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Abstract

This paper tackles the challenge of achieving Dif-
ferential Privacy (DP) in Federated Learning (FL)
under partial-participation, where only a subset of
the machines participate in each time-step. While
previous work achieved optimal performance in
full-participation settings, these methods strug-
gled to extend to partial-participation scenarios.
Our approach fills this gap by introducing a novel
noise-cancellation mechanism that preserves pri-
vacy without sacrificing convergence rates or com-
putational efficiency. We analyze our method
within the Stochastic Convex Optimization (SCO)
framework and show that it delivers optimal per-
formance for both homogeneous and heteroge-
neous data distributions. This work expands the
applicability of DP in FL, offering an efficient and
practical solution for privacy-preserving learning
in distributed systems with partial participation.

1. Introduction
Federated Learning (FL) is an innovative framework within
Machine Learning (ML) that facilitates collaborative learn-
ing across a wide range of decentralized devices or systems
(McMahan et al., 2017; Kairouz et al., 2021b). Privacy is a
central concern in FL, highlighting the critical importance
of safeguarding personal data during the training process.

Differential Privacy (DP) is a strong framework for assess-
ing and mitigating privacy risks (Dwork et al., 2006a;b;
Kasiviswanathan et al., 2011). It formally ensures that data
analysis results remain largely unchanged regardless of an
individual’s data inclusion, thus preserving data privacy
(Dwork & Roth, 2014).
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In this work, we focus on guaranteeing DP in centralized
FL systems, which are prevalent both in academic research
and in many real-world applications. In such systems all
machines communicate through a coordinating server which
orchestrates the training process (Kairouz et al., 2021b).
A key challenge here is that multi-round communication
can compromise privacy, and research on integrating DP
in FL (Huang et al., 2020; Wei et al., 2020; Girgis et al.,
2021; Noble et al., 2022; Lowy & Razaviyayn, 2023; Lowy
et al., 2023; Gao et al., 2024) focuses on balancing data
masking with model performance to protect privacy while
maintaining performance.

While many FL protocols assume full-participation from
all machines, real-world deployments often face inconsis-
tent device availability, limited connectivity, or scheduling
conflicts. This leads to partial-participation, where only
a subset of machines engage in each training round. En-
suring DP in these settings is more challenging but crucial
for expanding FL to large-scale, resource-constrained, and
dynamic environments.

Moreover, in the context of privacy, FL systems can be cate-
gorized into trusted and untrusted Server cases. In Trusted
Server scenarios, devices rely on the server’s assurance of
correct DP implementation. However, in more practical
cases with an Untrusted Server, devices must protect their
data from potential misuse by the server.

Ensuring DP in centralized FL has mainly been studied in
the context of Empirical Risk Minimization (ERM) (Huang
et al., 2020; Wei et al., 2020; Girgis et al., 2021; Noble
et al., 2022), focusing on minimizing training loss. How-
ever, translating ERM guarantees to population loss leads to
suboptimal bounds, as shown in (Bassily et al., 2019).

Recent works have explored population loss (generaliza-
tion) guarantees under DP (Lowy & Razaviyayn, 2023;
Gao et al., 2024; Reshef & Levy, 2024), providing optimal
guarantees for both trusted and untrusted server cases. No-
tably, (Lowy & Razaviyayn, 2023) addresses both full and
partial-participation but relies on mega-batches, leading to
super-linear complexity of O

(
n3/2

)
, where n is the total

dataset size, and (Gao et al., 2024) build upon the algorithm
of (Lowy & Razaviyayn, 2023) in iterations to improve the
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complexity to O
(
n9/8

)
. In contrast, (Reshef & Levy, 2024)

achieves linear complexity of O (n), similar to standard
non-private training, but is limited to full-participation.

Despite these advances, a gap remains: Can we develop
a DP-FL method for partial participation that achieves
optimal population loss while matching the computational
cost of standard training? In particular, we seek a procedure
with overall complexity linear in n, the total number of
data samples used throughout the training. In this work,
we address this gap by proposing a novel approach that
ensures near-optimal population-loss guarantees under DP,
while preserving the computational efficiency of standard
partial-participation methods.

