|w|IAc

1

}
+ Ej

{
∥ϕ∥2w2IAc

1

})
∥β̃1(t)∥2

≤
(
(R∗2

max +R∗
maxdmax)c3P (Ac

1) + (2R∗
max + dmax)c

3/4
3 σ

√
P (Ac

1) +
√
3dc2σ

2
√

P (Ac
1)

)
∥β̃1(t)∥2.

(41)

On the event Ac
2,j , we have |yj − βτ

1u(t)ϕ| ≤ 5dmax∥ϕ∥+ |w| and |yj − β∗τ
1 ϕ| ≤ 4dmax∥ϕ∥+ |w|, then it follows that

L′
3(x(t)) = Ej

{(
β̃τ
1 (t)ϕ

)2
α1u(t)(1− α1u(t)) (y − βτ

1u(t)ϕ) (y − β∗τ
1 ϕ) IAc

2,j

}
≤
(
20d2maxEj

{
∥ϕ∥4IAc

2,j

}
+ 9dmaxEj

{
∥ϕ∥3|w|IAc

2,j

}
+ Ej

{
∥ϕ∥2w2IAc

2,j

})
∥β̃1(t)∥2

≤
(
20d2maxc3 + 9dmaxc

3/4
3 σ + dc2σ

2
)
P (Ac

2,j)∥β̃1(t)∥2.

(42)

Besides, on the event A2,j ∩Ac
3,j , we have |yj −βτ

1u(t)ϕ| ≤ 5
√
2ση+ |w| and |yj −β∗τ

1 ϕ| ≤ 4
√
2ση+ |w|, then it follows

that

L′
4(x(t)) = Ej

{(
β̃τ
1 (t)ϕ

)2
α1u(t)(1− α1u(t)) (y − βτ

1u(t)ϕ) (y − β∗τ
1 ϕ) I{A2,j∩Ac

3,j}

}
≤
(
40σ2η2Ej

{
∥ϕ∥2I{Ac

2,j∩Ac
3,j}

}
+ 9

√
2σηEj

{
∥ϕ∥2|w|I{Ac

2,j∩Ac
3,j}

}
+ Ej

{
∥ϕ∥2w2I{Ac

2,j∩Ac
3,j}

})
∥β̃1(t)∥2

≤
(
40σ2η2 + 9

√
2σ2η + σ2

)
dc2P (Ac

3,j)∥β̃1(t)∥2.

(43)
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By (27) and (40)-(43), we can obtain

M2,j(x(t)) = L′
1(x(t)) + L′

2(x(t)) + L′
3(x(t)) + L′

4(x(t)) ≤ m2∥β̃1(t)∥2, (44)

where

m2 =
exp(−η2)

πmin

(
5

4
R∗2

maxc3 +
9

4
R∗

maxσηc
3/4
3 + σ2η2dc2

)
+ 2(R∗2

max +R∗
maxdmax)c3 exp

(
−η2

2

)
+
√
2

(
(2R∗

max + dmax)c
3/4
3 σ +

√
3dc2σ

2

)
exp

(
−η2

4

)
+
(
20d2maxc3 + 9dmaxc

3/4
3 σ + dc2σ

2
) 8c2dmax

c1R∗
min

+
(
40σ2η2 + 9

√
2σ2η + σ2

)
dc2

4
√
2cc0ση

c1R∗
min

.

(45)

From (34), (37) and (44), it follows that

M2(x(t)) ≤ π∗
1m1∥β̃1(t)∥2 + (1− π∗

1)m2∥β̃1(t)∥2, (46)

where m1 and m2 are defined in (38) and (45), respectively.

We now analyze the third term on the RHS of (25). For this, let us denote M3(x(t)) =
m∑
j=2

E
{
β̃τ
1 (t)ϕϕ

τ β̃j(t)α1u(t)αju(t)(y − βτ
ju(t)ϕ)(y − β∗τ

1 ϕ)
}

, then we have

M3(x(t)) =

m∑
l=1

π∗
l

m∑
j=2

El

{
β̃τ
1 (t)ϕϕ

τ β̃j(t)α1u(t)αju(t)(y − βτ
ju(t)ϕ)(y − β∗τ

1 ϕ)
}
≜

m∑
l=1

π∗
l M3,l(x(t)). (47)

For the term M3,1(x(t)), on the event A1 = A1 ∩ A2,j ∩ A3,j , similar to (39), we have αju(t) ≤ 1
πmin

exp(−η2). Besides,
we have |y1 − βτ

ju(t)ϕ| ≤ 5
4R

∗
max∥ϕ∥+ ση, then it follows that

Lj,1(x(t)) = E1

{
β̃τ
1 (t)ϕϕ

τ β̃j(t)α1u(t)αju(t)(y − βτ
ju(t)ϕ)(y − β∗τ

1 ϕ)IA1

}
≤exp(−η2)

πmin

(
5

4
R∗

maxσηE1

{
∥ϕ∥3

}
+ σ2η2E1

{
∥ϕ∥2

})
∥β̃1(t)∥∥β̃j(t)∥

≤exp(−η2)

πmin

(
5

4
R∗

maxσηc
3/4
3 + σ2η2dc2

)(
1

2
∥β̃1(t)∥2 +

1

2
∥β̃j(t)∥2

)
.

