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Abstract

In this work, we introduce a novel paradigm for001
generalized In-Context Learning (ICL), termed002
Indirect In-Context Learning. In Indirect ICL,003
we explore demonstration selection strategies004
tailored for two distinct real-world scenarios:005
Mixture of Tasks and Noisy Demonstrations.006
We systematically evaluate the effectiveness of007
Influence Functions (IFs) as a selection tool008
for these settings, highlighting the potential009
of IFs to better capture the informativeness010
of examples within the demonstration pool.011
For the Mixture of Tasks setting, demonstra-012
tions are drawn from 28 diverse tasks, includ-013
ing MMLU, BigBench, StrategyQA, and Com-014
monsenseQA. We demonstrate that combining015
BertScore-Recall (BSR) with an IF surrogate016
model can further improve performance, lead-017
ing to average absolute accuracy gains of 0.37%018
and 1.45% for 3-shot and 5-shot setups when019
compared to traditional ICL metrics. In the020
Noisy Demonstrations setting, we examine sce-021
narios where demonstrations might be misla-022
beled. Our experiments show that reweighting023
traditional ICL selectors (BSR and Cosine Sim-024
ilarity) with IF-based selectors boosts accuracy025
by an average of 2.90% for Cosine Similarity026
and 2.94% for BSR on noisy GLUE bench-027
marks. In sum, we propose a robust framework028
for demonstration selection that generalizes be-029
yond traditional ICL, offering valuable insights030
into the role of IFs for Indirect ICL.031

1 Introduction032

In-Context Learning (ICL) has emerged as a pow-033

erful method for utilizing large language models034

(LLMs) to handle novel tasks at inference (Mann035

et al., 2020; Min et al., 2022). Unlike traditional ap-036

proaches that require task-specific fine-tuning, ICL037

allows a single model to adapt to different tasks038

without additional training, relying solely on the039

demonstrations provided in the context. This flex-040

ibility not only reduces the cost of task adaptation041

but also offers a transparent and easily customiz-042

Figure 1: Example showcasing demonstration selec-
tion for Indirect ICL using Influence Functions (IFs).
Consider web corpora with many tasks (different from
the end-task) and noisy data– Indirect ICL can be for-
malized as: Mixture of Tasks (Section 3.1) and Noisy
(Section 3.2) ICL, respectively. In MoT, for a given
target task (e.g. Medical Genetics), we first filter from
this (indirect) pool of candidate demonstrations using
BertScore and Cosine Similarity, then re-rank with IFs
to select suitable demonstrations (e.g. High-School Bi-
ology). For Noisy ICL, we leverage IFs to filter out the
Noisy demonstrations before conducting ICL with the
remaining clean demonstrations.

able way of guiding the model’s behavior (Liu et al., 043

2021a; Wei et al., 2022). By leveraging the context 044

provided in prompts, ICL has been shown to im- 045

prove both generalization across diverse tasks and 046

reasoning abilities (Anil et al., 2022; Drozdov et al., 047

2022). Despite its advantages, the success of ICL is 048

closely tied to the choice of demonstrations used in 049

the prompt. Even slight variations in these demon- 050

strations can significantly influence the model’s 051

performance, as shown in numerous studies (Zhao 052

et al., 2021; Liu et al., 2021a; Lu et al., 2022). 053

Traditional ICL makes numerous assumptions 054
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that restrict its applicability to real-world problem055

domains. For instance, traditional ICL (Min et al.,056

2021; Conneau, 2019; Halder et al., 2020) assumes057

that demonstrations to be selected are directly and058

accurately annotated for the end-task. However,059

this is not always the case – for low-resource,060

sparse, or specialized domains, end-task infor-061

mation and labeled demonstrations might not be062

available.1 Similarly, when LLMs are deployed063

as services, the user query or the end task itself064

could be unknown beforehand, let alone providing065

direct demonstrations at inference.2 Thus, in this066

paper, we explore a more generalized setting for067

ICL, which we refer to as Indirect ICL.068

In Indirect ICL, we aim to provide indirect (or069

incidental) supervision (Yin et al., 2023; Li et al.,070

2024) by selecting demonstrations from a pool of071

examples where the majority are not directly suited072

to the end task due to severe distribution/covariate073

shifts. This includes selecting demonstrations074

from a pool that predominantly consists of075

demonstrations belonging to other tasks, with076

few demonstrations from the end task possibly077

included. Additionally, the demonstration set may078

be mislabeled by humans (Yan et al., 2014; Zhu079

et al., 2022) or LLMs (Wu et al., 2023). Since the080

effectiveness of ICL heavily relies on the quality081

of demonstrations selected (Kossen et al., 2024;082

Wu et al., 2022; Wang et al., 2024), selecting the083

most helpful indirect demonstrations becomes084

imperative in these situations.085

Despite these potential issues with the demon-086

stration set, we wish to pave the way for extract-087

ing maximal benefit from any type of annotated088

dataset, irrespective of label purity or task related-089

ness. Thus, in order to combat the aforementioned090

issues with sub-optimal datasets for ICL, we lever-091

age Influence Functions (IFs) (Hampel, 1974; Cook092

and Weisberg, 1980). IFs offer a formal method for093

assessing how individual training data points affect094

model predictions. They have proven effective in095

a range of downstream machine learning tasks, in-096

cluding mislabeled data detection (Koh and Liang,097

2017; Pruthi et al., 2020), optimal subset selection098

(Feldman and Zhang, 2020; Guo et al., 2020; Xia099

et al., 2024), model interpretation (Han et al., 2020;100

1Consider the cases where we need to utilize ICL for diag-
nosing rare medical conditions, niche programming languages
or indigenous spoken languages.

2Our proposed method can improve performance by se-
lecting relevant demonstrations from a task agnostic pool of
labeled data at test time.

Grosse et al., 2023; Chhabra et al., 2024b), data 101

attribution (Bae et al., 2024), data valuation (Choe 102

et al., 2024) and analyzing model biases (Wang 103

et al., 2019; Kong et al., 2021). 104

Traditional (direct) ICL methods that use metrics 105

such as BertScore-Recall (BSR; Gupta et al. 2023a) 106

and cosine similarity (Reimers, 2019) inherently 107

rely on the semantic similarity between demonstra- 108

tions and test samples. In this paper, we posit that 109

IFs can be a reasonable measure of affinity between 110

the end task and any (indirect) demonstrations. We 111

show that it is practical to use IFs to identify candi- 112

date demonstrations that represent a close inductive 113

bias with the end-task, and utilize this information 114

for highly accurate demonstration selection in the 115

challenging Indirect ICL setting. As our experi- 116

ments and results will demonstrate, this is indeed 117

the case, and we find that IFs can aid in improved 118

performance when simple semantic similarity is 119

insufficient for demonstration selection. We pro- 120

vide additional examples of practical applications 121

of Indirect ICL in Appendix A. 122

In sum, our work advances ICL demonstra- 123

tion selection and makes the following key 124

contributions and findings: 125

• We formalize a new and general paradigm 126

for ICL, namely Indirect In-Context Learning, 127

where we benchmark demonstration selection 128

for two distinct and real-world settings: (a) Mix- 129

ture of Tasks and (b) Noisy Demonstrations. 130

This novel paradigm with two settings is ubiq- 131

uitous in the real world, and has yet been over- 132

looked by existing research in ICL that assumes 133

the availability of direct supervision. 134

• We propose utilizing Influence Functions (IFs) 135

as an effective approach for demonstration se- 136

lection in generalized ICL settings, leveraging 137

their capacity to exploit the task inductive bias 138

of models to enhance selection quality. We 139

also examine multiple influence functions for 140

Indirect ICL and conduct an extensive analysis 141

on their benefits in this setting. 142

• For Mixture of Tasks, combining an IF 143

Surrogate model with BertScore-Recall (BSR) 144

can lead to a 0.37% and 1.45% average 145

absolute increase in performance for k = 3 and 146

k = 5 shots compared to the best performing 147

traditional ICL metric. 148

• For Noisy Demonstrations, we observe that 149

undertaking a weighted average selection using 150
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traditional ICL selectors (BSR and Cosine151

