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ABSTRACT

Videos inherently represent 2D projections of a dynamic 3D world. However,
our analysis suggests that video diffusion models trained solely on raw video data
often fail to capture meaningful geometric-aware structure in their learned repre-
sentations. To bridge the gap between video diffusion models and the underlying
3D nature of the physical world, we propose Geometry Forcing, a simple yet
effective method that encourages video diffusion models to internalize 3D repre-
sentations. Our key insight is to guide the model’s intermediate representations
toward geometry-aware structure by aligning them with features from a geomet-
ric foundation model. To this end, we introduce two complementary alignment
objectives: Angular Alignment, which enforces directional consistency via cosine
similarity, and Scale Alignment, which preserves scale-related information by re-
gressing geometric features from normalized diffusion representation. We evalu-
ate Geometry Forcing on both camera view–conditioned and action-conditioned
video generation tasks. Experimental results demonstrate that our method sub-
stantially improves visual quality and 3D consistency over the baseline methods.

Video Diffusion 
Models

Diffusion Loss

(a) Geometry Forcing (GF)

… …

VGGT 
Backbone

Scale Alignment

Alignment Loss

Angular Alignment

(b) Video Generation

Baseline 
FVD 364

GF 
FVD 243

Baseline GF 

(c) Underlying 3D Representation

Figure 1: Geometry Forcing equips video diffusion models with 3D awareness. (a) We pro-
pose Geometry Forcing (GF), a simple yet effective paradigm to internalize geometric-aware struc-
ture into video diffusion models by aligning with features from a geometric foundation model, i.e.,
VGGT (Wang et al., 2025b). (b) Compared to the baseline method (Song et al., 2025), our method
produces more consistent generations both temporally and geometrically. (c) Features learned by
the baseline model fail to reconstruct meaningful 3D geometry, whereas our method internalizes 3D
representation, enabling accurate 3D reconstruction from the intermediate features.

1 INTRODUCTION

Learning to simulate the physical world and predict future states is a cornerstone of intelligent sys-
tems (Ha & Schmidhuber, 2018). Recent advances in generative modeling (Ho et al., 2020; Rom-
bach et al., 2022; Peebles & Xie, 2023; Brown et al., 2020), coupled with the availability of large-
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scale video datasets, have led to significant progress in generating realistic visual environments
conditioned on text descriptions (OpenAI, 2024; Yang et al., 2024; Polyak et al., 2024; Google,
2025) or agent actions (Hu et al., 2023; Guo et al., 2025; Bar et al., 2025). However, these ap-
proaches typically aim to model pixel distributions across video frames, overlooking a fundamental
principle: videos are 2D projections of a dynamic 3D world (Glassner, 1989). By focusing solely
on image-space generation, such models often struggle to maintain geometric coherence and long-
term consistency, particularly in autoregressive settings where small errors can accumulate over
time (Chen et al., 2024a; Cheng et al., 2025; Huang et al., 2025b).

Building on this motivation, a growing line of research has explored explicitly modeling the dy-
namic 3D structure of the physical world (Zhu et al., 2024; Aether et al., 2025; Jiang et al., 2025),
as opposed to implicitly learning distributions in 2D pixel space. For example, Zhang et al. (2025a)
proposes transforming 3D coordinates into point maps and jointly modeling the RGB and 3D in-
formation. While effective to some extent, representing 3D information in a tractable form remains
challenging, and the reliance on additional annotations imposes limitations on scalability.

In this work, we aim to bridge the gap between video diffusion models and the underlying dynamic
3D structure of the physical world. We begin with a fundamental question: Can video diffusion
models implicitly learn 3D information through training on raw video data, without explicit 3D
supervision? To investigate this, we analyze a pretrained video diffusion model (Song et al., 2025)
by introducing a DPT (Ranftl et al., 2021) head that maps its intermediate features to corresponding
depth maps (Wang et al., 2025b). As illustrated in Fig. 1(c), we observe that features learned solely
from raw video data fail to yield meaningful geometric representations, highlighting a potential gap
in the geometric understanding of video diffusion models trained without additional guidance.

To address this limitation, we propose Geometry Forcing (GF), a simple yet effective approach that
encourages video diffusion models to internalize 3D representations during training. Inspired by
recent advances in semantic REPresentation Alignment (REPA) for image diffusion models (Yu
et al., 2024a), we align features of video diffusion models with the geometric representations from
a pretrained 3D foundation model (Wang et al., 2025b). To align these two representations, our
method introduces two complementary alignment objectives: Angular Alignment and Scale Align-
ment. Angular Alignment enforces directional consistency between the diffusion model’s features
and geometric representations by maximizing their cosine similarity. Scale Alignment, in contrast,
preserves the scale information of the geometric representations by predicting geometric features
from normalized diffusion features. The decoupled formulation of Angular and Scale Alignment
allows the model to capture both directional and scale-related aspects of geometry, while improving
stability during training and expressiveness in the learned representations.

We evaluate the effectiveness of GF on two widely adopted benchmarks: camera view-conditioned
video generation on RealEstate10K (Zhou et al., 2018) and action-conditioned video generation
on Minecraft environment (Baker et al., 2022). Experimental results demonstrate that our method
delivers substantial gains in geometric consistency and visual quality over the baseline methods. For
example, GF reduces the FVD from 364 to 243 on RealEstate10K benchmark. Moreover, the ability
to reconstruct explicit geometry during inference opens up opportunities for integrating structured
memory into long-term world modeling.

2 RELATED WORK

2.1 INTERACTIVE WORLD MODELING

A world simulator seeks to model the underlying dynamics of the physical world by predicting
future states conditioned on current observations and conditions. We review prior works through the
lenses of interactive video generation, 4D generation, and consistent world modeling.