(48)

On the event Ac
1, we have |y1 − βτ

ju(t)ϕ| ≤ (R∗
max + dmax)∥ϕ∥+ |w|, then it follows that

Lj,2(x(t)) = E1

{
β̃τ
1 (t)ϕϕ

τ β̃j(t)α1u(t)αju(t)(y − βτ
ju(t)ϕ)(y − β∗τ

1 ϕ)IAc
1

}
≤
(
(R∗

max + dmax)E1

{
∥ϕ∥3|w|IAc

1

}
+ E1

{
∥ϕ∥2w2IAc

1

})
∥β̃1(t)∥∥β̃j(t)∥

≤
(
(R∗

max + dmax)c
3/4
3 σ +

√
3dc2σ

2

)√
P (Ac

1)

(
1

2
∥β̃1(t)∥2 +

1

2
∥β̃j(t)∥2

)
.

(49)

On the event Ac
2,j , we have |y1 − βτ

ju(t)ϕ| ≤ 5dmax∥ϕ∥+ |w|, then it follows that

Lj,3(x(t)) = E1

{
β̃τ
1 (t)ϕϕ

τ β̃j(t)α1u(t)αju(t)(y − βτ
ju(t)ϕ)(y − β∗τ

1 ϕ)IAc
2,j

}
≤
(
5dmaxE1

{
∥ϕ∥3|w|IAc

2,j

}
+ E1

{
∥ϕ∥2w2IAc

2,j

})
∥β̃1(t)∥∥β̃j(t)∥

≤
(
5dmaxc

3/4
3 σ + dc2σ

2

)
P (Ac

2,j)

(
1

2
∥β̃1(t)∥2 +

1

2
∥β̃j(t)∥2

)
.

(50)
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In addition, on the event A2,j ∩ Ac
3,j , we have |y1 − βτ

ju(t)ϕ| ≤ 5
√
2ση + |w|, then it follows that

Lj,4(x(t)) = E1

{
β̃τ
1 (t)ϕϕ

τ β̃j(t)α1u(t)αju(t)(y − βτ
ju(t)ϕ)(y − β∗τ

1 ϕ)I{A2,j∩Ac
3,j}

}
≤
(
5
√
2σηE1

{
∥ϕ∥2|w|I{A2,j∩Ac

3,j}

}
+ E1

{
∥ϕ∥2w2I{A2,j∩Ac

3,j}

})
∥β̃1(t)∥∥β̃j(t)∥

≤
(
5
√
2σ2η + σ2

)
dc2P (Ac

3,j)

(
1

2
∥β̃1(t)∥2 +

1

2
∥β̃j(t)∥2

)
.

(51)

From (47) and (48)-(51), we have

M3,1(x(t)) =

m∑
j=2

4∑
s=1

Lj,s(x(t)) ≤
(m− 1)m3

2
∥β̃1(t)∥2 +

m3

2

m∑
j=2

∥β̃j(t)∥2, (52)

where

m3 =
exp(−η2)

πmin

(
5

4
R∗

maxσηc
3/4
3 + σ2η2dc2

)
+

√
2
(
(R∗

max + dmax)c
3/4
3 σ +

√
3dc2σ

2
)
exp

(
−η2

4

)
+
(
5dmaxc

3/4
3 σ + dc2σ

2
)8c2dmax

c1R∗
min

+
(
5
√
2σ2η + σ2

)
dc2

4
√
2cc0ση

c1R∗
min

.

(53)

For the term M3,l(x(t)), l ̸= 1 on the RHS of (47), if j = l, the analysis is similar to that of the term M3,1(x(t)) and we
can obtain the same result. For the term with j ̸= l, we reconstruct the following events:

A1 = {|w| ≤ ση,w ∼ N (0, σ2)},
A2,lj = {|ϕτ (β1(t)− β∗

1)| ∨ |ϕτ (βj(t)− β∗
j )| ∨ |ϕτ (βl(t)− β∗

l )| ≤ 0.25|ϕτ (β∗
l − β∗

1)| ∨ 0.25|ϕτ (β∗
l − β∗

j )|},

A3,lj = {|ϕτ (β∗
l − β∗

1)| ∨ |ϕτ (β∗
l − β∗

j )| ≥ 4
√
2ση}, l = 2, · · · ,m, j ̸= l.

(54)

Then by Lemma A.3, we have

P (Ac
1) ≤ 2 exp

(
−η2

2

)
, P (Ac

2,lj) ≤
12c2dmax

c1R∗
min

, P (Ac
3,lj) ≤

4
√
2cc0ση

c1R∗
min

. (55)

On the event A1 = A1 ∩ A2,lj ∩ A3,lj , we have α1u(t)αju(t) ≤ exp(−η2)
πmin

, |yl − βτ
ju(t)ϕ| ≤ 5

4R
∗
max∥ϕ∥ + ση and

|yl−β∗τ
1 ϕ| ≤ R∗

max∥ϕ∥+ση. Besides, on the event Ac
1, we have |yl−βτ

ju(t)ϕ| ≤ (R∗
max+dmax)∥ϕ∥+|w| and |yl−β∗τ

1 ϕ| ≤
R∗

max∥ϕ∥+ |w|. On the event Ac
2,lj , we have |yl − βτ

ju(t)ϕ| ≤ 5dmax∥ϕ∥+ |w| and |yl − β∗τ
1 ϕ| ≤ 4dmax∥ϕ∥+ |w|. In

addition, on the event A2,lj ∩ Ac
3,lj , we have |yl − βτ

ju(t)ϕ| ≤ 5
√
2ση + |w| and |yl − β∗τ

1 ϕ| ≤ 4
√
2ση + |w|.

