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Abstract

Accurately forecasting the performance of Large Language Models (LLMs)
before extensive fine-tuning or merging can substantially reduce both com-
putational expense and development time. Although prior approaches like
scaling laws account for global factors such as parameter size or training
tokens, they often overlook explicit lineage relationships—i.e., which mod-
els are derived or merged from which parents. In this work, we propose a
novel Lineage-Regularized Matrix Factorization (LRMF) framework that
encodes ancestral ties among LLMs via a graph Laplacian regularizer. By
leveraging multi-hop parent–child connections, LRMF consistently outper-
forms conventional matrix factorization and collaborative filtering methods
in both instance-level and benchmark-level performance prediction. Our
large-scale study includes 2,934 publicly available Hugging Face mod-
els and 21,000+ instances across 6 major benchmarks, showing that the
introduction of lineage constraints yields up to 0.15–0.30 higher Pearson
correlation coefficients with actual performance compared to baseline meth-
ods. Moreover, LRMF effectively addresses the cold-start problem, providing
accurate estimates for newly derived or merged models even with minimal
data. This lineage-guided strategy thus offers a resource-efficient way to
inform hyperparameter tuning, data selection, and model combination in
modern LLM development.

1 Introduction

Building and refining a Large Language Model (LLM) is an increasingly expensive venture.
Developers face critical decisions such as model size, the amount and type of training
data, and how to allocate parameters for fine-tuning. Moreover, model merging (or model
“souping”) is emerging as a promising strategy: distinct models or checkpoints are combined
at the parameter level to create new variants with complementary strengths (Wortsman et al.,
2022). Each of these steps—training, fine-tuning, and merging—often demands large-scale
exploration and incurs a high computational cost.

If one could accurately predict the performance of a proposed LLM variant—even before
running large-scale optimization—it would profoundly reduce the search space. Such
foresight would streamline decisions about (1) the right model size and data volume for
pre-training, (2) fine-tuning hyperparameters and data composition (e.g., domain mix),
and (3) whether combining certain model checkpoints is worthwhile. Indeed, prior work
has sought to provide partial solutions. Classic scaling laws (Kaplan et al., 2020; Hoffmann
et al., 2022) predict an LLM’s loss on the training corpus as a function of parameter size
and token count. These laws help developers extrapolate the compute needed to reach a
desired perplexity or training loss. Subsequent studies extend these ideas to specific bench-
marks, e.g., MMLU (Hendrycks et al., 2021a; Wang et al., 2024), BBH (Suzgun et al., 2023),
or MATH (Hendrycks et al., 2021b), by fitting regression models or matrix factorization
frameworks to empirical performance data (Zhang et al., 2024; Polo et al., 2024; Kipnis et al.,
2025).
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However, real-world LLMs rarely arise in isolation. In practice, a single base model often
spawns multiple variants via continual pre-training, domain-specific fine-tuning, preference
tuning (e.g., RLHF), or parameter-level merging of multiple checkpoints. Such derivation
or lineage relationships typically imply that “child” models inherit certain performance
characteristics from their parents. Despite this, previous performance-prediction work has
largely ignored the explicit structure of these relationships, focusing instead on coarse factors
such as model size or training tokens. As a result, the potential advantage of modeling
multi-hop ancestry—i.e., “who was the parent’s parent?”—remains underexplored.

In this paper, we propose a novel way to incorporate such lineage information into perfor-
mance prediction. Specifically, we introduce a Lineage-Regularized Matrix Factorization
(LRMF) framework that treats the known derivation paths among models as a lineage
graph. Within a standard matrix factorization procedure (where models form the rows and
benchmarks/tasks form the columns), we add a graph Laplacian regularization term that
explicitly constrains models with direct or multi-hop parent–child ties to lie “close” in the
latent space. The resulting method can more accurately propagate performance signals from
well-evaluated parent models to their lesser-known descendants.

We conduct a large-scale empirical study encompassing 2,934 publicly available Hugging
Face models and 21,000+ instances across 6 major benchmarks. We demonstrate that
incorporating lineage constraints—i.e., explicitly modeling which models were fine-tuned
or merged from which parents—consistently boosts predictive accuracy. In fact, compared
to standard matrix factorization baselines, our method improves the Pearson correlation
coefficient with true performance by up to 0.15–0.30 on certain tasks, affirming that lineage
is a key factor in understanding and forecasting LLM behaviors.

Moreover, by leveraging explicit lineage relationships (parent–child relations or merges),
our method LRMF tackles the cold-start problem, enabling accurate performance estimates
for newly derived or merged models without costly full re-benchmarking. Indeed, our
experiments reveal that even with as few as 10 labeled instances per model, we can achieve
near state-of-the-art Pearson correlation with fully evaluated baselines—a remarkable im-
provement over standard collaborative filtering or scaling-based approaches. Taken together,
our findings suggest that preserving and exploiting the lineage graph is vital for guiding
resource-efficient decisions in LLM development.

2 Related Work

Performance Estimation via Scaling Laws. Early studies on large language models (LLMs)
have shown that core metrics like cross-entropy loss exhibit approximate power-law relation-
ships with key design factors such as model size, dataset scale, and overall computational
budget (Kaplan et al., 2020; Hoffmann et al., 2022; Hernandez et al., 2022; Gordon et al.,
2021). While these classical “scaling laws” provide valuable insights into how performance
grows with parameters and tokens, their estimates typically assume a single model family
or a narrowly defined training setup. Consequently, scaling relationships learned from
one architecture (e.g., Transformer-based language models) may not directly generalize to
another.

