
QDTSynth: Quality-Driven Formal Theorem Synthesis for Enhancing
Proving Performance of LLMs

Anonymous ACL submission

Abstract
Automated Theorem Proving is an important001
and challenging task. Although large language002
models (LLMs) have demonstrated remarkable003
potential in mathematical reasoning, their per-004
formance in formal theorem proving remains005
constrained by the scarcity of high-quality su-006
pervised fine-tuning (SFT) data. To address007
this limitation, we propose a Quality-Driven008
Theorem Synthesis method (QDTSynth) in009
Lean4. During the statement synthesis, we010
enhance Monte Carlo Tree Search (MCTS)011
with an adaptive adjustment mechanism that dy-012
namically optimizes the search strategy based013
on the synthesis of statements. In addition,014
we propose diversity screening and the self-015
assessment method to select theorems that ex-016
hibit both diversity and high quality from the017
initially synthetic statements, enabling the syn-018
thesis of a high-quality Lean4 theorem dataset.019
After fine-tuning three open-source large lan-020
guage models on our synthetic dataset, experi-021
ments on the miniF2F benchmark demonstrate022
that QDTSynth significantly improves the per-023
formance of various open-source LLMs in theo-024
rem proving tasks. Our work offers a promising025
new direction for the future synthesis of high-026
quality formal mathematical theorems.027

