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ABSTRACT

Large Multimodal Models (LMMs) are increasingly capable of answering medi-
cal questions that require joint reasoning over images and text, yet training general
medical VQA systems is impeded by the lack of large, openly usable, high-quality
corpora. We present MedVLSynther, a rubric-guided generator-verifier frame-
work that synthesizes high-quality multiple-choice VQA items directly from open
biomedical literature by conditioning on figures, captions, and in-text references.
The generator produces self-contained stems and parallel, mutually exclusive op-
tions under a machine-checkable JSON schema; a multi-stage verifier enforces
essential gates (self-containment, single correct answer, clinical validity, image-
text consistency), awards fine-grained positive points, and penalizes common fail-
ure modes before acceptance. Applying this pipeline to PubMed Central yields
MedSynVQA: 13,087 audited questions over 14,803 images spanning 13 imaging
modalities and 28 anatomical regions. Training open-weight LMMs with rein-
forcement learning using verifiable rewards improves accuracy across six medi-
cal VQA benchmarks, achieving averages of 55.85 (3B) and 58.15 (7B), with up
to 77.57 on VQA-RAD and 67.76 on PathVQA, outperforming strong medical
LMMs. Ablations verify that both generation and verification are necessary and
that more verified data consistently helps, and a targeted contamination analysis
detects no leakage from evaluation suites. By operating entirely on open literature
and open-weight models, MedVLSynther offers an auditable, reproducible, and
privacy-preserving path to scalable medical VQA training data.

1 INTRODUCTION

Large Multimodal Models (LMMs) are rapidly becoming capable assistants for biomedical discov-
ery and clinical education, where questions must be answered by jointly interpreting medical images
(e.g., X-ray, CT, microscopy) and the surrounding textual context (e.g., figure captions, narrative de-
scriptions, etc.). Despite fast progress, training general medical VQA systems remains difficult
because the community lacks large, openly usable, and high-quality training corpora.

On the evaluation side, recent benchmark (Hu et al.l 2024} |Ye et al.| 2024) provide broad and chal-
lenging test suites, but they are designed for assessment rather than training and therefore offer no
training splits. On the training side, existing datasets fall into three categories, each with a limi-
tation. 1) Manually curated sets (Lau et al.| 2018]; [Liu et al., 2021} He et al.l |2020) are carefully
annotated but are either small or bound to narrow modalities and topics, limiting coverage and trans-
fer. 2) Automatically generated sets (Zhang et al., 2023b; |Chen et al., 2024c)) scale more easily
but are typically produced by text-only LLMs that ignore visual evidence and figure—text relations,
yielding noisy stems, ambiguous options, and medically dubious answers that can impede model
learning. 3) Closed, large-scale resources (Li et al. |2024) exist but are not publicly shareable due
to patient privacy, licensing, and institutional agreements, which slows open research and repro-
ducibility. Collectively, these constraints lead to a practical bottleneck: we can evaluate medical
VQA systems comprehensively, but we cannot train them broadly and transparently.
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Figure 1: (a) Stage-1 generation: a rubric-guided LMM converts PubMed figures and captions into
multiple-choice VQA items. (b) Stage-2 verification: a multi-stage, rubric-based LMM verifier
screens items and filters low-quality ones. (c) Training open-weight students (3B/7B) on MedSyn-
VQA yields consistent gains over strong medical LMM baselines.

This paper asks a simple question: can we synthesize high-quality, auditable medical VQA data di-
rectly from open biomedical literature? Our answer is MedVLSynther, a generator—verifier frame-
work that leverages state-of-the-art open-weight LMMs (Zeng et al., 2025; [Wang et al., [2025} Bai
et al.l 2025) to produce and automatically vet VQA triplets from figures and surrounding text in
PubMed articles (Lozano et al., 2025} |[Roberts, [2001). The key design choice is to make both gener-
ation and verification explicitly rubric-driven and context-aware.

Rubric-guided context-aware generation (Figure[I] (a)). Given a figure, its caption, and the fig-
ure’s in-text reference paragraph when available, the generator LMM is instructed to propose a
VQA item, including question stem, multiple-choice options, and the correct answer, under a com-
prehensive rubric. The rubric enforces that stems are self-contained and anchored in the provided
visual-textual context, that options are parallel and mutually exclusive, and that the answer can be
justified from the figure and caption, not from world knowledge alone. The rubric also specifies a
set of accepted question archetypes (e.g., recognition, localization, comparative, reasoning) and a
JSON schema/format that simplifies downstream filtering and training.

Multi-stage rubric-based verification (Figure [1| (b)). To ensure quality, we feed the same con-
text and the generated VQA to a verifier LMM and score it in three stages: 1) Essential criteria
form strict pass/fail gates. Any failure discards the item. 2) Fine-grained criteria award positive
points with justifications, and allow the verifier to surface additional criteria opportunistically. 3)
Penalty criteria investigate common failure modes and subtract points when detected. We sum
the fine-grained and penalty scores and apply a threshold to filter surviving items. This verifier
is model-agnostic and can be instantiated with any open-weight LMM; in practice we find that a
verifier different from the generator improves robustness.

The generator—verifier loop yields a data pipeline whose rules are transparent and auditable
end-to-end. Because we build on open literature rather than protected clinical data, the entire
pipeline, including prompts, rubric, and metadata, can be inspected and reproduced. At the same
time, recent open-weight LMMs rival proprietary systems on many multimodal tasks (Zeng et al.,
2025)), allowing us to benefit from strong perception and reasoning while staying fully open.

The resulting medical VQA dataset, MedSynVQA, covering diverse modalities, subspecialties,
and question archetypes. Models trained on this data with Reinforcement Learning with Veri-
fiable Rewards (RLVR) (Guo et al., 2025; [Shao et al.| [2024) outperform counterparts trained on
PMC-VQA (Zhang et al.,2023b), as well as the strong baseline trained on text-only medical cor-
pora (Huang et al., [2025b). As summarized in Figure |l (c), our training improves accuracy on
MMMU-Med (Yue et al., |2024), PathVQA (He et al., 2020), and VQA-RAD (Lau et al., 2018)
over strong baselines (Alshibli et al. 2025} [Li et al., [2023)). Meanwhile, ablations reveal that (i)
both generation and verification are necessary: their synergy yields the best accuracy, and (ii) scale
matters: more verified data consistently helps. We analyze topic coverage, modality distribution,
and question types, and most importantly, conduct a contamination analysis tailored for synthetic
medical VQA; we find no detectable leakage from the evaluation sets.
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Table 1: Comparison among medical VQA datasets. MedSynVQA is open and reproducible, cov-
ering 13 modalities and 28 anatomical regions, with 13,087 questions over 14,803 images. “N/A”
indicates missing statistics. “# Rate” denotes ratio of images/questions.

Dataset #Questions  #Images #Rate # Modality # Anatomy Annotation Data Availability ~General QA Training Set
MedXpertQA-MM 2,000 2,852 1.43 10 11 Expert Open access Yes No
GMAI-MMBench 25,831 25,831 1.00 38 N/A Automatic Open access Yes No
OmniMedVQA 127,995 118,010 0.92 12 26 Automatic Open access Yes No
SLAKE 14,028 642 0.05 3 5 Expert Open access No Yes
VQA-RAD 3,515 315 0.09 3 3 Expert Open access No Yes
PathVQA 32,799 4,998 0.15 2 N/A Automatic Open access No Yes
PMC-VQA 226,946 149,075 0.66 N/A N/A Automatic Open access Yes Yes
GMAI-VL-5.5M =~ 5,500,000 N/A N/A 13 N/A Automatic Not Open Yes Yes
MedSynVQA 13,087 14,803 1.13 13 28 Automatic Open access Yes Yes
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(d) Word cloud for generated questions.

Figure 2: MedSynVQA statistics: 1) Dataset distributions for question type, imaging modality, and
anatomy. 2) Word cloud for generated questions.

Our contributions are summarized as follows:

* MedVLSynther, a rubric-guided, context-aware generator—verifier pipeline that syn-
thesizes reliable medical VQA from open biomedical articles.

* A comprehensive rubric for medical VQA quality, spanning essential gates, fine-grained
positive criteria, and penalty criteria, together with a machine-checkable schema that sup-
ports automatic filtering and auditing.

¢ A synthetic medical VQA training set (MedSynVQA) that substantially improves med-
ical LMMs on multiple medical VQA benchmarks and complements existing resources
without relying on private patient data.

» Transparency and reproducibility: our pipeline operates entirely on open data and open
models, enabling the community to inspect prompts, scoring rules, and filtering decisions
end-to-end.

While synthetic data cannot replace carefully curated clinical datasets, our results indicate that
high-quality, auditable synthesis is both feasible and useful for medical VQA. We hope MedVLSyn-
ther provides a practical path to scalable training data that respects privacy, encourages openness,
and accelerates progress in multimodal medical intelligence.

2 RELATED WORKS

Multimodal medical VQA. Early, expert-curated datasets (Lau et al.l 2018}, [Liu et al.} 2021}
2020) established Med-VQA but remain small or modality-restricted, limiting transfer. Later,
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Figure 3: From PubMed documents we extract figures and reference text, then apply (a) extraction
and pre-filtering by primary/secondary tags; (b) rubric-based, context-aware generation with format
constraints and question archetypes; (c) multi-stage verification with essential, fine-grained, and
penalty criteria. Items are retained if their rubric score exceeds a threshold.

broad benchmarks (Hu et al., 2024; Ye et al., 2024} [Zuo et al., 2025) consolidated evaluation across
many modalities and anatomies yet offer little or no training data, creating a supervision bottleneck.
In contrast, large literature-derived corpora (Subramanian et al.| 2020} [Riickert et al.| 2024)) and
especially [Lozano et al.|(2025)’s 24M image—caption pairs provide open, scalable raw material. Our
work converts this open substrate into exam-quality VQA by coupling context-aware generation with
rigorous verification, bridging the gap between expansive evaluation suites and accessible training
data.

Synthetic data generation for multimodal medical VQA. Prior synthetic pipelines scale super-
vision but suffer quality issues: [Li et al|(2023))’s self-instruct approach and [Zhang et al.| (2023b)’s
227k auto-generated pairs (largely from text-only LLMs) can omit modality cues, produce am-
biguous stems, and yield visually ungrounded answers; broader compilations like [Li et al.| (2024)
are closed, while modality-specific (Hu et al.) sets remain narrow. These limitations motivate
a quality-first strategy: we condition on figures, captions, and in-text references and enforce a
rubric-guided generator plus a multi-stage verifier to filter low-quality items, yielding reliable, open
data suitable for training medical LMMs without relying on private images.