Interactive Video Generation. Recent advancements in generative models (Ho et al., 2020; Rom-
bach et al., 2022; Peebles & Xie, 2023; Lipman et al., 2023; Bruce et al., 2024; Parker-Holder et al.,
2024; Alonso et al., 2024; Valevski et al., 2024), have positioned video generation as a promising
approach to world modeling. Beyond text-to-video synthesis (Chen et al., 2023; 2024b; Kong et al.,
2024; Wan et al., 2025; Li et al., 2024; Liu et al., 2025a; Ye et al., 2025), interactive video genera-
tion (Yu et al., 2025b) that emphasizes responding interactive control signals evolves rapidly. Exist-
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ing models incorporate different signals like camera controls (He et al., 2024; Yu et al., 2024b; Song
et al., 2025) and action controls (Decart et al., 2024; Guo et al., 2025; Feng et al., 2024; Shin et al.,
2024). Building on this progress, our work introduces a novel training pipeline that enhances 3D
consistency in video generation, enabling more coherent and realistic simulation of spatial scenes.

Interactive 4D Generation. In contrast to data-driven video simulators, 4D-based simula-
tors (Chung et al., 2023; Bahmani et al., 2024b; Wu et al., 2025b; Yu et al., 2025a; Lee et al.,
2024) explicitly model dynamic 3D structures (Kerbl et al., 2023; Mildenhall et al., 2021; Xiang
et al., 2025). Building upon 3D content generation (Raj et al., 2023), these methods evolve from
dynamic objects (Xu et al., 2024; Bahmani et al., 2024a) to complex dynamic scenes (Niemeyer
& Geiger, 2021; Zhu et al., 2024). Recent works integrate video priors to improve the realism and
temporal coherence of 4D (Aether et al., 2025; Jiang et al., 2025; Mai et al., 2025; Chen et al., 2025).
For example, TesserAct (Zhen et al., 2025) predicts RGB, depth, and surface normals to reconstruct
temporally consistent 4D scenes. While our work shares the goal of unifying 3D and video gener-
ation, it differs by injecting 3D geometric priors into video representation to improve temporal and
spatial coherence.

Consistent World Modeling. A key challenge in world modeling lies in maintaining consistency
over long video sequences. To address this, prior works have explored different solutions. Frame-
level context mechanisms (Chen et al., 2024a; Fuest et al., 2025; Po et al., 2025; Wu et al., 2025c)
improve consistency by training with noisy context frames. Meanwhile, other methods leverage 3D
information. For example, Xiao et al. (2025) maintain a memory bank indexed by field-of-view
overlap to retrieve relevant historical frames. Zhang et al. (2025a) propose jointly modeling RGB
frames and point maps to maintain 3D consistency. In contrast, we propose to directly internalize
3D representations into video diffusion models, enabling more stable geometric consistency.

2.2 3D FOUNDATION MODELS

3D foundation models (3DFMs) (Li et al., 2025; Yang et al., 2025; Smart et al., 2024; Wang* et al.,
2025; Wang et al., 2024) have recently shown remarkable progress, applying end-to-end framework
with fast and robust inference. These models are capable of predicting different 3D properties
including camera poses (Zhang et al., 2025b), depth maps (Piccinelli et al., 2024), and dense point
clouds (Wang et al., 2025b), directly from visual inputs.

Due to their accuracy, efficiency, and robustness, 3DFMs are becoming essential for enabling down-
stream tasks like spatial reasoning (Wu et al., 2025a; Huang et al., 2025a; Fan et al., 2025), au-
tonomous driving (Fei et al., 2024), SLAM (Liu et al., 2025b; Maggio et al., 2025), and beyond.
Inspired by their strong 3D capabilities, we explore incorporating 3D representations into video
diffusion models to enhance temporal and spatial consistency for world modeling.

3 PRELIMINARIES

Our approach builds upon autoregressive video diffusion models (Chen et al., 2024a; Song et al.,
2025; Cheng et al., 2025) and incorporates a 3D foundation model (Wang et al., 2025b) into the
training process to guide geometric learning. In this section, we provide a brief overview of both
components to establish the foundation for our method.

3.1 AUTOREGRESSIVE VIDEO DIFFUSION MODELS

Training. We formulate training pipeline based on Flow Matching (Lipman et al., 2023; Liu et al.,
2023) with Transformer backbone (Vaswani et al., 2017; Bao et al., 2023), aiming for simplicity and
scalability. Let x = {x1, . . . , xI} denote a video sequence sampled from the data distribution, we
assign independent timestep for each frame t = {t1, . . . , tI} and corrupt frames via interpolation:

xti
i = (1− ti) · x0

i + ti · ϵi, where ϵi ∼ N (0, I).

The target velocity field is defined as the difference between noise and clean input. We train a neural
network vθ to minimize the Flow Matching loss:

LFM =
∥∥vθ(xt, t)− (ϵ− x)

∥∥2 .
3
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Sampling. At inference time, the sampling follows a simple probability flow ODE:

dx = vθ(x
t, t) · dt.

In practice, we iteratively apply the standard Euler solver (Euler, 1845) to sample data from noise.
For autoregressive generation, we initialize the inputs with a clean context and generate subsequent
frames sequentially, conditioning each prediction on the previously generated frames.

3.2 VISUAL GEOMETRY GROUNDED TRANSFORMER

Visual Geometry Grounded Transformer (VGGT) (Wang et al., 2025b) is a feed-forward model that
directly outputs 3D attributes of a scene, including camera parameters, point maps, depth maps.

VGGT has a Transformer backbone and multiple prediction heads. The model employ Alternating-
Attention mechanism that interleaves frame-wise self-attention and global self-attention to extract
local and global information. For each frame, local and global features are integrated into a unified
representation, which is subsequently processed by task-specific heads to produce 3D attributes. We
leverage the features from the Transformer backbone of VGGT to extract geometric representation.