1 Introduction028

In modern mathematical research and applications,029

the importance of mathematical proofs is self-030

evident. Due to the complexity of mathematical031

reasoning and the potential limitations of manual re-032

view, even experienced mathematicians may strug-033

gle to identify all potential proof errors. The emer-034

gence of formal languages such as Lean (Moura035

and Ullrich, 2021), Coq (Coq, 1996) and Meta-036

math (Megill and Wheeler, 2019) marks a signifi-037

cant turning point for mathematical proofs. Formal038

languages ensure that every step in the mathemat-039

ical proof process can be rigorously checked by040

computer systems, thereby guaranteeing the cor-041

rectness and reliability of the final results. Formal042

mathematics requires a high level of expertise, lead- 043

ing to a scarcity of specialized talent in this field. 044

Additionally, interactive theorem proving demands 045

extensive manual input and meticulous human re- 046

view, which increases its cost of use. Against 047

this backdrop, automated theorem proving (Bibel, 048

2013; Loveland, 2016; Kusumoto et al., 2018), as 049

a method capable of significantly reducing manual 050

intervention and improving proof efficiency, has 051

become increasingly important. 052

Large language models (LLMs) have demon- 053

strated significant potential in the field of math- 054

ematical reasoning (Wei et al., 2023; Ahn et al., 055

2024; Srivastava et al., 2024), with numerous stud- 056

ies integrating them with formal proof assistants to 057

achieve automated theorem proving (Vishwakarma 058

and Mishra, 2023; First et al., 2023; Yang et al., 059

2024b; Dong et al., 2024). However, the complex- 060

ity of formal theorem proving and its reliance on 061

deep expertise have resulted in a critical shortage of 062

high-quality formal theorem-proof data suitable for 063

supervised fine-tuning (SFT) of LLMs. Although 064

there are many methods for data synthesis (Lu et al., 065

2024; Wang et al., 2024b; Zhu et al., 2024; Cao 066

et al., 2025), they are difficult to migrate to the 067

complex formal theorems. To address this chal- 068

lenge, researchers have proposed several methods 069

for the automatic generation of formal theorems. 070

Lin et al., 2024 combines Monte Carlo Tree Search 071

(MCTS) (Chaslot et al., 2008) with language mod- 072

els (LMs), and introduces policy/value networks to 073

optimize the generation process. However, if inef- 074

fective tactics are selected during the exploration 075

of MCTS nodes, it may lead to the exploration 076

of low-quality branches and make it challenging 077

to synthesize high-quality theorems. In the pro- 078

cess of supervised fine-tuning, the quality of the 079

dataset is often more critical than its quantity (Shen, 080

2024; Pang et al., 2025), emphasizing the need for 081

methods capable of generating high-quality formal 082

theorems. Xin et al., 2024; Ying et al., 2024 have 083

1

proposed methods for synthesizing formal state-084

ments and generating proof steps from informal085

mathematical problems. However, the potential of086

formal statements remains underutilized. There are087

few methods available for the automatic synthesis088

of formal theorems, and synthesizing high-quality089

data remains an important task.090

In this paper, we propose QDTSynth, focusing091

on the automatic synthesis of high-quality Lean4092

theorems from formal statements. We use theorem093

statements extracted from Mathlib4 (mathlib Com-094

munity, 2020) and mathematical problems from095

high school and undergraduate exercises, exams,096

and competitions formalized by LLMs as seed data.097

Throughout the iterative process of MCTS, new098

statements are continuously synthesized. QDT-099

Synth enhances the traditional MCTS by incor-100

porating an adaptive mechanism, which dynam-101

ically adjusts the search rules based on the syn-102

thetic statements, thereby optimizing the synthe-103

sis process and improving the quality of the syn-104

thetic statements. After synthesizing new state-105

ments, we employ online dynamic clustering for106

diversity screening by calculating the cosine simi-107

larity between each new statement and the cluster108

centers. Subsequently, we generate proof steps109

for the screened statements and introduce a self-110

assessment mechanism where the LLM evaluates111

the quality of the theorem proofs. The final selected112

theorems constitute a new high-quality Lean4 the-113

orem dataset. We perform supervised fine-tuning114

on three open-source LLMs using the synthesized115

dataset and evaluate the effectiveness of QDTSynth116

in Lean4 theorem proving on 488 problems from117

miniF2F (Zheng et al., 2021). Experimental re-118

sults demonstrate that the models trained with our119

method achieve significant performance improve-120

ments compared to traditional BFS, MCTS, and121

MCTS+pvn (Lin et al., 2024).122

Our contributions are summarized as follows:123

• We integrate an adaptive mechanism into124

MCTS, dynamically optimizing our tactic selec-125

tion for synthesizing high-quality statements.126

• We propose the QDTSynth framework, de-127

signed to synthesize high-quality formal theorems.128

Based on the adaptive MCTS, we further introduce129

diversity screening and the self-assessment method130

to select high-quality theorems.131

• QDTSynth has shown notable advantages on132

the miniF2F benchmark, providing a novel direc-133

tion for automated formal theorem synthesis.134

2 Related Works 135

LLMs for Data Synthesis. With the advent of 136

LLMs, there are numerous data synthesis meth- 137

ods based on LLMs (Park et al., 2024; Kang et al., 138

2024), aimed at enhancing the performance of mod- 139

els. Xu et al., 2024 synthesized high-quality in- 140

struction data at scale by extracting it directly from 141

an aligned LLM. Wang et al., 2023b addressed dis- 142

tributional discrepancy by iteratively refining the 143

synthesized dataset using error extrapolation via 144

a LLM. Lupidi et al., 2024 takes as input a cus- 145

tom data source and produces synthetic data points 146

with intermediate reasoning steps grounded in real- 147

world sources. Although there are many methods 148

of data synthesis, they are difficult to migrate to the 149

complex formal theorem synthesis. 150

Formal Theorem Synthesis. In previous studies, 151

formal theorem synthesis methods have enhanced 152

the performance of provers. MetaGen (Wang and 153

Deng, 2020) is the first neural generator for syn- 154

thetic training data, using reinforcement learning 155

to synthetic theorems that resemble those writ- 156

ten by humans. PACT (Han et al., 2021) is an 157

approach for extracting abundant self-supervised 158

data from kernel-level proof terms for joint train- 159

ing alongside the usual tactic prediction objective. 160

DeepSeek-Prover (Xin et al., 2024) and Lean Work- 161

book (Ying et al., 2024) generated Lean4 state- 162

ments from broad natural language mathematical 163

problems. Lin et al. (2024) combined MCTS with 164

LMs and learned policy and value models to gener- 165

ate a new dataset. Unlike prior work, QDTSynth 166

presents a unique approach for theorem synthesis 167

from formal statements, combined with the opti- 168

mization of the synthesis process and quality filter- 169

ing. 170

3 QDTSynth 171

QDTSynth is an approach to quality-driven syn- 172

thesis of formal theorems, focusing on the synthe- 173

sis of high-quality Lean4 theorems from formal 174

statements. QDTSynth consists of following steps: 175

Statement Synthesis, Diversity Screening, State- 176

ment Proving, Self-Assessment and Data Filtering. 177

The process is illustrated in Figure 1. 178

3.1 Statement Synthesis 179

We continuously synthesize new statements 180

through iterative processes of selection, expansion, 181

and backpropagation in MCTS. Starting from the 182

root node, we select tactics for nodes based on pol- 183

2

Figure 1: Overview of QDTSynth framework. QDTSynth consists of four steps, starting with seed data and the LLM
trained from Mathlib4. (1) Statement Synthesis: We introduce an adaptive mechanism into MCTS to optimize the
statement synthesis process. (2) Diversity Screening: We employ online dynamic clustering for diversity screening
by calculating the cosine similarity between each new statement and the cluster centers. (3) Statement Proving:
We generate proof steps for the screened statements, synthesize complete theorems. (4) Self-Assessment and Data
Filtering: We introduce a self-assessment mechanism to evaluate the quality of theorems, and employ data filtering
to obtain high-quality theorems.

icy/value models, and interact with the Lean proof184

assistant. After receiving feedback from Lean, we185

expand the current node to generate new nodes and186

determine whether a new statement has been syn-187

thesized based on the node’s state. To optimize the188

selection process in MCTS, we introduce an adap-189

tive mechanism that allows search rules to dynam-190

ically adjust based on the generation conditions,191

thereby enhancing both the quality and efficiency192

of statement generation.193

Monte Carlo Tree Structure. The root node of the194

search tree is derived from formal statements ex-195

tracted from Mathlib4 and mathematical problems196

from high school and undergraduate exercises, ex-197

ams, and competitions formalized by LLMs. Each198

node in the tree records its state, including interme-199

diate results of theorems or outcomes of reasoning200

steps. The state of a node is closely tied to the201

results of interactions with Lean. If the state is202

neither success nor failure, the state of the node is203

considered as a statement. Additionally, we use the204

input LLM trained by Mathlib4 to generate candi-205

date tactics for each state, which form the edges of206

the search tree.207

In the process of statement generation, we clas-208

sify the generated nodes into three types: error209

nodes, duplicate statement nodes, and new state- 210

ment nodes. We design different rewards for each 211

of these three distinct node types. For error nodes, 212

if a tactic results in an erroneous state, the reward 213

of -1 is given. For duplicate statement nodes, if 214

the newly generated statement is a duplicate of an 215

existing statement, the reward is defined as 0. If the 216

statement is new, which does not exist in the cur- 217

rent statement database, the reward is determined 218

to be 1. 219

Adaptive Optimization in Selection. The selec- 220

tion phase is central to the statement synthesis pro- 221

cess, determining both the direction and efficiency 222

of the search. During the selection phase, we uti- 223

lize the Predictor + Upper Confidence for Trees 224

(PUCT) search strategy. This strategy leverages 225

prior probabilities π(st, a) for selecting specific 226

edges, which are produced by a policy model. The 227

selection of an action is based on the average value 228

and exploration value of state st. Each time state st 229

is traversed, the cumulative total reward W (st) is 230

updated by adding the value v(st) of the expanded 231

nodes,which is computed by our value model. The 232

cumulative reward is then divided by the number 233

of visits N(st) to state st, resulting in the average 234

reward of state st. The details of the selection pro- 235

3

cess are illustrated in Figure 2a. Building on the236

original PUCT formula (Silver et al., 2017), we237

introduce a policy penalty term Pen(st, a), where238

the value of the penalty increases with the propor-239

tion of repeated theorems. At each state st, for240

every time step t, a new action a will be selected241

according to the formula:242

a = argmaxa(
W (st)

N(st)
+ U(st, a)) (1)243

where244

U(st, a) = cπ(st, a)

√
N(st)

1+N(st,a)

−λ(st)Pen(st, a)
(2)245

During statement generation, if the same tactic246

is repeatedly executed, it will seriously affect the247

efficiency and quality of the statements. For ex-248

ample, in Lean, continuously applying the "have"249

tactic to declare the same lemma results in no new250

statements being obtained and leads to excessively251

long and useless generation steps, which negatively252

impacts the effectiveness of SFT for LLMs. There-253

fore, we introduce a tactic penalty term Pen(st, a)254

as a constraint mechanism for selection. The com-255

putation of this penalty term is based on the ratio256

between the repetition count Repeat(st, a) of tac-257

tic a and the length of the generation path Len(st),258

aimed at reducing the use of repeated tactics dur-259

ing the search process. The specific formula is as260

follows:261

Pen(st, a) =
Repeat(st, a)