Multimodal models, medical adaptation, and reasoning. General LVLMs (Hurst et al., [2024;
Comanici et al., 2025; Wang et al.l 2025; Bai et al.l 2025; [Liu et al., 2024} |An et al., [2025; |An
et al.) acquire instruction following via visual SFT, while medical variants (Tu et al., 2024} |Luo
et al., 2023 |Alshibli et al., 2025} [Liu et al., 2023 [Wu et al., 2025} |Chen et al.l [2024b; Zhou et al.,
2024; [Wu et al., 2023) add in-domain pretraining and SFT/RL for clinical competence. Recent
deliberate-reasoning models (Jaech et al.| |2024) show that reinforcement learning with verifiable
rewards (e.g., GRPO (Guo et all [2025)) can surpass SFT-only methods on multi-step problems,
and early medical efforts point the same way but lack open, high-quality multimodal supervision.
Our rubric-verified VQA corpus supplies that missing signal and pairs naturally work for RLVR,
contributing auditable and trustworthy visual reasoning in open-weight medical LMMs (Chen et al.,
2024c; |Su et al.| [2025).

3 MEDVLSYNTHER AND MEDSYNVQA

Our goal is to synthesize high-quality, clinically valid multiple-choice VQA (MC-VQA) exam-
ples directly from biomedical papers (Lozano et all [2025). We cast the task as a Genera-
tor—Verifier pipeline driven by Large Multimodal Models (LMMs): a rubric-guided generator
produces MC-VQA items from figures and text, and a multi-stage rubric-guided verifier performs
automatic quality control before data are admitted to the final corpus (Figure [3)).
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3.1 DATA SOURCE, EXTRACTION, AND PRE-FILTERING

Source. We build on Biomedica (Lozano et al., |2025), a large-scale extraction of figures and
figure-level metadata from the PubMed Central Open-Access (PMC-OA) collection (Roberts,[2001).
For each paper we ingest: 1) The figure image(s) (a single caption may reference up to 6 images),
2) The figure caption. 3) The corresponding figure references in the main text (when present).

Samples missing either images or a caption are discarded.

Pre-filtering. We retain items annotated by |Lozano et al.| (2025) with the primary labels: Clin-
ical imaging and Microscopy, and 25 secondary subtypes (e.g., x-ray radiography, optical coher-
ence tomography, skull, brain, etc.). After pre-filtering we obtain 23,788 figure-caption(-reference)
triplets.

We denote each pre-filtered sample by
x=(Z,C,R), (1)

where 7 is one or more images, C the caption, and R the in-text references.

Choice of generator and verifier LMMs. We use state-of-the-art open-weight LMM ca-
pable of long-context vision-language reasoning: GLM-4.5V-108B (Zeng et al.) [2025),
InterVL-3.5-38B (Wang et al., 2025), and Qwen2.5-VL-72B (Bai et al., 2025). Unless otherwise
noted, GLM-4.5V-108B serves as the default generator due to its strong instruction-following and
image-grounding performance. The rubric and strict JSON schema make the output predictable and
machine-verifiable.

3.2 RUBRIC-BASED, CONTEXT-AWARE VQA GENERATION

Given z, the generator LMM Gy produces a 5-option MC-VQA instance in strict JSON format:
y = {q, options{A..E}, answer € {A..E}} . Generation is context-aware the model receives the
image(s) together with C and R. To ensure exam-quality items, the prompt instills the role of an
expert medical-education item writer and enforces a self-check rubric.

» Essential (must pass before output): 1) Stem self-contained (no “caption/context” men-
tions); 2) Image—content alignment (requires inspecting specific visual features); 3) Implicit
use of caption facts without answer leakage; 4) Exactly one best answer; 5) Medical cor-
rectness (modality, anatomy, terminology).

» Important (strongly recommended): cognitive level is over application; strong, parallel
distractors; clear focus on a single concept.

* Optional: localization or quantitative details when clearly supported.

A small set of question archetypes (i.e., Finding/Abnormality Identification, Modality Recognition,
Anatomy/Localization, Other Biological/Technical Attributes, Disease Diagnosis, Next Step, and
Lesion Grading) reduces prompt entropy and encourages clinically meaningful questions.

3.3 MULTI-STAGE, RUBRIC-BASED, CONTEXT-AWARE VERIFICATION

While the generator is reliable, automatic verification is essential for scale and precision. Given z
and a candidate MC-VQA vy, the verifier LMM V is prompted to operate in two roles, Referee and
Critic, and to return only a structured rubric with binary scores. Verification is also context-aware:
Vs sees the same images, caption, and references as G plus the proposed MC-VQA.

Stage-1: Essential screening (hard gate). The Referee evaluates seven non-negotiable items;
a sample must pass all to proceed: 1) Stem Self-contained; 2) Vocabulary Constraint (no unsup-
ported clinical facts); 3) Diagnosis Leak (no verbatim restatement from sources); 4) Single Correct
Option; 5) Option Type Consistency (same semantic type); 6) Clinical Validity (terminology/modal-
ity/anatomy); 7) Image—Text Consistency.
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Items are scored {0, 5} with a fair, rule-based mindset. During this stage, we remove instances that
the verifier cannot grade (e.g., malformed JSON), leaving 23,635 candidates. After applying the
essential filter, 22,903 remain.

Stage-2: Fine-grained positive criteria (bonus points). The Critic now assumes the item is not
excellent and awards points only on irrefutable evidence We query 4-8 bonus criteria (binary, with
weights Important = 3 or 4, Optional = 1 or 2), including: 1) Plausible Distractors (every distractor
is a strong near-miss); 2) Parallel Options (length/structure uniformity); 3) Stem Concision (less than
two sentences and concise); 4) Clarity and Focus (single, unambiguous question); 5) Answer-field
Validity (answer exists, matches an option); 6) JSON Schema Compliance (exact keys, no extras).

The Critic denies a criterion if it can imagine a slightly better wording or distractor, pushing precision
over recall.

Stage-3: Penalty criteria (error hunting). Finally, the Critic actively searches for pitfalls (neg-
ative weights): 1) Forbidden Terms (—2; stem contains “caption/context”); 2) Synonym Drift (—1;
introduces unsupported specific facts); 3) Multiple Keys (—2), and Medical Inaccuracy (—2).

Each pitfall is triggered only with a concrete reason.
3.4 AGGREGATION AND ACCEPTANCE RULE
Let P be the set of positive (Important U Optional) criteria with weights w; > 0 and binary scores

s; € {0,w; }. Let \V be the pitfalls with w; < 0 and scores p; € {0, w;}. We compute a normalized
quality score:

Dicp it Zje]\/pj> . @)

ZieP Wi
Candidates passing Stage-1 are accepted if S(x,y) > 7 with 7 = 0.9670. This high threshold

emphasizes precision while keeping a useful yield; it results in 13,087 MC-VQA items, which we
call MedSynVQA.

S(z,y) = Chp[o,l] <

3.5 TRAINING MEDICAL LMMS WITH MEDSYNVQA

We use our synthesized corpus to train medical LMMs with two LMM finetuning approaches.

Supervised Fine-Tuning (SFT). Following MedVLThinker, we elicit thinking traces with
GLM-4.5V-108B and perform SFT on (thinking trace, answer) pairs. The supervision emphasizes
clinically grounded reasoning paths while preserving the strict answer format.

RL with Verbal Rewards (RLVR). We then apply GRPO on answers only (no trace optimization),
again mirroring hyper-parameters from Huang et al.| (2025b). The reward promotes exact-match
accuracy and adherence to the schema without over-fitting to any single imaging modality.

4 EXPERIMENTS

4.1 SETUP

Models. Unless otherwise stated, we finetune two open-weight LMMs Qwen2.5-VL 3B and 7B
Instruct (Bai et al., 2025), using the same training schedule, image resolution, tokenization, and
optimization hyper-parameters asHuang et al. (2025b). We use our rubric-guided generator—verifier
pipeline to synthesize training items from PubMed figures and captions (Figure [3), and we train
students either with SFT or RLVR. Unless otherwise noted, experiments use SK samples.

Benchmarks and metric. We follow Huang et al| (2025b)) evaluation suite and scripts, re-
porting multiple-choice accuracy on six medical VQA benchmarks: MMMU medical split
(MMMU-Med) (Yue et al., 2024), (MedX-M) (Zuo et al., |2025), PathVQA (He et al., |2020),
PMC-VQA (Zhang et al},2023b)), SLAKE (Liu et al.,[2021), and VQA-RAD (Lau et al., 2018).
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Table 2: Generator—Verifier pipeline ablation. Rubric-guided generation outperforms PMC-Style
Text-Image Generation, and adding verification yields the best average accuracy. Cells are shaded
by accuracy; darker is better.

Model | MMMU MedX-M PathVQA PMC SLAKE VQA-RAD | Avg.
Qwen2.5-VL-3B-Instruct | 44.12 20.69 61.96 4477  61.30 62.01 | 49.14
PMC-Style Text-only Generation 46.47 20.8 62.43 51.03  73.08 71.69 54.25
PMC-Style Text-Image Generation 48.82 20.40 63.38 51.08  73.08 72.06 54.80
Rubric Context-Aware Generation 52.35 20.60 62.49 51.83 7043 70.59 54.72

+ Rubric Context-Aware Verification 52.35 21.40 62.82 50.23 | 74.76 73.53 55.85
Qwen2.5-VL-7B-Instruct | 5294 18.89 65.39 4930  65.71 68.75 | 53.50
PMC-Style Text-only Generation 54.71 22.15 63.89 53.23  67.07 65.44 54.41
PMC-Style Text-Image Generation 51.76 21.70 64.31 53.43 | 68.03 71.69 55.15
Rubric Context-Aware Generation 58.24 23.50 65.41 53.83  68.03 75.00 57.33

+ Rubric Context-Aware Verification 57.06 23.15 66.36 53.78  67.79 77.21 57.56

Table 3: Dataset scale ablation. Effect of the number of MedSynVQA training items (1k—13k)
on downstream accuracy. Performance improves with scale, with diminishing returns beyond 5k
examples. “N/A” denotes zero-shot (no additional training). Cells are shaded by accuracy.