Concretely, in our approach, each participating machine em-
ploys exactly one new sample for every round it participates,
and use it to performs two stochastic gradient computations,
thus keeping the total gradient computations linear in n.
Thus, if we have a total of M machines but only a subset of
m machines (m ≤ M ) participate in each round, for a total
of T rounds then overall we employ n = mT samples.

For the trusted-server scenario, we present a simple method
that achieves an optimal convergence rate of O

(
1√
n
+

√
d

ϵn

)
,

where d is the problem’s dimensionality, and ϵ is the privacy
level. This rate matches the lower bound substantiated in
(Bassily et al., 2014). In the more challenging untrusted-
server setting, we develop a novel mechanism that yields
an optimal convergence rate of O

(
1√
n
+

√
Md
ϵn

)
where M

is the total number of machines. This matches the lower
bound substantiated in (Lowy & Razaviyayn, 2023).

Our work builds on the full-participation approach of
(Reshef & Levy, 2024). To address the challenging un-
trusted server and partial-participation case, we introduce
a novel noise-cancellation mechanism that effectively ob-
scures the information sent to the server, rather than the
independent noise injection employed by (Reshef & Levy,
2024). Additionally, we tailor each machine’s noise injec-
tion based on the number of rounds it participates in, thus
balancing privacy and performance.

Related Work. Several studies have made significant con-
tributions to DP in the context of SCO, particularly in ERM
(Chaudhuri et al., 2011; Kifer et al., 2012; Thakurta & Smith,
2013; Song et al., 2013; Duchi et al., 2013; Ullman, 2015;
Talwar et al., 2015; Wu et al., 2017; Wang et al., 2018;
Iyengar et al., 2019; Kairouz et al., 2021a; Avella-Medina
et al., 2021; Ganesh et al., 2023). However, these works
mainly focus on training loss, and attempting to extend their
results to population loss guarantees through standard uni-
form convergence (Shalev-Shwartz et al., 2009) results in
sub-optimal bounds, as discussed in (Bassily et al., 2019;
Feldman et al., 2020).

Structured noise for DP has been explored in prior work.
The work of (Koloskova et al., 2023) suggests adding cor-
related noise in ERM settings using standard gradients, but
without utility guarantees or support for partial-participation.
Moreover, the work of (Hafeez et al., 2021), while also us-
ing noise cancellation, addresses smart metering rather than
ML and offers no formal guarantees.

The work of (Bassily et al., 2014) established a lower bound
for DP-SCO, and (Bassily et al., 2019) presented an algo-
rithm that achieves this bound, though with super-linear
computational complexity ∝ n3/2. This was later improved
by (Feldman et al., 2020), which achieved optimal guaran-
tees with a sample complexity linear in n, but only provides
privacy for the final iterate, making it unsuitable to be ex-
tended to FL settings.

In the FL setting, a notable work is (Cheu et al., 2022),
which provides the optimal bounds for the trusted server
case, though it relies on an expensive vector-shuffling rou-
tine, resulting in a computational complexity greater than
n3/2. Another important work is (Lowy & Razaviyayn,
2023), which combines the large-batch technique of (Bass-
ily et al., 2019) with other mechanisms to achieve optimal
results for both untrusted server (called ISRL-DP in their
work) and trusted server (called SDP in their work) cases,
operating in the partial-participation setting with a compu-
tational complexity of n3/2, and (Gao et al., 2024) further
improving it to n9/8. However, the works of (Lowy & Raza-
viyayn, 2023; Gao et al., 2024) achieve the optimal bound
only in the full-participation setting, while suffering an extra

multiplicative factor of
√

M
m to their excess loss bound in

the partial-participation setting.

Our approach draws on the private extension of (Levy,
2023) introduced in (Reshef & Levy, 2024), which achieves
both optimal convergence and computational efficiency un-
der trusted and untrusted server cases, but only in a full-
participation setting. We extend these results to the more
practical partial-participation setting, retaining the same
tight population-loss guarantees and linear computational
complexity.