4 GEOMETRY FORCING

4.1 METHOD OVERVIEW

Motivation. Recent advances in video diffusion models have enabled the simulation of the world
directly from large-scale video datasets. However, these models often overlook a fundamental prop-
erty of visual data: videos are 2D projections of an dynamic 3D world. To address this, we seek to
narrow the gap between video diffusion models and the dynamic 3D structure of the world.

Observation. We begin by examining whether video diffusion models are capable of implicitly
learning 3D information when trained solely on raw video data, without explicit 3D supervision. To
probe the geometric content of their learned representations, we adopt a strategy inspired by linear
probing (He et al., 2020): we freeze the parameters of a pretrained video diffusion model (Song
et al., 2025) and train a DPT (Ranftl et al., 2021) head to map intermediate features to corresponding
depth map (Wang et al., 2025b). This allows us to assess the extent to which geometric information
is encoded in the model’s feature space. The results, presented in Fig. 1(c), indicate that features
learned solely from raw video data do not produce meaningful geometric representations, suggesting
a limited capacity of the model to encode dynamic 3D structure without explicit geometric guidance.

Challenge. Bridging the gap between video diffusion models and the dynamic 3D structure of the
world presents significant challenges, primarily due to the limited annotated 3D data. A straightfor-
ward approach is to jointly model RGB and geometric information within an end-to-end architecture.
However, relying heavily on 3D annotations can hinder the scalability and generalization ability of
the models, particularly when applied to large and diverse real-world video datasets.

In this work, inspired by recent advances in REPA (Yu et al., 2024a), we propose Geometry Forc-
ing (GF) that aligns the features of video diffusion models with geometric representations, encour-
aging the model to internalize geometric information. Our approach builds upon video diffusion
models described in Sec. 3.1. In Sec. 4.2, we introduce two regularization objectives designed to fa-
cilitate representation alignment between the diffusion model and geometric foundation model. The
overall training objective, along with additional functional extensions, is summarized in Sec. 4.3.

4.2 GEOMETRIC REPRESENTATION ALIGNMENT

To improve the geometric consistency of the learned representations, we introduce two complemen-
tary alignment objectives: Angular Alignment and Scale Alignment. These objectives are designed
to align the latent features of the diffusion model with intermediate representations from a pretrained
geometric foundation model (Wang et al., 2025b), ensuring both directional consistency and scale
preservation of geometric features within the feature space.

4
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Angular Alignment. Angular Alignment enforces directional correspondence between the hid-
den states of the diffusion model, denoted by h, and specified target features, denoted by y. We
select intermediate features from the Transformer backbone of VGGT (Wang et al., 2025b) as y,
as these features preserve both local and global information within each frame and can be fur-
ther used to reconstruct various explicit geometric representations. In practice, the target features
y ∈ RL×N×P×D, where L denotes the number of layers, N denotes the number of input images, P
denotes the patch count, and D denotes the feature dimension. To achieve Angular Alignment, we
first use a lightweight projector fϕ to map the diffusion latents h ∈ RN×P ′×D′

to y’s shape. The
Angular Alignment loss is then defined as:

LAngular = − 1

LNP

L∑
ℓ=1

N∑
n=1

P∑
p=1

cos (yℓ,n,p, fϕ(hn,p)) ,

where cos(·, ·) denotes cosine similarity. This loss aligns hidden states independently at both the
frame and patch levels. Since the VGGT backbone already incorporates cross-frame attention, we
do not explicitly enforce global alignment across frames in the loss.

Scale Alignment. While Angular Alignment ensures directional consistency, it disregards feature
scale that could also encode geometric information. Although direct mean squared error (MSE)
loss could supervise magnitudes, it often leads to optimization instability and model collapse due
to inherent scale difference across models. To address this issue, we introduce Scale Alignment,
which preserves scale information through predicting the scale of target features given normalized
diffusion hidden states. Specifically, we first normalize fϕ(h) to unit length. Then we use another
lightweight prediction head gφ to predict the full target features from normalized inputs:

ĥℓ,n,p =
fϕ(hn,p)

∥fϕ(hn,p)∥2
, ỹℓ,n,p = gφ(ĥℓ,n,p).

The Scale Alignment loss is defined as:

LScale =
1

LNP

L∑
ℓ=1

N∑
n=1

P∑
p=1

∥ỹℓ,n,p − yℓ,n,p∥22 .

This decomposition stabilizes training while capturing both directional and scale attributes of geo-
metric representations.

4.3 3D-AWARE AUTOREGRESSIVE VIDEO DIFFUSION MODELS

Building on the autoregressive video diffusion framework and the proposed alignment objectives,
we now present the overall training objective:

L = LFM + λAngular · LAngular + λScale · LScale.

Given the intermediate features of our model are well-aligned with geometric representations, an
appealing consequence is the model’s ability to predict explicit 3D geometry during inference. This
enables unified generation of both video and 4D, effectively bridging the gap between videos and
the underlying dynamic 3D structure of the physical world, as illustrated in Fig. 1. Moreover,
the ability to reconstruct explicit geometry during inference provides a structured and interpretable
form of memory, which can be further utilized to support long-term world modeling. We leave the
exploration of such geometry-based memory mechanisms as a promising direction for future work.

Discussion. Teacher Forcing (Williams & Zipser, 1989) is a widely adopted training paradigm
for autoregressive models (Radford et al., 2019; Brown et al., 2020; Kondratyuk et al., 2024). To
combine autoregressive nature with diffusion models, Diffusion Forcing (Chen et al., 2024a) propose
to train video diffusion models with independent noise levels for each frame. More recently, Self
Forcing (Huang et al., 2025b) is proposed to address exposure bias in autoregressive video diffusion
models. Orthogonal to these methods, Geometry Forcing focuses on improving the structure of the
learned representations by aligning the intermediate representation of video diffusion models with
geometry-aware signals from 3D foundation model. Our approach provides structural supervision
at representational level, encouraging the model to internalize 3D consistency throughout training.