Recent work expands scaling laws beyond a single family. For instance, Ye et al. (2023)
investigate whether past performance records from multiple LLM variants can predict new
model settings; Owen (2024) show that aggregated benchmark scores (e.g., BIG-Bench)
follow smooth scaling trends across diverse model families, yet individual tasks are more
difficult to predict. Ruan et al. (2024) explore observational rather than purely experimental
scaling, leveraging over a hundred pretrained LLMs to fit parametric curves without training
each from scratch. These lines of research challenge the assumption that scaling laws transfer
seamlessly across all model families. Indeed, Choshen et al. (2025) highlight large predictive
errors when applying scaling trends derived from one family to a different, structurally
distinct family. Overall, while scaling laws are fundamental to LLM research, their reliance
on homogeneous or near-homogeneous settings can limit predictive accuracy, especially
when addressing newly merged or fine-tuned models for which classical scaling metrics
(e.g., total FLOPs or training tokens) are not strictly comparable.
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Predicting Downstream Task Performance from Observational Data. A growing body
of work aims to bypass some limitations of traditional scaling laws by using observational
or empirical records from existing models. Rather than modeling only cross-entropy loss,
these methods directly estimate how well a new or partially evaluated LLM will perform on
downstream benchmarks. One common strategy is to reduce the high cost of comprehensive
benchmarking by sampling only a small subset of instances. For example, Polo et al. (2024),
Kipnis et al. (2025), and Pacchiardi et al. (2024) show that evaluating each new LLM on
100–600 carefully chosen samples can often predict that LLM’s accuracy on thousands
of held-out benchmark items with minimal error. Such “tiny benchmarks” mitigate the
expense of model-by-model, full-scale evaluations.

Beyond sample-efficient evaluation, another theme is to learn joint representations of both
models and tasks. Zhang et al. (2024) combine historical LLM results with model and
task descriptors (e.g., parameter size, instruction-tuning data) to improve prediction via
matrix factorization or neural collaborative filtering. A similar philosophy underlies the
works of Ruan et al. (2024) and Choshen et al. (2025), who incorporate both scaling metrics
and observed performance to predict complex “emergent” or “agentic” behaviors of new
models. Although these observational approaches can generalize better across different
LLM architectures, they seldom exploit fine-grained lineage information—such as which
parent checkpoints were merged or how a model was fine-tuned—even though such lineage
frequently constrains or correlates performance across tasks.

Routing, Ensemble Methods, and Embedding-Based Prediction. A complementary
direction addresses how to select or route queries among multiple candidate LLMs that
each has known strengths. In kNN-based routing (Shnitzer et al., 2024; Hu et al., 2024), for
instance, the system uses prompt embeddings or input features to decide which model is
most likely to excel on a particular query; Lu et al. (2024) similarly train routing functions
based on reward signals. Such approaches implicitly rely on predicting individual models’
performance from prior records, so improved performance estimation methods can feed
directly into these routing pipelines. Meanwhile, Ong et al. (2025) propose a factorization
approach (combining matrix factorization with label-enhancement techniques) that learns a
dynamic “router” capable of choosing between smaller vs. larger models at inference time
to optimize cost-performance trade-offs. These routing-oriented works share a common
challenge: how to reliably predict an LLM’s performance on a new input. While embedding-
based or factor-based methods capture prompt similarity, they again treat each model as
a separate entity without leveraging the relationship between parent and child or among
merged “soups.”

Motivation for Lineage-Aware Estimation. Merging or fine-tuning from existing check-
points is pervasive in LLM development (Wortsman et al., 2022). Two “child” models
derived from the same “parent” frequently behave similarly across tasks, and naive averag-
ing of parent checkpoints can sometimes preserve or even enhance performance in certain
domains. Nevertheless, conventional scaling laws or standard matrix factorization rarely
encode such genealogical constraints. As a result, performance estimates for newly merged
or fine-tuned models often rely on expensive direct evaluations or broad assumptions. Our
work addresses this gap by building on empirical performance-based frameworks and
injecting explicit lineage regularization, thereby offering a more reliable way to predict the
behavior of newly derived models without exhaustive re-benchmarking.

3 Method

Our goal is to predict the performance of Large Language Models (LLMs) on specific tasks
or benchmarks by leveraging partial observations and model relationships. In particular,
we address the cold-start setting, where we estimate the performance of LLMs that have not
yet been constructed or evaluated.
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3.1 Problem Statement

Let M be the set of LLMs and X be the set of problems. Define zu,i ∈ {0, 1} as the evaluation
score for problem i ∈ X solved by LLM u ∈ M. Here, zu,i = 1 if the LLM correctly solves
the problem, and 0 otherwise. For some LLM-problem pairs, their true scores are already
known, and using these observed data, our goal is to accurately estimate the scores for
unobserved pairs.

3.2 Existing Methods for LLM Performance Prediction

Historical-Performance-Based Methods. Performance-based prediction methods gen-
erally rely on historical performance data. These methods assume that if two models or
problems exhibit similar observed performance, their unobserved performances will also
be similar. Formally, they define a general function f (·) that estimates performance using
latent embeddings or features of models and instances:

ẑu,i = f (mu, xi)

where mu ∈ Rd and xi ∈ Rd are embeddings for the model u and instance i, respectively.
Specific examples include:

First, in the Matrix Factorization (MF) approach, the prediction is computed as

ẑu,i = σ(mux⊤i ),

where mu and xi are latent vectors representing the user and item, respectively, and σ is the
sigmoid function.

Second, in the Item Response Theory (IRT) model, the prediction is given by

ẑu,i = σ(aiθu − bi),

where θu denotes the ability parameter of user u, and ai and bi are the discrimination and
difficulty parameters of item i, respectively.

Finally, the Neural Collaborative Filtering (NCF) model estimates the interaction as

ẑu,i = σ(MLP(mu, xi | θ)),

where MLP(·) is a multi-layer perceptron parameterized by θ, applied to the concatenation
of mu and xi.

To learn these embeddings, methods typically minimize a binary cross-entropy (BCE) loss
on observed performance scores, combined with an L2 regularization term:

OBCE = − 1
|Ω| ∑

(u,i)∈Ω
[zu,i log(ẑu,i) + (1 − zu,i) log(1 − ẑu,i)] + λL2(∥M∥2

F + ∥X∥2
F)

where Ω is the set of observed LLM-instance pairs, M and X are the matrices containing
embeddings mu and xi as rows, respectively, and ∥ · ∥F denotes the Frobenius norm.

The methods described above face significant limitations when dealing with new LLMs that
have no observed performance data—the well-known cold-start problem in recommenda-
tion systems. This issue is particularly acute in LLM development, where developers must
often make decisions about newly created models without having the resources to evaluate
them extensively.