Len(st)
(3)262

To further enhance the effect of tactic penalty263

term, we introduce an adaptively adjusted penalty264

weight λ(st). As the search depth increases, the265

impact of the penalty term also grows. The calcula-266

tion formula is as follows:267

λ(st) = λ0 · (1 + α · Len(st)) (4)268

For the exploration coefficient c in PUCT, its pri-269

mary role is to balance the exploration and exploita-270

tion. In the initial stages of the search, we aim to271

encourage the algorithm to explore a wider range of272

possible statements by setting a larger c, avoiding273

convergence to local optima. As the search pro-274

gresses and the number of visits increases, we tend275

to reduce c to focus on exploiting higher-quality276

statements, improving the efficiency of the search277

and the quality of the statements. To dynamically278

adjust the value of c to adapt to different stages of 279

the search process, the formula for our adaptive 280

mechanism is as follows: 281

c = c0 · exp
(
−γ · N

1 +N

)
(5) 282

Here, c0 is the initial exploration coefficient, γ 283

controls the decay rate, and N represents the total 284

number of visits. 285

Expansion and Backpropagation. During the ex- 286

pansion phase, the selected node is expanded by 287

randomly selecting an action from the candidate 288

tactics provided by LLMs and executing it on the 289

current state, thereby generating a node with a new 290

state. The left part of Figure 2b illustrates this pro- 291

cess, where the selected leaf node s3 is expanded 292

by executing the action a8, resulting in the creation 293

of a new node s6. If the state is neither success nor 294

failure, the state of the node can be considered as a 295

statement. 296

The backpropagation process is illustrated in the 297

right portion of Figure 2b. The current action se- 298

quence is updated based on the output of the newly 299

generated leaf node s6 . The impact of the leaf 300

node’s expansion on its parent node is considered 301

by backtracking from the leaf node along its de- 302

cision path. This process involves updating the 303

associated values W (st) += v(st) and visit counts 304

N(st) += 1. 305

Policy Model and Value Model. QDTSynth in- 306

corporates a policy model and a value model in 307

selection phase, which are obtained through online 308

training. These models enhance the efficiency and 309

quality of MCTS-based decision-making during 310

the statement synthesis process. 311

The objective of the policy model is to generate 312

the probability values for different candidate tactics 313

with a given state. In our approach, when a state st 314

and an action a are given, the policy model returns 315

the probability of this action in the given state st, 316

which will be used to guide the search processes. 317

The objective of the value model is to assess 318

the potential for generating more new statements 319

from a given state st. Specifically, when the sys- 320

tem is in a certain state, the value model estimates 321

whether further exploration in this state is likely 322

to successfully produce valuable new statements. 323

This estimation helps guide the search algorithm by 324

focusing resources on paths that are most likely to 325

synthesize new statements without time-consuming 326

simulation process, thereby optimizing the synthe- 327

sis process. 328

4

(a) Selection with adaptive mechanism.

(b) Expansion and Backpropagation.

Figure 2: Adaptive MCTS for Statement Synthesis.