5
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Figure 2: Qualitative comparison of camera view-conditioned video generation under full-
circle rotation. Videos are generated from a single frame and per-frame camera poses simulating a
full 360° rotation. Our method (GF) is compared with DFoT (Song et al., 2025), VideoREPA (Zhang
et al., 2025c), and REPA (Yu et al., 2024a). The results demonstrate that the baseline methods fail to
maintain temporal consistency, while our proposed GF consistently revisits the starting viewpoint.

5 EXPERIMENTS

In this section, we evaluate Geometry Forcing (GF) on camera view-conditioned video generation
on RealEstate10K (Zhou et al., 2018) dataset and action-conditioned video generation on Minecraft
environment (Baker et al., 2022). We also provide more illustration and visualization in Appendix.

Implementation Details. For camera view-conditioned video generation, we apply GF on Diffu-
sion Forcing Transformer (Song et al., 2025), training on 16-frame 256×256 videos for 2,500 steps
with a learning rate of 8 × 10−6 and batch size 8. Inference used first frame and per-frame cam-
era poses. For action-conditioned video generation, we apply GF to Next-Frame Diffusion (Cheng
et al., 2025), training on 32-frame 384×224 videos for 2,000 steps with a learning rate of 6× 10−5

and batch size 32. We set λAngular = 0.5 and λScale = 0.05 to balance each loss component. All
experiments are conducted on 8 NVIDIA A100 GPUs.

Evaluation Metrics. We evaluate visual quality using FVD (Fréchet Video Distance) (Unterthiner
et al., 2018), PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index) (Wang et al.,
2004), and LPIPS (Learned Perceptual Image Patch Similarity) (Zhang et al., 2018).

To further evaluate geometric consistency, we introduce Reprojection Error (RPE) (Duan et al.,
2025) and Revisit Error (RVE) (Xiao et al., 2025). Reprojection Error (RPE) quantitatively mea-
sures multi-view geometric consistency by calculating the average reprojection discrepancy between
projected and observed pixel locations across frames. Revisit Error (RVE) assesses long-range tem-
poral consistency by examining discrepancies between initial and revisited frames under complete
camera rotation. We provide more details of these metrics in the Appendix (Sec. C.4).

5.1 MAIN RESULTS

This section presents the main experimental results, comparing our method against state-of-the-art
approaches across different tasks. The evaluation results demonstrate the effectiveness and general-
ization ability of our method in both short- and long-term video generation.

Camera view-conditioned Video Generation. We conduct comprehensive evaluation of GF on
the RealEstate10K (Zhou et al., 2018) dataset, comparing against state-of-the-art baselines. We
report results for both short-term (16-Frame) and long-term (256-Frame) video generation in Tab. 1.
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Table 1: Quantitative comparison on the RealEstate10K dataset for both short-term (16-Frame)
and long-term (256-Frame) video generation. Our method (Geometry Forcing) achieves the best
performance across all metrics. bold values denote the best, and Underlined values indicate the
second best. * indicates the method is conditioned on the first frame only.

Method Frames FVD↓ LPIPS↓ SSIM↑ PSNR↑ RPE↓ RVE↓

DFoT (Song et al., 2025) 16 252 0.40 0.50 14.40 – –
REPA (Yu et al., 2024a) 16 221 0.37 0.54 15.20 – –
VideoREPA (Zhang et al., 2025c) 16 210 0.37 0.54 15.20 – –
Geometry Forcing (ours) 16 193 0.32 0.58 14.70 – –
Geometry Forcing (ours) + REPA 16 179 0.34 0.54 15.00 – –

Cosmos* (Agarwal et al., 2025) 256 934 0.68 0.20 10.25 – –
DFoT (Song et al., 2025) 256 364 0.55 0.36 11.40 0.3575 297
REPA (Yu et al., 2024a) 256 297 0.54 0.36 11.51 0.3337 315
VideoREPA (Zhang et al., 2025c) 256 455 0.56 0.35 11.50 0.3823 190
Geometry Forcing (ours) 256 243 0.51 0.38 11.87 0.3337 272
Geometry Forcing (ours) + REPA 256 237 0.51 0.37 12.10 0.3264 236

Table 2: Ablation study on target represen-
tation. We compare the effect of aligning the
diffusion model with different target representa-
tions: DINOv2 (semantic), VGGT (geometric),
and their combination. The joint use of both
representation achieves the best FVD.

Target Representation FVD-256

Baseline 364
DINOv2 Only 297
VGGT Only 243
VGGT + DINOv2 237

Table 3: Ablation study on alignment loss.
Angular and Scale Alignment losses are evalu-
ated for long-term video generation, with MSE
as a naive baseline of aligning both angular and
scale information. The combination of Angular
and Scale Alignment yields the best results.

Alignment Loss FVD-256
Baseline 364.0
Angular 253.0
Angular + Scale 243.0
MSE 1648.0

As shown in Tab. 1, our method consistently outperforms all baselines across multiple evaluation
metrics, including FVD, LPIPS, SSIM, and PSNR, in both the short-term and long-term genera-
tion settings. These results highlight the effectiveness of GF in enhancing visual fidelity, temporal
stability, and 3D spatial consistency, thereby enabling more realistic and coherent world modeling.

Action-conditioned Video Generation. To demonstrate the generality of our method, we apply
GF to Next-Frame Diffusion (Cheng et al., 2025) model. As shown in Tab. 5, the model achieves a
lower FVD score which indicates GF can be seamlessly integrated into video diffusion models and
leads to measurable gains. Note that, there exists a large data distribution gap between real world
and Minecraft. This results demonstrate that GF generalize well on out-of-domain distribution.