Factor-Enhanced Method. Further improvements can be achieved by explicitly incor-
porating model and task design factors, such as parameter size, dataset scale, and task
characteristics, into the prediction (He et al., 2017; Zhang et al., 2024). The enhanced NCF
(NCF with factors) includes these additional factors as embedding vectors evi , evj :

ŝij = MLP(pi, qj, evi , evj |θ)
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Specifically, Zhang et al. (2024) considered model-related factors including Model Family
(e.g., LLaMA 2, Pythia), Pretraining Dataset Size (tokens), Parameter Size, GPU Time,
FLOPs, Context Window Size, Batch Size, Number of Layers, Number of Attention Heads,
Key/Value Size, Bottleneck Activation Size, and Carbon Emission. They also included
task-related factors such as Ability (e.g., reasoning), Task Family (e.g., ARC), Output Format
(e.g., binary classification), and Few-Shot Setting.

Shapley value analysis indicated that among model factors, Pretraining Dataset Size, Model
Family, and Batch Size were most critical, while for task factors, Ability was most influential.
These results underscore that factors beyond traditional scaling laws significantly influence
prediction accuracy.

Notably, in a homogeneous model set derived from the same model family, factors such
as Parameter Size, Context Window Size, and Batch Size often remain identical or highly
similar across models.

3.3 Proposed: Lineage-Based Prediction

We address the cold-start problem by leveraging an underutilized source of information:
the lineage relationships between LLMs. When a new model is derived through fine-tuning
or merging existing models, its behavior is likely to be inherited from its ”ancestors” or
”parents.” This intuition forms the foundation of our approach. While factor-based methods
(e.g. NCF with factors) attempt to transfer information indirectly by identifying models with
similar characteristics (e.g., similar parameter sizes, training data, or architectural features),
our lineage-based approach enables direct information transfer along known derivation
paths. This distinction is crucial: rather than inferring similarities from potentially noisy or
incomplete metadata, we utilize the explicit knowledge of how models are derived from one
another, capturing relationships that may not be apparent from factors alone. To leverage
lineage information effectively, we propose two distinct approaches. The first approach,
Model Lineage Averaging, directly utilizes lineage relationships in their simplest form to
make predictions. The second approach, Lineage-Regularized Matrix Factorization (LRMF),
integrates lineage constraints into the collaborative filtering framework, allowing for more
sophisticated modeling of performance transfer patterns between related models.

Proposed-1: Model Lineage Averaging Fine-tuned models and merged models inherently
inherit the performance characteristics of their base models. We can estimate performance
on an instance i for a new or sparsely evaluated LLM u from the results of its lineage-related
(neighbor) LLMs:

ẑu,i =
1

|NM(u)| ∑
u′∈NM(u)

zu′ ,i.

Here, the neighborhood NM(u) is defined based on lineage relationships. Specifically,
if an LLM u is derived from v through a short lineage path (fine-tuning, merging, etc.),
we treat v as a neighbor of u. This simple yet effective approach directly addresses the
cold-start problem by transferring performance knowledge from established models to their
derivatives.

Proposed-2: Lineage-Regularized Matrix Factorization (LRMF). While derived mod-
els fundamentally inherit capabilities from their base models, subtle differences emerge
in practice during fine-tuning or merging processes. We account for these nuances by
drawing inspiration from Collaborative Filtering approaches. Following the framework
of Tag Informed Collaborative Filtering (TagiCoFi) (Zhen et al., 2009), which integrates
additional information (e.g., user-generated tags) into the matrix factorization procedure to
improve recommendation performance, we propose Lineage-Regularized Matrix Factor-
ization (LRMF). LRMF extends traditional matrix factorization by explicitly encouraging
similarity between embeddings of neighboring LLMs and neighboring tasks.

Specifically, let A(M) and A(X ) be adjacency matrices indicating lineage connections among
LLMs and similarity relationships among tasks, respectively. For models, A(M) directly
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encodes the lineage relationships: an edge exists between models if one is derived from
the other through fine-tuning or merging. For example, if model v is fine-tuned from
model u, or if model w is created by merging models u and v, then A(M)

u,v = A(M)
v,u = 1 and

A(M)
u,w = A(M)

v,w = 1.

We introduce regularization terms to ensure neighboring embeddings remain close. In
particular, for models, the regularization term that enforces similarity between feature
vectors of lineage-related models is given by:

O(M)
2 =

1
2 ∑

u,v
A(M)

u,v ∥mu − mv∥2.

This term penalizes large differences between the embeddings of models that share a lineage
connection. Expanding and simplifying this expression yields:

O(M)
2 = ∑

u
m⊤

u mu D(M)
u,u − ∑

u,v
m⊤

u mv A(M)
u,v = Tr(M⊤L(M)M),

where the diagonal degree matrix D(M) is defined by D(M)
u,u = ∑v A(M)

u,v and the graph
Laplacian is L(M) = D(M) − A(M).

Similarly, for tasks, we construct A(X ) using cosine similarity between task embeddings,
retaining the top k similar tasks, and define a corresponding regularization term O(X )

2 =

Tr(X⊤L(X )X).

The overall objective function is then formulated as:

O = OBCE + λX O(X )
2 + λM O(M)

2 .

Here, the regularization parameters λX and λM control the influence of instance similarity
and model lineage constraints, respectively. A detailed analysis of these hyperparameters
and their effects on model performance is provided in Appendix B. To optimize this objective
function, we employ a stochastic gradient descent method with adaptive learning rates
(Adam optimizer), which efficiently handles the non-convex nature of our formulation while
providing fast convergence rates. This approach addresses data sparsity and significantly
alleviates cold-start issues for newly derived models.

4 Experiments

We evaluate the effectiveness of our proposed Lineage-Based Prediction methods through
extensive empirical experiments using publicly available data from the Hugging Face
Open LLM Leaderboard v2 (Fourrier et al., 2024). Our experiments focus on two critical
scenarios encountered in real-world LLM development: (1) predicting performance among
homogeneous models (e.g., those derived from merging or fine-tuning within the same model
family) and (2) predicting performance across more diverse, heterogeneous models (e.g.,
different architectures or training methods).