3.2 Diversity Screening329

When generating statements starting from the same330

root node, it is easy to produce repetitive or highly331

similar statements. Therefore, introducing a diver-332

sity screening mechanism for the generated state-333

ments becomes particularly important.334

QDTSynth introduces an online dynamic cluster-335

ing method to assess the novelty of generated state-336

ments. We employ the BERT model (Devlin et al.,337

2019) to generate context-aware vector represen-338

tations for text-based statements, achieving incre-339

mental clustering through real-time computation of340

cosine similarity between synthetic statements and341

dynamic cluster centers. Specifically, for each new342

synthetic statement, the statement is encoded to a343

high-dimensional semantic embedding vector ei344

using BERT. Subsequently, we compute the cosine345

similarity between ei and historical cluster centers346

in set C = {c1, c2, ..., ck}, formally defined as:347

sim(ei, cj) =
ei · cj
|ei||cj |

(6)348

If the maximum similarity between the statement349

embedding and existing cluster centers falls below350

the predefined threshold, we initialize the statement351

as a new cluster center(C ← C
⋃
{ei}). Otherwise,352

the position of the most similar cluster center is353

refined by an exponential smoothing strategy:354

cnewi = βcoldi + (1− β)ei (7)355

The smoothing factor β ∈ [0, 1] controls the blend-356

ing weight between historical cluster center and357

new statement.358

3.3 Statement Proving 359

Through adaptive MCTS and diversity screening, 360

we have successfully obtained many high-quality 361

statements. However, generating proof steps for 362

these statements poses a significant challenge. Em- 363

ploying LLMs for automated proof generation of- 364

ten entails substantial resource consumption and 365

time investment, with no guarantee of successful 366

proof completion. To relieve this issue, for state- 367

ments generated from seed data extracted from 368

Mathlib4, we prioritize a path backtracking ap- 369

proach to derive proof steps. Specifically, if the 370

node is derived by expanding from an existing 371

statement in Mathlib4, during the proof generation 372

phase, we employ a reverse backtracking strategy 373

to trace the generation path from the current node 374

back to the root node. Throughout this backtrack- 375

ing process, we interact with the Lean proof assis- 376

tant, providing feedback on the node states and tac- 377

tic execution. If the Lean proof assistant confirms 378

a successful proof upon reaching the root node, it 379

indicates that the corresponding proof steps for the 380

statement have been successfully generated. Con- 381

versely, if the proof fails, these statements, along 382

with those not derived from Mathlib4, are subse- 383

quently processed by LLMs for proof generation. 384

Appendix B provides a detailed display of reverse 385

path backtracking 386

3.4 Self-Assessment and Data Filtering 387

To ensure the high-quality output of automatically 388

generated theorems, we establish a self-assessment 389

and data filtering mechanism, focusing on qual- 390

ity control for newly generated theorems and their 391

proof steps. The quality of these theorems and their 392

proof steps directly impacts model performance. 393

However, the quality of the generated theorem 394

proofs largely depends on the formal mathemat- 395

ical reasoning capabilities of the LLMs themselves. 396

Due to the inherent complexity and technical chal- 397

lenges of automated theorem proving, the quality 398

of the generated theorem proofs exhibits consider- 399

able uncertainty, necessitating systematic quality 400

evaluation and filtering mechanisms for further op- 401

timization and refinement. 402

We introduce a self-assessment mechanism, 403

wherein the LLMs evaluate the quality of the theo- 404

rems and proof steps they generate. A well-defined 405

evaluation framework is designed, requiring the 406

models to score the theorems based on three dimen- 407

sions: redundancy, clarity, and relevance. Upon 408

5

completion of the self-assessment, only those theo-409

rems and proofs whose composite scores exceed a410

predefined threshold are incorporated into the high-411

quality theorem database. This filtering mechanism412

effectively ensures the high quality of all theorems413

and their corresponding proof steps included in the414

database, providing a reliable data foundation for415

subsequent model training.416

4 Experiments417

4.1 Experimental Setup418

Models. We selected three popular open-source419

LLMs as our base models, including Mathstral-420

7B (Jiang et al., 2023), Llama-3-8B (Dubey et al.,421

2024) , and Qwen2.5-7B (Yang et al., 2024a).422

These base models will be fine-tuned using our423

synthetic dataset. In our approach, the entire pro-424

cess employs a single large language model for425

all stages, including statement generation, state-426

ment proving, self-assessment, and supervised fine-427

tuning.428

Evaluation. We employ the best-first search ap-429

proach to explore and validate intermediate proof430

steps within the tactic space generated by large431

models until the proof is successfully completed or432

resources are exhausted. For each test theorem, we433

perform an independent search. At each generation434

step, the LLM generates 32 candidate proof tactics435

for the current state. The maximum proof duration436

for each theorem is limited to 10 minutes.437

In this work, we use the miniF2F benchmark438

to evaluate the performance of our models in for-439

mal theorem proving. The miniF2F is a standard440

test dataset consisting of 244 validation and 244441

test formal statements of mathematical problems,442

sourced from mathematical competitions such as443

AMC, AIME, and IMO. Our evaluation metric is444

the proving pass rate of each theorem within ten445

minutes.446

Baselines. We evaluate the effectiveness of our447

approach by comparing its Lean theorem proving448

performance against multiple baseline approaches.449

Specifically, we fine-tune Llama-3-8B, Mathstral-450

7B, and Qwen2-7B by our synthetic dataset com-451

bined with Mathlib4, and assess their performance452

in Lean theorem proving tasks. To establish a453

comprehensive benchmark, we compare our mod-454

els against the original untuned models, models455

fine-tuned solely on Mathlib4, models trained on456

datasets synthesized by traditional BFS combined457

with Mathlib4, models trained on datasets synthe-458

sized using conventional MCTS combined with 459

Mathlib4, and models trained on datasets synthe- 460

sized using MCTS+pvn proposed by Lin et al. 461

(2024) combined with Mathlib4. 462

Training Details and Dataset. In this study, we uti- 463

lized LlamaFactory to perform SFT on three base 464

models with LoRA method. Our training configura- 465

tion was as follows: a learning rate of 2.0×10−5, a 466

cosine learning rate scheduler, and a warm-up ratio 467

of 0.03. We also set the floating-point precision to 468

bfloat16 and used a batch size of 4. During online 469

training of policy and value model, we employ the 470

Adam optimizer to train the networks, with a learn- 471

ing rate set at 5.0×10−4. All training is conducted 472

on a machine running Ubuntu 22.04, equipped with 473

A800-80G × 4 GPUs. 474

We decompose the synthetic theorems step-by- 475

step based on their proof traces, extracting each 476

goal and the corresponding tactic applied at each 477

step. The proof traces of all synthetic theorems 478

collectively form our training dataset. 479

Interaction Tool. The interaction tool with proof 480

environment is essential, which enables us to exe- 481

cute tactics in the current state and receive feedback 482

from the proof environment. We develop an inter- 483

active interface called Lean4Repl, implemented 484

directly in Lean over the standard input/output. 485

Through Lean4Repl, we can interact with Lean, 486

allowing provers to observe Lean’s proof state, ex- 487

ecute tactics to alter the state, and receive feedback 488

from Lean. Additionally, we develop a tool called 489

Lean4Client, which converts Lean files into JSON 490

files for fine-tuning and use with LLMs. This tool 491

systematically breaks down a complete Lean the- 492

orem into a step-by-step "goal-tactic-goalAfter" 493

format. Each JSON object contains the current 494

proof state, the tactic executed, and the resulting 495

new state. The version of Lean used in this paper 496

is leanprover/lean4:v4.10.0. 497

4.2 Main Results 498

Table 1 presents the performance of our QDTSynth 499

compared with five baseline approaches across 500

Mathstral-7B, Llama3-8B and Qwen2.5-7B. Fig- 501

ure 3 provides a clear comparison of the perfor- 502

mance between QDTSynth and the baseline meth- 503

ods on miniF2F. We analyze the experimental re- 504

sults as follows: 505

(1) The proposed QDTSynth method demon- 506

strates significant advantages over baseline ap- 507

proaches across three models. The experimen- 508

tal results on Mathstral-7B show that QDTSynth 509

6

Training Data
Mathstral-7B Llama3-8B Qwen2.5-7B

miniF2F-
valid

miniF2F-
test

miniF2F-
valid

miniF2F-
test

miniF2F-
valid

miniF2F-
test

Origin 22.13% 20.90% 23.77% 24.59% 18.44% 20.49%
Mathlib4 31.97% 31.97% 25.82% 25.82% 25.00% 23.36%
Mathlib4+BFS 31.97% 31.15% 26.64% 25.82% 28.69% 29.51%
Mathlib4+MCTS 32.38% 32.79% 27.87% 27.05% 29.92% 30.33%
Mathlib4+MCTS+pvn 32.79% 33.20% 28.69% 28.69% 31.15% 30.33%
Mathlib4+QDTSynth(ours) 37.70% 36.89% 33.61% 32.79% 36.07% 35.25%

Table 1: Results of QDTSynth, compared the pass rates on miniF2F among Mathstral-7B, Llama3-8B and Qwen2.5-
7B trained on different datasets.

achieves pass rates of 37.70% and 36.89% on510

the miniF2F-valid and miniF2F-test, surpassing511

the suboptimal method (MCTS+pvn at 32.79%512

and 33.20%) by margins of 4.91% and 3.69%.513

This marked improvement confirms that QDT-514

Synth enhances the quality of synthetic theorems515

through quality-driven mechanisms, generating516

high-quality Lean4 theorem datasets that substan-517

tially enhance model performance in proving tasks.518

(2) Although the integration of policy/value519

networks (pvn) with traditional MCTS has re-520

sulted in a slight increase in pass rates, QDT-521

Synth introduces three critical refinements: adap-522

tive mechanisms, diversity screening, and self-523

assessment, which enable QDTSynth to outperform524

MCTS+pvn by 4.91% and 3.69% on Mathstral-525

7B. The results demonstrate that optimizing search526

strategies alone has limited effectiveness in improv-527

ing data quality. Due to the complexity of formal528

theorem synthesis and proving, it is necessary to529

assess and filter the synthetic theorems.530

(3) It is noteworthy that, although BFS shows531

performance improvements in Qwen2.5-7B, it532

only yields a slight improvement on Llama3-8B533

and even experienced performance degradation on534

Mathstral-7B (a decrease of 0.82% compared to535

Mathlib4 on the miniF2F-test). This phenomenon536

underscores the importance of data quality in the537

supervised SFT of LLMs. Although BFS can gener-538

ate a larger volume of training data through exhaus-539

tive search, the low-quality proof paths it produces540

lead to the model learning incorrect reasoning pat-541

terns. These experimental results suggest that in542

LLM-based theorem proving systems, blindly in-543

creasing the scale of data may be counterproduc-544

tive, and the quality of the training dataset is crucial545

for performance enhancement.546

4.3 Ablation Study 547

We use data synthesized from Mathstral-7B and 548

conduct a series of ablation experiments to further 549

investigate the effects of the adaptive mechanism, 550

diversity screening, and self-assessment on model 551

training. The experimental results are obtained 552

from the pass rates of the trained Mathstral-7B on 553

miniF2F. 554

Training Data miniF2F-valid miniF2F-test

QDTSynth 37.70% 36.89%
- w/o Pen 36.07% (-1.63) 35.66% (-1.23)
- w/o Dynamic c 36.89% (-0.81) 36.48% (-0.41)
- w/o Both 35.66% (-2.04) 35.25% (-1.64)

Table 2: Ablation results of the adaptive mechanism in
statement synthesis on Mathstral-7B. ’Pen’ represents
the penalty term, and ’Dynamic c’ refers to the adaptive
dynamic exploration coefficient c.