Similarity) and IF based selectors increases152

the absolute accuracy on average by 2.90% for153

Cosine and 2.94% for BSR.154

2 Preliminaries155

We hereby introduce preliminaries of ICL and IF.156

2.1 Traditional In-Context Learning157

Before we define the more generalized problem of158

Indirect ICL, we first define traditional ICL.159

In-Context Learning. ICL allows LLMs to solve160

test inputs from novel tasks by presenting a few ex-161

amples of the task in the prompt. Formally, given162

a set of input x and output y pairs {(xi, yi)}ki=1,163

prompt template T , and the test input xtest, ICL164

using an LLM involves prompting it to condition-165

ally generate the test output ytest according to the166

following distribution:167

ytest ∼ PLM(· | T (x1, y1, . . . , xk, yk, xtest))168

Demonstration Selection. In this work we study169

the problem of selecting k in-context examples170

from a pool of N ≫ k labeled candidates. This171

is often necessary due to context length limits and172

cost considerations (Rubin et al., 2021; Gupta et al.,173

2023a). Formally, the goal is to select a subset174

S ⊂ {(xi, yi)}Ni=1 of size k that maximizes the175

probability of generating the desired ytest when the176

LLM is conditioned on xtest and S. It is noteworthy177

that prior studies mainly consider a task-dependent178

ICL scenario and assume that candidate demonstra-179

tions all directly match the end task (Min et al.,180

2021; Conneau, 2019; Halder et al., 2020).181

2.2 Indirect In-Context Learning182

Now, we describe two scenarios of Indirect ICL,183

one where the candidate pool comprises of demon-184

strations from various tasks and the other where185

the demonstrations may have noisy labels.186

Mixture of Tasks. Unlike traditional ICL, where187

candidate demonstrations match the end task at188

inference, we consider the more generalized Indi-189

rect ICL setting where the demonstration pool is190

task-agnostic. In practice, this setting would allow191

for pooling annotated demonstrations from various192

accessible tasks. Formally, given a set of input x193

and output y pairs {(xi, yi)}ki=1, where the pairs194

(xi, yi) may originate from different tasks than the195

test input xtest, the model is prompted to maximize196

performance across test tasks.197

Noisy Demonstrations. To further generalize the 198

problem of Indirect ICL, we also consider noisy 199

supervision that is likely existing in the pool of 200

demonstrations. Formally, let D = {(xi, yi)}ni=1 201

represent the training dataset, where xi ∈ X is the 202

input and yi ∈ Y is the corresponding binary label. 203

We randomly select a percentage of the data points 204

from D and flip their labels. Once the noisy dataset 205

is generated, we use it for ICL. Formally, given the 206

noisy set of input-output pairs {(xi, yi)}ki=1 and a 207

test input xtest, the goal is to conditionally generate 208

the test output ytest based on the noisy training data. 209

2.3 Influence Functions 210

Here we formally define how we will use IFs to 211

perform Generalized Indirect ICL. 212

Let the input space be X and the label 213

space be Y . The training dataset is denoted as 214

D = {(xi, yi)}ni=1, where xi ∈ X and yi ∈ Y are 215

the input and label of the i-th data point. Given 216

a loss function ℓ and a parameter space Θ, the 217

empirical risk minimization problem is defined as: 218

θ∗ = argmin
θ∈Θ

1

n

n∑
i=1

ℓ(yi, fθ(xi)), 219

where fθ : X → Y is the model parameterized by 220

θ ∈ Θ. The gradient of the loss for the i-th data 221

point with respect to a vector η is denoted as: 222

∇ηℓi = ∇ηℓ(yi, fθ(xi)). 223

The IF evaluates the effect of individual training 224

data points on the estimation of model parameters 225

(Hampel, 1974; Cook and Weisberg, 1980; Martin 226

and Yohai, 1986). It measures the rate at which 227

parameter estimates change when a specific data 228

point is up-weighted. 229

Specifically, for k ∈ [n] and ϵ ∈ R, we consider 230

the following ϵ-weighted empirical risk minimiza- 231

tion problem: 232

θ(k)(ϵ) = argmin
θ∈Θ

1

n

n∑
i=1

ℓ(yi, fθ(xi)) + ϵℓ(yk, fθ(xk)). 233

Here, the loss function ℓ(y, fθ(x)) is assumed 234

to be twice-differentiable and strongly convex in 235

θ for all (x, y) ∈ X × Y , the empirical risk mini- 236

mizer (model weights) θ∗ is well-defined, and the 237

influence of the k-th data point (xk, yk) ∈ D on 238

the empirical risk minimizer (model weights) θ∗ is 239

defined as the derivative of θ(k)(ϵ) at ϵ = 0: 240

Iθ∗(xk, yk) :=
dθ(k)

dϵ

∣∣∣∣
ϵ=0

= −H(θ∗)−1∇θℓ(yk, fθ(xk)). 241
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where H(θ) := ∇2
θ

(
1
n

∑n
i=1 ℓ(yi, fθ(xi))

)
is the242

Hessian of the empirical loss.243

The IF Iθ∗(xk, yk) on the empirical risk mini-244

mizer θ∗ is generalized to assess its effect on pre-245

diction loss (Koh and Liang, 2017). Given a vali-246

dation dataset DV := {(xVi , yVi )}mi=1, the influence247

of (xk, yk) on the validation loss is defined as:248

I(xk, yk) :=

(
1

m

m∑
i=1

∇θℓ(y
V
i , fθ(x

V
i ))

∣∣∣∣
θ=θ∗

)⊤

249

× Iθ∗(xk, yk).250

This gives us251

I(xk, yk) = −
m∑
i=1

(
∇θℓ(y

V
i , fθ(x

V
i ))