4.1 Experimental Setting

We conducted large-scale experiments using evaluations from the Hugging Face Open LLM
Leaderboard, focusing on 6 benchmark tasks (BBH (Suzgun et al., 2023), GPQA (Rein et al.,
2024), IFEval (Zhou et al., 2023), MATH (Hendrycks et al., 2021b), MMLU-Pro (Wang et al.,
2024), MuSR (Sprague et al., 2024)) comprising 39 sub-benchmarks in total. Our dataset
includes up to 2,934 publicly available models with partial or complete lineage information
and 21,065 instances, though specific subsets were used depending on the experimental
condition.

We compare three methods in our experiments:
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Baseline: Neural Collaborative Filtering with Factors (NCF with factors) Among our
baselines, this is the only approach that estimates cold-start performance while explicitly
leveraging historical results. We focus on cold-start methods that do not assume any target-
model evaluations.1 We use the same network architecture as prior work (Zhang et al.,
2024): a two-layer MLP with 128 hidden units per layer. Owing to practical constraints
when collecting data from the leaderboard, we restrict model factors to three attributes:
architecture type (50 categories; e.g., qwen2forcasualllm, gemma2forcasuallm), model type
(three categories: fine-tuned, merged, and other—including base models), and parameter
size. For task factors, we include benchmark identity (six majar benchmarks decomposed
into 39 sub-benchmarks). All factors are embedded and concatenated with the model and
instance embeddings before being fed to the MLP.

Proposed-1: Model-Lineage Averaging (MLA) We construct lineage relationships by
extracting metadata from Hugging Face model cards. For fine-tuned models, we identify
parent models via the base model:finetune: tag; for merged models, we use the base
model:merge: tag and, when available, the merge config.json file. To ensure consistency
across the corpus, we restrict model factors to those reliably present in the model-card
JSON—“architecture type,” “model type,” and “parameter size.” We omit factors such as
dataset size or batch size because they are not reported consistently; in the homogeneous
setting, such omitted factors are likely similar across models and thus have limited impact
on our conclusions.

Proposed-2: Lineage-Regularized Matrix Factorization (LRMF) We construct the
instance-similarity graph from semantic embeddings of the prompts. By default, we use
Snowflake/snowflake-arctic-embed-l-v2.0 to embed each prompt, compute cosine sim-
ilarities, and connect each instance to its top-k nearest neighbors (k=20 unless otherwise
noted). The model-lineage graph reuses the lineage information described in the Model
Lineage Averaging baseline, with an edge indicating a direct derivation between models.
The model is implemented in PyTorch and optimized with Adam (learning rate 3 × 10−3).
We train for at most 10,000 epochs with early stopping based on the validation set (patience
of 100 epochs).

Hyperparameter Tuning Hyperparameters λL2, λM, and λX were selected via grid search
to maximize AUC-ROC on the development set, yielding the optimal values λL2 = 10−5,
λM = 10−4, and λX = 10−5 (see Appendix B for details).

Evaluation Metric We evaluate each method using two complementary metrics that assess
different aspects of prediction ability:

• AUC-ROC (Individual Performance Estimation): Measures the ability to accurately
estimate whether a single LLM’s performance on a specific task exceeds a threshold,
distinguishing correct (1) vs. incorrect (0) predictions at the instance level.

• Pearson Correlation (Relative Performance Ranking): Measures the ability to
correctly preserve the relative performance hierarchy among multiple candidate
LLMs on a given task, computed as the Pearson correlation coefficient between
predicted and true average scores across benchmarks.

Pearson correlation is crucial for our goal of identifying the most promising model variants
without exhaustive benchmarking, as it quantifies how well our method maintains the
correct ranking of LLM performance. We report both metrics for each benchmark to provide
a comprehensive assessment of individual score estimation accuracy and ranking fidelity.

1Methods such as Polo et al. (2024) and Kipnis et al. (2025) assume the target model has been
evaluated on at least a subset of instances, and are therefore inapplicable under our strict cold-start
setting. Likewise, scaling-law approaches (e.g., Ruan et al. (2024)) extrapolate from factors like
parameter count or pretraining data volume—quantities that remain essentially unchanged under
post-training or model merging—making them tend to be less informative for post-training or model
merging for the present objective.
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4.2 Experiment 1: Predicting Performance among Homogeneous Models

Scenario Setup We first examine scenarios involving homogeneous models, i.e., those
derived from a common base model through multiple fine-tunings or merges. This setting
simulates practical use cases such as determining which model merges or fine-tunings are
most promising.

We use 145 models derived from Qwen 2.5-7B, dividing them into 105 models for train-
ing, 20 for validation, and 18 for testing. (The detailed configuration of fine-tuned and
merged models is listed in the Appendix.) We sample 1,000 instances from the leaderboard
benchmarks and ensure that every model is both trained and evaluated on the same set of
1,000 instances. This choice follows findings that performance on 100–600 samples reliably
predicts overall benchmark performance (Polo et al., 2024; Kipnis et al., 2025). For this
experiment, we repeat the sampling procedure five times with different random seeds and
report the mean and standard deviation across these runs.

(a) AUC-ROC (b) Pearson correlation

Figure 1: Performance evaluation results for a homogeneous set of models derived from
Qwen 2.5-7B across various benchmarks. (a) AUC-ROC scores show that all methods
achieve similar absolute performance estimation capability (0.83–0.86). (b) Pearson cor-
relation reveals significant differences in relative performance ranking ability, with our
proposed Lineage-Regularized MF achieving the highest overall correlation (0.642), sub-
stantially outperforming NCF with factors (0.490) and Model Lineage Averaging (0.301).
This demonstrates the effectiveness of combining lineage information with collaborative fil-
tering for preserving model performance hierarchies. Note the benchmark-specific patterns:
LRMF excels on instruction-following (IFEval) and general reasoning tasks, while Model
Lineage Averaging performs better on specialized knowledge (GPQA) where performance
characteristics tend to be more directly inherited from parent models.