Adaptive Mechanism. Table 2 demonstrates the 555

critical impact of the penalty term and dynamic ex- 556

ploration coefficient c in the adaptive mechanism. 557

Removing the penalty term leads to pass rates re- 558

ductions of 1.63% and 1.23% on the miniF2F-valid 559

and miniF2F-test, confirming its essential role in 560

suppressing invalid proof paths. This observation 561

indicates that low-quality proof steps significantly 562

disrupt the training effect. Removal of the dynamic 563

exploration coefficient c results in performance de- 564

clines of 0.81% and 0.41%, illustrating its role 565

in optimizing the efficiency of the search strat- 566

egy through dynamic adjustment of the exploration 567

weights. Notably, the penalty term has a more 568

pronounced influence on model performance than 569

dynamic c, further underscoring the importance 570

of data quality in theorem synthesis tasks. The 571

detrimental effects of low-quality proof paths far 572

7

Figure 3: Comparison of QDTSynth with Baseline Methods on miniF2F pass rates across Mathstral-7B, Llama3-8B,
and Qwen2.5-7B.

outweigh the limitations of localized search strat-573

egy optimizations. When both the penalty term and574

dynamic c are removed, the performance degra-575

dation (-2.04% and -1.64%) exceeds the sum of576

their individual losses (-2.44% and -1.64%). This577

finding reveals a mutually dependent enhancement578

mechanism between the two components. The re-579

sults highlight the effectiveness of our adaptive580

mechanism in model training.581

Training Data miniF2F-valid miniF2F-test

QDTSynth 37.70% 36.89%
- w/o Diversity 36.48% (-1.22) 35.66% (-1.23)
- w/o SA 34.43% (-3.27) 34.84% (-2.05)

BFS 31.97% 31.15%
- w/ Both 32.79% (+0.82) 32.79% (+1.64)

MCTS+pvn 32.79% 33.20%
- w/ Both 35.66% (+2.87) 35.25% (+2.05)

Table 3: Ablation results of the diversity screening and
self-assessment on Mathstral-7B. ’Diversity’ and ’SA’
denote diversity screening and self-assessment respec-
tively

Diversity Screening and Self-Assessment. From582

Table 3, it is evident that diversity screening (Di-583

versity) and self-assessment (SA) play an impor-584

tant role in theorem synthesis. Removing diversity585

screening caused performance drops of 1.22% on586

miniF2F-valid and 1.23% on miniF2F-test, indicat-587

ing that similar training data restrict the model’s588

ability to learn diverse reasoning patterns. The re-589

moval of the self-assessment module results in a590

more significant performance degradation (-3.27%591

and -2.05%), indicating that our self-assessment592

method effectively filters out high-quality formal-593

ized theorems, thereby enhancing the model’s594

proof performance. To further validate the effec- 595

tiveness of these two components, we integrated 596

them into BFS and MCTS+pvn. Experimental re- 597

sults show that our components are highly effective 598

in filtering out similar or low-quality theorems, con- 599

tributing to the synthesis of high-quality training 600

theorems. 601

5 Conclusion 602

In this work, we propose QDTSynth, an approach 603

to quality-driven synthesis of formal theorems, fo- 604

cusing on the synthesis of high-quality Lean4 theo- 605

rems from formal statements. QDTSynth enhances 606

Monte Carlo Tree Search (MCTS) with an adap- 607

tive adjustment mechanism that dynamically op- 608

timizes the statement synthesis process, and fur- 609

ther enhances theorem quality by incorporating di- 610

versity screening and self-assessment mechanisms, 611

thereby significantly improving the diversity and 612

high quality of the synthetic theorems. We perform 613

supervised fine-tuning on three open-source LLMs 614

using the synthetic dataset and evaluate the effec- 615

tiveness of QDTSynth in Lean4 theorem proving 616

on miniF2F. Experimental results demonstrate that 617

QDTSynth significantly improves the performance 618

of various open-source LLMs in theorem proving 619

tasks. QDTSynth provides a novel direction for 620

automated formal theorem synthesis. 621

Limitations 622

Despite QDTSynth’s outstanding performance in 623

theorem proving, several limitations must be ac- 624

knowledged. QDTSynth uses seed data as the root 625

node for statement expansion, which limits the di- 626

versity and quality of the generated data based on 627

the coverage of the initial seed data. In the fu- 628

8

ture, we can extract seed data from open source629

theorem sets such as DeepSeek-Prover(Xin et al.,630

2024) and Lean Workbook(Ying et al., 2024). Fur-631

thermore, for formal statements not derived from632

the Mathlib4 library, the method relies on LLMs633

to autonomously generate proof steps. This can634

lead to resource wastage, and the ability to suc-635

cessfully generate theorems depends on the proof636

capabilities of the LLMs. These issues need to be637

further addressed and improved, which may fur-638

ther enhance the quality of the synthetic data and639

synthesis efficiency.640

Ethics Statement641

In our work, we use LLMs for generating candi-642

date tactics, statement proving, and self-assessment.643

We have utilized Mathstral-7B, Llama3-8B and644

Qwen2.5-7B, as well as open-source software such645

as Hugging Face and PyTorch. Our models can646

output untrue hallucinations, just like any language647

model.We adhere to the policies and licenses of648

these resources and acknowledge the role they have649

played in our work.650

References651

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui652
Zhang, and Wenpeng Yin. 2024. Large language653
models for mathematical reasoning: Progresses and654
challenges. Preprint, arXiv:2402.00157.655

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian656
Szegedy, and Stewart Wilcox. 2019. HOList: An en-657
vironment for machine learning of higher order logic658
theorem proving. In Proceedings of the 36th Interna-659
tional Conference on Machine Learning, volume 97660
of Proceedings of Machine Learning Research, pages661
454–463. PMLR.662

Richard Bellman. 1966. Dynamic programming. sci-663
ence, 153(3731):34–37.664

Wolfgang Bibel. 2013. Automated theorem proving.665
Springer Science & Business Media.666