5.2 QUALITATIVE RESULTS

Fig. 2 presents qualitative comparisons on the RealEstate10K dataset. Each video is generated
from a single input frame along with per-frame camera poses simulating a full 360° rotation. We
compare GF against three strong baselines: DFoT (Song et al., 2025), REPA (Yu et al., 2024a),
and VideoREPA (Zhang et al., 2025c). As shown in Fig. 2, our method reconstructs the initial
frame when the camera completes rotation, while producing reasonable and realistic intermediate
views. In contrast, the baseline methods fail to maintain temporal coherence and scene consistency,
resulting in implausible intermediate frames and unable to revisit the starting viewpoint. These
results highlight the superior long-term 3D consistency and scene understanding of our approach.

5.3 ABLATION STUDIES

We provide a series of ablation studies to validate the design of GF.

Which Representation Should be Aligned? To validate the effectiveness of geometric represen-
tation, we compare two target representations in GF: VGGT (Wang et al., 2025b), trained on 3D

7
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Table 4: Ablation study on explicit and im-
plicit geometry information. We compare ex-
plicit geometry condition with internal align-
ment (ours).

Method FVD-256↓

Baseline 364
Rendered Image Injection 280
Latent Feature Injection 275
Geometry Forcing (ours) 243

Table 5: Evaluation on action-conditioned
video generation in Minecraft. FVD results of
NFD before and after applying Geometry Forc-
ing (GF) on 16-Frame generation show clear im-
provement.

Method FVD-16↓

NFD 216
NFD + GF 205

datasets with strong geometric priors, and DINOv2 (Oquab et al., 2023), trained on 2D images
focusing on semantic features. As shown in Tab. 2, aligning with VGGT consistently outperforms
DINOv2 on both long-term and short-term generation tasks, highlighting the advantage of geometric
alignment over semantic supervision.

To further explore their complementarity, we combine VGGT and DINOv2 features as joint su-
pervision targets. Results in Tab. 2 show that integrating geometric and semantic signals leads to
additional gains, suggesting that the two types of representations are orthogonal and can enhance
each other when used together. However, as we mainly focus on bridging the gap between the video
diffusion model and the dynamic 3D structure of the real world, we only use VGGT features in
further experiments.

Alignment Loss. GF consists of two alignment objectives: Angular Alignment and Scale Align-
ment. To validate their effectiveness, we compare three alignment loss types: (1) Angular Align-
ment alone (Sec. 4.2), (2) Angular Alignment with Scale Alignment (Sec. 4.2), and (3) MSE loss
between VGGT and diffusion features. As shown in Tab. 3, the combination of Angular Alignment
and Scale Alignment achieves best performance, indicating the benefit of aligning both angular and
scale-related information. Although direct mean squared error (MSE) also supervises magnitudes,
the change of feature scale of the diffusion model may cause collapse in the following layers. These
results highlight that neither Angular Alignment nor Scale Alignment alone is sufficient.

Explicitly or Implicitly Integrate Geometry Information into Video Diffusion Models? To as-
sess the benefit of internalizing geometric representations, we compare two ways of incorporating
geometry into the video diffusion model: internal alignment via GF and external guidance via a
ControlNet (Zhang et al., 2023). For external guidance, we test two settings: (1) injecting VGGT
intermediate features into a ControlNet attached to DFoT, and (2) reconstructing the 3D scene, ren-
dering it into 2D images, and injecting the rendered images as geometric conditions. As shown in
Tab. 4, using the same VGGT features, GF outperforms explicit feature injection, and rendered-
image conditioning also lags behind GF. These results show that while explicit geometric cues are
helpful, internal alignment through GF provides consistently stronger supervision. By aligning inter-
nal features with geometric representations, GF enables deeper geometric understanding and yields
better performance in terms of perceptual quality and structural consistency. Full evaluation results
is listed here Tab. 8.

Which Layer Should be Aligned? As shown in Fig. 3, we also explore applying alignment at
different layers of the video diffusion model (Song et al., 2025), which uses a 7-layer U-ViT (Bao
et al., 2023) backbone (3 downsampling layers, 1 bottleneck layer, 3 upsampling layers). Aligning
at layer 3 yields the best FVD-256 score while preserving FVD-16 performance.

Mitigating Exposure Bias in Autoregressive Video Diffusion Model via Geometry Forcing.
Exposure bias is a long-standing challenge in autoregressive video generation (Chen et al., 2024a;
Song et al., 2025; Sun et al., 2025; Cheng et al., 2025; Huang et al., 2025b). While previous methods
attempted to address it through memory mechanisms or context guidance, GF offers an orthogonal
solution. As shown in Fig. 4, GF mitigates long-term drift and reduces the accumulation of er-
ror during generation significantly by aligning 3D geometric representation. These results validate
integrating 3D representation enables more reliable and coherent long-term video synthesis.
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Figure 3: Ablation study on alignment
depth. We present FVD-256 and FVD-16
results for different alignment layers of diffu-
sion model which suggest mid-level feature
is most effective to improve video quality.

Figure 4: Exposure bias analysis. This fig-
ure shows the trend of FVD scores during
long-term video generation. Compared to
the baseline, GF results in significantly lower
FVD after 100 frames.

Table 6: User study. Average scores on Camera Following, Object Consistency, and Scene Conti-
nuity. Each user has to rate each dimension on a scale of 1 to 5. Higher values indicate better quality.

Method Camera Following Object Consistency Scene Continuity

DFoT 3.56 2.73 2.74
REPA 3.82 3.55 3.66
VideoREPA 3.31 3.05 2.82
Geometry Forcing 4.40 4.44 4.52

5.4 USER STUDY

While Reprojection Error (RPE) and Revisit Error (RVE) provide useful signals for measuring 3D
consistency, they only capture specific geometric aspects and may miss perceptual artifacts or unre-
alistic dynamics that humans can easily notice. Additionally, we conduct a user study focusing on
three aspects of 3D consistency. 1) Camera Following: Whether the camera in the video moves
smoothly and accurately follows the given pose trajectory. 2) Object Consistency: Whether objects
remain consistent in shape, appearance, and position across frames. 3) Scene Continuity: Whether
the generated parts of the scene beyond the context frames remain coherent and reasonable.