⊤252

H(θ∗)−1∇θℓ(yk, fθ(xk))
)
.253

The IF I(xk, yk) provides insight into how a254

single data point impacts the validation loss. Essen-255

tially, it indicates whether (xk, yk) contributes posi-256

tively or negatively to the prediction loss. The more257

positive the influence value, the more it contributes258

to the loss decreasing, hence it is a beneficial data259

point to train the model.260

Remark. As discussed above, IFs assume convex-261

ity of the loss function, which does not hold for262

LLMs and deep neural networks. Even though the263

IF formulations we employ in this paper (Kwon264

et al., 2023; Koh and Liang, 2017) make this under-265

lying assumption, we find through empirical obser-266

vations that for indirect ICL, they can work well.267

Circumventing the convexity assumption in IF is268

an ongoing area of research (Grosse et al., 2023;269

Chhabra et al., 2024a) and our framework is flexi-270

ble enough to accommodate any future IF variants.271

3 Proposed Approach272

In this section, we describe our approach to select273

demonstrations in both sub tasks.274

3.1 Selecting within Mixture of Tasks275

In this scenario, we develop influence-based meth-276

ods for demonstration selection. Specifically, for277

each validation example, we compute influence val-278

ues to identify the most impactful examples from a279

pool of training examples containing a mixture of280

tasks. Two approaches are employed to calculate281

these influence scores:282

• A surrogate-model based method, where a283

lightweight surrogate model such as RoBERTa284

(Liu, 2019) is fine-tuned on the candidate 285

demonstrations to compute influence. 286

• A pretrained-gradient based method where the 287

samples are passed through the LLM itself. We 288

then compute IFs using the extracted gradients. 289

Formally, for each validation example 290

(xval, yval), we compute the influence of each 291

training example (xi, yi) ∈ Dtrain, where Dtrain is 292

the set of the training examples. The influence 293

score I((xi, yi), (xval, yval)) quantifies the effect of 294

(xi, yi) on the loss function evaluated at (xval, yval). 295

Using these computed influence values, we select 296

the top k most influential demonstrations. 297

We compare two versions of computing the IF 298

after extracting the gradient, DataInf (Kwon et al., 299

2023) and TracIn (Pruthi et al., 2020). DataInf 300

uses an easy-to-compute closed-form expression, 301

leading to better computational and memory com- 302

plexities than other IF methods. TracIn traces how 303

the loss on the test point changes during the training 304

process simply using an inner product of training 305

and validation set gradients. Since it does not com- 306

pute the Hessian matrix, it is faster than DataInf, 307

but at the cost of lower estimation performance. 308

Additionally, we compare the influence-only 309

methods with well-performing ICL approaches 310

BertScore-Recall (BSR; Gupta et al. 2023a) and 311

Cosine Similarity (Reimers, 2019).3 These meth- 312

ods excel at capturing semantic similarity between 313

validation and training examples. We also com- 314

pare with a performant sparse information retrieval 315

baseline algorithm, BM25 (Jones et al., 2000). 316

Lastly, we combine the previously described ap- 317

proaches by implementing a two-stage selection 318

process. First, we perform an initial pruning of 319

the demonstration pool using either BSR or Co- 320

sine Similarity. Specifically, for a given number of 321

desired demonstrations k, we prune the dataset to 322

select 2k candidates from the original set of labeled 323

examples {(xi, yi)}Ni=1. 324

We then apply the IF-based methods to re-rank 325

these remaining examples based on their influence 326

on the validation loss. The final selection of k in- 327

context demonstrations is performed by selecting 328

the top k examples from the re-ranked subset. 329

3.2 Selecting Noisy Demonstrations 330

In this setting, we utilize IFs to identify noisy 331

samples within the dataset. Formally, let 332

3We use the implementation from Gupta et al. (2023a,b).
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D = {(xi, yi)}Ni=1 represent the training dataset.333

First, we employ IFs to prune the dataset by334

detecting and removing noisy examples, following335

which the top k in-context demonstrations are336

selected using either BSR or Cosine Similarity.4337

Additionally, we construct approaches that com-338

bine the influence values with the BSR or Cosine339

Similarity scores. To do so, both the influence340

values and similarity scores are min-max normal-341

ized, resulting in scores scaled between 0 and 1.342

We then reweigh the scores using a linear com-343

bination of the normalized values. Let α and β344

represent the weights assigned to the influence val-345

ues and the similarity scores, respectively, where346

α + β = 1 and 0 < α, β < 1, the final com-347

bined score for each training example is:348

Score(xi, yi) = α · I((xi, yi), (xval, yval)) + β · S(xi, yi),349

where I((xi, yi), (xval, yval)) is the influence350

value and S(xi, yi) represents either the351

BertScore (Zhang et al., 2019) or Cosine352

Similarity for the training example (xi, yi). The353

top k examples with the highest combined scores354

are selected as demonstrations.5355

In this setting, we compute influence values us-356

ing our surrogate model approach. In addition to us-357

ing DataInf, we also conduct influence experiments358

using the LiSSA IF method which is a second-order359

method to compute the inverse Hessian vector prod-360

uct (Agarwal et al., 2017; Koh and Liang, 2017).361

Although LiSSA is generally computationally ex-362

pensive (Kwon et al., 2023), we prioritize it over363

TracIn owing to its greater performance in detect-364

ing mislabeled samples, as the computational over-365

head is incurred only once in this setting.366

4 Experiments367

Here, we expand upon our experimental setup to368

conduct the experiments and analyze the results.369

4.1 Experimental Setup370

We discuss our, dataset details and model used to371

conduct the experiments.372

Evaluation Data. For Mixture of Tasks, we collect373

a generalized pool of examples from different374

tasks such that the input x and output y pairs375

{(xi, yi)}ki=1 do not necessarily correspond to the376

same task as the test input xtest. The evaluation task377

4We will refer to this approach as IF Pruning.
5We will refer to this approach as IF Averaging.

pool contains three samples each from 28 different 378

tasks from MMLU (Hendrycks et al., 2020), 379

BigBench (Srivastava et al., 2022), StrategyQA 380

(Geva et al., 2021) and CommonsenseQA (Talmor 381

et al., 2018). We evaluate the ICL accuracy, using 382

this train set, on 12 different tasks from MMLU 383

and BigBench. 384

For Noisy Demonstrations, we employ the noisy 385

dataset framework from Kwon et al. (2023). In 386

their work, the four binary classification GLUE 387

datasets (Wang, 2018) MRPC, QQP, QNLI, and 388

SST2 are utilized. To simulate a scenario where 389

a portion of the data samples are noisy, 20% of 390

the training data samples are randomly selected 391

and their labels are flipped. We use these noisy 392

datasets as the candidate pool in our experiments 393

and evaluate the ICL accuracy. 394

Base LLM. In Mixture of Tasks, for k = 3 shots, 395

we conduct ICL experiments on Llama-2-13b-chat 396

(Touvron et al., 2023), Mistral-7b-v0.3 (Jiang et al., 397

2023) and Zephyr-7b-beta (Tunstall et al., 2023). 398

For k = 5 shots we conduct experiments on Llama- 399

2-13b-chat. We extend on the framework designed 400

by Gupta et al. (2023a,b). The temperature is set 401

to 0 for inference. For Noisy ICL, we conduct ex- 402

periments on Llama-2-13b-chat. All of our exper- 403

iments run on 8×NVIDIA RTX 6000 Ada GPUs. 404

405

4.2 Method and Baseline Configurations 406

Here we expand on the methods and baselines we 407

use for our experiments in both settings. 408

Mixture of Tasks. We construct 4 IF-only meth- 409

ods. 2 based on the Surrogate Model based ap- 410

proach, SUR and 2 based on the Pretrained LLM 411

weights based approach, PRE. We test Data-Inf and 412

TracIn based versions of these approaches, namely, 413

Surrogate Model-DataInf SURD, Surrogate Model- 414

TracIn SURT, Pretrained Model-DataInf PRED and 415

Pretrained Model-TracIn PRET. As mentioned be- 416

fore, SURD and SURT use RoBERTa as the surro- 417

gate model, whereas PRED and PRET use Llama2- 418

13b-chat as the pretrained LLM. 419

Additionally, we test traditional semantic ap- 420

proaches, such as BSR and Cosine Similarity 421

(COS), as well as retrieval based approaches, such 422

as BM25, as baselines. Finally, we test the com- 423

bination of the aforementioned traditional and IF 424

methods as well.6 425

6Specifically, MODEL[IF,SEL], where MODEL ∈
{SUR, PRE}, IF ∈ {D,T}, and SEL ∈ {COS, BSR}.
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Figure 2: Average performance of different demonstra-
tion selection methods across 3 LLMs for k = 3 shots.

Noisy Demonstrations. As elaborated in Sec-426

tion 3.2, we explore two approaches, IF Pruning427

and IF Averaging, for the task of selecting the best428

demonstrations. We only use the surrogate model-429

based IF method in this setting, and we employ an430

additional method of computing IFs, LiSSA (Koh431

and Liang, 2017). We experiment with different432

levels of pruning and IF weights (α) as hyperparam-433

eters, namely 10% pruning and 0.5α. Furthermore,434

we also create a random pruning baseline for BSR435

and Cosine Similarity as well.7436

For baselines, we again compare our IF based ap-437

proaches with BSR, Cosine Similarity and BM25.438

4.3 Results on Mixture of Tasks439

We present the results on Mixture of Tasks in Fig-440

ure 2. Additional results for varying the number441

of shots (k) and multiple LLMs are provided in442

Appendix B.1. Further, results for the alternative443

TracIn IF method are provided in Appendix B.2.444

Results for Pretrained Gradients combined with445

BertScore and Cosine Similarity are presented in446

Appendix B.3. We also present results on using447

DeBERTa (He et al., 2021a,b) as an alternative448

surrogate model in Appendix B.4.449

Combining Surrogate Model DataInf with450

BertScore results in the best performance. As451

can be observed in Figure 2 and Table 7, the452

SUR[D,BSR] method has the highest average perfor-453

mance across the tasks, in both 3 and 5 shots. This454

shows the benefit of combining IF with BertScore455

as performance increased by 0.56 in k = 3 shots456

and by 1.52 in k = 5 shots. The results also457

7Formally, METHOD[MODELIF,SEL], where METHOD ∈
{PRU, AVG}, MODEL ∈ {SUR, RAND}, IF ∈
{D,L}, and SEL ∈ {COS, BSR}.