From the above facts, by using a similar analysis way as that used in (44) of M2,j(x(t)), we can obtain

El

{
β̃τ
1 (t)ϕϕ

τ β̃j(t)α1u(t)αju(t)(y − βτ
ju(t)ϕ)(y − β∗τ

1 ϕ)
}
≤ m4

2
∥β̃1∥2 +

m4

2
∥β̃j∥2, j ̸= l, l ̸= 1, (56)

where m4 = exp(−η2)
πmin

(
5
4R

∗2
maxc3 +

9
4R

∗
maxσηc

3/4
3 + σ2η2dc2

)
+ 2(R∗2

max + R∗
maxdmax)c3 exp

(
−η2

2

)
+

√
2
(
(2R∗

max + dmax)c
3/4
3 σ +

√
3dc2σ

2
)
exp

(
−η2

4

)
+

(
20d2maxc3 + 9dmaxc

3/4
3 σ + dc2σ

2
)

12c2dmax

c1R∗
min

+(
40σ2η2 + 9

√
2σ2η + σ2

)
dc2

4
√
2cc0ση

c1R∗
min

. Thus for l ̸= 1, we have

M3,l(x(t)) ≤
m3

2
∥β̃1(t)∥2 +

m3

2
∥β̃l(t)∥2 +

m4

2

m∑
j=2,j ̸=l

∥β̃j(t)∥2, (57)

where m3 is defined in (53). Then by (47), (52) and (57), we can obtain

M3(x(t)) ≤
((m− 1)π∗

1 + (1− π∗
1))m3

2
∥β̃1(t)∥2 +

m∑
l=2

(π∗
1 + π∗

l )m3 + (m− 2)π∗
l m4

2
∥β̃l(t)∥2. (58)
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We now analyze the fourth and fifth terms on the RHS of (25). By following the similar way to that of the terms M2(x(t))
in (46) and M3(x(t)) in (58), we can obtain

M4(x(t)) ≜ E {∥ϕ∥α1u(t)(1− α1u(t)) (y − β∗τ
1 ϕ)} ≤ π∗

1m5 + (1− π∗
1)m6,

M5(x(t)) ≜ E {∥ϕ∥α1u(t)αju(t) (y − β∗τ
1 ϕ)} ≤ π∗

1m7 + (1− π∗
1)m6,

(59)

where m5 = σ
√
dc2

(
δ1η exp(−η2) +

√
2 exp

(
−η2

4

)
+

(m−1)(8c2dmax+4
√
2cc0ση)

c1R∗
min

)
, m6 = exp(−η2)

πmin
(R∗

maxdc2 +

ση
√
dc2)+2dc2R

∗
max exp

(
−η2

2

)
+
√
2dc2σ exp

(
−η2

4

)
+
(
σ
√
dc2 + 4dmaxdc2

)
8c2dmax

c1R∗
min

+
(
4
√
2ση + σ

)
4
√
2cc0ση

√
dc2

c1R∗
min

,

and m7 = σ
√
dc2

(
exp(−η2)

πmin
η +

√
2 exp

(
−η2

4

)
+

(m−1)(8c2dmax+4
√
2cc0ση)

c1R∗
min

)
. Thus we can obtain the upper bounds of

the last two terms on the RHS of (25).

By (25), (33), (46), (58) and (59), we can obtain

J1,1(x(t)) ≤ −c̄1,1∥β̃1(t)∥2 +
m∑
j=2

c̄1,j∥β̃j(t)∥2 + c̄2,1|π̃1(t)|2 +
m∑
j=2

c̄2,j |π̃j(t)|2, (60)

where −c̄1,1 = −m̄ + 1
σ2 (π

∗
1m1 + (1 − π∗

1)m2) +
(m−1)π∗

1+(1−π∗
1 )

2σ2 m3 +
π∗
1m5+m(1−π∗

1 )m6+(m−1)π∗
1m7

2πmin
, c̄1,j =

(m−1)π∗
1+(1−π∗

1 )
2σ2 , c̄2,1 =

π∗
1m5+(1−π∗

1 )m6

2πmin
and c̄2,j =

π∗
1m7+(1−π∗

1 )m6

2πmin
, j = 2, · · · ,m.

Step 2: Analysis of the term J1,2(x(t)). By the mean value theorem, we have

J1,2(x(t)) = π̃1(t)E {α1(t)− α∗
1} − π̃2

1(t)

=
π̃1(t)

σ2
E
{
β̃τ
1 (t)ϕα1u(t)(1− α1u(t))(y − βτ

1u(t)ϕ)
}
− π̃1(t)

σ2

m∑
j=2

E
{
β̃τ
j (t)ϕα1u(t)αju(t)(y − βτ

ju(t)ϕ)
}

+
(π̃1(t))

2

π1u(t)
E [α1u(t)(1− α1u(t))]−

m∑
j=2

π̃1(t)π̃j(t)

πju(t)
E [α1u(t)αju(t)]− π̃2

1(t),

(61)

where βτ
iu(t)ϕ, πiu(t) and αiu(t), i ∈ [m] are the same as that defined in (25).