Results Figure 1 reports both AUC-ROC and Pearson correlation between the actual and
predicted performance of each LLM across different benchmarks. All methods achieve high
AUC-ROC scores (approximately 0.83–0.86), with our proposed Lineage-Regularized MF
leading marginally. However, when evaluating relative performance via Pearson correlation,
LRMF attains a substantially higher score (0.642) compared to NCF with factors (0.490) and
Model Lineage Averaging (0.301). This discrepancy indicates that while existing methods
can reasonably estimate absolute performance (as reflected by AUC-ROC), they struggle to
distinguish the fine-grained performance ordering among multiple candidate models. In
contrast, LRMF’s incorporation of lineage information enables accurate prediction of model
hierarchies beyond individual performance estimation.

Benchmark-specific results reveal meaningful contrasts in method effectiveness. On IFEval,
which measures instruction-following capability, fine-tuning typically induces substantial
behavioral changes. Consequently, methods relying primarily on ancestor scores—such
as Model Lineage Averaging (MLA)—systematically underperform (correlation: 0.175),
whereas LRMF, which exploits collaborative patterns beyond direct lineage, achieves sub-
stantially higher accuracy (correlation: 0.702). Conversely, on specialized knowledge bench-
marks (GPQA) and complex reasoning tasks (MATH, MuSR), the Qwen-2.5-7B family
demonstrates limited performance—most models solve very few problems—making rela-
tive ranking inherently challenging and resulting in lower correlations across all methods.
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4.3 Experiment 2: Predicting Performance among Heterogeneous Models

Scenario Setup To address realistic model merging scenarios, such as Frankenmerge
(Wortsman et al., 2022), we examine performance prediction across diverse models with
different architectures and parameter sizes. Specifically, we test whether our method remains
effective compared to scaling-law-based approaches like NCF with factors, which typically
benefit from heterogeneous training sets.

We train using 2,534 models, with 200 models each for validation and testing. As in
Experiment 1, we sample 1,000 instances from the leaderboard benchmarks.

Results Figure 2 reports both AUC-ROC and Pearson correlation in the heterogeneous
setting. All methods again exhibit similarly high AUC-ROC (≈ 0.84–0.88), while Pearson
correlation shows clear separation: LRMF reaches 0.615, Model Lineage Averaging 0.504,
and NCF with factors 0.301. This mirrors the homogeneous results—while traditional
approaches can estimate absolute accuracy, lineage-aware modeling in LRMF most reliably
captures the relative ordering of diverse models.

Compared with Experiment 1, NCF with factors shows a relative decline. This underperfor-
mance likely reflects the factor-importance bias observed in prior work (Zhang et al., 2024),
where SHAP analyses indicated that coarse factors (e.g., model family) dominate predic-
tions. When such strong explanatory factors exist, the model tends to collapse predictions
within each family and fails to resolve within-family distinctions—behavior that may inflate
correlation in homogeneous settings but does not transfer to heterogeneous ecosystems.

Benchmark-specific trends are largely consistent with Experiment 1. Lineage-Regularized
Matrix Factorization continues to excel on BBH, IFEval, MATH, and MMLU-Pro, whereas
Model Lineage Averaging remains stronger on GPQA and MuSR. This stable pattern across
settings reinforces our view of how distinct capabilities propagate along model lineage.
Notably, MLA becomes relatively stronger in this heterogeneous scenario, and the gap
between LRMF and MLA narrows. This suggests that greater model diversity requires the
latent space to encode more complex relationships; in this regime, direct lineage information
serves as a comparatively stable signal, whereas embedding-based methods can struggle
to represent nuanced differences across architectures and training recipes within a unified
latent space.

(a) AUC-ROC (absolute evaluation) (b) Pearson correlation (relative evaluation)

Figure 2: Performance evaluation results for heterogeneous models from the Hugging Face
Open LLM Leaderboard. (a) AUC-ROC scores remain similar across methods. (b) Pearson
correlation shows LRMF achieving the highest overall correlation (0.615), demonstrating
effectiveness across diverse architectures and training strategies.

4.4 Experiment 3: Routing

To evaluate the practical applicability of our performance predictions, we consider an
instance-level routing scenario where each input must be dynamically assigned to the LLM
expected to perform best. We compare five routing strategies: (i) LRMF-based Routing (ours),
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(ii) Model Lineage Averaging (MLA)-based Routing, (iii) Neural Collaborative Filtering
(NCF) with factors-based Routing, (iv) Random Routing, and (v) Best Model, which always
assigns all instances to the single model with the highest average true performance.

As shown in Figure 3, LRMF-based routing consistently outperforms all baselines in both
homogeneous and heterogeneous settings. Crucially, our method exceeds the Best Model
baseline—the minimum threshold for effective instance-level routing—demonstrating that
dynamic model assignment based on predicted performance can improve overall benchmark
results beyond using a single optimal model.

These findings indicate that explicit modeling of lineage relationships substantially improves
model selection in practical routing scenarios, enabling more effective dynamic assignment
of inputs to maximize overall performance.

(a) Routing performance in homogeneous setting (b) Routing performance in heterogeneous setting

Figure 3: Instance-level routing performance across benchmarks in (a) homogeneous and
(b) heterogeneous settings. Each test instance is dynamically assigned to the model with the
highest predicted score according to different methods. We compare LRMF-based routing
against MLA, NCF with factors, Random assignment, and Best Model (always using the
single top-performing model per benchmark). LRMF routing consistently outperforms all
baselines in both settings, demonstrating that incorporating lineage information enables
more effective dynamic model selection that exceeds the performance of using a single
optimal model for all instances.

5 Conclusion

Our work demonstrates that lineage relationships—the explicit parent-child connections
between derived LLMs—significantly improve performance prediction accuracy. Across
experiments with 2,934 models and six major benchmarks, our Lineage-Regularized Matrix
Factorization (LRMF) framework achieved up to 0.15–0.30 increases in correlation with
actual performance by effectively modeling ancestral connections between models.