show that the maximal benefit of IF methods is 458

gained in combination with the semantic similar- 459

ity methods. This is due to the fact that IF can 460

leverage the model’s inductive bias to re-rank the 461

retrieved demonstrations effectively, but the ini- 462

tial 2k pruning via BSR is critical to shorten the 463

candidate pool to demonstrations that are seman- 464

tically relevant enough. However, it is impor- 465

tant to note that, given the inclusion of only three 466

shots in the prompt—where the overwhelming ma- 467

jority of demonstrations are unrelated to the test 468

task—achieving significant improvements remains 469

challenging. 470

Surrogate Models outperform Pretrained Gra- 471

dients. We see that surrogate models outperformed 472

Pretrained Gradients in demonstration selection for 473

the Mixture of Tasks setting in both the k = 3 474

and k = 5 shots. The fine-tuning of the surrogate 475

model leads it to better capture the test task affinity 476

of the demonstration pool. 477

DataInf is better than TracIn as an IF method. 478

The speed gains of TracIn come at a cost of per- 479

formance as the DataInf method of IF computation 480

routinely outperformed TracIn. TracIn likely under- 481

performs because it does not utilize critical second 482

order gradient information since the Hessian H(θ∗) 483

is assumed to be the identity matrix. This trend has 484

also been observed in past work on IF methods 485

(Chhabra et al., 2024a). 486

Qualitative Analysis. Finally, to understand the 487

unique benefits provided by IFs, we present a qual- 488

itative analysis examining the types of shots se- 489

lected by our method in Appendix B.5. We see that 490

even though BSR selects more semantically rele- 491

vant samples, SUR[D,BSR] shots assist in guiding 492

the model toward the correct answer by providing 493

examples that promote more structured reasoning. 494

4.4 Results on Noisy ICL 495

In this section we provide analysis on the aforemen- 496

tioned General Noisy ICL setting. We also conduct 497

two ablations on varying IF α weight in IF Averag- 498

ing and varying the Noise level in the datasets. 499

IF Averaging works better than other baselines. 500

Table 1 and Figure 3 clearly show that doing a 501

weighted average between the surrogate model IF 502

and both Cosine and BertScore leads to perfor- 503

mance boosts. Atleast one and if not both of the 504

highest performing methods in each of the datasets 505

we tested were from the averaging method. We 506
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Table 1: ICL Accuracy across MRPC, QNLI, SST2,
and QQP datasets using different methods for Noisy
ICL, with 20% noise added to the datasets. The top 2
performers for each dataset are in bold.

Method MRPC QNLI SST2 QQP

RAND 70.4 69.6 86.2 70.9
BSR 71.3 74.6 80.4 71.4
COS 72.3 68.2 82.6 73.2
BM25 70.6 67.6 88.0 71.0

PR
U

-0
.1

RAND[COS] 70.1 68.4 87.0 69.4
SUR[D,COS] 69.4 69.8 84.0 71.8
SUR[L,COS] 68.9 68.2 86.8 70.8
RAND[BSR] 71.1 65.2 86.4 68.4
SUR[D,BSR] 70.6 68.0 82.0 71.0
SUR[L,COS] 70.1 67.4 88.8 68.2

AV
G

-0
.5 SUR[D,COS] 75.5 74.8 89.8 67.8

SUR[L,COS] 70.6 75.8 86.4 73.0
SUR[D,BSR] 74.3 69.6 90.6 73.8
SUR[L,BSR] 73.3 73.4 93.6 69.2

Figure 3: Average performance of the baselines across
the 4 datasets.

see that LiSSA and DataInf are similarly effective,507

with DataInf being more computationally efficient.508

Pruning hurts not helps performance. We can509

see that pruning actively hurts performance as Fig-510

ure 3 shows that all 3 types of BertScore pruning511

and all 3 types of Cosine pruning had lower aver-512

age scores than BertScore and Cosine Similarity.513

This might be due to the fact that we are removing514

potentially helpful samples from the demonstration515

pool, even if they might have noisy labels.516

We further provide results on varying the noise517

levels in the datasets in C.1, varying the hyperpa-518

rameters we tested in C.2 and an experiment ana-519

lyzing the effectiveness of IF’s in detecting noisy520

demonstrations in C.3.521

4.5 Computational Complexity522

We present the worst case time complexity (for523

inference) for our methods and related baselines524

in Table 2. As can be observed, our methods are 525

comparable, if not more efficient than the other 526

baselines. Note that the SUR methods require an 527

additional fine-tuning step on a smaller surrogate 528

model before the gradients are extracted, which 529

the PRE methods do not. Furthermore, note that 530

TracIn as an influence method is much faster 531

than Hessian-based approaches (e.g. DataInf) 532

as it assumes that the Hessian is the identity 533

matrix. While this leads to more efficient influence 534

computation, it comes at the cost of lower 535

estimation performance, as our results with TracIn 536

also show. Additionally, we present the maximum 537

GPU memory consumption while performing 538

demonstration selection in Appendix D. 539

Table 2: Computational complexity for each test sample
at inference where N is #demonstration samples, p is
#model parameters, d is embedding size, K is the max
length among all candidates, L is the length (in tokens)
of the test input, Z is #ngrams

Method Time Complexity

BSR O(NLKd)
COS O(Nd)
BM25 O(NZ)

PRED O(Np)
SURD O(Np)
PRET O(Np)
SURT O(Np)
BSR COMBINED METHODS O(NLKd) +O(Np)
COS COMBINED METHODS O(Nd) +O(Np)

4.6 Scalability 540

Scalability to Large Models. We compare the 541

time it takes to extract test set gradients and com- 542

pute influence scores. We compute IF via the 543

DataInf method, comparing RoBERTa-Large (125 544

million parameters), Llama2-13b-chat (13 billion 545

parameters), and Llama2-70b-chat (70 billion pa- 546

rameters) on the MMLU-moral-disputes dataset 547

with 200 test samples. 548

Table 3: Time taken for extracting test gradients and
computing IF across different models.

Model Test Gradients (s) Computing IF (s)

RoBERTa 7.447 35.72
Llama-2-13b-chat 68.5 4.69
Llama-2-70b-chat 257.64 8.81

The relationship between model size and infer- 549

ence time grows sublinearly, with time increasing 550

at roughly the square root of the model size. We 551

also see that it takes longer to compute the IF in the 552

RoBERTa model due to the fine-tuning process. 553
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Additionally, the time required to compute IF554