By following a similar analysis way as that used in (60), we can obtain the upper bound of J1,2(x(t)) as follows:

J1,2(x(t)) ≤
m∑
j=1

c̄′1,j∥β̃j(t)∥2 − c̄′2,1|π̃1(t)|2 +
m∑
j=2

c̄′2,j |π̃j(t)|2, (62)

where c̄′1,j =
π∗
jm

′
1+(1−π∗

j )m
′
2

2σ2 , j ∈ [m], −c̄′2,1 = −1 +
m′

1+m′
2

2σ2 +
(m+1)m′

3

2πmin
and c̄′2,j =

m′
3

2πmin
, j =

2, · · · ,m. Here m′
1 = exp(−η2)

πmin

(
1
4R

∗
maxdc2 + ση

√
dc2
)
+ 2dc2dmax exp

(
−η2

2

)
+

√
2dc2σ exp

(
−η2

4

)
+ (dmaxdc2 +

σ
√
dc2)

(m−1)(8c2dmax+4
√
2cc0ση)

c1R∗
min

, m′
2 = exp(−η2)

πmin
( 54R

∗
maxdc2 + ση

√
dc2) + 2dc2(R

∗
max + dmax) exp

(
−η2

2

)
+

√
2dc2σ exp

(
−η2

4

)
+
(
σ
√
dc2 + 5dmaxdc2

)
12c2dmax

c1R∗
min

+
(
5
√
2ση + σ

)
4
√
2cc0ση

√
dc2

c1R∗
min

and m′
3 = exp(−η2)

πmin
+ 1

2 exp
(
−η2

2

)
+

(m−1)(2c2dmax+
√
2cc0ση)

c1R∗
min

.

Step 3: Analysis of the terms J1,3(x(t)) and J1,4(x(t)). From ODEs (15), it is clear that ∥G1(x(t)) − R1(t)∥ → 0 as
t → ∞. By the boundedness of β̃1(t), we have lim

t→∞
J1,3(x(t)) = 0. Besides, by (32), we also have R1(t) > 0 for all t ≥ 0.

We now consider the term J1,4(x(t)). First, by (15), we have

J1,4(x(t)) = vec(R1(t)− π∗
1G)τvec(E{α1(t)ϕϕ

τ − α∗
1ϕϕ

τ})− ∥R1(t)− π∗
1G∥2F

≤− 1

2
∥R1(t)− π∗

1G∥2F +
1

2
∥E{(a1(t)− a∗1)ϕϕ

τ}∥2F .
(63)
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Similar to (61), by the mean value theorem and following a similar analysis way as that used in (60), we can obtain the
upper bound of E{(a1(t)− a∗1)ϕϕ

τ} as follows:

E{(a1(t)− a∗1)ϕϕ
τ}

=
1

σ2
E
{
β̃τ
1 (t)ϕα1u(t)(1− α1u(t))(y − βτ

1u(t)ϕ)ϕϕ
τ
}
− 1

σ2

m∑
j=2

E
{
β̃τ
j (t)ϕα1u(t)αju(t)(y − βτ

ju(t)ϕ)ϕϕ
τ
}

+
π̃1(t)

π1u(t)
E [α1u(t)(1− α1u(t))ϕϕ

τ ]−
m∑
j=2

π̃j(t)

πju(t)
E [α1u(t)αju(t)ϕϕ

τ ]

≤
m∑
j=1

c̄′′1,j∥β̃j(t)∥+
m∑
j=1

c̄′′2,j |π̃j(t)|,

(64)

where c̄′′1,j =
π∗
jm

′′
1 +(1−π∗

j )m
′′
2

2σ2 , c̄′′2,1 =
m′′

1 +m′′
2

2σ2 +
(m+1)m′

3

2πmin
and c̄′′2,j =

dc2m
′′
3

2πmin
. Here

m′′
1 = exp(−η2)

πmin

(
1
4R

∗
maxc3 + σηc

3/4
3

)
+ 2c3dmax exp

(
−η2

2

)
+

√
2c

3/4
3 σ exp

(
−η2

4

)
+ (dmaxc3 +

σc
3/4
3 )

(m−1)(8c2dmax+4
√
2cc0ση)

c1R∗
min

, m′′
2 = exp(−η2)

πmin
( 54R

∗
maxc3 + σηc

3/4
3 ) + 2c3(R

∗
max + dmax) exp

(
−η2

2

)
+

√
2c

3/4
3 σ exp

(
−η2

4

)
+
(
σc

3/4
3 + 5dmaxc3

)
12c2dmax

c1R∗
min

+
(
5
√
2ση + σ

)
4
√
2cc0ση

√
dc2

c1R∗
min

and m′′
3 = exp(−η2)

πmin
+ 1

2 exp
(
−η2

2

)
+

(m−1)(2c2dmax+
√
2cc0ση)

c1R∗
min

. Thus by (63) and (64), we can obtain that

J1,4(x(t)) ≤ −1

2
∥R1(t)− π∗

1G∥2F + dm

m∑
j=1

c̄′′21,j∥β̃j(t)∥2 + dm

m∑
j=1

c̄′′22,j |π̃j(t)|2 (65)

By (24), (60) and (62), we can obtain

J1(x(t)) ≤− c
(1)
1,1∥β̃1(t)∥2 +

m∑
j=2

c
(1)
1,j∥β̃j(t)∥2 − c

(1)
2,1|π̃1(t)|2 +

m∑
j=2

c
(1)
2,j |π̃j(t)|2 −

1

2
∥R1(t)− π∗

1G∥2F , (66)

where c(1)1,1 = c̄1,1− c̄′1,1−dmc̄′′21,1, c(1)1,j = c̄1,j+ c̄′1,j+dmc̄′′21,j , c(1)2,1 = c̄′2,1− c̄2,1−dmc̄′′22,1, and c
(1)
2,j = c̄2,j+ c̄′2,j+dmc̄′′21,j ,

j = 2, · · · ,m.