Our analysis revealed that while instruction-following abilities undergo substantial changes
during fine-tuning or merging, specialized knowledge and complex reasoning capabilities
remain more closely tied to parent models. These insights have practical implications for
LLM development, allowing researchers to efficiently explore model variants without ex-
haustive re-benchmarking, thus reducing computational costs and accelerating development
cycles.

Limitations include reduced effectiveness for novel architectures without clear lineage
and uniform treatment of all lineage connections regardless of modification type. Future
work could explore weighted connections and deeper analysis of how specific fine-tuning
techniques affect capability inheritance.

As the LLM ecosystem continues expanding through derivatives rather than training from
scratch, tracking lineage information becomes increasingly valuable. Our work shows that
understanding “where a model comes from” is just as important as knowing “what it is”
when predicting LLM performance.
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A Detailed Model Statistics

We present more extensive information about the models used in each experiment. This
includes both the partition splits (train / dev / test) and a breakdown by model type:
whether a given model checkpoint is (1) a Fine-Tuned (FT) model, derived from a single
parent model via continued training on additional or specialized datasets; (2) a Merged
model, created through parameter-level averaging or “souping” of multiple parent models;
or (3) an Other model, which encompasses base models released without any further fine-
tuning or merging, as well as models for which lineage information is incomplete or
unavailable.

A.1 Experiment 1: Homogeneous Models (Qwen-2.5-7B Family)

Table 1 lists all 143 models in the Qwen 2.5-7B family used in the homogeneous setting,
along with their assigned partition (105 for training, 20 for development, 18 for testing) and
their lineage type (Merged / FT / Other). This family traces back to the publicly available
Qwen 2.5-7B checkpoint, with each descendant model created via single or multiple merges
and/or domain-specific fine-tuning steps.

Lineage Analysis of Qwen 2.5-7B Family We investigated the lineage distribution within
this homogeneous group, discovering that the number of lineage connections roughly
follows a logarithmic distribution (Figure 4a). Furthermore, we visualized the complete
lineage network among the Qwen models (Figure 5), revealing that the model with the most
lineage connections is Qwen-2.5-7B-Instruct.

A.2 Experiment 2: Heterogeneous Models (All Models)

In the heterogeneous scenario (Experiment 2), we used a total of 2,934 models from the
Hugging Face Open LLM Leaderboard that included partial or complete lineage metadata.
These were split into 2,534 for training, 200 for development, and 200 for testing. Due to
the diversity in architectures, sizes, merge strategies, and fine-tuning procedures, we do
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not list each model name. Instead, Table2 summarizes the approximate proportions of base,
merged, and fine-tuned models.

Lineage Analysis of Heterogeneous Models We also conducted a lineage analysis across
the full heterogeneous set, uncovering again a roughly logarithmic distribution in the
number of lineage connections (Figure 4b). Approximately 60% of these models are either
fine-tuned or merged variants, suggesting lineage information is widely applicable for
modeling relationships and improving predictions across a broad spectrum of publicly
available models.

Table 1: Composition of the homogeneous model set (Qwen 2.5-7B family) used in Experi-
ment 1.

Partition Total FT Models Merged Models Other (including Base)

Train 105 45 (42.9%) 60 (57.1%) 0 (0.0%)
Dev 20 8 (40.0%) 12 (60.0%) 0 (0.0%)
Test 18 9 (50.0%) 9 (50.0%) 0 (0.0%)

Table 2: Composition of the heterogeneous model set (All models from the Hugging Face
Open LLM Leaderboard) used in Experiment 2.

Partition Total FT Models Merged Models Other (including Base)

Train 2,534 856 (33.8%) 707 (27.9%) 971 (38.3%)
Dev 200 56 (28.0%) 54 (27.0%) 90 (45.0%)
Test 200 54 (27.0%) 66 (33.0%) 80 (40.0%)

(a) Qwen 2.5-7B family models (b) All models

Figure 4: Distribution of lineage connections among models. Both distributions approximate
a logarithmic trend, indicating many models have relatively few lineage connections, with
only a minority having extensive lineages. (a) Homogeneous Qwen 2.5-7B family. (b) All
models from the Hugging Face Open LLM Leaderboard.
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Figure 5: Lineage network visualization among the Qwen 2.5-7B models. The most densely
connected model is Qwen-2.5-7B-Instruct.

B Hyperparameter Tuning and Ablation Study

Our experiments involve performance data collected from six benchmark tasks provided by
the Hugging Face Open LLM Leaderboard, totaling approximately 21,000+ instances. For
each instance, we have binary outcomes indicating whether a given LLM correctly solved
the instance or not. The task is thus formulated as predicting these binary instance-level
outcomes for model-instance pairs for which no evaluation is available.

B.1 Experimental Protocol

All hyperparameter optimization was performed on the validation set using two comple-
mentary metrics:

• Primary metric: Instance-level AUC-ROC, which captures the model’s ability to
distinguish between correct and incorrect predictions

• Secondary metric: Pearson correlation coefficient, which measures how well the
method preserves relative performance superiority relationship among models

For all methods, we performed grid searches over relevant regularization parameters and
selected the configuration that maximized AUC-ROC on the development set. Addition-
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ally, we conducted comprehensive ablation studies using Pearson correlation to better
understand the contribution of each component.

B.2 Lineage-Regularized MF

Lineage-Regularized MF extends the conventional matrix factorization by including addi-
tional Laplacian regularization terms:

λM Tr
(

M⊤L(M)M
)
+ λX Tr

(
X⊤L(X )X

)
,

where L(M) and L(X ) are the graph Laplacians for models and instances, respectively, and
an L2 penalty with coefficient λL2 is also applied. The hyperparameters λL2, λM, λX were
tuned over the range {10−9, 10−8, . . . , 100} using the development set.

B.2.1 AUC-ROC Analysis

Figure 6 illustrates the effect on AUC-ROC when varying λM (lineage regularization) and
λX (instance similarity regularization), while fixing λL2 = 10−5.

For the model lineage regularization parameter λM, we observe a clear improvement as
the regularization strength increases, with AUC-ROC rising from approximately 0.795 at
λM = 10−9 to a peak of approximately 0.895 at λM = 10−4, demonstrating the critical
importance of lineage information for performance prediction.