using the TracIn method on Llama-2-13b-chat is555

just 3.576× 10−6 seconds. This highlights the556

significant speed advantage offered by TracIn. We557

present additional results for scalability to large558

datasets in Appendix E.559

We would like to emphasize that practitioners560

have the flexibility to choose between our models561

and methods based on their specific needs. If562

computational efficiency is the priority, the563

significantly faster surrogate model approach can564

be used. Conversely, if high accuracy is desired565

and compute is not a concern, a fine-tuned LLM566

is a better alternative.567

5 Related Work568

In-Context Learning (ICL). Following the scal-569

ing of model sizes and learning resources (Mann570

et al., 2020; Chowdhery et al., 2023; Touvron et al.,571

2023), LLMs have gained emergent abilities for572

efficient inference-time adaptation via ICL (Mann573

et al., 2020). However, ICL is critically sensitive574

to demonstration pool examples (An et al., 2023;575

Liu et al., 2021a; Zhang et al., 2022) and selection576

strategies (Rubin et al., 2021; Mavromatis et al.,577

2023). One line of work studies example scor-578

ing and retrieval, utilizing model-agnostic heuristic579

metrics like perplexity (Gonen et al., 2022), mutual580

information (Sorensen et al., 2022), semantic simi-581

larity (Liu et al., 2021a; Gupta et al., 2023b), etc.582

to select demonstrations. Another line of work opti-583

mizes selection based on empirically verified desir-584

able features a priori, e.g. diversity (Su et al., 2022;585

Ye et al., 2023), coverage (Gupta et al., 2023a),586

etc. However, prior work assumes that the demon-587

stration distribution is aligned with task distribu-588

tion, which is not always the case (Chatterjee et al.,589

2024). Our work serves as a first to investigate590

ICL demonstration selection in the task and dataset591

quality shifts in the ICL settings.592

Influence Functions. Influence functions (IFs)593

comprise a set of methods from robust statistics594

(Hampel, 1974; Cook and Weisberg, 1982) that595

have been recently proposed for deep learning data596

valuation and can provide a conceptual link that597

traces model performance to samples in the train-598

ing set. For gradient-based models trained using599

empirical risk minimization, IFs can be used to600

approximate sample influence without requiring601

actual leave-one-out retraining. For deep learning602

models, the seminal work by Koh and Liang (2017)603

utilized a Taylor-series approximation and LiSSA 604

optimization (Agarwal et al., 2017) to compute 605

sample influences. Follow-up works such as Rep- 606

resenter Point (Yeh et al., 2018) and Hydra (Chen 607

et al., 2021) sought to improve IF performance 608

for deep learning models, constrained to vision 609

applications. More recently, efficient influence es- 610

timation methods such as DataInf (Kwon et al., 611

2023), Arnoldi iteration (Schioppa et al., 2022), 612

and Kronecker-factored approximation curvature 613

(Grosse et al., 2023) have been proposed which can 614

be employed for larger generative language models, 615

such as LLMs. Some other simpler IF approaches 616

simply consider the gradients directly as a measure 617

of influence (Pruthi et al., 2020; Charpiat et al., 618

2019), followed by some ensemble strategies (Bae 619

et al., 2024; Kim et al., 2024). Recent work has 620

also found that self-influence only on the training 621

set can be a useful measure for detecting sample 622

influence (Bejan et al., 2023; Thakkar et al., 2023). 623

IFs have been utilized with great success in a 624

number of application scenarios (e.g. classifica- 625

tion (Chhabra et al., 2024a; Koh and Liang, 2017), 626

generative models (Kwon et al., 2023; Schioppa 627

et al., 2022; Grosse et al., 2023), active learning 628

(Chhabra et al., 2024b; Liu et al., 2021b), etc.). 629

Moreover, while some recent works have consid- 630

ered using influence for selecting direct demonstra- 631

tions (Nguyen and Wong, 2023; Van et al., 2024), 632

neither of them has consider their effect on induc- 633

tive bias selection in the indirect ICL setting, which 634

is the focus of our work. 635

6 Conclusion 636

We formalize a new paradigm for generalized 637

In-Context Learning, which we term Indirect In- 638

Context Learning. We analyze two different real- 639

world Indirect ICL settings and propose effective 640

demonstration selection strategies for these scenar- 641

ios. We explore using Influence Functions (IFs) 642

to leverage the informativeness of the samples in 643

the demonstration pool and the models’ task in- 644

ductive bias. We find that combining a surrogate 645

model-based IF approach with BertScore performs 646

better when there are an overwhelming majority 647

of irrelevant tasks in the candidate pool. We also 648

find that reweighting the surrogate model-based IF 649

scores with traditional metric scores can be helpful 650

in the case where noisy demonstrations are present. 651

Future work will aim to augment the Pretrained 652

Gradient approach by using better/larger LLMs or 653

finetuning the LLMs. 654
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Limitations655

The main limitation of Influence Functions is that656

they are costly to compute, especially for large657

datasets and LLMs with lots of parameters. This is658

why we opted to fine-tune a smaller model such as659

RoBERTa and use pretrained LLMs for our meth-660

ods. Further performance gains can be attained at661

the cost of computational speed if fine-tuned LLMs662

are employed instead. As research on influence663

estimation methods for LLMs is currently ongoing,664

faster influence functions developed in the future665

can also be utilized with our methods for highly666

efficient and accurate ICL performance.667
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Appendix1002

A Integration to Practical Workflows1003

We provide several use cases of Indirect ICL in1004

real-world scenarios. Here are a few examples:1005

A.1 Practical Applications of Indirect ICL1006

• Enhancing prompt performance at test1007

time: If an LLM service provider needs to use1008

in-context learning (ICL) to improve prompt1009

performance during test time, they may not1010

know the precise task beforehand or during1011

inference (e.g., a novel task requested by a1012

user in real-time). Indirect ICL and our pro-1013

posed methods can improve performance by1014

selecting relevant demonstrations from a task-1015

agnostic pool of labeled data (i.e., the MoT1016

setting), ensuring the model can adapt to vari-1017

ous scenarios even when task-specific labeled1018

samples (direct supervision) are not available.1019

• Medical diagnosis: Indirect ICL can be used1020

to diagnose rare medical conditions based on1021

symptoms. Since such conditions are rare,1022

demonstrations for these specific cases are of-1023

ten unavailable. However, the model can learn1024

diagnostic reasoning patterns from more com-1025

mon conditions with overlapping symptoms,1026

improving accuracy for the rare cases.1027

• Code generation for obscure programming1028

languages: Indirect ICL can aid in generating1029

code for rarely-used or proprietary program-1030

ming languages. Demonstrations from code1031

generation tasks in related languages with sim-1032

ilar structures can be leveraged, enabling the1033

model to generalize and perform well in these1034

low-resource scenarios.1035

• Ideology Estimation from Underrepre-1036

sented Contexts: We can use our paradigm to1037

estimate political ideology, or any other sort1038

of text classification, from text in an underrep-1039

resented cultural or linguistic context. We can1040

use demonstrations from ideology estimation1041

in well-represented contexts such as Western1042

political texts. The can transfer learned associ-1043

ations between linguistic cues and ideological1044

stances, adapting them to the new context.1045

These examples highlight just a few of the prac-1046

tical applications of indirect ICL, particularly in1047

low-resource settings.1048

B Indirect ICL Results for LLM based 1049

Influence 1050

B.1 Full Results for Mixture of Tasks 1051

Following are the full results for the Mixture of 1052

Tasks setting. For k = 3 shots in Tables 4, 5, and 6. 1053

For k = 5 shots in Table 7. 1054

B.2 TracIn Results 1055

Here we provide results for the TracIn method of 1056

Influence Computation for k = 3 shots in Tables 8, 1057

9, and 10. We also provide results for k = 5 shots 1058

in Table 11. 1059

B.3 Pretrained Gradient Results 1060

Here we provide results for pretrained gradients 1061

method of computing IF. These can be found in for 1062

k = 3 shots in Tables 12, 13 and 14 and for k = 5 1063

shots in Table 15. 1064

B.4 Results using a different surrogate model 1065

We present results where DeBERTa-v3-Large re- 1066

places RoBERTa-Large as the surrogate model. 1067

Evaluated on Llama2-13B-Chat with k = 3 1068

shots. We compare the best-performing baseline 1069

SUR[D,BSR] with BSR in Table 16. 1070

The results indicate that the DeBERTa surro- 1071

gate model outperforms BSR. However, it is impor- 1072

tant to note that, given the inclusion of only three 1073

shots in the prompt—where the overwhelming ma- 1074

jority of demonstrations are unrelated to the test 1075

task—achieving significant improvements remains 1076

challenging. 1077
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Table 4: Performance across different datasets and demonstration selection methods with k = 3 shots. The datasets
are sampled from sub-tasks of the MMLU and BigBench datasets for Llama-2-13b-chat.