Model | Scale | MMMU MedX-M PathVQA PMC SLAKE VQA-Rad | Avg.
N/A | 4412 | 2069 6196 4477 6130 6201 | 49.14

1000 [ 75059 2020 6318 4837 6587 6765 | 52.64

%V];eﬁifm\éf 2000 | 47.06 1995 640700 47.27 | 7404 IINT684NN 54.87
5000 [WS23500 2140 6282 50237 7476 7353 [5585

10000 | 4882 2055 6344 4987 7284 7463 | 5503

Full [ 5176 10223000 6303 4892 7260 7243 | 55.17

N/A | 5294 1889 6539 4930 6571 6875 | 53.50

1000 | 57.65 2160 6553 5093 6827 6581 | 54.96

%Vgei‘ifru\gf 2000 (1600000 2235 677600 5118 6731 7316 | 56.96
‘ 5000 | 57.06 0231570 6636 5378 6779 772107 57.56
10000 | 5706 2245 6686 5273 7188 7390 | 57.48

Full | 5588 2210 6556 [5543 7236 7757 | 5815

Baselines. We compare against strong general-purpose and medical LMMs used in |Huang et al.
(2025b)), including Gemma3 4B (Team et al., 2025), Qwen2.5-VL-3B/7B-Instruct, MedGemma
4B (Sellergren et al., 2025), LLaVA-Med (Li et al.| [2023), HuatouGPT-Vision-7B (Chen et al.,
2024c)), and MedVLThinker (Huang et al.,[2025b)), strong baselines trained solely on text-only data.

4.2 RESULTS

Ablation on the Generator—Verifier pipeline. Table 2] studies each stage of our pipeline. We
begin from zero-shot Qwen2.5-VL students and add 1) PMC-style text-only question generation, 2)
rubric-guided context-aware generation, and 3) rubric-aware verification. For 3B student, the base
model averages 49.14. Text-only generation lifts the average to 54.80. Switching to rubric-guided,
context-aware generation performs similarly on average (54.72). Adding verification yields the best
average, 55.85, with large gains on clinically grounded datasets. For 7B student, the base model
averages 53.50. Text-only generation yields 55.15, rubric-guided generation 57.33, and with veri-
fication we obtain 57.56 and again improving across benchmarks. Overall, rubric guidance already
outperforms a PMC-style text-only recipe, and multi-stage verification supplies the remaining head-
room, producing the best average in both scales (Table 2). The trend aligns with the high-level
improvements visualized in Figure

How much synthesized data do we need? We vary the number of MedSynVQA training items
from 1K to 13K (Table[3). For 3B student. Accuracy increases from 52.64 (1K) to 55.85 (5K), then
plateaus at 55.03 (10K) and 55.17 (Full). For 7B student. The curve is similar: 54.96 (1K), 56.96
(2K), 57.56 (5K) with a slight dip to 57.48 at 10K, and a peak of 58.15 with the full dataset. This
tendency suggests the potential for further refinement of the filtering method. Moreover, to reduce
computational cost, we use 5K items as the default scale in subsequent experiments.
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Table 4: Choice of generator and verifier LMMSs. We vary the generator and verifier. Higher-capacity
generator/verifier pairs produce higher-quality data and consistently improve the final average accu-
racy. “N/A” indicates the zero-shot performance. Cells are shaded by accuracy.

Model |  Generator | Verifier | MMMU MedX-M PathVQA PMC SLAKE VQA-Rad | Avg.
N/A N/A 44.12 20.69 61.96 44.77 61.30 62.01 49.14

Qwen2.5-VL GLM-4.5V 108B | Qwen2.5-VL 72B 52.35 21.40 62.82 50.23 | 74.76 73.53 55.85
3B-Instruct GLM-4.5V 108B | GLM-4.5V 108B 51.18 20.30 63.56 50.63  71.63 70.22 54.59
Qwen2.5-VL 72B | GLM-4.5V 108B 47.65 21.50 62.37 48.87  73.32 69.85 53.93

InternVL3.5 38B | GLM-4.5V 108B 49.41 21.90 61.81 5198 7476 71.32 55.20

N/A N/A 52.94 18.89 65.39 49.30  65.71 68.75 53.50

Qwen2.5-VL GLM-4.5V 108B | Qwen2.5-VL 72B 57.06 23.15 66.36 53.78  67.79 77.21 57.56
7B-Instruct GLM-4.5V 108B | GLM-4.5V 108B 58.82 23.65 67.22 5448  71.15 73.16 58.08
) Qwen2.5-VL 72B | GLM-4.5V 108B 56.47 22.55 67.25 52.38 67.07 72.79 56.42
InternVL3.5 38B | GLM-4.5V 108B 57.65 23.30 66.12 53.58 70.67 75.37 57.78

Table 5: Training approach and data source ablation. Comparing SFT and RLVR using three
sources: PMC (image-text), m23k (text-only), MedSynVQA. RL consistently outperforms SFT,
and MedSynVQA leads to the highest averages across all benchmarks. Cells are shaded by accu-
racy.

Model | MMMU MedX-M PathVQA PMC SLAKE VQA-RAD | Avg.
Qwen2.5-VL-3B-Instruct | 44.12 20.69 61.96 4477  61.30 62.01 | 49.14
SFT (PMC) 47.84 21.46 52.76 5455 65.79 58.58 50.16
SFT (m23k) 32.55 16.00 42.74 28.53 4391 33.09 32.80
SFT (MedSynVQA) 48.82 20.90 63.12 47.57 5433 59.93 49.11
RL (PMC) 48.43 21.51 51.61 5422  75.56 62.38 52.28
RL (m23k) 52.16 22.90 62.28 4732 63.38 71.08 53.19
RL (MedSynVQA) 52.35 21.40 62.82 50.23 = 74.76 73.53 55.85
Qwen2.5-VL-7B-Instruct | 52.94 18.89 65.39 4930  65.71 68.75 | 53.50
SFT (PMC) 49.80 21.39 53.02 54.67 6771 57.72 50.72
SFT (m23k) 46.86 16.40 56.35 3458 5497 53.80 43.83
SFT (MedSynVQA) 49.41 20.90 64.81 50.08  59.62 66.54 51.89
RL (PMC) 55.29 24.11 57.09 5538  66.59 63.48 53.66
RL (m23k) 56.86 24.43 66.83 50.67  65.79 64.71 54.88
RL (MedSynVQA) 57.06 23.15 66.36 53.78  67.79 77.21 57.56

Which generator and verifier LMMs should we use? We next vary the capacity and identity of
the generator and verifier LMMs used during data synthesis (Table d). For the 3B student, pairing
a GLM-4.5V-108B generator with a Qwen2.5-VL-72B verifier yields the best average 55.85; other
high-capacity pairs are close. For the 7B student, the same open-weight verifier gives 57.56 with
a GLM-108B generator, while using GLM-108B as both generator and verifier further nudges the
average to 58.08. We keep the Qwen2.5-VL-72B verifier for the main results to maximize repro-
ducibility with open weights, but Table ] indicates that stronger verifier capacity translates to higher
downstream accuracy.

Training approach and data source ablation. Table [5] compares SFT vs RL from verification
reward (RL) across three data sources: PMC-VQA (image—text pairs) (Zhang et al.| 2023b), m23k
(text-only) (Huang et al. 2025a), and MedSynVQA. 1) RL outperform SFT for both 3B and 7B
models, across all data source. 2) Under RL the MedSynVQA signal is the strongest, giving the
best average on both 3B (55.85) and 7B (57.56). The results indicate that rubric-based context-
aware MedSynVQA dataset are more effective training source than the previous synthetic PMC-
VQA (Zhang et al.| 2023b)) and the text-only one (Huang et al.,|2025b).

Comparisons. Table [6] summarizes head-to-head results on the full benchmark suite. Our stu-
dents trained with MedSynVQA achieve 55.85 (3B) and 58.15 (7B), state-of-the-art averages among
open-weight models considered. Notably, our 3B student surpasses MedVLThinker-7B by +0.97 and
all other 3-7B baselines; the 7B student improves over the best prior MedVLThinker-7B by +3.27.
Gains are consistent across datasets, with strong results on VQA-RAD (up to 77.57).
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Table 6: Comparison to baselines. Average and per-benchmark accuracy of general-purpose and
medical LMMs versus models trained with MedSynVQA. Both MedVLSynther 3B and 7B achieve
the best average across benchmarks, demonstrating strong gains at small and medium scales.

Model | MMMU MedX-M PathVQA PMC SLAKE VQA-Rad | Avg.
General LLM
Gemme 3 4B 46.67 21.89 59.24 4442  66.59 56.86 49.28
Qwen2.5-VL-3B-Instruct 44.12 20.69 61.96 4477  61.30 62.01 49.14
Qwen2.5-VL-7B-Instruct 52.94 18.89 65.39 4930  65.71 68.75 53.50
Medical LLM
MedGemma 4B 32.55 8.17 59.64 42.73 83.49 78.55 50.86
MedGemma 27B 35.88 12.13 62.09 36.75  77.40 72.67 49.49
Llava Med V1.5 7B 31.37 22.56 56.52 3428  62.82 56.74 44.05
HuatuoGPT-Vision-7B 50.59 22.00 63.53 53.39  75.00 63.60 54.69
MedVLThinker-3B 52.16 22.90 62.28 4732  63.38 71.08 53.19
MedVLThinker-7B 56.86 24.43 66.83 50.67  65.79 64.71 54.88
MedVLSynther-3B 52.35 21.40 62.82 50.23  74.76 73.53 55.85
MedVLSynther-7B 55.88 22.10 65.56 5543  72.36 717.57 58.15

Case study. Figure ] presents two cases, revealing deep comprehension with context for our gen-
erator and the leakage rejection by our verifier. Please refer to the appendix for more details.

Contamination analysis. We practice contamination analysis between MedSynVQA and the eval-
uation suites in the appendix. No overlaps were found under this protocol.

5 CONCLUSIONS

MedVLSynther shows that high-quality, auditable medical VQA data can be synthesized at
scale from open biomedical literature by pairing rubric-guided, context-aware generation with a
multi-stage verifier. The resulting MedSynVQA delivers consistent gains for open-weight LMMs
across six benchmarks and ablations confirm that both the generator and verifier are necessary. Op-
erating entirely on open data and models, the approach offers a reproducible, privacy-preserving,
and transparent path to supervision for medical VQA.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we used OpenAI’s GPT-5 model for minor language re-
finement and smoothing of the writing. The Al tool was not used for generating original content,
conducting data analysis, or formulating core scientific ideas. All conceptual development, experi-
mentation, and interpretation were conducted independently without reliance on Al tools.