We compare GF with DFoT (Song et al., 2025), REPA (Yu et al., 2024a), and VideoREPA (Zhang
et al., 2025c). As shown in Tab. 6, GF consistently outperforms all baselines across the three aspects
of 3D consistency, demonstrating its effectiveness in producing geometrically coherent videos.

6 CONCLUSION

This paper introduces Geometry Forcing (GF), a simple yet effective framework that enhances the
geometric consistency of autoregressive video diffusion models by aligning their internal represen-
tations with geometry-aware features. Motivated by the observation that video diffusion models
trained on raw pixel data often fail to capture meaningful 3D structure, our method proposes two
alignment objectives (Angular Alignment and Scale Alignment) guide the latent feature align with
3D-aware freature from geometric foundation model. Empirical results on both camera-conditioned
and action-conditioned video generation benchmarks demonstrate that GF significantly improves
visual quality and 3D consistency, yielding lower FVD scores and more stable scene dynamics.

Limitations. The primary limitation of this work lies in its scale. While GF consistently improves
geometric consistency and visual quality, its full potential remains unexplored under large-scale
training. In particular, we have not yet investigated its effectiveness when applied to larger models
and more extensive video datasets, which may further amplify its benefits.

Future Work. Future directions include scaling GF on larger datasets to build 3D-consistent world
simulators, and applications for long video generation by treating 3D representation as memory.
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REPRODUCIBILITY

We provide comprehensive implementation details, including model architectures, training configu-
rations, and data preprocessing procedures, in Appendix C to ensure reproducibility.
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A DECLARATION OF LLM USAGE

We used large language models (LLMs) to aid or polish writing. Details are described in the paper.
The use is limited to language editing (grammar, spelling, and word choice), code formatting (e.g.,
adding comments to the code). All scientific ideas, analysis, and conclusions were conceived, val-
idated, and interpreted independently by the authors. We gratefully acknowledge the assistance of
large language models in our work.

B LIMITATIONS

Our method’s reliance on VGGT (trained mainly on static scenes) constrains performance in dy-
namic environments. Generalization to significant motion scenarios requires further research.
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C IMPLEMENTATION DETAILS

C.1 DATASET

RealEstate10K (Zhou et al., 2018). This dataset contains camera poses for 10 million video
frames, suitable for evaluating 3D consistency and camera navigation in generated videos. We use a
resolution of 256 × 256 pixels.

Minecraft (Baker et al., 2022). This game dataset includes action annotations, enabling evalua-
tion of video generation in dynamic environments with camera motion.

Alignment Projection To maximize geometric information retention, we aggregate features from
all transformer blocks of the VGGT backbone as alignment targets. For computational efficiency,
we apply bilinear interpolation to reduce the spatial dimensions from the original resolution to a
manageable size of 512×512 tokens.

The alignment is performed using a Conv3D-based projector that operates on the latent dimensions.
To accommodate multi-layer and multi-target alignment scenarios, we initialize independent pro-
jectors for each feature layer and target representation. This design ensures effective dimensional
compatibility between the U-ViT feature space and the target geometric representations while main-
taining computational efficiency.

C.2 TRAINING

Model Architecture. We adopt a U-ViT Bao et al. (2023) backbone for video generation, with
geometric feature alignment integrated at the third transformer block.

Training Data. The model is trained on 10,000 video clips sampled from the RealEstate10K train-
ing dataset, each comprising 16 consecutive frames.

Training Protocol. Training proceeds for 2 epochs using a learning rate of 8× 10−6 and a global
batch size of 40. The geometric alignment loss is combined with the standard diffusion training
objective.

C.3 INFERENCE

A key advantage of Geometry Forcing is its inference-time efficiency which introduces no compu-
tational overhead during sampling. We demonstrate results using a DDIM sampler with 50 steps,
though the approach is compatible with any standard diffusion sampling algorithm.

C.4 METRICS

In this section,we introduce the detailed implementation of Reprojection Error (RPE) and Revisit
Error (RVE).

Reprojection Error. Reprojection error (RPE) is a widely used metric in visual SLAM to
evaluate multi-view geometric consistency. Following Duan et al. (2025), we utilize DROID-
SLAM (Teed & Deng, 2021) to reconstruct scene. Specifically, DROID-SLAM first extracts corre-
sponding features across frames and then refines camera poses (Gt) and per-pixel depth estimates
(dt) through its differentiable Dense Bundle Adjustment (DBA) optimization, enforcing optical flow
constraints and achieving robust structure-from-motion. The reprojection error is then computed by
measuring the average Euclidean distance between the projected and observed pixel locations of
co-visible 3D points across multiple frames. Formally, RPE is defined as:

RE =
1

|V|
∑

(i,j)∈V

∥∥p∗
ij −Π(Pij)

∥∥
2
, (1)

where V denotes the set of valid feature correspondences, pij is the observed pixel location in gen-
erated video frames, Pij represents the corresponding reconstructed 3D point derived from refined

2
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Table 7: Ablation study on teacher model Our method (Geometry Forcing) is compatitable with
different teachmodel including VGGT and Pi3bold values denote the best, and Underlined values
indicate the second best. * indicates the method is conditioned on the first frame only.

Method Frames FVD↓ LPIPS↓ SSIM↑ PSNR↑ RPE↓ RVE↓

DFoT (Song et al., 2025) 256 364 0.55 0.36 11.40 0.3575 297
Pi3 Wang et al. (2025) 256 309 0.53 0.38 11.53 0.x x
Geometry Forcing (VGGT) 256 243 0.51 0.38 11.87 0.3337 272

depths and camera poses, and Π denotes the camera projection function. Lower RPE values indi-
cate better 3D alignment, reduced spatial artifacts, and enhanced spatio-temporal stability, thereby
effectively reflecting the overall geometric coherence and consistency of the generated videos.