Dataset RAND BSR COS BM25 PRED SURD SUR[D,BSR] SUR[D,COS]

medical-genetics 80.60 87.00 84.00 79.00 76.00 81.00 86.00 82.00
prof-psychology 68.30 70.00 73.00 65.50 65.00 68.50 72.00 68.50

formal-logic 60.16 59.52 60.32 58.73 61.11 59.52 57.14 55.56
moral-disputes 81.00 78.00 79.50 80.50 78.50 76.00 80.50 76.50
public-relations 72.18 79.09 80.91 73.64 71.82 75.45 79.09 79.09
comp-security 76.80 76.00 80.00 76.00 76.00 80.00 76.00 76.00

astronomy 80.26 80.26 78.95 80.92 74.34 79.61 80.26 78.95
abstract-algebra 57.00 58.00 62.00 55.00 57.00 47.00 72.00 72.00

nutrition 75.50 77.50 79.00 78.00 77.50 77.00 79.50 81.50
high-school-biology 76.70 76.50 78.00 76.50 73.50 79.00 80.50 76.50

formal-fallacies 47.25 52.00 50.00 49.50 47.00 56.50 47.50 50.00
tracking-3 40.20 44.00 39.00 45.00 40.00 37.00 43.50 39.00

Average 68.00 69.82 70.39 68.19 66.48 68.04 71.16 69.63

Table 5: Performance across different datasets and demonstration selection methods with k = 3 shots. The datasets
are sampled from sub-tasks of the MMLU and BigBench datasets for Mistral-7b-v3

Dataset RAND BSR COS BM25 PRED SURD SUR[D,BSR] SUR[D,COS]

medical-genetics 88.25 88.00 91.00 89.00 88.00 86.00 87.00 89.00
prof-psychology 84.50 84.00 84.50 82.00 85.00 83.00 85.50 84.00

formal-logic 66.47 66.67 69.05 65.08 63.49 66.67 68.25 69.05
moral-disputes 87.00 85.00 85.50 87.00 88.5 86.00 87.00 87.50
public-relations 83.41 82.73 81.82 84.55 84.55 83.64 84.55 81.82
comp-security 87.25 83.00 89.00 88.00 90.00 88.00 86.00 90.00

astronomy 87.34 88.82 89.47 88.16 84.87 86.18 86.18 86.18
abstract-algebra 57.75 63.00 60.00 60.00 59.00 50.00 64.00 64.00

nutrition 84.75 86.50 87.50 83.00 83.00 83.50 88.50 87.00
high-school-biology 85.63 84.00 86.50 85.00 87.00 84.00 87.50 87.00

formal-fallacies 49.63 53.50 50.00 53.50 48.00 46.50 52.50 53.50
tracking-3 46.38 49.00 49.00 49.50 46.50 39.00 48.50 45.50

Average 75.70 76.19 76.95 76.23 75.66 73.54 77.13 77.05

Table 6: Performance across different datasets and demonstration selection methods with k = 3 shots. The datasets
are sampled from sub-tasks of the MMLU and BigBench datasets for Zephyr-7b-beta

Dataset RAND BSR COS BM25 PRED SURD SUR[D,BSR] SUR[D,COS]

medical-genetics 79.50 80.00 77.00 76.00 78.00 82.00 76.00 78.00
prof-psychology 74.50 74.00 74.50 74.50 72.00 74.50 73.00 74.00

formal-logic 69.44 65.87 65.87 65.08 66.67 71.43 65.87 61.11
moral-disputes 77.63 78.50 78.00 76.50 75.00 78.00 78.50 77.00
public-relations 75.00 80.91 72.73 73.64 76.36 75.45 76.36 76.36
comp-security 76.00 73.00 77.00 78.00 75.00 77.00 79.00 79.00

astronomy 79.77 81.58 80.26 80.26 74.34 80.92 79.61 82.24
abstract-algebra 52.00 53.00 53.00 51.00 51.00 50.00 62.00 55.00

nutrition 75.63 77.00 79.50 75.50 74.00 74.50 75.50 77.50
high-school-biology 77.63 81.00 80.50 79.50 78.50 80.00 78.50 78.00

formal-fallacies 49.75 57.50 55.50 56.50 52.50 55.00 51.50 46.50
tracking-3 49.25 49.50 49.50 51.50 52.50 45.00 49.50 49.50

Average 69.68 70.99 70.28 69.83 68.83 70.31 70.45 69.51
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Table 7: Performance across different datasets and demonstration selection methods with k = 5 shots for Llama-2-
13b-chat

Dataset RAND BSR COS BM25 PRED SURD SUR[D,BSR] SUR[D,COS]

medical-genetics 80.00 86.00 81.00 81.00 84.00 80.00 84.00 83.00
prof-psychology 71.00 71.00 73.50 66.00 70.00 68.50 77.00 71.00

formal-logic 62.70 59.52 57.94 56.35 58.73 68.25 62.70 61.90
moral-disputes 79.50 77.50 81.00 81.00 82.00 81.00 81.50 81.50
public-relations 70.00 78.18 81.82 76.36 70.91 77.82 80.91 78.18
comp-security 75.00 78.00 82.00 77.00 76.00 77.00 81.00 77.00

astronomy 78.95 85.53 82.89 80.92 80.92 82.89 84.87 81.58
abstract-algebra 52.00 63.00 62.00 58.00 63.00 55.00 67.00 65.00

nutrition 71.50 81.00 80.00 78.00 76.00 78.00 79.00 81.00
high-school-biology 73.00 79.00 80.00 76.50 77.00 79.00 81.50 75.50

formal-fallacies 46.50 48.50 48.00 50.00 47.50 43.50 53.00 43.50
tracking-3 36.50 49.00 47.00 46 42.50 52.00 42.00 39.00

Average 66.38 71.35 71.42 68.93 69.04 70.24 72.87 69.84
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Table 8: Performance across different datasets and dif-
ferent TracIn Influence methods with k = 3 shots for
Llama2-13b-chat

Dataset PRET SURT SUR[T,BSR] SUR[T,COS]

medical-genetics 77.00 79.00 81.00 85.00
prof-psychology 67.00 66.00 69.50 70.00

formal-logic 56.35 61.11 59.52 59.52
moral-disputes 79.50 76.00 82.00 79.50
public-relations 73.64 72.73 76.36 77.27
comp-security 78.00 74.00 76.00 79.00

astronomy 80.26 75.66 82.24 79.61
abstract-algebra 57.00 61.00 67.00 63.00

nutrition 79.50 79.50 78.50 81.00
high-school-biology 76.50 76.00 79.00 75.00

formal-fallacies 46.50 42.50 47.50 43.00
tracking-3 41.00 35.50 40.00 39.50

Average 67.69 66.58 69.89 69.28

Table 9: Performance across different datasets and dif-
ferent TracIn Influence methods with k = 3 shots for
Mistral-7b-v0.3

Dataset PRET SURT SUR[T,BSR] SUR[T,COS]

medical-genetics 88.00 85.00 87.00 88.00
prof-psychology 83.00 80.00 84.00 86.50

formal-logic 65.08 69.05 65.87 68.25
moral-disputes 87.50 84.50 84.50 89.00
public-relations 80.91 82.73 85.45 81.82
comp-security 87.00 83.00 86.00 87.00

astronomy 86.18 86.18 88.16 90.13
abstract-algebra 61.00 51.00 62.00 57.00

nutrition 85.00 83.00 88.50 86.00
high-school-biology 86.50 84.50 88.00 85.00

formal-fallacies 47.00 52.00 54.50 62.50
tracking-3 44.00 42.00 35.00 38.00

Average 75.10 73.58 75.75 76.60

Table 10: Performance across different datasets and
different TracIn Influence methods with k = 3 shots for
Zephyr-7b-beta

Dataset PRET SURT SUR[T,BSR] SUR[T,COS]

medical-genetics 76.00 77.00 74.00 80.00
prof-psychology 72.50 71.50 72.50 72.50

formal-logic 67.46 69.84 67.46 64.29
moral-disputes 77.50 75.50 76.00 77.50
public-relations 76.36 74.55 79.09 72.73
comp-security 77.00 78.00 76.00 75.00

astronomy 76.32 78.95 81.58 80.92
abstract-algebra 50.00 48.00 53.00 52.00

nutrition 75.50 77.00 75.50 78.00
high-school-biology 77.50 75.50 80.50 78.00

formal-fallacies 50.00 41.00 46.00 50.00
tracking-3 50.50 48.00 49.50 42.50

Average 68.89 67.90 69.26 68.62

Table 11: Performance across different datasets and
different TracIn Influence methods with k = 5 shots for
Llama2-13b-chat.

Dataset PRET SURT SUR[T,BSR] SUR[T,COS]

medical-genetics 82.00 78.00 83.00 81.00
prof-psychology 69.00 67.50 73.50 73.50

formal-logic 61.90 61.11 57.14 57.14
moral-disputes 81.00 81.00 82.50 81.50
public-relations 70.00 70.00 73.64 78.18
comp-security 75.00 76.00 77.00 76.00

astronomy 82.24 76.32 83.55 78.95
abstract-algebra 53.00 56.00 65.00 64.00

nutrition 77.50 75.50 79.00 79.50
high-school-biology 77.00 74.50 82.50 77.00

formal-fallacies 45.50 47.00 39.50 48.00
tracking-3 40.50 41.50 46.50 36.50

Average 67.87 67.03 70.23 69.27

Table 12: Performance across different datasets and Pre-
training based demonstration selection methods (k = 3
shots) for Llama2-13b-chat.