B REPRODUCIBILITY STATEMENT

We provide detailed instruction to reproduce our research. The prompts for generation and ver-
ification are presented in Section [E] Section [3] provides instructions for initial data curation and
filtering, question generation and verification, and our implementation details. Section 4.1 demon-
strates the experimental settings, including benchmarks and comparison baselines. All models are
trained on 8 A100 GPU machines using mixed precision. The hyperparameters are following “Med-
VLThinker” (Huang et al., 2025b). We full-stack release our data, code, and models in the pursuit
of open science

C ETHICAL CONSIDERATIONS AND LICENSING

MedVLSynther operates solely on PMC-OA literature. We include source metadata and original
licenses in dataset manifests and exclude items whose licenses are incompatible with redistribution
for research. We provide attribution to source articles in per-item metadata. MedVLSynther is
intended exclusively for research; no clinical use is authorized. We release prompts, rubric, and
filtering logs to enable community auditing.

D MORE DATA STATISTICS

Table 7: Image secondary label from original Biomedica statistics.

Image Secondary Label #Images Ratio | Image Secondary Label #Images Ratio
clinical imaging 1039 7.17 intraoral imaging 393 271
brain 984  6.79 eye 379  2.62
x-ray radiography 879  6.07 electrocardiography 377  2.60
light microscopy 829 572 mammography 374 2.58
computerized tomography 785 542 patient photo 357 2.46
immunohistochemistry 676  4.67 procedural image 335 231
magnetic resonance 673  4.65 laryngoscopy 314 2.17
surgical procedure 565 3.90 microscopy 65 045
skin lesion 563  3.89 scientific illustration 31  0.21
functional magnetic resonance 525  3.62 line plot 27  0.19
angiography 519 3.58 bar plot 23 0.16
intraoperative image 504  3.48 immunoblot 12 0.08
specimen 500 3.45 confocal microscopy 11 0.08
optical coherence tomography 492 3.40 aerial photography 2 0.01
ultrasound 486  3.35 table 2 0.01
endoscopy 477  3.29 tree 1 001
teeth 470 324 signal plot 1 0.01
skull 415 2.86 user interface 1 001
plot 400 2.76 ambiguous 1 001

'https://ucsc-vlaa.github.io/MedVLSynther/
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Figure 5: More data statistics about MedSynVQA

E PROMPTS

Generator Prompt

[SYSTEM ROLE]

You are an expert medical-education item writer. Your job is to generate a high-quality
multiple-choice question (MCQ) from a biomedical figure (the image) and its accompanying
paper caption/context. The MCQ must be self-contained, clinically valid, and solvable by
carefully inspecting the image together with general domain knowledge implicitly derivable
from the caption/context: WITHOUT quoting the caption or revealing the answer verbatim.
[NON-NEGOTIABLE RULES]

1) Do NOT write "according to the caption/description/text” or similar.

2) Do NOT copy answer text verbatim from the caption; paraphrase and compress.

3) Exactly ONE best answer. Distractors must be plausible and mutually exclusive with the
key.

4) Use only information supported by the image and facts that a competent clinician could
infer from the caption/context; no speculative claims.

5) Keep clinical terminology precise; avoid brand names/PHI; no patient identifiers.

6) Output MUST follow the JSON schema below-no extra keys, no commentary.

7) Do NOT include chain-of-thought. Keep rationales concise and factual is NOT required-
only output the JSON.

[RUBRIC (Self-check before you output)]

Essential Criteria (must PASS)

- E1. Stem is self-contained; no mention of “caption/description”; no hidden assumptions.

- E2. Image-content alignment: the question requires inspecting specific visual features.
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- E3. Caption-derived facts are integrated implicitly (paraphrased) but do not leak the an-
SWer.

- E4. Single correct option; remaining options are incorrect for a clear clinical reason.

- E5. Medical correctness: terminology, anatomy, modality, and pathophysiology are accu-
rate.

Important Criteria (strongly recommended)

- I1. Cognitive level: > application (identification, interpretation, next step, best explana-
tion).

- 12. Distractors: near-misses, common confusions, or plausible alternatives-not trivial.

- I3. Parallelism: options have similar length/structure; avoid ~all/none of the above.”

- I4. Difficulty labeled (Easy/Moderate/Hard) with a brief justification. (Do NOT include
this in the output JSON.)

- IS. Balanced scope: focuses on one primary concept (finding, diagnosis, step, location).
Optional Criteria (nice to have)

- Ol. Localizes the key finding (e.g., lobe/segment/organ subregion) if appropriate.

- 02. Uses quantitative details (size/scale/grade/stage) only when clearly supported.
[ALLOWED QUESTION ARCHETYPES] Pick ONE that best fits the image + derivable
facts:

- Finding identification ("Which abnormality is present?”’)

- Best diagnosis / most likely explanation

- Next best step (diagnostic or management)

- Localization ("Which structure/region is affected?”’)

- Modality/sequence recognition (e.g., T1 vs T2, phase, stain)

[GENERATION WORKFLOW]

Step 1 - (Privately) derive a few concise, paraphrased facts from captions/contexts that a
clinician could reasonably infer.

Step 2 - Choose an archetype so that both image inspection and those facts are needed.
Step 3 - Write a self-contained stem that integrates the derived facts implicitly (no mention
of caption/description/text”) and does NOT reveal the answer.

Step 4 - Author 5 options (A-E): one correct, four high-quality distractors (near-
miss/opposite/irrelevant-but-plausible). Keep options parallel.

Step 5 - Run the RUBRIC. If any Essential item fails, regenerate (internally). Output only
JSON.

[OUTPUT FORMAT - STRICT JSON]

Return exactly one JSON object with keys:

- ’question”: string

- Zoptions”: object with keys "A”,”B”,”C”,”D”,’E”

- "answer’: one of "A”,’B”,’C”,’"D”’E”

[SOURCE MATERIAL]

CAPTIONS: {CAPTION_BLOCK}

CONTEXTS: {CONTEXT_BLOCK}

Think silently. Output ONLY the JSON object.

Verifier Prompt

[SYSTEM ROLE]

You are a biomedical MCQ verifier with two distinct roles, executed in order:

1. **The Referee (for Essential Criteria):** You are an objective, rule-based official. Your
job is to fairly determine if the absolute minimum standards for usability are met.

2. **The Critic (for Bonus Criteria):** After the essential check, you become a relentless
perfectionist. Your default assumption is that the MCQ is NOT excellent. Your goal is to
deny bonus points unless perfection is demonstrated beyond any doubt.

Judge each MCQ *only* using FIGURE(s)+CAPTION+CONTEXT.

[DATASET POLICY - MUST ENFORCE]

- Stem is self-contained and MUST NOT say “caption” or “context”.
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- Paraphrasing allowed, but DO NOT introduce unsupported clinical facts (age/sex/histo-
ry/location/findings/diagnoses) beyond CAPTION/CONTEXT or clearly visible image cues.
- If CAPTION names a diagnosis, do NOT restate that diagnosis verbatim in the stem.

- Exactly one correct option; all options must be the same semantic type.

- Clinical correctness (modality/stain/anatomy/pathophysiology) must be supported by
sources.

[SCORING MODEL] Output ONLY “rubric™:[...].

Each item has:

-idx (1..N), title, description (ONE sentence starting with “Essential/Important/Optional/Pit-
fall Criteria: ...”),

- category: Essential [Important |Optional |Pitfall,

- weight: Essential=5; Important in 3,4; Optional in 1,2; Pitfall in -1,-2,

- score: Essential/Important/Optional in 0, weight; Pitfall in 0, weight (0 = not triggered),

- notes: < 12 words (brief reason; no chain-of-thought).

**Scoring Mindset: **

- **Essential Items:** Award full points if the rule is met. Be a fair and impartial referee.

- **Important/Optional Items (Bonus Points):** **These are bonus points, not entitle-
ments.** The score is **0 by default.** You must find **irrefutable evidence of perfec-
tion** to award points. If there is *any* subjective room for improvement, the score remains
0.

[FIXED ESSENTIAL ITEMS - MUST INCLUDE with EXACT titles]

1) Stem Self-contained

2) Vocabulary Constraint

3) Diagnosis Leak

4) Single Correct Option

5) Option Type Consistency

6) Clinical Validity

7) Image—Text Consistency

[BONUS CRITERIA FOR EXCELLENCE - ZERO-TOLERANCE JUDGEMENT]

(You must assess against a diverse set of 4-8 items. For this section, your mindset is ”guilty
until proven innocent.” **A single, minor flaw in any sub-point means an instant score of 0
for the entire item.**)

- Plausible Distractors (Important, 3-4)

- **Every single** distractor must be a strong, clinically relevant alternative given the
sources.

- Each must differ from the key by exactly ONE clear axis.

- **If you can imagine a slightly more plausible distractor that wasn’t used, score 0.** There
must be no weak links.

- Parallel Options (Important, 3)

- Grammatical structure, length, and specificity must be **rigorously uniform**.

- **Any noticeable outlier** in form (e.g., one starts with a verb, others with nouns) or
length fails this. No unique cues on the key.

- Stem Concision (Optional, 1-2)

- Stem must be < 2 sentences AND < 35 words.

- If the stem can be rephrased to be even **slightly more elegant or direct** without losing
critical meaning, **score 0**.

- Clarity and Focus (Optional, 2)

- The stem poses a single, perfectly unambiguous question.

- If the question could be worded **any more clearly or is even slightly awkward**, **score
0%,

- Answer Field Validity (Important, 3)

- “answer’ exists, is one of A-E, and exactly matches an option key.

- No duplicate options; all option strings non-empty.

- JSON Schema Compliance (Important, 3)

- MCQ has exactly required keys question, optionsA..E, answer; no extras/missing.

- Forbidden Terms (Pitfall, -2)

- Stem contains the exact word ’caption’ or ’context’.
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- Synonym Drift (Pitfall, -1)

- Stem introduces a **specific** clinical fact that is absent from sources and not visible in
the image.

- Multiple Keys (Pitfall, -2)

- >1 option is reasonably correct **given sources**. - Medical Inaccuracy (Pitfall, -2)

- Any statement directly contradicts sources.

[HOW TO JUDGE]

- For Essentials, be a referee. For the Bonus section, be a rival looking for a weakness.

- Use only FIGURE(s)+CAPTION+CONTEXT. If an MCQ asserts anything unsupported,
fail the relevant item.