Revisit Error. Revisit Error evaluates long-range temporal consistency under full camera rotation,
inspired by the setup proposed in WorldMem (Xiao et al., 2025). For each of 100 randomly sampled
RealEstate10K video clips, we extract the first frame and initial camera pose. A camera trajectory
of 256 frames is then constructed by rotating the initial camera pose around the Y-axis. We assess
revisit consistency by comparing the first and final frame using reconstruction FID (rFID) (Heusel
et al., 2017). Larger discrepancies indicate greater geometric or appearance drift, suggesting weaker
long-term 3D consistency.

C.5 3D RECONSTRUCTION FROM DIFFUSION FEATURES

In this section, we provide a detailed overview of the 3D reconstruction process illustrated in
Fig. 1(c).

Reconstruction using Geometry Forcing Features. We extract features from the Geometry Forc-
ing (GF) model and pass them through the depth prediction head of VGGT to obtain the predicted
depth map.

Reconstruction using Diffusion Features. Motivated by our linear probing experiments, we in-
vestigate the 3D reconstruction capability of intermediate features extracted from DFoT (Song et al.,
2025). Specifically, we freeze the pretrained DFoT backbone and train a DPT head (Ranftl et al.,
2021) to regress depth maps from its intermediate representations. The target depth maps are pro-
vided by the VGGT model (Wang et al., 2025b), serving as ground-truth supervision. The DPT
head adopts the same architecture as the depth prediction module used in VGGT but is trained from
scratch. We optimize the DPT head for 2500 steps using a learning rate of 1×10−4 and a batch size
of 4.

D SUPPLEMENTARY EXPERIMENTS

D.1 ABLATION ON TEACHER MODEL

Geometry Forcing don’t depend on specific 3D foundation model but still requires the 3D foundation
to be feed-forward and support multiple images input which is required by online training. We
conduct Geometry Forcing algorithm on Pi3 model and also achieves significant improvement on
video generation as shown in Tab. 7.

D.2 EXPLICIT GEOMETRY CONTROL

We provide full evaluation comparison between explicit control and ours Geometry forcing in Tab. 8.

D.3 ALIGNMENT CONTEXT LENGTH

Our Geometry Forcing input 16 frames into VGGT model to extract the latent representation and
then align first 16 frame during training. We provide the ablation results on different alignment

3
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Table 8: Ablation study on explicit and implicit geometry information. Our method (Geometry
Forcing) achieves the best performance across all metrics on the RealEstate10K dataset for long-
term (256-Frame) video generation. bold values denote the best, and Underlined values indicate the
second best. * indicates the method is conditioned on the first frame only.

Method Frames FVD↓ LPIPS↓ SSIM↑ PSNR↑ RPE↓ RVE↓

DFoT (Song et al., 2025) 256 364 0.55 0.36 11.40 0.3575 297
Render Image Injection 256 280 0.52 0.37 11.99 x x
Latent Feature Injection 256 364 0.55 x x 0.x x
Geometry Forcing (ours) 256 243 0.51 0.38 11.87 0.3337 272

Table 9: Ablation study on GF alignment context length. Geomtry Forcing-n indicates n frames
is used to extract VGGT feature during training. The results is evaluated on the RealEstate10K
dataset for long-term (256-Frame) video generation. bold values denote the best, and Underlined
values indicate the second best. * indicates the method is conditioned on the first frame only.

Method Frames FVD↓ LPIPS↓ SSIM↑ PSNR↑ RPE↓ RVE↓

DFoT (Song et al., 2025) 256 364 0.55 0.36 11.40 0.3575 297
Geometry Forcing-4 256 261 0.51 0.38 12.21 x x
Geometry Forcing-8 256 257 0.50 x x 0.38 12.27
Geometry Forcing-16 (default) 256 243 0.51 0.38 11.87 0.3337 272

context length in Tab. 9. The results indicates that the when the alignment context length is longer,
the 3D information is more complete, thus lead to better results.

D.4 MULTIPLE LAYER ALIGNMENT

Since the large number of potential combination of layers selected for alignment, we provide the
result on align with last 3 layers of our diffusion model in Tab. 10. However, increasing number of
layers to align doesn’t lead to better performance.

D.5 TEXT-TO-VIDEO GENERATION

We extend our Geometry Forcing method to general text-to-video generation tasks. Our model is
trained on 2K videos from the Wang et al. (2025a), which provides videos with detailed scene and
camera descriptions. Experimental results demonstrate that our approach achieves improvements
across multiple evaluation dimensions, including visual aesthetics, motion smoothness, and motion
quality, as detailed in Table 11. These results indicate that Geometry Forcing can extend effectively
to dynamic text-to-video training, even though VGGT itself is trained on static scenes.

E DISCUSSION

E.1 COMPUTATIONAL EFFICIENCY

We perform a detailed profiling of our method on a NVIDIA A800 GPU and report both the ex-
ecution time and floating-point operations (FLOPs) for different components of our model during
the training stage in Table 12. The VGGT Feature Alignment contributes an additional 52.5% in
execution time and 60.4% in total FLOPs. Although this alignment process increases the per-
step computation compared to the base diffusion model, it significantly accelerates convergence,
thereby reducing the overall training duration. For fine-tuning, our method requires only a few thou-
sand steps and completes within hours, yielding substantial efficiency gains over full pre-training.
Additionally, during inference, our method does not introduce any additional computational cost
compared to other methods that use explicit or implicit memory.

We also provided a feature extraction time of VGGT model in Fig 5. The result shows that the
extraction time increases from 0.1s to 0.8s when the input view from 1 to 12.
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Table 10: Alignment on Multiple Layers. Comparison of aligning VGGT features at the middle
layer vs. the last three layers of the diffusion model using Geometry Forcing.