Similarly, we can obtain the same result for Ji(x(t)) defined in (21) with the corresponding sequences c
(i)
1,j and c

(i)
2,j ,

i, j ∈ [m]. Thus there exist sequences {s1,i} and {s2,i}, i ∈ [m] such that

d

dt
V (x(t)) ≤ −

m∑
i=1

s1,i∥β̃i(t)∥2 −
m∑
i=1

s2,i|π̃i(t)|2 +
1

2

m∑
i=1

β̃τ
i (t)(Gi(x(t))−R(t))β̃i(t)−

1

2

m∑
i=1

∥Ri(t)−π∗
i G∥2F (67)

holds, where s1,i = −c
(i)
1,i +

∑
j ̸=i

c
(i)
1,j and s2,i = −c

(i)
2,i +

∑
j ̸=i

c
(i)
2,j . From the above analysis, we can obtain

s1,i = −c21 +O

(
mσ

πmin

(
exp(−η2)η2 + exp

(
−η2

2

)
(d2max + dmax) +

dmax

R∗
min

+
η3

R∗
min

))
,

s2,i = −1 +O

(
mσ

πmin

(
exp(−η2)η2 + exp

(
−η2

2

)
(d2max + dmax) +

dmax

R∗
min

+
η3

R∗
min

))
.

(68)

By (17), we can see that the region S̄ is determined by the parameters di of Di, i ∈ [m]. Let the attraction domain
SA be sufficiently close to S̄, i.e., SA is associated with the parameter di + ϵ, i ∈ [m], where ϵ is a sufficiently small
positive constant. Choose η2 = log(b1m/πmin), and b2 is a large constant such that for a sufficiently small ϵ > 0,
R∗

min ≥ b2mmax{σ[log(b1m/πmin)]
3/2, (dmax + ϵ)3, (dmax + ϵ)}, thus we have s1,i > 0 and s2,i > 0. Then we have

d

dt
V (x(t)) ≤ 0, if x(t) ∈ SA, (69)

and the equality holds if and only if x(t) = x∗. By the LaSalle invariance principle, Dc = {x∗} is the invariant set with the
domain of attraction SA. This completes the proof of this lemma.
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A.2. Proof of Theorem 3.8

We now provide the proof of Theorem 3.8. For this, we first present two key lemmas in (Chen & Guo, 2012).

Lemma A.4. Let {wn,Fn} be a martingale difference sequence satisfying

sup
n

E{|wn+1|α|Fn} < ∞, a.s., α ∈ (0, 2].

Then for any adapted sequence {fn,Fn}, we have

n∑
i=0

fiwi+1 = O(sn(α) log
1
α+η (sαn(α) + e)), a.s.,∀η > 0,

where Sα
n (α) =

(
n∑

i=0

|fi|α
)

.

Lemma A.5. Let X1, X2, · · · be a sequence of vectors in Rd and An+1 = A0 +
n∑

k=1

XkX
τ
k . Then we have

n∑
k=1

Xτ
kA

−1
k Xk

1 +Xτ
kA

−1
k Xk

= O (log (|An|)) ,

where A0 > 0 and |An| is the determinant of An.

Proof of Theorem 3.9: Let us construct the following stochastic Lyapunov function:

Vk+1 =

m∑
i=1

β̃τ
k+1,iP

−1
k+1,iβ̃k+1,i +

m∑
i=1

(k + 1)|π̃k+1,i|2. (70)

Denote β̄k+1,i = βk,i + ak,iαk,iPk,iϕk(yk+1 − βτ
k,iϕk) and π̄k+1,i = πk,i +

1
k (αk,i − πk,i). From the almost sure

convergence result established in Theorem 3.1, there exists a random integer K such that for all k ≥ K, β̄k+1,i ∈ Di, (i ∈
[m]), π̄k+1,i ∈ Dm+1 a.s. Besides, by Algorithm 1 and the matrix inverse formula, we have

P−1
k+1,i = P−1

k,i + αk,iϕkϕ
τ
k, Pk+1,iϕk = ak,iPk,iϕk. (71)

Thus by (7), (70) and (71), we know that for k ≥ K,

Vk+1 =Vk −
m∑
i=1

ak,iαk,i(β̃
τ
k,iϕk)

2 + 2

m∑
i=1

ak,iαk,i(β̃
τ
k,iϕk)(yk+1 − β∗τ

i ϕk)

+

m∑
i=1

ak,iαk,iϕ
τ
kPk,iϕk(yk+1 − β∗τ

i ϕk)
2.