2. Preliminaries
Here we provide the necessary background for analyzing
private federated learning.
Notations: We will employ the following notations:
[n] := {1, . . . , n}, α1:t :=

∑t
τ=1 ατ , and ΠK (x) :=

argminy∈K ∥x− y∥.

2.1. Federated Learning

We focus on Stochastic Convex Optimization (SCO) scenar-
ios where we have M different machines, and each machine
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i ∈ [M ] has a convex objective function, fi : K 7→ R,
which takes the following form:

fi(x) = Ez∼Di
[fi(x; z)] (1)

Where K ⊂ Rd is a compact convex set, and Di is an
unknown data distribution, from which machine i may draw
i.i.d. samples. Our goal is minimizing the average objective:

f(x) :=
1

M

M∑
i=1

fi(x) (2)

In federated learning the machines aim to collaboratively
minimize the above objective, where each machine i may
acess a dataset of Si = {z1, . . . , zni

} ⊂ Zi (Zi is the set
where the samples of machine i reside), of ni i.i.d. samples
from Di. Upon utilizing these data samples the learning
algorithm eventually outputs a solution xout ∈ K. Our
performance metric is the expected excess loss R(xout):

R(xout) := E [f(xout)]−min
x∈K

{f(x)} (3)

The expectation is w.r.t. the randomness of the samples, as
well as w.r.t. the (possible) randomization of the algorithm.

We focus on centralized systems where machines can syn-
chronize and communicate through a central entity called
the Parameter Server (PS), which orchestrates the learning
process. We further focus on Partial-Participation scenarios
where at each communication round t only a random subset
of the machines Mt ⊆ [M ] communicate with the PS .

We focus on the common parallelization scheme inspired
by Minibatch-SGD (Dekel et al., 2012). In this scheme, the
PS maintains a sequence of query points {xt}t which are
updated using gradient information that is gathered from the
participating machines. Concretely, at time step t the PS
sends the query point xt to a set of randomly chosen ma-
chines Mt ⊆ [M ]. Each machine i ∈ Mt draws a new sam-
ple zt,i ∼ Di (taken from Si), independently of past sam-
ples, and calculates a gradient estimate gt,i = ∇fi(xt; zt,i),
where the derivative is with respect to x. The PS aggregates
the gradient estimates into gt =

1
|Mt|

∑
i∈Mt

gt,i, which is
then used to compute the next query point xt+1

The independence of the samples guarantees that gt,i is an
unbiased estimator of ∇fi(xt), meaning that E [gt,i|xt] =
∇fi(xt). It is useful to conceptualize the calculation of
gt,i = ∇fi(xt; zt,i) as a sort of (noisy) Gradient Ora-
cle: upon receiving a query point xt ∈ K, this Oracle
outputs a vector gt,i ∈ Rd, serving as an unbiased esti-
mate of ∇fi(xt). Moreover, assuming Mt is picked uni-
formly over the M machines, directly implies that gt =

1
|Mt|

∑
i∈Mt

gt,i, is an unbiased estimate of ∇f(xt).

Assumptions: We will make the following assumptions:
Diameter: ∃D > 0 such: ∥x− y∥ ≤ D, ∀x, y ∈ K.

We also make assumptions about fi(·; z), ∀i ∈ [M ], z ∈ Zi:
Lipschitz: ∃G > 0 such:

|fi(x; z)− fi(y; z) | ≤ G ∥x− y∥ , ∀x, y ∈ K

This also implies that ∥∇fi(x; z)∥ ≤ G,∀x ∈ K.
Smoothness: ∃L > 0 such:

∥∇fi(x; z)−∇fi(y; z)∥ ≤ L ∥x− y∥ , ∀x, y ∈ K

Since these assumptions hold for fi(x; z) for every i ∈
[M ], z ∈ Zi, they also hold for fi(x) and f(x). These
assumptions imply the following (proof in Appendix B.1):
Bounded Variance: ∃σ ∈ [0, G] such:

E ∥∇fi(x; z)−∇fi(x)∥2 ≤ σ2, ∀x ∈ K (4)