David Brandfonbrener, Sibi Raja, Tarun Prasad,667
Chloe Loughridge, Jianang Yang, Simon Henniger,668
William E Byrd, Robert Zinkov, and Nada Amin.669
2024. Verified multi-step synthesis using large lan-670
guage models and monte carlo tree search. arXiv671
preprint arXiv:2402.08147.672

Cameron B. Browne, Edward Powley, Daniel White-673
house, Simon M. Lucas, Peter I. Cowling, Philipp674
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-675
don Samothrakis, and Simon Colton. 2012. A survey676
of monte carlo tree search methods. IEEE Transac-677
tions on Computational Intelligence and AI in Games,678
4(1):1–43.679

Maosong Cao, Taolin Zhang, Mo Li, Chuyu Zhang, 680
Yunxin Liu, Haodong Duan, Songyang Zhang, and 681
Kai Chen. 2025. Condor: Enhance llm alignment 682
with knowledge-driven data synthesis and refinement. 683
Preprint, arXiv:2501.12273. 684

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and 685
Pieter Spronck. 2008. Monte-carlo tree search: A 686
new framework for game ai. In Proceedings of the 687
AAAI Conference on Artificial Intelligence and Inter- 688
active Digital Entertainment, volume 4, pages 216– 689
217. 690

Projet Coq. 1996. The coq proof assistant-reference 691
manual. INRIA Rocquencourt and ENS Lyon, ver- 692
sion, 5. 693

Leonardo De Moura, Soonho Kong, Jeremy Avigad, 694
Floris Van Doorn, and Jakob von Raumer. 2015. The 695
lean theorem prover (system description). In Auto- 696
mated Deduction-CADE-25: 25th International Con- 697
ference on Automated Deduction, Berlin, Germany, 698
August 1-7, 2015, Proceedings 25, pages 378–388. 699
Springer. 700

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 701
Kristina Toutanova. 2019. Bert: Pre-training of deep 702
bidirectional transformers for language understand- 703
ing. Preprint, arXiv:1810.04805. 704

Kefan Dong, Arvind Mahankali, and Tengyu Ma. 705
2024. Formal theorem proving by rewarding 706
llms to decompose proofs hierarchically. Preprint, 707
arXiv:2411.01829. 708

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 709
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 710
Akhil Mathur, Alan Schelten, Amy Yang, Angela 711
Fan, et al. 2024. The llama 3 herd of models. arXiv 712
preprint arXiv:2407.21783. 713

Emily First, Markus N Rabe, Talia Ringer, and Yuriy 714
Brun. 2023. Baldur: Whole-proof generation and 715
repair with large language models. In Proceedings of 716
the 31st ACM Joint European Software Engineering 717
Conference and Symposium on the Foundations of 718
Software Engineering, pages 1229–1241. 719

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, 720
Ramana Kumar, and Michael Norrish. 2018. 721
Learning to prove with tactics. arXiv preprint 722
arXiv:1804.00596. 723

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ra- 724
mana Kumar, and Michael Norrish. 2021. Tactictoe: 725
learning to prove with tactics. Journal of Automated 726
Reasoning, 65(2):257–286. 727

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W 728
Ayers, and Stanislas Polu. 2021. Proof artifact co- 729
training for theorem proving with language models. 730
arXiv preprint arXiv:2102.06203. 731

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, 732
Niklas Eén, François Chollet, and Josef Urban. 2016. 733

9

https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2402.00157
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://arxiv.org/abs/2501.12273
https://arxiv.org/abs/2501.12273
https://arxiv.org/abs/2501.12273
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2411.01829
https://arxiv.org/abs/2411.01829
https://arxiv.org/abs/2411.01829

Deepmath-deep sequence models for premise selec-734
tion. Advances in neural information processing735
systems, 29.736

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-737
sch, Chris Bamford, Devendra Singh Chaplot, Diego738
de las Casas, Florian Bressand, Gianna Lengyel, Guil-739
laume Lample, Lucile Saulnier, et al. 2023. Mistral740
7b. arXiv preprint arXiv:2310.06825.741

Cezary Kaliszyk, Josef Urban, Henryk Michalewski,742
and Miroslav Olšák. 2018. Reinforcement learning743
of theorem proving. Advances in Neural Information744
Processing Systems, 31.745

Andrea Kang, Jun Yu Chen, Zoe Lee-Youngzie, and746
Shuhao Fu. 2024. Synthetic data generation with747
llm for improved depression prediction. Preprint,748
arXiv:2411.17672.749

Levente Kocsis and Csaba Szepesvári. 2006. Bandit750
based monte-carlo planning. In European conference751
on machine learning, pages 282–293. Springer.752

Laura Kovács and Andrei Voronkov. 2013. First-order753
theorem proving and vampire. In International Con-754
ference on Computer Aided Verification, pages 1–35.755
Springer.756

Mitsuru Kusumoto, Keisuke Yahata, and Masahiro757
Sakai. 2018. Automated theorem proving in intu-758
itionistic propositional logic by deep reinforcement759
learning. Preprint, arXiv:1811.00796.760

Guillaume Lample, Timothee Lacroix, Marie-Anne761
Lachaux, Aurelien Rodriguez, Amaury Hayat,762
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet.763
2022. Hypertree proof search for neural theorem764
proving. Advances in neural information processing765
systems, 35:26337–26349.766

Xiaohan Lin, Qingxing Cao, Yinya Huang, Zhicheng767
Yang, Zhengying Liu, Zhenguo Li, and Xiaodan768
Liang. 2024. Atg: Benchmarking automated theorem769
generation for generative language models. arXiv770
preprint arXiv:2405.06677.771

Donald W Loveland. 2016. Automated theorem proving:772
A logical basis. Elsevier.773

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and774
Kai-Wei Chang. 2022. A survey of deep learn-775
ing for mathematical reasoning. arXiv preprint776
arXiv:2212.10535.777

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang,778
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-779
sheng Li. 2024. Mathgenie: Generating syn-780
thetic data with question back-translation for en-781
hancing mathematical reasoning of llms. Preprint,782
arXiv:2402.16352.783

Alisia Lupidi, Carlos Gemmell, Nicola Cancedda, Jane784
Dwivedi-Yu, Jason Weston, Jakob Foerster, Roberta785
Raileanu, and Maria Lomeli. 2024. Source2synth:786
Synthetic data generation and curation grounded in787
real data sources. Preprint, arXiv:2409.08239.788

The mathlib Community. 2020. The lean mathematical 789
library. In Proceedings of the 9th ACM SIGPLAN 790
International Conference on Certified Programs and 791
Proofs, POPL ’20. ACM. 792

Norman Megill and David A Wheeler. 2019. Metamath: 793
a computer language for mathematical proofs. Lulu. 794
com. 795

Leonardo de Moura and Sebastian Ullrich. 2021. The 796
lean 4 theorem prover and programming language. 797
In Automated Deduction – CADE 28, pages 625–635, 798
Cham. Springer International Publishing. 799