(72)

Summing up both sides of (72) from k = K to n, we have

Vn+1 = VK −
n∑

k=K

m∑
i=1

ak,iπ
∗
i (β̃

τ
k,iϕk)

2 +

n∑
k=K

m∑
i=1

ak,i[π
∗
i − αk,i](β̃

τ
k,iϕk)

2

+ 2

n∑
k=K

m∑
i=1

ak,iα
∗
k,i(β̃

τ
k,iϕk)(yk+1 − β∗τ

i ϕk) + 2

n∑
k=K

m∑
i=1

ak,i[αk,i − α∗
k,i](β̃

τ
k,iϕk)(yk+1 − β∗τ

i ϕk)

+

n∑
k=K

m∑
i=1

ak,iαk,iϕ
τ
kPk,iϕk(yk+1 − β∗τ

i ϕk)
2

−
n∑

k=K

m∑
i=1

(
1 +

1

k
− 1

k2

)
|π̃k,i|2 − 2

n∑
k=K

m∑
i=1

(1− 1

k2
)π̃k,i(αk,i − π∗

i ) +

n∑
k=K

m∑
i=1

k + 1

k2
(αk,i − πk,i)

2,

(73)
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where α∗
k,i =

[
π∗
i exp

(
− (yt+1−β∗τ

i ϕk)
2

2σ2

)]
/
[∑m

j=1 π
∗
j exp

(
− (yk+1−β∗τ

j ϕk)
2

2σ2

)]
.

We now analyze the RHS of (73) term by term.

For the second term on the RHS of (73), by Assumption 2.9 and the convergence of estimates, we have ak,i → 1, a.s.
Besides, by Assumption 3.6 (1) and Lemma A.4, we have for any η > 0,

n∑
k=K

m∑
i=1

π∗
i β̃

τ
k,i[ϕkϕ

τ
k − E{ϕkϕ

τ
k|Fk−1}]β̃k,i = o(n

1
2+η), a.s. (74)

Thus by Assumption 2.9, Assumption 3.6 and Lemma A.4, we know that

n∑
k=K

m∑
i=1

ak,iπ
∗
i (β̃

τ
k,iϕk)

2 ≥
n∑

k=K

m∑
i=1

π∗
i (β̃

τ
k,iϕk)

2 − o(

n∑
k=K

m∑
i=1

π∗
i (β̃

τ
k,iϕk)

2)

≥
n∑

k=K

m∑
i=1

π∗
i β̃

τ
k,iE{ϕkϕ

τ
k|Fk−1}β̃k,i − o(

n∑
k=K

m∑
i=1

∥β̃k,i∥2)− o(n
1
2+η)

≥c

n∑
k=K

m∑
i=1

π∗
i ∥β̃k,i∥2 −−o(

n∑
k=K

m∑
i=1

∥β̃k,i∥2)− o(n
1
2+η), a.s., ∀η > 0.

(75)

For the third term on the RHS of (73), by Lemma A.2, we have E{α∗
k,i|Fk} = π∗

i . By Assumption 2.9 and Lemma A.4, we
have

n∑
k=K

m∑
i=1

ak,i[π
∗
i − α∗

k,i](β̃
τ
k,iϕk)

2 = o(n
1
2+η) +O(1), a.s., ∀η > 0. (76)

Besides, by Assumption 2.9, Assumption 3.6, Lemma A.4 and the proof of Theorem 3.1, we know that

n∑
k=K

m∑
i=1

ak,i[π
∗
i − αk,i](β̃

τ
k,iϕk)

2

=

n∑
k=K

m∑
i=1

E{ak,i[α∗
k,i − αk,i](β̃

τ
k,iϕk)

2|Fk−1}+
n∑

k=K

m∑
i=1

ak,i[π
∗
i − α∗

k,i](β̃
τ
k,iϕk)

2

+

n∑
k=K

m∑
i=1

[
ak,i[α

∗
k,i − αk,i](β̃

τ
k,iϕk)

2 − E{ak,i[α∗
k,i − αk,i](β̃

τ
k,iϕk)

2|Fk−1}
]

=o

(
c̄

n∑
k=K

m∑
i=1

∥β̃k,i∥2
)

+ o(n
1
2+η) +O(1), a.s., ∀η > 0.

(77)

For the fourth term on the RHS of (73), by Lemma A.2, it follows that E{α∗
k,iyk+1|Fk} = β∗τ

i ϕk, thus we have
{α∗

k,iϕk(yk+1 − β∗τ
i ϕk),Fk−1} is a martingale difference sequence. Then by Assumption 3.6 and Lemma A.4, we can

obtain

2

n∑
k=K

m∑
i=1

ak,iα
∗
k,i(β̃

τ
k,iϕk)(yk+1 − β∗τ

i ϕk) = o

(
n∑

k=K

m∑
i=1

∥β̃k,i∥2
)

+ o(n
1
2+η) +O(1), a.s., ∀η > 0. (78)

For the fifth term on the RHS of (73), let us denote

Sn = 2

n∑
k=K

m∑
i=1

E{ak,i[αk,i − α∗
k,i](β̃

τ
k,iϕk)(yk+1 − β∗τ

i ϕk)|Fk−1}. (79)

By Assumption 2.9, Assumption 3.6 and the proof of Theorem 3.1, we know that

Sn ≤ (
C̄c̄σ

R∗
min

+ o(1))(

n∑
k=K

m∑
i=1

∥β̃k,i∥2 +
n∑

k=K

m∑
i=1

∥π̃k,i∥2), a.s., (80)
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where C̄ is a constant whose value can be determined by following the similar proof of Theorem 3.1. Let C̄ = C
2 , then we

have 2Cc̄σ
R∗

min
≤ cπmin. Thus by Lemma A.4, we know that

2

n∑
k=K

m∑
i=1

ak,i[αk,i − α∗
k,i](β̃

τ
k,iϕk)(yk+1 − β∗τ

i ϕk)

≤(
2C̄c̄σ

R∗
min

+ o(1))(

n∑
k=K

m∑
i=1

∥β̃k,i∥2 +
n∑

k=K

m∑
i=1

∥π̃k,i∥2) + o(n
1
2+η) +O(1)

≤(cπmin + o(1))(

n∑
k=K

m∑
i=1

∥β̃k,i∥2 +
n∑

k=K

m∑
i=1

∥π̃k,i∥2) + o(n
1
2+η) +O(1), a.s., ∀η > 0.