Bounded Smoothness Variance: ∃σL ∈ [0, L] such:

E ∥(∇fi(x; z)−∇fi(x))− (∇fi(y; z)−∇fi(y))∥2

≤ σ2
L ∥x− y∥2 , ∀x, y ∈ K (5)

Bounded Heterogeneity: ∃ξ ∈ [0, G] such:

1

M

M∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ ξ2,∀x ∈ K (6)

Bounded Smoothness Heterogeneity: ∃ξL ∈ [0, L] such:

1

M

M∑
i=1

∥(∇fi(x)−∇f(x))− (∇fi(y)−∇f(y))∥2

≤ ξ2L ∥x− y∥2 , ∀x, y ∈ K (7)

These properties allow us to bound the variance of the aver-
age of the gradients (proof in Appendix B.2):

Lemma 2.1. Let M ⊆ [M ], and zi ∼ Di. Define g(x) =
1

|M|
∑

i∈M ∇fi(x; zi), for all x ∈ K. If zi are independent,
and M is chosen uniformly from all subsets of size m:

E ∥g(x)−∇f(x)∥2 ≤ 1

m

(
σ2 +

M −m

M − 1
ξ2
)
, ∀x ∈ K

E ∥(g(x)−∇f(x))− (g(y)−∇f(y))∥2

≤ 1

m

(
σ2
L +

M −m

M − 1
ξ2L

)
∥x− y∥2 , ∀x, y ∈ K

Under these assumptions, g(x) is an unbiased estimate of
∇f(x). When m = M , heterogeneity disappears, and as
m gets smaller relative to M , heterogeneity becomes more
significant. Additionally, since M−m

M−1 ≤ 1, we can use the
bounds σ2 + ξ2 and σ2

L + ξ2L. Thus, heterogeneity in partial
participation adds an extra term to the variance. In this work,
we assume the number of participating machines per round
is fixed, and denote it by m.
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2.2. Differential Privacy

The core concept of Differential Privacy (DP) is to compare
the algorithm’s output with and without private informa-
tion and quantify the difference between these outputs. The
closer they are, the more private the algorithm is. This is
measured by the difference between the probability distribu-
tions of the outputs.

The Rényi Divergence is a popular difference measure
between probability distributions:
Definition 2.2 (Rényi Divergence (Rényi, 1961)). Let P,Q
be probability distributions over the same set, and let α > 1.
The Rényi divergence of order α between P and Q is:

Dα (P∥Q) :=
1

α− 1
log

(
EX∼P

[(
P (X)

Q(X)

)α−1
])

We follow with the convention that 0
0 = 0. If Q(x) = 0, but

P (x) ̸= 0 for some x, then the Rényi divergence is defined
to be ∞. Divergence of orders α = 1,∞ are defined by
continuity.

Notation: If X ∼ P, Y ∼ Q, we will use the terms
Dα (P∥Q) & Dα (X∥Y ) interchangeably.

Adding Gaussian noise is popular in privacy, so we find the
following lemma useful (proof in Appendix B.3):
Lemma 2.3. Let P = N (µ, Iσ2) and Q = N (µ+∆, Iσ2),
two Gaussian distributions. Then, Dα (P∥Q) = α∥∆∥2

2σ2 .

The classic differential privacy definition:
Definition 2.4 (Differential Privacy (Dwork et al., 2006a;b)).
A randomized algorithm A is (ϵ, δ)-differentially private, or
(ϵ, δ)-DP, if for all neighboring datasets S,S ′ that differs in
a single element, and for all events O:

P {A(S) = O} ≤ eϵP {A(S ′) = O}+ δ

The term neighboring datasets refers to S,S ′ being ordered
sets of data samples that only differ on a single sample.

A privacy measure that relies on the Rényi divergence:
Definition 2.5 (Rényi Differential Privacy (Mironov, 2017)).
For 1 ≤ α ≤ ∞ and ϵ ≥ 0, a randomized algorithm A is
(α, ϵ)-Rényi differentially private, or (α, ϵ)-RDP, if for all
neighboring datasets S,S ′: Dα (A(S)∥A(S ′)) ≤ ϵ.