[OUTPUT FORMAT — STRICT JSON ONLY]

Return exactly: {"rubric”: [{”idx”:1,’title”:”...”,”description”:”Essential Criteria: ...”, cate-
gory”:”Essential”,”weight”:5,”score”:0 or 5,’notes”:”..”},...]}

No totals. No extra keys. No commentary.

[INPUTS]

IMAGES: <attach in order >

MCQ: {MCQ_.JSON}

CAPTION: {CAPTION_BLOCK}

CONTEXT: {CONTEXT_BLOCK}

[CONDUCT]

If inputs are insufficient to judge, output {”error”:”insufficient_evidence”} ONLY. Think
silently. Output ONLY the JSON object above.

F DATA CONTAMINATION ANALYSIS

( Dataset: PMC-VQA AYd Dataset: PMC-VQA Y4 Dataset: VQA-RAD )

Question: What type of imaging Question: Which lobe of the brain is Question: Are there lesions in this
modality is being described in the affected in MRI abnormalities on the left image?
content? side?
b | b Options:
[} Options: Options: A. No
= A. Magnetic Resonance Imaging 5 A temporal lobe B. Yes

B. Computed Tomography B. occipital lobe

C. Positron Emission Tomography s C. frontal lobe Answer: A. Yes

D. X-Ray D. parietal lobe

Answer: C. Positron Emission Answer: D. parietal lobe

Tomography

Dataset: MedSynVQA Dataset: MedSynVQA Dataset: MedSynVQA

Question: Which imaging Question: Which brain region has the Question: Which vascular structure is
modality is shown in image (a)? highest frequency of MRI abnormalities most likely affected in the patient with

based on the provided image? the acute infarction shown in the MRI?
Options:
A. Magnetic resonance imaging

B. Computed tomography

Options:
A. Frontal lobe

Options:
| A. Leftinternal carotid artery
§| B. Right middle cerebral artery M1 segment

C. X-ray B. Temporal lobe
D. Positron emission A © C. Parietal lobe C. Left middle cerebral artery M1 segment
tomography s D. Insula D. Left anterior cerebral artery
E. Ultrasound o E. Occipital lobe E. Left posterior cerebral artery
Answer: E. Ultrasound Answer: E. Occipital lobe Answer: C. Left middle cerebral artery
M1 segment
. / \. J J/

Figure 6: Examples from our contamination analysis across MedSynVQA and our testset. On the
left, this case shows that top-10 text-embedding neighbor shows similar options but entirely different
images. In the middle, we find no exact duplicates by MD5; pHash retrieves a same-source size
variant with different question/answers. On the right, image-embedding neighbor reflects modality
clustering (high similarity) without instance identity; questions also differ.

Text decontamination. We audit overlap between the training pool (13,087 rows) and the held-out
test set (8,220 rows) over the fields question and options, after lowercasing, whitespace cleanup,
digit masking (all numbers to “<NUM>"), and normalizing options to “A./B./..”. 1) MinHash +
Levenshtein hashes 3-character n-grams and confirms candidates with normalized edit similarity
(r = 0.90, following |Pal et al, (2022)). This conservative pass finds no near-duplicate strings
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(pairs=0; hit queries=0; hit rate=0.0). 2) Embedding + FAISS (Douze et al., [2024) encodes text
with BAAI/bge-m3 (Chen et al., [2024a) (L2-normalized), retrieves top-k=5 train neighbors per test
item, and flags pairs with cosine larger then 0.88 (Tumre et al., 2025). This yields 47 pairs across
23 test queries (hit_rate about 0.280%), with per-query hits mean=2.0 (max=5). The top-1 similarity
for those 23 queries averages 0.899 (median 0.894; p95=0.926), and qualifying pair similarities
concentrate in [0.88, 0.95). Considering all test items, the best-neighbor (“MaxSim”) distribution
is mean 0.651 (median 0.644; p95=0.778), and Overlap@0.88 = 23/8,220 = 0.280%, indicating
minimal distributional leakage beyond trivial lexical matches. We found no overlap of texts.

Image decontamination. We repeat the two-pass audit on images decoded directly from the
dataset (using the first image per record by default). 1) A hashing pipeline detects exact and near
duplicates via MDS5 of raw pixels and a 64-bit perceptual hash (pHash); pHash neighbors are re-
trieved with a binary FAISS index, and we summarize each test image’s minimum Hamming dis-
tance and “Overlap@d” (fraction with best neighbor less than or equal to “d”). 2) A semantic
pipeline encodes images with OpenCLIP or BiomedCLIP (Ilharco et al.l 2021} Zhang et al., 2023a)),
searches the train set with FAISS (Douze et al.| [2024) (inner product on L2-normalized features),
and reports per-test MaxSim, Overlap@r, and a histogram of high-similarity test—train pairs (e.g.,
at 7 = 0.88). Together, hashing probes pixel-level or layout-level duplication while embeddings
probe semantic or style reuse; all statistics are computed from the images as stored in parquet under
this single-image-per-record protocol. We found no overlap of images.

G EXPERT EVALUATION STATISTICS

To complement the downstream results and decontamination analysis, we conducted a small-scale
human evaluation of MedSynVQA questions to assess intrinsic item quality and the behavior of
the verifier. Five board-certified imaging experts participated, with clinical backgrounds covering
oncologic CT/MR, abdominal and gastrointestinal CT/MR, brain CT/MR, diagnostic radiology, and
gastrointestinal endoscopy. Some questions were jointly reviewed by more than one expert when
they spanned multiple organs or modalities.

G.1 VERIFIER-ACCEPTED ITEMS

We first assessed the precision of the verifier on items it accepts. We randomly sampled 15 multiple-
choice questions (MCQs) that had been accepted under the main verification threshold. Each item
was rated on four 1 to 4 Likert scales (4 = excellent, 1 = poor): medical correctness and uniqueness of
the keyed answer, clarity and professional wording, image grounding, and option design. In addition,
experts provided a binary judgment on whether the item was acceptable for use as a medical MCQ.

Table [8] summarizes the aggregate statistics, and [I0] reports per-item ratings. 14 of the 15 items
(about 93%) were judged acceptable overall; one item was rejected because the brain MR image
had such poor contrast that the expert considered the image non-evaluable, independent of the ques-
tion text. The mean scores across criteria were 3.35 for medical correctness, 3.13 for clarity and
professional wording, 3.46 for image grounding, and 3.40 for option design, corresponding to good
to excellent quality on average. Two items received a score of 1 on the clarity and wording scale,
indicating that while their medical content and image use were sound, the phrasing could be sub-
stantially improved. This is consistent with our finding that the current vocabulary related checks in
the verifier do not fully capture wording quality and suggests that prompt refinement for clarity is a
promising direction.

G.2 VERIFIER-REJECTED ITEMS

We then examined whether the verifier is justified when rejecting items. We randomly sampled 20
MCQs that had been filtered out by the verifier and, for each item, selected one essential rubric that
had received a zero score. The audited rubrics and their frequencies, along with human agreement,
are summarized in Table[9} Table[IT]provides per-item details.

Across the 20 rejected items, the audited essentials were: stem self-contained (5 items), vocabulary
constraint (4), diagnosis leak (1), single correct option (2), option type consistency (4), clinical valid-
ity (2), and image—text consistency (2). For rubric types that do not require strong medical expertise
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(stem self-contained, vocabulary constraint, option type consistency), the authors first inspected the
items. Stems marked as non self-contained were indeed unusable without external context, for ex-
ample explicitly referring to “according to the context” rather than being answerable from the stem
and image alone. Option type consistency failures involved heterogeneous option formats or options
literally written as “none” (for example, option E is just “none” as an empty placeholder, rather than
a meaningful choice such as “no abnormality” or “none of the above”), so these rejections were
appropriate.

For the vocabulary constraint rubric, we identified a systematic issue. In the detailed cases examined,
the verifier incorrectly flagged sex, age, or clinical history as “unsupported,” even though these
attributes were present in the caption or context. These are genuine false negatives: the current rubric
prompt does not reliably capture linguistic professionalism or terminology use and can misfire when
the model fails to correctly read the context. We therefore regard vocabulary constraint as a weaker
signal and a primary target for future prompt and rubric refinement.

For the medically heavy essentials (diagnosis leak, single correct option, clinical validity, and image-
text consistency), items were evaluated by clinicians. In all inspected cases, experts agreed with the
verifier. Items rejected for diagnosis leak did reveal the diagnosis directly in the stem; items re-
jected for single correct option or clinical validity had multiple plausible keys or medically incorrect
statements; items rejected for image-text consistency did not match the visual evidence.

G.3 SUMMARY

Although this human study is necessarily small due to limited clinician time and the difficulty of re-
viewing full image-based MCQs, it already involves five specialists and includes items that required
cross-domain input. The audit shows that a large majority of verifier-accepted items are judged
medically sound and usable, and that the essential medical rubrics driving rejection (diagnosis leak,
single correct option, clinical validity, image—text consistency) align well with clinician judgment.
The main systematic discrepancy is concentrated in the vocabulary-related check, which we now
explicitly highlight as a limitation. Overall, Tables [HIT] provide intrinsic evidence about the re-
liability and failure modes of the verification stage and complement the downstream metrics and
decontamination analyses in the main paper.

Table 8: Summary of expert evaluation on questions.

Subset Items Experts Human passrate Mean medical correctness Mean clarity Mean image grounding Mean option design
Verifier-accepted MCQs ~ 15.00  5.00 14715 (93%) 335 3.13 3.46 3.40
Verifier-rejected MCQs ~ 20.00 5.00 N/A N/A N/A N/A N/A

Table 9: Distribution of audited essential rubrics for rejected items.

Essential rubric Count  Human agreement with verifier Notes

Stem self-contained 5 Yes (all) Stems depended on external context, not answerable from stem+image
Vocabulary constraint 4 No (in 3 cases) Verifier wrongly flagged sex/age/history as unsupported
Diagnosis leak 1 Yes (all) Diagnosis explicitly revealed in stem

Single correct option 2 Yes (all) Multiple plausible keys or ambiguous answer

Option type consistency 4 Yes (all) Heterogeneous option formats or meaningless “none” placeholder
Clinical validity 2 Yes (all) Medically incorrect or inconsistent statements

Image—text consistency 2 Yes (all) Text description did not match the visual findings

Table 10: Per-item expert ratings for verifier-accepted MCQs.