For the instance similarity regularization parameter λX , we observe that performance
remains highly stable (AUC-ROC ≈ 0.895) for values at 10−5, and then decreases to approx-
imately 0.86 when λX ≥ 10−3, indicating over-regularization.

These results indicate that model lineage regularization (λM) has a more pronounced impact
on performance, with optimal values around 10−4, while instance similarity regularization
(λX ) shows broader stability across multiple orders of magnitude.

(a) Varying λM (model lineage) with fixed λX =
10−5

(b) Varying λX (instance similarity) with fixed
λM = 10−4

Figure 6: Development-set AUC-ROC of Lineage-Regularized MF as a function of the
lineage regularization parameter λM and the instance regularization parameter λX . Each
plot fixes one parameter while sweeping the other. Optimal performance is achieved with
moderate regularization (λM ≈ 10−4, λX ≈ 10−5, ).

B.2.2 Comprehensive Ablation Study

To more thoroughly understand the interaction between regularization components and
their individual contributions, we conducted an extensive ablation study measuring Pearson
correlation coefficients across the full hyperparameter space (Figure 7).

Critical observations from the ablation study:
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1. Baseline failure in cold-start: When both λM = 0 and λX = 0 (equivalent to
standard Matrix Factorization/NCF), the method completely fails in cold-start
scenarios with correlation ≈ 0, confirming that vanilla collaborative filtering cannot
handle unseen models.

2. Model lineage as the dominant factor: Setting λM > 0 while keeping λX =
0 achieves Pearson correlation coefficients of 0.2–0.5, demonstrating that model
lineage alone provides substantial predictive power even without instance similarity
information. This shows that most of the correlation improvement stems from the
model lineage regularization term.

3. Synergistic effects: The optimal configuration (λM ≈ 10−4, λX ≈ 10−5) achieves
correlation > 0.5, with the heatmap revealing a clear “sweet spot” (highlighted by
the red box) where both regularization terms work synergistically.

4. Robustness of model lineage: The correlation remains stable across a wide range
of λM values (10−6 to 1011), indicating that lineage information is inherently robust
and does not require precise tuning.

Figure 7: Heatmap of Pearson correlation coefficients for all combinations of λM (model
lineage) and λX (task/instance similarity) regularization parameters. The red box highlights
the optimal region. Note that λM = 0, λX = 0 (bottom-left) corresponds to standard MF
and fails completely in cold-start prediction (correlation ≈ 0). The visualization clearly
shows that model lineage regularization (λM > 0) is the primary driver of performance
improvement.

These ablation results validate our core hypothesis that explicit lineage relationships provide
crucial signals for performance prediction, with the model lineage regularization term
contributing the majority of the improvement. Once the best hyperparameter values are
identified on the development set, we retrain Lineage-Regularized MF on the combined
training and development sets and report the final performance on the test set.

B.3 Ablation: Instance-graph construction

Embedding backbones. We evaluated several widely used embedding models for
constructing the instance-similarity graph—Snowflake/snowflake-arctic-embed-l-v2.0,
infloat/e5-mistral-7b-instruct, and all-mpnet-base-v2. For each model, we embedded
the prompt text, computed cosine similarities, and formed a k-NN graph. Across bench-
marks, we observed no material differences in downstream metrics (AUC-ROC and Pearson
correlation), and the relative ordering of methods remained stable. Given this robustness
and for consistency, we use Snowflake/snowflake-arctic-embed-l-v2.0 in the main results.
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Neighborhood size k. We swept k ∈ {2, 5, 10, 20, 50, 100} on the development set, selecting
k by AUC-ROC. Performance was largely insensitive to k across tasks; we therefore fix k=20
in all reported experiments as a stable sparsity–connectivity trade-off.

C Robustness to Lineage Noise

To quantitatively assess the impact of noise/incompleteness in lineage data, we conducted
additional experiments by randomly modifying the lineage information (either adding or
removing lineage links) in the heterogeneous setting. Notably, we observed distinct responses
between the two methods:

• Lineage-Regularized MF: Robust to incomplete (missing) lineage data (removal
of 40% of links led to only a 10% decrease in correlation), but highly sensitive
to incorrect lineage additions (adding 40% false links caused a 50% decrease in
correlation). For LRMF, accuracy is better preserved by omitting uncertain lineage
information rather than risking incorrect additions.

• Model Lineage Average: Demonstrated robustness against both random additions
and removals of lineage data. This resilience likely stems from random lineage
connections averaging out model-specific variations and pulling results toward a
global mean.

Figure 8: Effect of noise in lineage data on model prediction accuracy in the heterogeneous
setting, measured by Pearson correlation. Noise is introduced either by randomly removing
lineage links (negative values) or randomly adding spurious links (positive values). LRMF
shows robustness to missing links but suffers significant degradation when incorrect lin-
eages are added, while MLA remains comparatively stable under both scenarios.

D Impact of the Number of Observed Instances per Model on Prediction
Performance

We investigate how varying the number of observed instances per model (t) affects predictive
performance. By sampling t ∈ {5, 10, 20, 50, 100, 200, 500, 1000} instances for each model
in the training data, we simulate scenarios ranging from minimal evaluation (resource-
constrained) to comprehensive benchmarking.

Figures 9 and 10 summarize the test-set AUC-ROC across two critical evaluation scenarios
for both the homogeneous (Qwen 2.5-7B family) and heterogeneous (all models) settings:
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• In-distribution prediction: Estimating performance on unobserved instance-model
pairs, where the models themselves are included in the training set but certain
instances remain unobserved (shown in Figures 9a and 10a for the homogeneous
and heterogeneous settings, respectively). While this differs from the main cold-
start scenario, it requires imputing missing data due to limited observations per
model.

• Cold-start prediction: Zero-shot performance on entirely new models unseen
during training, representing the main cold-start scenario of this work (shown in
Figures 9b and 10b for the homogeneous and heterogeneous settings, respectively).