RDP implies DP, as shown here (proof in Appendix B.4):
Lemma 2.6 ((Mironov, 2017)). If A satisfies (α, ϵ)-RDP,

then for all δ ∈ (0, 1), it also satisfies
(
ϵ+

log( 1
δ )

α−1 , δ

)
-

DP. In particular, if A satisfies
(
α, αρ2

2

)
-RDP for ev-

ery α > 1, then for all δ ∈ (0, 1), it also satisfies(
ρ2

2 + ρ
√

2 log
(
1
δ

)
, δ
)

-DP.

Lastly, for the case of Gaussian noise, there is a more fitting
DP definition based on RDP:
Definition 2.7 (Zero-Concentrated Differential Privacy).
(Bun & Steinke, 2016) A randomized algorithm A is (ξ, ρ)-
zero-concentrated differentially private, or (ξ, ρ)-zCDP, if
for all neighboring datasets S,S ′ that differ in a single ele-
ment, and for all α > 1, we have:

Dα (A(S)∥A(S ′)) ≤ ξ + ρα

We define ρ-zCDP as (0, ρ)-zCDP.

Note that if an algorithm is (α, ξ+ρα)-RDP for all α > 1, it
is also (ξ, ρ)-zCDP and visa-versa. Also note that according
to Lemma 2.3, a Gaussian mechanism is ∥∆∥2

2σ2 -zCDP, and

using Lemma 2.6, if an algorithm is ρ2

2 -zCDP, it is also(
ρ2

2 + ρ
√
2 log

(
1
δ

)
, δ
)

-DP, for all δ ∈ (0, 1). By choosing

to work with ρ2

2 -zCDP, we get that ρ = ∥∆∥
σ , which is the

signal-to-noise ratio, and we also get that O
(

1
ρ

)
∈ O

(
1
ϵ

)
,

with ϵ = ρ2

2 + ρ
√
2 log

(
1
δ

)
.

In federated learning, we consider the case where DP guaran-
tees must be ensured individually for each machine i ∈ [M ].
The challenge in this context arises because each machine
communicates multiple times with the PS, potentially re-
vealing its private dataset. The machines don’t trust one
another, and thus cannot allow them to uncover private data.
In this work, we mainly focus on the Untrusted Server
case, where the PS cannot reveal private data, and DP guar-
antees must be ensured for the information machines share
with the PS. In the Trusted Server case, machines trust
the PS and may share private data, but it is still necessary
to prevent machines from uncovering each other’s private
data from the PS .

2.3. Lower Bounds

Here we elaborate on the existing excess loss lower bounds
for the DP trusted and untrusted server scenarios, and show
that they coincide with the upper bounds that we establish.
Notably, existing lower bounds holds irrespective of the
training method, and therefore apply simultaneously for
both full and partial-participation settings. Concretely, the
starting points of such lower bounds is to assume that the
learning process may access a total of n data points.

In the Trusted Server setting we can think of the server as
learner that may access n data points, and aims to output a
solution that maintains a DP level of ϵ. The work of (Bassily
et al., 2014) establishes a lower bound of Ω

(
1√
n
+

√
d

ϵn

)
on

the excess loss in this case, which matches the term in our
upper bound which is related to privacy.

In the Untrusted Server setting we have M machines,
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which aim to collaboratively compute a solution to a given
stochastic optimization problem. Yet each machine and
aims to maintains a DP level of ϵ for the data that it shares
during the learning process. It is also assume that the over-
all data used by all machines is of size n. The work of
(Lowy & Razaviyayn, 2023) establishes a lower bound
of Ω

(
1√
n
+

√
Md
ϵn

)
on the excess loss in this case, which

matches the term in our upper bound which is related to
privacy. The extra

√
M factor exists because we have M

devices that hold privacy, instead of just one (the PS).