Item ID Reviewer specialty Human acceptable? ~ Medical correctness (1-4)  Clarity & wording (1-4)  Image grounding (1-4)  Option design (1-4) Notes (optional)
A01 diagnostic radiology Yes 3 3 4 3

A02 diagnostic radiology Yes 4 3 4 3

A03 diagnostic radiology Yes 4 4 4 4

A04 diagnostic radiology Yes 4 4 4 4

A0S diagnostic radiology Yes 4 4 4 4

A06 diagnostic radiology Yes 3 3 3 3

A07 gastrointestinal endoscopy Yes 4 4 4 4

A08 gastrointestinal endoscopy Yes 3 3 3 3

A09 gastrointestinal endoscopy Yes 4 3 3 3

Al0 gastrointestinal endoscopy Yes 2 3 2 3

All brain CT/MR Yes 4 4 4 4

Al2 brain CT/MR No N/A 1 3 3 poor contrast images
Al3 brain CT/MR Yes 4 4 4 4

Al4 brain CT/MR Yes 2 3 2 4

AlS brain CT/MR Yes 2 1 4 2
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Table 11: Per-item audit for verifier-rejected MCQs.

Item ID Reviewer specialty Essential rubric checked Human agrees with rejection?
BO1 author self-review Stem self-contained Yes
B02 author self-review Stem self-contained Yes
B03 author self-review Stem self-contained Yes
B04 author self-review Stem self-contained Yes
BOS author self-review Stem self-contained Yes
B06 author self-review vocabulary constraint Yes
B0O7 author self-review vocabulary constraint No
B08 author self-review vocabulary constraint No
B09 author self-review vocabulary constraint No
B10 oncologic CT/MR, diagnostic radiology diagnosis leak Yes
B11 oncologic CT/MR single correct option Yes
B12 gastrointestinal CT/MR, gastrointestinal endoscopy single correct option Yes
B13 author self-review option type consistency Yes
B14 author self-review option type consistency Yes
B15 author self-review option type consistency Yes
B16 author self-review option type consistency Yes
B17 gastrointestinal CT/MR, gastrointestinal endoscopy clinical validity Yes
BI18 gastrointestinal CT/MR, gastrointestinal endoscopy clinical validity Yes
B19 gastrointestinal CT/MR, gastrointestinal endoscopy ~ image-text consistency Yes
B20 brain CT/MR image-text consistency Yes

H CASE STUDY OF SYNTHETIC DATA

Essential Criteria: Stem Self-contained

Generated Question: Which finding is
most consistent with the severe osteolysis
described in the context?

Generated Choices: (A) Intact ischial ra-
mus on AM model (B) Complete destruc-
tion of ischial ramus (C) Stable acetabular
prosthesis (D) Minimal bone loss around
acetabulum (E) Intact pubic ramus on AM
model

Generated Correct Answer: (B)

Verifier Key Output:

{ 7idx”: 1, "title”: ”Stem Self-contained”, “description”: “Essential Criteria: Stem does
not rely on caption or context.”, "category”: “Essential”, "weight”: 5, ”score”: 0, "notes”:
”Stem references "context’, violating self-containment.” },

Analysis:

This item should fail with score 0 on Stem Self-contained. The phrase in the context makes
the answer contingent on external text; without that context, the solver cannot infer that
severe osteolysis corresponds to complete destruction of the ischial ramus, so option B is
not reachable from the stem alone. The abbreviation AM model is also undefined in the
stem, further harming self-containment.
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Essential Criteria: Vocabulary Constraint

Caption: A six-year-old girl with right
side neglected modified Severin classifica-
tion type IV developmental dysplasia of
hip.

Context: A 6-year-old girl was admitted
to our outpatient clinic with complaints of
limping in June 2009...

Generated Question: Which abnormality
is most consistent with the radiographic
findings in this six-year-old girl?
Generated Choices: (A) Right hip sub-
luxation with acetabular dysplasia (B) Left
hip dislocation with femoral head avascu-
lar necrosis (C) Bilateral femoral neck frac-
tures (D) Pelvic osteomyelitis (E) Sacroil-
iac joint ankylosis

Generated Correct Answer: (A)

Verifier Key Output:

{ 7idx”: 2, title”: ”Vocabulary Constraint”, “description”: “Essential Criteria: No unsup-
ported clinical facts introduced.”, “category”: “Essential”, ”weight”: 5, ”score”: 0, "notes”:
”Stem introduces age and sex not visible in image.” },

Analysis:

This item should receive score 0 on Vocabulary Constraint. The stem introduces age and
sex as visible facts, while the evaluation setting treats the image as the sole evidence; these
demographics are not directly verifiable from the image and are not required to answer.
Including them constitutes unsupported clinical facts and also injects bias by priming pedi-
atric diagnoses such as developmental dysplasia of the hip, reducing the emphasis on visual
reasoning. This is one relatively acceptable example for vocabulary constraint rejection.

Essential Criteria: Diagnosis Leak

Caption: A 37-year-old woman with a pal-
pable mass on the upper outer quadrant of
the right breast. (a) Cranio-caudal mam-
mogram. (b) Mediolateral Oblique mam-
mogram. Arrows in (a and b) mark the le-
sion. The triangular skin marker indicating
the location of the palpable mass is visi-
ble in (b). (c-e) Ultrasound imaging show
a circumscribed 1.6 x 1.8 x 1.5 cm hypoe-
choic mass with flow and post enhancement
at 11 o’clock position and 10 cm from nip-
ple corresponding to the mass in mammo-
grams. (f) Ultrasound image from biopsy
procedure showing the needle. (g) invasive
ductal carcinoma, grade 1, showing infiltrating malignant glands within desmoplastic stroma
(H&E stain). (h) high-power magnification showing predominant tubular formation (ar-
rows), mild nuclear atypia with rare/no mitosis (H&E stain). (i) ER immunostain showing
strong diffuse positivity with anti-ER antibody.

Context: Tumor differentiation graded on an ordinal scale (3: poorly-differentiated, 2:
moderately-differentiated, and 1: well-differentiated) was positively correlated with US
measured tumor size...

Generated Question: A 37-year-old woman presents with a palpable mass in the upper
outer quadrant of the right breast. Imaging and biopsy reveal a circumscribed hypoechoic
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mass with flow, invasive ductal carcinoma, grade 1, with predominant tubular formation,
mild nuclear atypia, and strong diffuse ER positivity. Which histopathological feature is
most consistent with the tumor grade?

Generated Choices: (A) Poorly differentiated with marked nuclear atypia and frequent mi-
toses (B) Moderately differentiated with solid nests and moderate nuclear atypia (C) Well-
differentiated with predominant tubular formation and mild nuclear atypia (D) In situ carci-
noma with comedonecrosis (E) Metastatic carcinoma with signet ring cells

Generated Correct Answer: (C)

Verifier Key Output:

{ ”idx: 3, "title”: ”Diagnosis Leak™, ”description”: “Essential Criteria: The stem does not
restate the diagnosis verbatim.”, ’category”: “Essential”, "weight”: 5, ”score”: 0, “notes”:
”Stem restates diagnosis from caption.” },

Analysis:

This item exhibits clear diagnosis leakage. The stem reproduces the caption’s diagnostic
content verbatim, namely invasive ductal carcinoma, grade 1, predominant tubular forma-
tion, mild nuclear atypia, and strong ER positivity. Option C mirrors these phrases, so
a question only baseline can answer without using the image, producing a direct stem to
option match. This dual overlap, caption to stem and stem to option, invalidates the assess-
ment.

Essential Criteria: Single Correct Option

Caption: Panoramic view after implant in-
sertion.

Context: None

Generated Question: Which of the fol-
lowing best describes the radiographic ap-
pearance of the dental implants in this
panoramic view?

Generated Choices: (A) All implants are
fully osseointegrated with no peri-implant
radiolucency (B) Multiple implants show
peri-implant radiolucency indicating early
failure (C) Implants are positioned in the maxillary arch (D) Implants are surrounded by
dense cortical bone (E) Implants exhibit significant angulation errors

Generated Correct Answer: (B)

Verifier Key Output:

{”idx”: 4, "title”: ”’Single Correct Option”, description”: “Essential Criteria: Only one op-
tion is correct based on sources.”, "category”: “Essential”, "weight”: 5, ’score”: 0, "notes”:
”Option B is not clearly supported by image.” },

Analysis:

With a panoramic radiograph of limited resolution, option B asserts both the presence of
peri-implant radiolucency around multiple implants and the clinical inference of early fail-
ure. The first claim is not clearly visible on this single image, and the second cannot be
concluded from imaging alone. Option A, “no peri-implant radiolucency,” is likewise non-
falsifiable here and may seem plausible if details are indistinct, creating an A vs B ambiguity.
Options D and E are subjective without quantitative thresholds, and while C is clearly in-
correct, its presence does not make any remaining option uniquely correct. The net effect is
that more than one answer can be defended from the same image.
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Essential Criteria: Option Type Consistency

Caption: Scoliosis series and kyphosis series images
of the patient. The scoliosis anteroposterior view im-
age (2A) shows the patient’s trunk flexed to the left side
by 12.31 degrees; the kyphosis series lateral image (2B)
shows anterior flexion by 16.18 degrees of the patient’s
trunk.

Context: None

Generated Question: Which measurement represents
the degree of trunk flexion in the lateral view?
Generated Choices: (A) 12.31 degrees (B) 16.18 de-
grees (C) Anterior flexion (D) Left-side flexion (E) Trunk
flexion angle

Generated Correct Answer: (B)

Verifier Key Output:

{ ”idx”: 5, "title”: ”Option Type Consistency”, “description”: “Essential Criteria: All op-
tions are the same semantic type.”, ”category”’: “Essential”, ”weight”: 5, ”score”: 0, "notes””:
”Options mix numeric values and descriptive terms.” },

Analysis:

The stem asks for “which measurement represents the degree of trunk flexion in the lateral
view,” so the expected answer type is a numeric value. The options, however, mix numbers
and descriptive phrases: A and B are numeric, whereas C, D, and E are textual descriptors.
This type mismatch violates the requirement that all options be of the same semantic class
and also weakens alignment with the stem’s focus on a measurement.