Method Frames FVD↓ LPIPS↓ SSIM↑ PSNR↑ RPE↓ RVE↓

DFoT (Song et al., 2025) 256 364 0.55 0.36 11.40 0.3575 297
Geometry Forcing (Last 3 Layers) 256 309 0.53 0.38 11.53 0.xxx xxx
Geometry Forcing (Mid) 256 243 0.51 0.38 11.87 0.3337 272

Table 11: Evaluation on text-conditioned video generation. FVD results of Wan2.1 1.3B before
and after applying Geometry Forcing (GF) on 81-frame generation show clear improvement.

Method Aesthetic Quality↑ Imaging Quality↑ Motion Smoothness↑

Wan2.1 0.58 0.56 0.98
Wan2.1 + GF 0.59 0.59 0.99

E.2 ANALYSIS OF GEOMETRIC AND SEMANTIC REPRESENTATIONS

We analyze the roles of geometric and semantic representation alignment in video generation. First,
these representations exhibit considerable overlap rather than orthogonality. Semantic representa-
tions like DINOv2 (Oquab et al., 2023) demonstrate zero-shot depth estimation capabilities (see
Section 7.5 and Figure 7 in the original paper), indicating inherent geometric understanding. Con-
versely, geometric representations such as VGGT utilize DINOv2 features as inputs, thereby encod-
ing semantic information.

Second, experimental results in Table 1 and Table 2 show that VGGT alignment primarily enhances
3D consistency, while DINOv2 alignment improves visual quality. The combination of both repre-
sentations achieves superior performance compared to either individual approach.

Finally, the distinct contributions of each representation can be characterized as follows: semantic
alignment enhances object realism and visual details, whereas geometric alignment ensures struc-
tural consistency and shape coherence throughout the generated video sequences.

E.3 3D CONSISTENCY AND EXPOSURE BIAS MITIGATION

As shown in Figure 4, the FVD metric increases at a slower rate when Geometry Forcing is em-
ployed, indicating effective mitigation of exposure bias in long-term video generation. The under-
lying mechanism can be understood through the inherent stability of 3D scenes: while the number
of generated frames increases, the underlying scene geometry remains same. Geometry Forcing en-
ables the model to internalize this geometric consistency, thereby reducing error accumulation when
regenerating frames from previously encountered viewpoints.

E.4 FAILURE CASE ANALYSIS

Although our methods significantly improve visual quality and geometric consistency in video gen-
eration, they still struggle in certain complex scenarios. As shown in Fig. 6, the transparent, reflective
glass table intermittently disappears and reappears across frames, indicating that the model still has
difficulty handling reflective materials.
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Figure 5: VGGT Feature Extraction Time. The feature extraction time of VGGT model increases
along the number of inout view.

Figure 6: Failure Case Analysis. The transparent, reflective glass table intermittently disappears
and reappears across frames, indicating that the model still has difficulty handling reflective materi-
als. The red box indicates when the table disappears.
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Table 12: Training Stage Profiling. We report the execution time and floating-point operations
(FLOPs) for different components during a training step.

Pipeline Stage Time FLOPs
Value (s) Percentage (%) Value (T) Percentage (%)

Forward (Frozen)
VGGT Encoding 0.853 53.4% 93.3 60.4%

Forward (Learnable)
Projector 0.017 1.1% 0.1 0.1%

Diffusion Backbone 0.220 13.8 % 17.7 11.5%
Backward (Learnable)

Projector + Diffusion Backbone 0.506 31.7% 43.5 28.1%

Total per Step 1.597 100.0% 154.6 100.0%

F SUPPLEMENTARY VISUALIZATIONS

In order to better understand the geometry influences, we provide comprehensive visual results.

G
T

D
F
o
T

V
id
e
o
R
E
P
A

R
E
P
A

O
u
rs

T=0 T=255 T=0 T=255

Figure 7: Qualitative comparisons on camera-conditioned video generation. All the videos are
generated given first frame and per-frame camera pose. We comprehensively compare GF (ours)
with DFoT (Song et al., 2025), VideoREPA (Zhang et al., 2025c), REPA (Yu et al., 2024a). The
results demonstrate consistency in long-term video generation both inside (left) and outside (right)
scenes.

Fig. 7 presents qualitative comparisons on the RealEstate10K dataset. Given the same first frame
and per-frame camera trajectory as input, we compare our proposed GF method with three strong
baselines: DFoT (Song et al., 2025), REPA (Yu et al., 2024a), and VideoREPA (Zhang et al., 2025c).

As shown in Fig. 7, our method generates visually coherent and geometrically consistent videos
over long time horizons even when context is limited. In particular, GF better preserves object
shapes and scene layouts that is visible in context, while generating reasonable scenes not seen in
the context. In contrast, baseline models often exhibit drift, shape distortion, or abrupt transitions.
These results highlight the effectiveness of internalizing geometric priors to enhance spatial and
temporal consistency in video generation.

Qualitative Ablation on Alignment loss. To further assess the impact of the proposed scale align-
ment loss, we conduct qualitative comparisons between models trained with and without this com-
ponent (Fig. 8). While angular alignment alone helps maintain basic geometric coherence, the lack
of scale supervision often leads to inconsistent camera motion, manifesting as unstable perspective
changes or unnatural object scaling. By introducing the scale alignment loss, our method produces
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noticeably smoother viewpoint transitions and more reliable camera-following behavior, demon-
strating its effectiveness in stabilizing multi-frame geometry.

w
/ SA

w
/ o SA

w
/ SA

w
/ o SA

Figure 8: Qualitative comparison of the Alignment Loss. “w/ SA” denotes models trained with
both angular alignment and scale alignment losses, while “w/o SA” refers to models trained using
only angular alignment. Incorporating scale alignment enables the model to generate videos with
more stable and realistic camera-following behavior.
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