Note that the first term in our lower bounds Ω
(

1√
n

)
matches the known lower and upper bounds of excess loss in
non-DP setting. Finally, note that in our partial-participation
setting, only a subset of m < M machines participate once
in each round, for a total of T rounds, so we have n = mT .

3. The µ2 Technique
As mentioned earlier, our technique for the partial-
participation case builds on the previous approach of
(Reshef & Levy, 2024) for the full-participation case. Here
we discuss the algorithmic techniques behind the latter,
which will later serve us in our design of an optimal and
efficient approach for partial-participation.

The approach of (Reshef & Levy, 2024) strongly relies on a
recent (non-DP) algorithmic approach called µ2-SGD (Levy,
2023). Next we elaborate on it.

3.1. The µ2-SGD Algorithm

The µ2-SGD (Levy, 2023) is a variant of standard SGD with
two modifications. Its update rule is of the following form:
w1 = x1 ∈ K, and ∀t ≥ 1:

wt+1 =ΠK (wt − ηαtdt)

xt+1 =
α1:t

α1:t+1
xt +

αt+1

α1:t+1
wt+1 (8)

Here αt > 0 are importance weights for each time-step. We
use αt ∝ t, giving more weight to more recent updates.

Note that this update rule maintains two sequences: {wt}t,
{xt}t, where {xt}t is a sequence of weighted averages of
the iterates {wt}t. dt is an estimate for the gradient at
the average point, i.e. of ∇f(xt), which differs from stan-
dard SGD which employs estimates for the gradients at
the iterates, i.e. of ∇f(wt). This approach is related to a
technique called Anytime-GD (Cutkosky, 2019), which is
strongly connected to the notions of momentum and accel-
eration (Cutkosky, 2019; Kavis et al., 2019).

In the standard SGD version of Anytime-GD, one would
use the estimate ∇f(xt; zt). However, the µ2-SGD ap-
proach suggests to employ a variance reduction mechanism

to yield a corrected momentum estimate dt in the spirit
of (Cutkosky & Orabona, 2019), with a technique called
Stochastic Corrected Momentum (STORM). This is done
as follows: d1 := ∇f(x1; z1), and ∀t > 1:

dt = ∇f(xt; zt) + (1− βt)(dt−1 −∇f(xt−1; zt)) (9)

Where βt ∈ [0, 1] are called corrected momentum weights.
It can be shown by induction that E [dt] = E [∇f(xt)],
but generally E [dt|xt] ̸= ∇f(xt), in contrast to standard
SGD estimators. However, as demonstrated in (Levy, 2023)
by choosing corrected momentum weights of βt ∝ 1

t , the
above estimates achieve an error reduction at time-step t of:

E
∥∥∥εµ2

t

∥∥∥2 := E ∥dt −∇f(xt)∥2 ≤ O

(
1

mt

(
σ̃2 + ξ̃2

))
Where σ̃2 ≤ O

(
σ2 + σ2

LD
2
)

and ξ̃2 ≤ O
(
ξ2 + ξ2LD

2
)
.

This implies that the error decreases with t, in
contrast to standard SGD where the variance
E
∥∥εSGD

t

∥∥2 := E ∥gt −∇f(xt)∥2 remains uniformly
bounded by 1

m

(
σ2 + ξ2

)
, as shown in Lemma 2.1.

Upon choosing βt = 1 − αt−1

αt
, and denoting qt := αtdt,

the gradient estimate update of µ2-SGD in Equation (9) can
be written as follows (proof in Appendix C.1):

st :=αt∇f(xt; zt)− αt−1∇f(xt−1; zt)

qt =qt−1 + st (10)

3.2. Differentially Private µ2 Federated Learning

The µ2-SGD approach is naturally extends to the FL setting
as follows: At every time-step, t the PS sends the current
query point xt to all machines. Then, each machine i ∈ [M ]
updates a local estimate of the (weighted) gradient qt,i =
αtdt,i based on its local (and private) data and on xt. This is
done similarly to Equation (10), with zt,i being the sample
used by machine i at time-step t:

st,i :=αt∇f(xt; zt,i)− αt−1∇f(xt−1; zt,i)

qt,i =qt−1,i + st,i (11)