Essential Criteria: Clinical Validity

Caption: A 41-year-old male with cervi-
cal tuberculosis suffered from neck pain,
spastic quadriparesis, and dysphagia due to
a retropharyngeal abscess. Neutral lateral
cervical spine radiograph (A) indicates cer-
vical kyphosis of 51 degree at C3-6, and C4
is the apical vertebra. The kyphosis Cobb
angle was 54 dgree and 49 degree on flexion
and extension, respectively (B, C), which
indicated that the flexibility was only 3.9%.
MRI showed the formation of a retropha-
ryngeal abscess and ventral compression of
the spinal cord. The Cobb angle was 21 de-
gree on MRI, which indicated that the flex-
ibility was 58.8% (D). The x-ray and CT
scans at the final follow-up showed that the
correction was well maintained without sig-
nificant loss, and solid bone fusion was finally achieved. Context: ...Radiological examina-
tions (cervical X-ray, MRI, and CT) were performed to assess the bone fusion state, flexibil-
ity and correction of kyphosis. ... The flexibility of kyphosis was evaluated on both dynamic
extension-flexion X-rays and cervical MRI ...

Generated Question: Which imaging modality best demonstrates the flexibility of cervical
kyphosis in this patient?

Generated Choices: (A) Neutral lateral cervical spine radiograph (B) Flexion lateral cervi-
cal spine radiograph (C) Extension lateral cervical spine radiograph (D) MRI (E) CT scan
Generated Correct Answer: (D)

Verifier Key Output:
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{ "idx™: 6, "title”: “Clinical Validity”, “description™: “Essential Criteria: Clinical correct-

ness supported by sources.”, “category”: “Essential”’, “weight”: 5, ”score”: 0, “notes”:
”MRI does not best demonstrate flexibility.” },

Analysis:

The question asks which modality best demonstrates the flexibility of cervical kyphosis, but
standard assessment of flexibility is by dynamic flexion and extension lateral radiographs,
which directly show angle change. MRI is primarily for soft-tissue and cord compression
assessment, is usually obtained supine, and is not a dynamic study, so it is not the best
modality to demonstrate flexibility. Although the case text reports a percentage derived from
the difference between the neutral X-ray angle and an MRI angle, that does not make MRI
the best demonstration of flexibility.
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I CASE STUDY OF MODEL OUTPUTS

MedVLSynther-3B 5K output for MMMU-medical

Question: In the diagram below, the P

wave represents (), the QRS segment rep-

resents () and the T wave represents ( ).

Choices: (A) atrial depolarization, ventric- R
ular depolarization, ventricular repolariza-
tion

(B) ventricular repolarization, atrial depo-
larization, ventricular depolarization

(C) ventricular depolarization, ventricular
repolarization, atrial depolarization T
Correct Answer: (A)

Model Answer: (A) P
Model Response: N\
<think>The P wave is typically associated
with atrial depolarization, which is the ini-
tial depolarization of the atria. The QRS
segment represents ventricular depolariza-
tion, which is the depolarization of the ven-
tricles. The T wave is associated with ven-
tricular repolarization, which is the process
of the ventricles returning to their resting state after depolarization. Therefore, the correct
sequence is P (atrial depolarization), QRS (ventricular depolarization), and T (ventricular re-
polarization). </think><answer>A. atrial depolarization, ventricular depolarization, ven-
tricular repolarization</answer>

O -

Analysis:

The model correctly matches the P wave, QRS complex, and T wave with their respective
physiological events: P wave for atrial depolarization, QRS complex for ventricular de-
polarization, and T wave for ventricular repolarization. However, its explanation could
be enhanced by linking the morphology of these waves to their function. For instance, it
could mention the small, rounded P wave representing atrial depolarization, the narrow, tall
ORS complex signifying rapid ventricular depolarization (with atrial repolarization buried
within), and the broader T wave for ventricular repolarization. Additionally, the model
could have clarified the terminology, specifically that the "QRS complex” is the correct
term, not the " QRS segment.” Furthermore, while the explanation is correct, it would have
been helpful to briefly exclude options B and C, which incorrectly describe the sequence of
depolarization and repolarization.
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MedVLSynther-3B 5K output for MedXpert-QA

Question: When performing tension band
fixation for an olecranon fracture, as illus-
trated in Figure A, which nerve is most vul-
nerable to injury if the Kirchner wire pene-
trates too deeply through the anterior cortex
of the proximal ulna? Choices: (A) Median
nerve

(B) Ulnar nerve

(C) Posterior interosseous nerve

(D) Radial nerve

(E) Anterior interosseous nerve

Correct Answer: (E)

Model Answer: (E)

Model Response:

<think>Olecranon fractures are located at
the elbow joint, and the ulna is the bone
that forms the elbow joint with the radius.
The anterior cortex of the proximal ulna is
where the Kirchner wire is typically placed
for tension band fixation. The anterior interosseous nerve runs along the anterior surface of
the ulna, just below the anterior cortex. If the Kirchner wire penetrates too deeply through
the anterior cortex, it could potentially injure the anterior interosseous nerve, which is the
most vulnerable nerve in this location. </think><answer>E. Anterior interosseous nerve.
</answer>

Analysis:

The model demonstrates a solid grasp of surgical anatomy and spatial reasoning by cor-
rectly identifying the anterior interosseous nerve (AIN) as the nerve most at risk when the
Kirschner wire penetrates too deeply through the anterior cortex of the proximal ulna during
olecranon tension-band fixation. This shows that the model not only recalls factual anatomy
but also understands the directional logic of the operative field—that danger arises from an-
terior cortical breach rather than posterior or medial misplacement. While its explanation
slightly simplifies the anatomy, the overall reasoning is sound. The AIN indeed originates
from the median nerve, passes deep to the pronator teres, and descends along the anterior
interosseous membrane within the deep volar compartment—precisely the region a deeply
driven wire could encroach upon. By contrast, the posterior interosseous nerve lies pos-
terolaterally around the radial neck, the ulnar nerve remains protected posterior-medially
within the cubital tunnel, and the median nerve trunk is more superficial and radial. These
distinctions support the model’s conclusion.
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Question: does microscopy show branch-
ing papillae having flbrovascular stalk cov-
ered by a single layer of cuboidal cells hav-
ing ground-glass nuclei? Choices: (A) Yes
(B) No

Correct Answer: (A)

Model Answer: (A)

Model Response:

<think>The question describes a histolog-
ical feature that is characteristic of papillary thyroid carcinoma. Papillary thyroid carcinoma
is a type of thyroid cancer that typically presents with branching papillae, which are struc-
tures that resemble branching tree-like structures. These papillae are covered by a single
layer of cuboidal cells that have ground-glass nuclei. The presence of these features is
consistent with the histological appearance of papillary thyroid carcinoma, which is often
diagnosed through microscopic examination. </think><answer>A. Yes. </answer>

Analysis:

The model accurately identifies the defining microscopic features of papillary thyroid car-
cinoma (PTC)—branching papillae with fibrovascular cores, lined by a single layer of
cuboidal cells showing ground-glass ( “Orphan Annie eye” ) nuclei—and correctly concludes
“Yes.” This demonstrates solid pattern recognition and understanding of the diagnostic mor-
phology. While its reasoning leans toward a textbook summary rather than slide-specific de-
scription, the conceptual mapping is on point. It could be improved by explicitly referencing
visible features such as the fibrovascular stalks, nuclear grooves, and intranuclear pseudoin-
clusions, as well as by differentiating from benign papillary hyperplasia or follicular variant
PTC. Nonetheless, the model’s response shows a commendable ability to link structural, cy-
tologic, and diagnostic hallmarks coherently—an impressive level of interpretive accuracy
for a 3B-scale pathology model.
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Question: Which region of the brain is con-
nected with the habenula that is highlighted
in green? Choices: (A) Basal forebrain
(B) Periaqueductal gray

(C) Medial prefrontal cortex

(D) Raphe nuclei

Correct Answer: (C)

Model Answer: (C)

Model Response:

<think>The image shows a brain diagram
with various regions labeled. The habenula is highlighted in green, and it is connected
to several other regions. The green label next to the habenula points to the “medial pre-
frontal cortex,” which is one of the areas associated with the habenula. This suggests that
the medial prefrontal cortex is a region that is functionally associated with the habenula.
</think><answer>C. Medial prefrontal cortex. </answer>

Analysis:

The model correctly selects the medial prefrontal cortex (mPFC) as the region function-
ally associated with the habenula, demonstrating that it can interpret the visual cue of the
green-highlighted region and map it to the correct brain area. This shows a sound grasp
of color-coded neuroanatomical representations and context-based reasoning. However, its
explanation remains somewhat superficial: it does not reference the figure legend, which
clarifies that green indicates functional association while blue denotes direct anatomical
connectivity, nor does it rule out the other options (basal forebrain, periaqueductal gray,
raphe nuclei), which are blue rather than green in the diagram. Despite this, the reasoning
pathway—linking color cue to functional correlation—is accurate and efficient. Overall,
the model demonstrates solid spatial comprehension and context mapping, with room for
improvement in precise figure interpretation and differential exclusion.
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Question: Does the picture contain lung?
Choices: (A) Yes

(B) No

Correct Answer: (A)

Model Answer: (A)

Model Response:

<think>The image provided is a cross-
sectional view of a human body, likely a CT
scan. The visible structures include bones,
soft tissues, and air-filled spaces. The air-
filled spaces are characteristic of the lungs,
which are responsible for gas exchange in
the body. Therefore, the image does contain
lung structures.  </think><answer>A.
Yes. </answer>

Analysis:

The model correctly recognizes that the im-
age contains lung parenchyma, identifying
the low-attenuation, air-filled regions as pulmonary structures and noting the axial (cross-
sectional) orientation of the scan. This indicates a proper understanding of how lung fields
appear on CT—dark, symmetric areas surrounding the mediastinum. However, the explana-
tion remains somewhat generic: it does not explicitly anchor its reasoning to clear anatomic
landmarks such as the trachea, bronchi, ribs, or vertebral body, nor does it exclude other po-
tential air-filled structures like bowel loops. A stronger rationale would mention the bilateral
distribution of aerated areas within the thoracic cavity, bordered by ribs and mediastinum,
confirming their identity as lungs rather than abdominal gas. Overall, the model shows
correct interpretation and solid conceptual grounding, though finer spatial referencing and
exclusion reasoning would further strengthen its diagnostic precision.
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Question: Is there a small bowel obstruc-
tion? Choices: (A) Yes

(B) No

Correct Answer: (A)

Model Answer: (A)

Model Response:

<think>A small bowel obstruction typi-
cally presents with signs of bowel dilation
and fluid accumulation. In this CT scan, the
small bowel loops appear dilated and there
is a significant amount of fluid accumulation, which are characteristic signs of a small bowel
obstruction. The presence of these findings strongly suggests the presence of a small bowel
obstruction. </think><answer>A. Yes. </answer>