Dataset PRE[D,BSR] PRE[D,COS] PRE[T,BSR] PRE[T,COS]

medical-genetics 85.00 80.00 86.00 84.00
prof-psychology 68.50 73.50 70.50 69.50

formal-logic 55.56 57.14 57.94 54.76
moral-disputes 80.50 80.00 78.50 82.00
public-relations 80.91 77.27 74.55 78.18
comp-security 75.00 79.00 80.00 76.00

astronomy 80.26 76.32 78.95 77.63
abstract-algebra 57.00 56.00 58.00 61.00

nutrition 81.00 80.00 78.00 80.50
high-school-biology 75.50 73.50 80.00 76.00

formal-fallacies 52.50 48.00 46.50 45.50
tracking-3 48.50 47.50 37.00 38.00

Average 70.02 69.02 68.83 68.59

Table 13: Performance across different datasets and Pre-
training based demonstration selection methods with
k = 3 shots for Mistral-7b-v0.3.

Dataset PRE[D,BSR] PRE[D,COS] PRE[T,BSR] PRE[T,COS]

medical-genetics 86.00 88.00 86.00 88.00
prof-psychology 87.50 83.50 85.00 85.50

formal-logic 64.29 65.87 65.08 65.87
moral-disputes 86.00 85.00 85.00 85.50
public-relations 85.45 80.00 86.36 84.55
comp-security 82.00 88.00 85.00 89.00

astronomy 88.16 90.13 87.50 89.47
abstract-algebra 62.00 59.00 62.00 60.00

nutrition 86.50 84.00 86.50 84.50
high-school-biology 86.00 85.50 86.50 87.00

formal-fallacies 54.50 46.00 51.00 50.00
tracking-3 49.50 48.50 50.00 53.00

Average 76.49 75.29 76.32 76.87
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Table 14: Performance across different datasets and Pre-
training based demonstration selection methods with
k = 3 shots for Zephyr-7b-beta.

Dataset PRE[D,BSR] PRE[D,COS] PRE[T,BSR] PRE[T,COS]

medical-genetics 82.00 77.00 81.00 82.00
prof-psychology 73.00 70.50 74.50 73.00

formal-logic 69.84 67.48 65.08 66.67
moral-disputes 73.00 76.00 75.50 76.50
public-relations 78.18 77.27 76.36 70.00
comp-security 78.00 73.00 75.00 76.00

astronomy 76.97 78.29 77.63 79.61
abstract-algebra 51.00 55.00 58.00 58.00

nutrition 79.00 74.50 76.50 78.50
high-school-biology 78.00 77.00 80.00 78.50

formal-fallacies 54.50 55.50 46.50 54.50
tracking-3 47.00 47.50 49.00 48.50

Average 70.04 69.08 69.59 70.15

Table 15: Performance across different datasets and Pre-
training based demonstration selection methods with
k = 5 shots for Llama2-13b-chat.

Dataset PRE[D,BSR] PRE[D,COS] PRE[T,BSR] PRE[T,COS]

medical-genetics 83.00 83.00 82.00 83.00
prof-psychology 73.50 74.00 74.00 71.50

formal-logic 60.32 56.35 62.70 62.70
moral-disputes 82.00 82.50 81.00 79.50
public-relations 75.45 75.45 78.18 77.27
comp-security 77.00 77.00 76.00 80.00

astronomy 82.24 81.58 81.58 77.63
abstract-algebra 60.00 59.00 62.00 60.00

nutrition 81.00 78.50 80.50 79.50
high-school-biology 80.50 78.50 79.50 76.00

formal-fallacies 48.50 50.50 49.00 49.00
tracking-3 50.00 46.00 47.50 51.50

Average 71.13 70.20 71.16 70.63

Table 16: Performance comparison between BSR and
SUR[D,BSR] with DeBERTa as the surrogate model with
(k = 3 shots) for Llama2-13b-chat.

Dataset BSR PRE[D,BSR]

medical-genetics 87.00 85.00
prof-psychology 70.00 72.50

formal-logic 59.52 59.52
moral-disputes 78.00 84.50
public-relations 79.09 76.36
comp-security 76.00 77.00

astronomy 80.26 80.26
abstract-algebra 58.00 59.00

nutrition 77.5 79.00
high-school-biology 76.50 79.00

formal-fallacies 52.00 45.5
tracking-3 44.00 46.50

Average 69.82 70.30
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B.5 Qualitative Analysis1078

For MoT, to understand the merits of our method,1079

we compare demonstrations selected via BSR1080

and SUR[D,BSR] on the MMLU-abstract-algebra1081

dataset:1082

Example 1:1083

Q: Compute the product in the given ring.1084

(2, 3)(3, 5) in Z5 × Z91085

Options: (B) (3,1) (C) (1,6)1086

BSR Shots.1087

1. Q: Statement 1 | Every element of a group gen-1088

erates a cyclic subgroup of the group. State-1089

ment 2 | The symmetric group S10 has 10 ele-1090

ments. Options: (A) True, True (C) True,1091

False Answer: (C)1092

2. Q: Statement 1 | Every function from a fi-1093

nite set onto itself must be one-to-one. State-1094

ment 2 | Every subgroup of an abelian group1095

is abelian. Options: (A) True, True (D)1096

False, True Answer: (A)1097

3. Q: How many attempts should you make to1098

cannulate a patient before passing the job on1099

to a senior colleague, according to the medical1100

knowledge of 2020? Options: (A) 4 (B) 31101

(C) 2 (D) 1 Answer: (C)1102

SUR[D,BSR].1103

1. Q: Statement 1 | Every function from a fi-1104

nite set onto itself must be one-to-one. State-1105

ment 2 | Every subgroup of an abelian group1106

is abelian. Options: (A) True, True (D)1107

False, True Answer: (A)1108

2. Q: Olivia used the rule "Add 11" to create the1109

number pattern shown below: 10, 21, 32, 43,1110

54. Which statement about the number pattern1111

is true? Options: (B) The number pattern will1112

never have two even numbers next to each1113

other. (D) If the number pattern started with1114

an odd number, then the pattern would have1115

only odd numbers in it. Answer: (B)1116

3. Q: Tomorrow is 11/12/2019. What is the date1117

one year ago from today in MM/DD/YYYY1118

format? Options: (B) 11/11/2018 (C)1119

08/25/2018 Answer: (B)1120

We can see that while BSR selects more semanti-1121

cally relevant samples, SUR[D,BSR]’s selected shots1122

guide the model toward the correct answer (C) in- 1123

stead of (B) by encouraging more structured rea- 1124

soning. 1125

Example 2: 1126

Q: Statement 1 | If R is an integral domain, then 1127

R[x] is an integral domain. Statement 2 | If R is a 1128

ring and f(x) and g(x) are in R[x], then 1129

deg(f(x)g(x)) = deg f(x) + deg g(x). 1130

Options: (C) True, False (B) False, False 1131

BSR Shots. 1132

1. Q: Pence compares six different cases of re- 1133

production, from natural twinning to SCNT. 1134

What conclusion does he draw from this com- 1135

parison? Options: (A) SCNT is not a differ- 1136

ent kind of reproduction because there are no 1137

morally relevant differences between it and 1138

other permissible means of reproduction. (B) 1139

Because there is a low risk of harm for natural 1140

twinning, there will be a low risk of harm for 1141

SCNT. (C) Both A and B (D) Neither A nor 1142

B Answer: (A) 1143

2. Q: Statement 1 | Every element of a group gen- 1144

erates a cyclic subgroup of the group. State- 1145

ment 2 | The symmetric group S10 has 10 ele- 1146

ments. Options: (A) True, True (C) True, 1147

False Answer: (C) 1148

3. Q: Statement 1 | Every function from a fi- 1149

nite set onto itself must be one-to-one. State- 1150

ment 2 | Every subgroup of an abelian group 1151

is abelian. Options: (A) True, True (D) 1152

False, True Answer: (A) 1153

SUR[D,BSR]. 1154

1. Q: Statement 1 | Every function from a fi- 1155

nite set onto itself must be one-to-one. State- 1156

ment 2 | Every subgroup of an abelian group 1157

is abelian. Options: (A) True, True (D) 1158

False, True Answer: (A) 1159

2. Q: Select the best translation into predicate 1160

logic. George borrows Hector’s lawnmower. 1161

(g: George; h: Hector; l: Hector’s lawn- 1162

mower; Bxyx: x borrows y from z). Op- 1163

tions: (A) Blgh (B) Bhlg (C) Bglh (D) Bghl 1164

Answer: (C) 1165
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3. Q: Statement 1 | Every element of a group gen-1166