Tobias Nipkow, Markus Wenzel, and Lawrence C Paul- 800
son. 2002. Isabelle/HOL: a proof assistant for 801
higher-order logic. Springer. 802

Jens Otten and Wolfgang Bibel. 2003. leancop: lean 803
connection-based theorem proving. Journal of Sym- 804
bolic Computation, 36(1-2):139–161. 805

Jinlong Pang, Na Di, Zhaowei Zhu, Jiaheng Wei, Hao 806
Cheng, Chen Qian, and Yang Liu. 2025. Token clean- 807
ing: Fine-grained data selection for llm supervised 808
fine-tuning. Preprint, arXiv:2502.01968. 809

Jeiyoon Park, Chanjun Park, and Heuiseok Lim. 2024. 810
Chatlang-8: An llm-based synthetic data genera- 811
tion framework for grammatical error correction. 812
Preprint, arXiv:2406.03202. 813

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man- 814
tas Baksys, Igor Babuschkin, and Ilya Sutskever. 815
2022. Formal mathematics statement curriculum 816
learning. arXiv preprint arXiv:2202.01344. 817

Stanislas Polu and Ilya Sutskever. 2020. Generative 818
language modeling for automated theorem proving. 819
arXiv preprint arXiv:2009.03393. 820

Arthur L. Robinson. 1980. New Ways to Make Microcir- 821
cuits Smaller—Duplicate Entry. Science, 208:1019– 822
1026. 823

Ming Shen. 2024. Rethinking data selection for super- 824
vised fine-tuning. Preprint, arXiv:2402.06094. 825

David Silver, Julian Schrittwieser, Karen Simonyan, 826
Ioannis Antonoglou, Aja Huang, Arthur Guez, 827
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian 828
Bolton, et al. 2017. Mastering the game of go without 829
human knowledge. nature, 550(7676):354–359. 830

Pragya Srivastava, Manuj Malik, Vivek Gupta, Tanuja 831
Ganu, and Dan Roth. 2024. Evaluating llms’ math- 832
ematical reasoning in financial document question 833
answering. Preprint, arXiv:2402.11194. 834

Zhen Tan, Dawei Li, Song Wang, Alimohammad 835
Beigi, Bohan Jiang, Amrita Bhattacharjee, Man- 836
sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. 837
2024. Large language models for data annotation and 838
synthesis: A survey. Preprint, arXiv:2402.13446. 839

10

https://arxiv.org/abs/2411.17672
https://arxiv.org/abs/2411.17672
https://arxiv.org/abs/2411.17672
https://arxiv.org/abs/1811.00796
https://arxiv.org/abs/1811.00796
https://arxiv.org/abs/1811.00796
https://arxiv.org/abs/1811.00796
https://arxiv.org/abs/1811.00796
https://arxiv.org/abs/2402.16352
https://arxiv.org/abs/2402.16352
https://arxiv.org/abs/2402.16352
https://arxiv.org/abs/2402.16352
https://arxiv.org/abs/2402.16352
https://arxiv.org/abs/2409.08239
https://arxiv.org/abs/2409.08239
https://arxiv.org/abs/2409.08239
https://arxiv.org/abs/2409.08239
https://arxiv.org/abs/2409.08239
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2502.01968
https://arxiv.org/abs/2502.01968
https://arxiv.org/abs/2502.01968
https://arxiv.org/abs/2502.01968
https://arxiv.org/abs/2502.01968
https://arxiv.org/abs/2406.03202
https://arxiv.org/abs/2406.03202
https://arxiv.org/abs/2406.03202
https://arxiv.org/abs/2402.06094
https://arxiv.org/abs/2402.06094
https://arxiv.org/abs/2402.06094
https://arxiv.org/abs/2402.11194
https://arxiv.org/abs/2402.11194
https://arxiv.org/abs/2402.11194
https://arxiv.org/abs/2402.11194
https://arxiv.org/abs/2402.11194
https://arxiv.org/abs/2402.13446
https://arxiv.org/abs/2402.13446
https://arxiv.org/abs/2402.13446

Rahul Vishwakarma and Subhankar Mishra. 2023. En-840
hancing neural theorem proving through data aug-841
mentation and dynamic sampling method. arXiv842
preprint arXiv:2312.14188.843

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen,844
Yichun Yin, Jing Xiong, Enze Xie, Han Shi, Yujun845
Li, Lin Li, et al. 2023a. Dt-solver: Automated theo-846
rem proving with dynamic-tree sampling guided by847
proof-level value function. In Proceedings of the848
61st Annual Meeting of the Association for Compu-849
tational Linguistics (Volume 1: Long Papers), pages850
12632–12646.851

Ke Wang, Jiahui Zhu, Minjie Ren, Zeming Liu, Shiwei852
Li, Zongye Zhang, Chenkai Zhang, Xiaoyu Wu, Qiqi853
Zhan, Qingjie Liu, and Yunhong Wang. 2024a. A854
survey on data synthesis and augmentation for large855
language models. Preprint, arXiv:2410.12896.856

Mingzhe Wang and Jia Deng. 2020. Learning to prove857
theorems by learning to generate theorems. Advances858
in Neural Information Processing Systems, 33:18146–859
18157.860

Ruida Wang, Wangchunshu Zhou, and Mrinmaya861
Sachan. 2023b. Let’s synthesize step by step: It-862
erative dataset synthesis with large language models863
by extrapolating errors from small models. Preprint,864
arXiv:2310.13671.865

Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T.866
Le, Jin Miao, Zizhao Zhang, Chen-Yu Lee, and867
Tomas Pfister. 2024b. Codeclm: Aligning lan-868
guage models with tailored synthetic data. Preprint,869
arXiv:2404.05875.870

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten871
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and872
Denny Zhou. 2023. Chain-of-thought prompting elic-873
its reasoning in large language models. Preprint,874
arXiv:2201.11903.875

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten876
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,877
et al. 2022. Chain-of-thought prompting elicits rea-878
soning in large language models. Advances in neural879
information processing systems, 35:24824–24837.880

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh881
Hajishirzi, and Yejin Choi. 2022. Naturalprover:882
Grounded mathematical proof generation with lan-883
guage models. Advances in Neural Information Pro-884
cessing Systems, 35:4913–4927.885

Daniel Whalen. 2016. Holophrasm: a neural automated886
theorem prover for higher-order logic. arXiv preprint887
arXiv:1608.02644.888

Minchao Wu, Michael Norrish, Christian Walder, and889
Amir Dezfouli. 2021. Tacticzero: Learning to prove890
theorems from scratch with deep reinforcement learn-891
ing. Advances in Neural Information Processing892
Systems, 34:9330–9342.893