Analysis:

The model correctly identifies small bowel obstruction (SBO) by recognizing the presence
of bowel dilation and fluid accumulation, demonstrating a solid grasp of the key radiologic
pattern. Its reasoning is directionally accurate and clinically valid, but somewhat general-
ized—it does not explicitly describe the hallmark CT features that confirm SBO. A stronger
explanation would reference multiple centrally located dilated small-bowel loops (;3 cm in
diameter), numerous air—fluid levels, and possibly the small-bowel feces sign, contrasted
with a collapsed distal colon. It would also mention the need to identify a transition point
to confirm mechanical obstruction and distinguish it from paralytic ileus or large-bowel
obstruction. Overall, the model’s answer is correct and displays good diagnostic reason-
ing, though it could reach expert-level precision with more specific anatomic anchoring and
differential exclusion.
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Question: This line of of myelinated axons

in layer IV of visual cortex represents the A |
axons of cells in the Choices: (A) Superior / ﬁ !
colliculus. S/

(B) Lateral geniculate. Tyrosine

(C) Retina. Y

(D) Medial geniculate. -DOPA

Correct Answer: (B) ) Y

Model Answer: (B) x /

Model Response: C\a& b s

<think>The image shows a cross-section
of the brain, specifically the visual cortex, /—5/
which is part of the cerebral cortex. The | C?'z+ (k®
layer IV in the visual cortex is known as | Y

the “cytoarchitectonic layer” and is charac- k N

terized by the presence of large pyramidal o % i
cells. The myelinated axons in layer IV of S O—
the visual cortex are the axons of cells in ( B, G,

is a relay nucleus in the visual pathway.

The LGN receives input from the retina and

sends it to the primary visual cortex (V1) \
for further processing.

Given the options: A. Superior colliculus -

This is a part of the midbrain involved in visual and auditory processing, not the visual
cortex. B. Lateral geniculate - This is the correct answer as the myelinated axons in layer IV
of the visual cortex are the axons of cells in the lateral geniculate nucleus. C. Retina - The
retina is the sensory organ that sends information to the LGN, not the LGN itself. D. Medial
geniculate - This is a part of the auditory pathway, not the visual pathway.

Therefore, the correct answer is B. </think><answer>B. Lateral geniculate. </answer>

the lateral geniculate nucleus (LGN), which ‘ 8,

Analysis:

The model correctly identifies that the myelinated axons in layer IV of the visual cortex
originate from the lateral geniculate nucleus (LGN). Its reasoning demonstrates accurate
knowledge of the visual pathway—that retinal ganglion cells project to the LGN, and LGN
neurons, in turn, send their axons (optic radiations) to layer 1V of the primary visual cor-
tex (V1). The exclusion of other options (superior colliculus, retina, medial geniculate) is
logically consistent and anatomically precise, showing solid understanding of sensory sys-
tem segregation. The answer is well-grounded in neuroanatomy and pathway logic, though
it could be further improved by explicitly linking the layer IV (stria of Gennari) feature to
the LGN afferents and noting that the medial geniculate instead projects to auditory cor-
tex. The model correctly traces the visual pathway, recognizing that myelinated axons in
layer IV of the visual cortex originate from lateral geniculate nucleus neurons. Its reason-
ing is anatomically precise and well-structured, effectively excluding distractors from other
sensory systems.
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Question: What is the diagnosis? Choices:
(A) Echinococcal infection

(B) Pneumatosis intestinalis

(C) Trichobezoar

(D) Meckel”’s diverticulitis

(E) Adrenal cancer

Correct Answer: (B)

Model Answer: (B)

Model Response:

<think>The image shows a CT scan of
the abdomen. The presence of gas within
the intestinal wall, which is not normally
seen, is a key feature of pneumatosis in-
testinalis. This condition is characterized
by the presence of gas within the intesti-
nal wall, which can be seen as cystic or
cyst-like structures on imaging. The other
options do not typically present with the
same imaging findings as seen in the im-
age. </think><answer>B. Pneumatosis
intestinalis. </answer>

Analysis:

The model correctly recognizes pneumato-
sis intestinalis by identifying gas within the bowel wall on abdominal CT. Its reasoning
captures the defining radiologic feature and excludes unrelated options, showing solid di-
agnostic understanding. However, it lacks detailed image anchoring (e.g., cystic or linear
intramural lucencies separated from luminal gas) and fails to discuss differential cues or
clinical severity markers. The model accurately identifies pneumatosis intestinalis based on
intramural gas on CT. Its reasoning is directionally correct but could be strengthened by
specifying the cystic/linear gas pattern along the bowel wall and differentiating from mimics
such as hepatic cysts or intraluminal masses.
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Question: does mycobacterium avium in-

fection in a duodenal biopsy from a pa- ° 33

tient with aids show massive intracellular g;,“ Ao Ry \
macrophage infection with acid-fast organ- w & -y Kﬂ\ =
isms filamentous and pink in this acid-fast W 1 y ‘\\‘\l‘ - X

stain preparation? Choices: (A) Yes = R _ 2, e ‘f,,
(B) No {W [~ 5 & 4
Correct Answer: (A) 3 )ﬁ:fh‘- & Ot
Model Answer: (A) "tior e S L ’
Model Response: 2. al g % & ¢
<think>The image provided shows a high '¥' L, S Tgh ok ¥ Ty
magnification view of a duodenal biopsy e h

stained with an acid-fast stain, which is
typically used to detect Mycobacterium
species. The organisms appear as pink, filamentous structures within the cells, which is char-
acteristic of Mycobacterium species. The presence of these organisms within macrophages
is also consistent with a mycobacterial infection. Given the appearance of the organisms and
their location within macrophages, the answer is likely to be positive.

Therefore, the answer is: </think><answer>A. Yes.</answer>

Analysis:

The model correctly identifies that in an AIDS patient, a duodenal biopsy showing nu-
merous pink acid-fast bacilli within macrophages on AFB stain is diagnostic of Mycobac-
terium avium complex (MAC) infection. Its reasoning appropriately connects the presence
of acid-fast organisms and intracellular accumulation in macrophages with the character-
istic histopathologic pattern of MAC enteritis. The answer is accurate and clinically well-
grounded, though the description “filamentous” is slightly imprecise since these organisms
are slender rods rather than true filaments. A more complete explanation would note that
these AFB-laden foamy macrophages occupy the lamina propria and are highlighted by
Ziehl-Neelsen or Fite stains, confirming the diagnosis of massive intracellular mycobacte-
rial infection.
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Question: What does the surrounding
edema suggest? Choices: (A) A healthy
brain tissue

(B) The cause of intraparenchymal hemor-
rhage

(C) An underlying mass

(D) A normal imaging finding

Correct Answer: (C)

Model Answer: (C)

Model Response:

<think>The image shows a CT scan of
the brain with annotations indicating a
mass within the right ventricle and hemor-
rhage within the right ventricle. The term mase wivin
“edema” is used to describe the surround-
ing area, which typically refers to swelling
or fluid accumulation. In the context of ‘ % domn
a brain scan, edema often suggests an un-
derlying mass or pathology that is causing
the brain tissue to swell. The presence of
edema in the vicinity of a mass is a com-
mon finding and is often indicative of the
mass’s effect on the surrounding brain tis-
sue. </think><answer>C. An underlying mass.</answer>

occipital
lobe mass.

Analysis:

The model appropriately links the presence of surrounding edema to an underlying mass,
recognizing that perilesional hypodensity on non-contrast brain CT typically reflects vaso-
genic edema caused by tumor-induced blood—brain barrier disruption. This interpretation
is anatomically and pathophysiologically sound, as such edema tracks along white matter,
spares cortical ribbon, and often produces mass effect—features consistent with a neoplastic
process rather than normal tissue or benign change. While the model’s reasoning is correct,
it could be improved by specifying the edema type (vasogenic vs. cytotoxic) and explicitly
excluding other causes such as reactive changes or hemorrhage origin. Overall, the con-
clusion is accurate and clinically coherent: surrounding edema in this context indicates an
underlying mass.
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Question: Does the picture contain kidney?
Choices: (A) Yes

(B) No

Correct Answer: (B)

Model Answer: (B)

Model Response:

<think>The model correctly identifies the
image as a thoracic CT slice and reasons
that kidneys are absent because they lie in
the abdominal region (around L1-L3). Its
inference is anatomically sound, grounded
in visible thoracic structures such as the
heart, lungs, and ribs. The reasoning
shows solid spatial and physiological un-
derstanding, though it could be strength-
ened by explicitly citing thoracic landmarks
and noting that lower chest cuts may oc-
casionally include the renal upper poles.
</think><answer>B. No</answer>

Analysis:

The model correctly identifies the modality as MRI, which matches the image (a coronal
brain slice with high soft-tissue contrast). It can capture clues such as soft tissue contrast
and arrows indicating lesions, demonstrating its sensitivity to imaging features.
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Question: is there evidence of pulmonary
edema? Choices: (A) Yes

(B) No

Correct Answer: (B)

Model Answer: (B)

Model Response:

<think>To determine if there is evidence
of pulmonary edema in the given chest X-
ray, we need to look for certain signs. Pul-
monary edema is characterized by the pres-
ence of fluid in the alveoli, which can lead
to increased lung markings, blunting of the
costophrenic angles, and possible areas of
consolidation or hazy opacities in the lung
fields.

In this X-ray, the lung fields appear rela-
tively clear without significant opacities or
increased markings that would suggest pul-
monary edema. The heart size and medi-
astinal structures also appear within normal
limits. There is no evidence of blunting of
the costophrenic angles that would be in-
dicative of pleural effusion, which is often
associated with pulmonary edema.

Given these observations, there is no evidence of pulmonary edema in this image.
</think><answer>B. No</answer>

Analysis:

The model correctly concludes that there is no evidence of pulmonary edema, basing its
answer on the absence of diffuse opacities, normal heart size, and clear costophrenic an-
gles—all consistent with a non-edematous chest radiograph. Its reasoning reflects sound
general understanding, but it remains somewhat superficial, lacking mention of hallmark
interstitial and alveolar edema signs such as cephalization of pulmonary vessels, Kerley B
lines, peribronchial cuffing, indistinct vascular margins, or perihilar “bat-wing” opacities.
A stronger explanation would explicitly state that vascular markings are crisp, lung fields
remain lucent without interstitial or alveolar filling, the cardiothoracic ratio is normal, and
no effusions are seen. These combined findings confidently exclude pulmonary edema.
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