(81)

For the sixth term on the RHS of (73), by Assumption 2.9, Lemma A.5 and (71), we know that

n∑
k=K

m∑
i=1

ak,iαk,iϕ
τ
kPk,iϕk = O(

m∑
i=1

log |P−1
n+1,i|) = O(log n), a.s. (82)

Thus by Schwartz inequality and Assumptions 2.7 and 2.9, we have

n∑
k=K

m∑
i=1

ak,iαk,iϕ
τ
kPk,iϕk(yk+1 − β∗τ

i ϕk)
2

= O

(
n∑

k=K

m∑
i=1

ak,iαk,iϕ
τ
kPk,iϕk(∥ϕk∥2 + w2

k+1)

)
= O(

√
n log n), a.s.

(83)

Following a similar analysis way as that used for the second to sixth term on the RHS of (73), we can obtain the following
upper bound of the last two terms on the RHS of (73):

−
n∑

k=K

m∑
i=1

|π̃k,i|2 − 2

n∑
k=K

m∑
i=1

π̃k,i(αk,i − π∗
i ) = o(n

1
2+η),

n∑
k=K

m∑
i=1

k + 1

k2
(αk,i − πk,i)

2 = O(log n), a.s. (84)

Combining (73), (75), (77), (81), (83) and (84), we have for any η > 0,

Vn+1 =

m∑
i=1

β̃τ
n+1,iP

−1
n+1,iβ̃n+1,i +

m∑
i=1

(n+ 1)|π̃n+1,i|2 = O(n
1
2+η), a.s. (85)

By the convergence property that αk,i → α∗
k,i, a.s., we have

n∑
k=1

[αk,i − α∗
k,i]ϕkϕ

τ
k = o(

n∑
k=1

ϕkϕ
τ
k) = o(n), a.s. By

Assumption 2.9, the fact E{α∗
k,i|Fk} = π∗

i and Lemma A.4, we have for any η > 0,
n∑

k=1

[α∗
k,i − π∗

i ]ϕkϕ
τ
k = o(n

1
2+η), a.s.

Besides, by Assumption 2.9, we also have n = O

(
n∑

k=1

π∗
i ϕkϕ

τ
k

)
, a.s. Then by

P−1
n+1,i =

n∑
k=1

αk,iϕkϕ
τ
k =

n∑
k=1

[αk,i − α∗
k,i]ϕkϕ

τ
k +

n∑
k=1

[α∗
k,i − π∗

i ]ϕkϕ
τ
k +

n∑
k=1

π∗
i ϕkϕ

τ
k, (86)

we know that n = O(λmin(P
−1
n+1,i)), a.s. Thus by (85), we can obtain the desired convergence rate result.

A.3. Proof of Theorem 3.9

Without loss of generality, we assume that {ϕk, yk+1} is generated by the i-th sub-model, i.e., yk+1 = β∗τ
i ϕk + wk+1.

By Assumptions 2.3-2.4, we have ϕk
d−→ ϕ and wk+1

d−→ w, and ϕk and wk+1 are independent for each k ≥ 0. Then
by Slutsky theorem (Chow & Teicher, 2003), we know that ϕkϕ

τ
k

d−→ ϕϕτ and ϕkwk+1
d−→ ϕw, where “ d−→” means
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the convergence in distribution. Additionally, from Theorem 3.1, we have βk,i → β∗
i , i ∈ [m], a.s. Denote Mk,ij =

(βk,i−βk,j)
τϕk(−2yk+1+(βk,i+βk,j)

τϕk), and Ii(k) = argminj ̸=i Mk,ij . Then by the definition of clustering criterion
(9) and (87), for any j ∈ [m], j ̸= i, we have

lim
k→∞

P ({ϕk, yk+1} is categorized wrongly)

= lim
k→∞

P
(
min
j ̸=i

(yk+1 − βτ
k,jϕk)

2 ≤ (yk+1 − βτ
k,iϕk)

2
)

= lim
k→∞

P
(
min
j ̸=i

Mk,ij < 0
)

= lim
k→∞

E

{
P (wk+1 > −sgn((βk,i − βk,Ii(k))

τϕk)

(
(βk,i + βk,Ii(k))

τϕk

2
− β∗τ

i ϕk

)
|ϕk)

}
≤ lim

k→∞
E

{
max
j ̸=i

P (wk+1 > −sgn((βk,i − βk,j)
τϕk)

(
(βk,i + βk,j)

τϕk

2
− β∗τ

i ϕk

)
|ϕk)

}
= lim

k→∞
E

{
max
j ̸=i

Φ

(
−

sgn((βk,i − βk,j)
τ )(

(βk,i+βk,j)
τϕk

2 − β∗τ
i ϕk)

σ

)}

=E

{
max
j ̸=i

Φ

(
−
|(β∗

i − β∗
j )

τϕ|
2σ

)}
≤ E

{
max
j ̸=i

exp

(
−
((β∗

i − β∗
j )

τϕ)2

8σ2

)}
< 1.