(a) In-distribution prediction: AUC–ROC for with-
held instance–model pairs within training models

(b) Cold-start prediction: AUC–ROC for in-
stance–model pairs of unseen test models

Figure 9: AUC–ROC as a function of the number of observed instances per model (t) in the
homogeneous Qwen 2.5-7B family: (a) in-distribution prediction and (b) cold-start prediction.

(a) In-distribution prediction: AUC–ROC for with-
held instance–model pairs within training models

(b) Cold-start prediction: AUC–ROC for in-
stance–model pairs of unseen test models

Figure 10: AUC–ROC as a function of the number of observed instances per model (t) in
the heterogeneous Hugging Face model set: (a) in-distribution prediction and (b) cold-start
prediction.

The results align with our main findings in Section 4: Lineage-Regularized MF consistently
outperforms baselines, with its advantage becoming more pronounced in the cold-start
scenario and with fewer observed instances per model. This confirms our hypothesis that
lineage relationships provide valuable signals for predicting the performance of new or
sparsely evaluated models.

Impact of Limited Observations To quantify the robustness of our approach under data-
constrained scenarios, we systematically reduced the number of observed instances per
model from 1,000 down to as few as 5 instances. As shown in Figure 11, Lineage-Regularized
MF maintains impressive prediction accuracy even with drastically reduced observations,
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demonstrating significant resilience compared to Model Lineage Averaging and NCF with
factors.

The performance gap between methods is especially pronounced in the homogeneous
setting (Figure 11a), where Lineage-Regularized MF achieves with just 50-100 instances
per model what baseline methods require 500+ instances to match. This 5-10x reduction in
required evaluations translates to substantial computational savings during model develop-
ment. In the heterogeneous setting (Figure 11b), while all methods benefit from the diversity
of models, our approach still maintains a consistent advantage across all observation levels.

(a) Homogeneous setting (Qwen 2.5-7B family):
Pearson correlation for cold-start prediction

(b) Heterogeneous setting (all models): Pearson cor-
relation for cold-start prediction

Figure 11: Pearson correlation coefficient for cold-start prediction as a function of the
number of observed instances per model (t): (a) homogeneous Qwen 2.5-7B family and (b)
heterogeneous Hugging Face model set.

These results have significant practical implications: developers can reliably predict a
new model’s performance across multiple benchmarks after evaluating it on just 50-100
carefully selected instances, provided that lineage information is properly incorporated. This
dramatically reduces the computational overhead typically associated with comprehensive
benchmarking during iterative LLM development.

E Routing Details

Below we provide a detailed analysis of the routing assignments produced by each method.
For both the heterogeneous model set (all models) and the homogeneous Qwen-2.5-7B
family, we report:

1. The top-20 models most frequently selected across all test instances (Figures 18–22,
Figures 12–16).

2. The top-20 models most frequently selected per benchmark (Figures 19–23, Figures
13–17).

In both the homogeneous (Qwen-2.5-7B family) and heterogeneous (all models) settings,
we observe the following common routing behaviors:

LRMF-Based Routing. LRMF consistently leverages lineage information to select a diverse
set of high-performing variants. When aggregated across all tasks, instruction-tuned and
merge-derived (“soup”) models dominate the top selections. On a per-benchmark basis, the
method dynamically adapts—for example, favoring instruction-tuned models on IFEval
and large base models on reasoning benchmarks such as BBH and MMLU-Pro.

Model Lineage Averaging–Based Routing. The kNN-style lineage averaging approach
concentrates almost exclusively on immediate ancestor checkpoints. It shows minimal
variability across benchmarks, typically defaulting to whichever parent model achieved the
highest raw score.
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NCF with Factors–Based Routing. The factor-based MLP exhibits an overwhelming bias
toward a single model across both settings. This behavior indicates overfitting to dominant
metadata signals and a lack of task-specific discrimination.

E.1 Homogeneous Qwen-2.5-7B Family setting

E.1.1 LRMF-Based Routing

Figure 12: Top 20 most frequently routed-to models by LRMF-based routing in the homoge-
neous experiment.

Figure 13: Top 10 most frequently routed-to models by LRMF-based routing in the homoge-
neous experiment. This demonstrates that this routing approach assigns different models as
optimal destinations depending on the benchmark.
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E.1.2 Model Lineage Averaging–Based Routing

Figure 14: Top 20 most frequently routed-to models by MLA-based routing in the homoge-
neous experiment.

Figure 15: Top 10 most frequently routed-to models by MLA-based routing in the homoge-
neous experiment. This demonstrates that this routing approach assigns different models as
optimal destinations depending on the benchmark.
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E.1.3 NCF with Factors–Based Routing

Figure 16: Top 20 most frequently routed-to models by NCF with factors-based routing in
the homogeneous experiment. This result indicates that the routing strategy assigns all tasks
exclusively to two models.

Figure 17: Top 10 most frequently routed-to models by NCF with factors-based routing in
the homogeneous experiment. This result indicates that the routing strategy assigns all tasks
exclusively to two models.
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E.2 Heterogeneous Models setting

E.2.1 LRMF-Based Routing

Figure 18: Top 20 most frequently routed-to models by LRMF-based routing in the heteroge-
neous experiment.

Figure 19: Top 10 most frequently routed-to models by LRMF-based routing in the heteroge-
neous experiment. This demonstrates that this routing approach assigns different models as
optimal destinations depending on the benchmark.
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E.2.2 Model Lineage Averaging–Based Routing

Figure 20: Top 20 most frequently routed-to models by MLA-based routing in the heteroge-
neous experiment.

Figure 21: Top 10 most frequently routed-to models by MLA-based routing in the heteroge-
neous experiment. This demonstrates that this routing approach assigns different models as
optimal destinations depending on the benchmark.
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E.2.3 NCF with Factors–Based Routing

Figure 22: Top 20 most frequently routed-to models by NCF with factors-based routing in
the heterogeneous experiment. This result indicates that the routing strategy assigns all tasks
exclusively to one model.

Figure 23: Top 10 most frequently routed-to models by NCF with factors-based routing in
the heterogeneous experiment. This result indicates that the routing strategy assigns all tasks
exclusively to one model.
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