Yuhuai Wu, Albert Qiaochu Jiang, Jimmy Ba, and Roger 894
Grosse. 2020. Int: An inequality benchmark for 895
evaluating generalization in theorem proving. arXiv 896
preprint arXiv:2007.02924. 897

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus 898
Rabe, Charles Staats, Mateja Jamnik, and Christian 899
Szegedy. 2022. Autoformalization with large lan- 900
guage models. Advances in Neural Information Pro- 901
cessing Systems, 35:32353–32368. 902

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, 903
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and 904
Xiaodan Liang. 2024. Deepseek-prover: Advancing 905
theorem proving in llms through large-scale synthetic 906
data. arXiv preprint arXiv:2405.14333. 907

Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin 908
Li, Zhengying Liu, Qingxing Cao, Yinya Huang, 909
Jing Xiong, Han Shi, Enze Xie, et al. 2023. Lego- 910
prover: Neural theorem proving with growing li- 911
braries. arXiv preprint arXiv:2310.00656. 912

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun- 913
tian Deng, Radha Poovendran, Yejin Choi, and 914
Bill Yuchen Lin. 2024. Magpie: Alignment data 915
synthesis from scratch by prompting aligned llms 916
with nothing. Preprint, arXiv:2406.08464. 917

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 918
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 919
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5 920
technical report. arXiv preprint arXiv:2412.15115. 921

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chala- 922
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J 923
Prenger, and Animashree Anandkumar. 2024b. Le- 924
andojo: Theorem proving with retrieval-augmented 925
language models. Advances in Neural Information 926
Processing Systems, 36. 927

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, 928
Dahua Lin, and Kai Chen. 2024. Lean work- 929
book: A large-scale lean problem set formalized 930
from natural language math problems. Preprint, 931
arXiv:2406.03847. 932

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou, 933
Yuqiang Li, and Wanli Ouyang. 2024. Accessing gpt- 934
4 level mathematical olympiad solutions via monte 935
carlo tree self-refine with llama-3 8b. arXiv preprint 936
arXiv:2406.07394. 937

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. 938
2021. Minif2f: a cross-system benchmark for for- 939
mal olympiad-level mathematics. arXiv preprint 940
arXiv:2109.00110. 941

He Zhu, Junyou Su, Tianle Lun, Yicheng Tao, Wenjia 942
Zhang, Zipei Fan, and Guanhua Chen. 2024. Fanno: 943
Augmenting high-quality instruction data with open- 944
sourced llms only. Preprint, arXiv:2408.01323. 945

11

https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2310.13671
https://arxiv.org/abs/2310.13671
https://arxiv.org/abs/2310.13671
https://arxiv.org/abs/2310.13671
https://arxiv.org/abs/2310.13671
https://arxiv.org/abs/2404.05875
https://arxiv.org/abs/2404.05875
https://arxiv.org/abs/2404.05875
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2408.01323
https://arxiv.org/abs/2408.01323
https://arxiv.org/abs/2408.01323
https://arxiv.org/abs/2408.01323
https://arxiv.org/abs/2408.01323

Figure 4: Hyperparameters for LoRA Training.

Figure 5: An example of Lean4 Theorem.

A Finetuning Details946

We present the hyperparameters used for LoRA947

training in the LLamaFactory as Figure 4.948

We convert the synthetic theorems into the Al-949

paca format. In the Lean proof environment, one950

formalized theorem is as Figure 5.951

After reading the state of a theorem, the model952

should provide effective tactics. The GOAL and953

tactic from the converted theorems are extracted954

as the "input" and "output" portions of the fine-955

tuning dataset respectively. The supervised dataset956

format is as Figure 6.957

B Details of Statement Proving958

In statement proving phase, for statements synthe-959

sized from seed data extracted from Mathlib4, we960

prioritize a path backtracking approach to derive961

Figure 6: Supervised Dataset Format.

proof steps. Specifically, if the node is derived by 962

expanding from an existing statement in Mathlib4, 963

we employ a reverse backtracking strategy to trace 964

the generation path from the current node back to 965

the root node. Taking the Mathlib4 theorem in Fig- 966

ure 8 as an example, this theorem serves as the root 967

node to synthesize new statements, and backtrack 968

their synthesis path. Figure 7 shows in detail the 969

statement proving process synthesized by this theo- 970

rem. Starting from the root node, a1, a4, and a8 are 971

selected. During the statement proving, we trace 972

the synthesis path back from the reverse a8 until 973

reaching the root node, and finally executed "rw" 974

tactic and assumption (may not be necessary). The 975

complete proof steps of the new statement obtained 976

is shown in Figure 9. 977

C Prompts 978

For better reproduction, we have provided all 979

prompt templates in the appendix. We list the fol- 980

lowing for reference: 981

Figure 10: Generating candidate tactics for the 982

input state. 983

Figure 11: Generate proof steps for the current 984

statement, using them in both the statement proving 985

and evaluation stages. 986

Figure 12: Self-assessment and scoring for syn- 987

thetic theorems based on three dimensions: redun- 988

dancy, clarity, and relevance. 989

D Interactive Tool 990

We develop an interactive interface called 991

Lean4Repl, implemented directly in Lean over the 992

standard input/output. Through Lean4Repl, we 993

can interact with Lean, allowing provers to ob- 994

serve Lean’s proof state, execute tactics to alter the 995

state, and receive feedback from Lean. Lean4Repl 996

presents the following API: 997

12

Figure 7: An example of path backtracking during statement proving.

Figure 8: An example as the seed data from Mathlib4.

Figure 9: The synthetic theorem and its proof steps.

• Lean4Gym(lean_workdir, lean_file): Ini-998

tializes an instance of the Lean4Gym class, based999

on the root path of the Lean project and the file1000

path of the initial theorem.1001

• getInitState(): Extracts the initial state of1002

the theorem from the lean_file1003

• run_tactic(state, tac): Facilitates interac-1004

tion with Lean through Lean4Repl by inputting the1005

state and tactic, and returns feedback from Lean.1006

Additionally, we develop a tool called1007

Lean4Client, converting Lean files into JSON files.1008

The tool breaks down a complete Lean theorem1009

into a step-by-step "goal-tactic-goalAfter" format.1010

Each JSON object contains the current proof state,1011

the tactic executed, and the resulting new state.1012

Figure 13 displays the converted data format.1013

Figure 10: Prompt template to generate tactics for state-
ment synthesis.

Figure 11: Prompt template for theorem proving.

13

Figure 12: Prompt template for self-assessment.

14

Figure 13: Theorem with "goal-tactic-goalAfter" format.

15

	Introduction
	Related Works
	QDTSynth
	Statement Synthesis
	Diversity Screening
	Statement Proving
	Self-Assessment and Data Filtering

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	Conclusion
	Finetuning Details
	Details of Statement Proving
	Prompts
	Interactive Tool