(87)

Thus we can obtain the inequality (11).

We now provide the remaining proof of Theorem 3.9. For this, denote the following events for i ∈ [m],

Ak,i = {ω : yk+1 = β∗τ
i ϕk + wk+1},

Bk,ij =

{
ω : j = argmin

j∈[m]

(yk+1 − βτ
k,jϕk)

2

}
∩ Ak,i,

where Ak,i denotes the events that the data {ϕk, yk+1} is generated by i-th sub-models, Bk,ij represents the events that the
data {ϕk, yk+1} generated by the i-th model is categorized into the j-th cluster. Then the within-cluster error (10) can be
rewritten as follows:

Jn =
1

n

n∑
k=1

m∑
i=1

m∑
j=1

(yk+1 − βτ
k,iϕk)

2IBk,ji

=
1

n

n∑
k=1

m∑
i=1

(yk+1 − βτ
k,iϕk)

2IAk,i
+

1

n

n∑
k=1

m∑
i=1

∑
j ̸=i

(
(yk+1 − βτ

k,jϕk)
2 − (yk+1 − βτ

k,iϕk)
2
)
IBk,ij


≜Ln,1 + Ln,2.

(88)

We now analyze the RHS of (88) term by term. As for the term Ln,1, we have

Ln,1 =
1

n

n∑
k=1

m∑
i=1

(β̃τ
k,iϕk)

2IAk,i
+

2

n

n∑
k=1

β̃τ
k,iϕkwk+1IAk,i

+
1

n

n∑
k=1

w2
k+1,

By Assumption 2.7, we know that lim
n→∞

1
n

n∑
k=1

w2
k+1 = σ2. By the fact that lim

k→∞
β̃k,i = 0 from Theorem 3.1 and the average

boundedness of ∥ϕk∥2 and ∥ϕkwk+1∥ from Lemma A.1, we obtain

lim
n→∞

Ln,1 = σ2, a.s. (89)
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For the term Ln,2, let us denote the following events:

Ai = {ω : y = β∗τ
i ϕ+ w}, Bij =

{
ω : (y − β∗τ

j ϕ)2 ≤ (y − β∗τ
i ϕ)2

}
∩ Ai,

B̄ij =

{
ω : j = argmin

j∈[m]

(y − β∗τ
j ϕ)2

}
∩ Ai,

B∗
k,ij =

{
ω : j = argmin

j∈[m]

(yk+1 − β∗τ
j ϕk)

2

}
∩ Ak,i,

By Assumptions 2.5-2.9, we have P (Bij |ϕ) = π∗
i P
(
(y − β∗τ

j ϕ) ≤ (y − β∗τ
i ϕ)

)
= π∗

i Φ
(
− |β∗τ

i ϕ−β∗τ
j ϕ|

2σ

)
. Besides, from

Lemma A.1, we can see that
m∑
i=1

[∑
j ̸=i

[
(β∗τ

i ϕk − β∗τ
j ϕk)(β

∗τ
i ϕk − β∗τ

j ϕk + 2wk+1)
]
IB∗

k,ij

]
is asymptotically stationary

and ergodic. Thus by Assumptions 2.7 and 2.9, and (10), we obtain

lim
n→∞

Ln,2 = lim
n→∞

1

n

n∑
k=1

m∑
i=1

∑
j ̸=i

[
(βτ

k,iϕk − βτ
k,jϕk)(2β

∗τ
i ϕk + 2wk+1 − βτ

k,iϕk − βτ
k,jϕk)

]
IBk,ij


= lim

n→∞

1

n

n∑
k=1

m∑
i=1

∑
j ̸=i

[
(β∗τ

i ϕk − β∗τ
j ϕk)(β

∗τ
i ϕk − β∗τ

j ϕk + 2wk+1)
]
IB∗

k,ij


=

m∑
i=1

∑
j ̸=i

E
{
(β∗τ

i ϕ− β∗τ
j ϕ)2E{IB̄ij

|ϕ}+ 2(β∗τ
i ϕ− β∗τ

j ϕ)E{wIB̄ij
|ϕ}
}

≤
m∑
i=1

min
j ̸=i

E
{
(β∗τ

i ϕ− β∗τ
j ϕ)2E{IBij |ϕ}+ 2(β∗τ

i ϕ− β∗τ
j ϕ)E{wIBij |ϕ}

}
=

m∑
i=1

min
j ̸=i

E

{
(β∗τ

i ϕ− β∗τ
j ϕ)2P (Bij |ϕ) +

2π∗
i |β∗τ

i ϕ− β∗τ
j ϕ|

√
2πσ

∫ −|β∗τ
i ϕ−β∗τ

j ϕ|

−∞
w exp

(
− w2

2σ2

)
dw

}

=

m∑
i=1

π∗
i min

j ̸=i
E {γi,j(ϕ)} ≜ γ.

(90)

Furthermore, by the fact that
∫ −a

−∞ a exp
(
− x2

2σ2

)
dx ≤ σ2 exp

(
− a2

2σ2

)
holds for any positive constant a, we can see that

γ ≤ 0. By (88)-(90), we can obtain (12). This completes the proof of Theorem 3.9.
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