erates a cyclic subgroup of the group. State-1167

ment 2 | The symmetric group S10 has 10 ele-1168

ments. Options: (A) True, True (C) True,1169

False Answer: (C)1170

Here again, BSR selects the more semantically rel-1171

evant shots (with the top three shots ordered in1172

ascending order of relevance), while SUR[D,BSR]1173

selects less semantically similar but more influen-1174

tial shots, which ultimately improves model perfor-1175

mance.1176

C Extended Noisy ICL Results1177

C.1 Varying Noise Levels1178

We also test whether our method can perform well1179

on varying noise levels in the dataset. To test this,1180

we create 2 datasets of MRPC with 10% and 30%1181

noise added. As seen in Table 17, in both the cases1182

IF Averaging outperformed other baselines. With1183

the DataInf configuration performing better for the1184

10% noise dataset and the LiSSA configuration1185

performing better for the 30% noise dataset.1186

Table 17: MRPC 10% and 30% Noise added results
using various methods (top 2 performers in bold).

Method MRPC 0.1 MRPC 0.3

RAND 70.1 70.8
BSR 70.3 70.3
COS 70.6 70.6
BM25 73.5 73.0

PR
U

-0
.1

RAND[COS] 68.6 69.9
SUR[D,COS] 68.4 69.9
SUR[L,COS] 68.9 68.9
RAND[BSR] 69.1 68.6
SUR[D,BSR] 66.4 69.1
SUR[L,BSR] 66.7 71.8

AV
G

-0
.5 SUR[D,COS] 75.0 70.3

SUR[L,COS] 69.9 76.0
SUR[D,BSR] 73.8 70.8
SUR[L,COS] 72.1 75.7

C.2 Varying Hyperparameters1187

Here we provide results for different IF pruning1188

and IF averaging hyperparameters that we tested1189

with varying levels of noise in Table 18 and Table1190

19.1191

C.3 Effectiveness of IFs1192

We conduct a toy experiment to evaluate the ef-1193

fectiveness of IF-based methods in detecting noisy1194

samples. We introduce 20% noise to the datasets1195

and compute IF values using the Surrogate Model1196

Table 18: MRPC results using various methods and
configurations for 10% and 30% Noise.

Method MRPC 0.1 MRPC 0.3

PR
U

-0
.2

RAND[COS] 68.9 69.1
SUR[D,COS] 71.1 69.9
SUR[L,COS] 70.6 72.3
RAND[BSR] 70.1 68.1
SUR[D,BSR] 70.1 70.1
SUR[L,BSR] 71.3 66.7

PR
U

-0
.3

RAND[COS] 69.9 69.6
SUR[D,COS] 71.8 69.4
SUR[L,COS] 71.3 71.3
RAND[BSR] 69.4 67.9
SUR[D,BSR] 70.3 71.1
SUR[L,BSR] 72.1 73.0

AV
G

-0
.4 SUR[D,COS] 71.8 69.9

SUR[L,COS] 69.4 73.0
SUR[D,BSR] 72.1 75.4
SUR[L,BSR] 67.4 70.3

AV
G

-0
.6 SUR[D,COS] 70.3 73.5

SUR[L,COS] 74.3 73.3
SUR[D,BSR] 70.3 71.8
SUR[L,BSR] 71.3 73.8

Table 19: Noisy ICL Accuracy with different hyper-
parameters for our methods.

Method MRPC 0.2 QNLI 0.2 SST2 0.2 QQP 0.2

PR
U

-0
.2

RAND[COS] 68.1 68.6 86.6 70.0
SUR[D,COS] 67.7 67.2 86.2 70.0
SUR[L,COS] 71.3 65.8 86.8 67.2
RAND[BSR] 69.1 72.2 85.4 69.8
SUR[D,BSR] 70.3 67.4 81.8 71.6
SUR[L,BSR] 70.1 66.4 85.2 70.8

PR
U

-0
.3

RAND[COS] 70.1 68.4 87.0 67.4
SUR[D,COS] 68.8 69.2 84.6 70.6
SUR[L,COS] 70.6 68.2 86.6 72.6
RAND[BSR] 70.8 65.8 86.0 70.8
SUR[D,BSR] 70.6 67.4 84.8 72.0
SUR[L,BSR] 69.4 68.2 87.4 68.4

AV
G

-0
.4 SUR[D,COS] 75.7 71.4 91.6 62.6

SUR[L,COS] 73.3 67.2 90.6 75.2
SUR[D,BSR] 74.3 68.8 89.8 65.2
SUR[L,BSR] 56.6 72.8 78.0 73.0

AV
G

-0
.6 SUR[D,COS] 73.5 69.2 87.2 66.2

SUR[L,COS] 72.1 68.6 84.6 70.8
SUR[D,BSR] 73.5 69.2 94.2 71.8
SUR[L,BSR] 72.3 65.8 94.2 75.4

approach. We then calculate the percentage of 1197

noisy samples in the top 100 values selected by 1198

our IF methods. Results are presented in Table 20 1199

As shown in the table, IF-based methods are 1200

highly effective in identifying mislabeled data, sig- 1201

nificantly aiding demonstration selection in Noisy 1202

ICL. 1203
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Table 20: Percentage of noisy samples in the top 100
values selected by IF methods.

Dataset DataInf LiSSA

MRPC 83% 66%
QNLI 54% 86%
QQP 79% 95%
SST-2 90% 96%

D Memory Consumption1204

To analyze the added computational costs associ-1205

ated with IFs, we calculate the maximum GPU1206

memory consumption while performing demon-1207

stration selection with the Pretrained Gradients-1208

DataInf PRED and Surrogate Model-DataInf SURD1209

methods. The experiments are performed on 41210

NVIDIA RTX 6000 Ada Generation GPUs. The1211

maximum memory consumption for Pre-D was1212

18,188 MiB, while for Sur-D it was 7,998 MiB.1213

These memory requirements are relatively modest,1214

and the use of IFs can be justified given the benefits1215

they provide.1216

E Scalability to large datasets1217

For larger datasets, we compare the time taken1218

to extract test gradients and compute IF for 1001219

samples, 200 samples, and 1000 samples in Table1220

21.1221

Table 21: Time taken for computing test gradients and
influence functions (IF) across different models and
sample sizes.

Model & Samples Test Gradients (s) Computing IF (s)

RoBERTa (100 Samples) 6.7 26.4
RoBERTa (200 Samples) 7.4 35.7
RoBERTa (1000 Samples) 67.8 273.7

Llama-2-13b-chat (100 Samples) 41.0 3.6
Llama-2-13b-chat (200 Samples) 68.5 4.7
Llama-2-13b-chat (1000 Samples) 410.8 35.4

A 10x increase in sample size corresponds to an1222

approximately 10x increase in computational time,1223

indicating a linear relationship between sample size1224

and computational time.1225

Finally, in MoT, the computational time of IF can1226

further be optimized by only computing IF for the1227

2k shots being pruned by BSR or Cosine similarity1228

instead of the entire set of training demonstrations.1229

Another optimization to the DataInf code could1230

be replacing their handling of gradients with ten-1231

sor operations instead of the current dict of dicts1232

format. This enables the use of GPU processing1233

for influence computation instead of CPU and can1234

offer a considerable runtime speedup.1235
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