In the trusted server case, (Reshef & Levy, 2024) sug-
gests to aggregate these estimates by the PS into qt :=
1
M

∑M
i=1 qt,i. To maintain privacy, the server adds a fresh

noise Yt into qt and use q̃t := qt + Yt (a common technique
in DP training (Abadi et al., 2016)). In the untrusted server
case, (Reshef & Levy, 2024) suggests adding a fresh zero-
mean noise Yt,i to the gradient estimates qt,i, in order to
ensure privacy, and then send q̃t,i := qt,i + Yt,i to the PS.
It aggregate these private estimates into q̃t =

1
M

∑M
i=1 q̃t,i.

In both case, the PS then updates wt and xt similarly to
Equation (8), while using q̃t instead of αtdt. Upon choos-
ing appropriate noise magnitude and learning rates, this

5



Balancing Partial-Participation and Efficiency via Noise Cancellation

approach ensures optimal convergence guarantees for DP
training in full-participation settings, while preserving the
linear computational complexity of standard methods.

There is a natural trade-off in selecting the noise magnitude:
larger noise improves privacy but slows convergence. As
shown in (Reshef & Levy, 2024), the µ2-SGD algorithm
is substantially less sensitive to individual data samples
compared to standard SGD, so we can maintain privacy with
relatively small noise magnitudes, thus achieving optimal
convergence.

4. Our Approach
Here we discuss the challenges of extending DP-µ2-FL to
Partial-Participation scenarios (Section 4.1), and suggest a
natural modification that remedies these challenges in the
Trusted server case, thus leading to optimal and computa-
tionally efficient methods for this case. Unfortunately, this
modification leads to suboptimal performance in the more
challenging Untrusted server case.

Towards addressing this gap, in Section 4.2 we provide
a new perspective on DP-µ2-FL in the full-participation
case, which induces a novel noise-cancellation technique,
allowing us to extend their method to Partial-Participation
settings. Finally, in Section 4.3 we discuss the properties of
the resulting gradient estimates, which are later used in to
analyze our approach. In Section 5 we present our complete
algorithm (Algorithm 1) and its guarantees.

4.1. Challenge in Partial-Participation

The performance of DP-µ2-FL strongly relies on the as-
sumption that every machine can access the entire sequence
of query points {xt}t, which is crucial for computing qt,i
(see Equation (11)). Unfortunately, this assumption no
longer holds in partial-participation setting.

Alternative 1: A natural resolution is to update qt,i based
on the sequence of queries that machine i may access:

qt,i = qt−τ,i + αt∇f(xt; zt,i)− αt−τ∇f(xt−τ ; zt,i)
(12)

Where t− τ is the previous time-step that machine i partic-
ipated in. Unfortunately, this approach yields suboptimal
guarantees even in standard non-DP partial-participation set-
tings. The delayed updates lead to an excessive error for qt,i,

resulting a degraded convergence rate of O
(√

M
m

1√
n

)
even

without DP requirements. We elaborate on it in Appendix G.

Alternative 2: Another natural solution is to simply let the
PS calculate qt. This suggest the following approach for
the partial-participation setting: A machine i participating
at round t computes st,i (Equation (11)), and sends it the
the PS, who averages them into st =

1
m

∑
i∈Mt

st,i and

uses these estimates to update qt (Equation (10)).

This approach works well in the Trusted server case, where
the PS can receive the non-private st,i from the participat-
ing machines, and use them to update qt. Similarly to the ap-
proach of (Reshef & Levy, 2024) the PS then injects noise
into qt to maintain its privacy, and then updates according
to Equation (8). We describe this approach in Appendix F,
and substantiate a convergence rate of O

(
1√
n
+

√
d

ϵn

)
.

Nevertheless, extending this approach to the Untrusted
server case is not trivial. Concretely, one can think of the
natural extension where each machine i that participates at
round t computes a private estimate of st,i, and then pri-
vatize it by adding a fresh noise s̃t,i := st,i + Yt,i which
is then sent to the PS. The latter utilizes the private s̃t,i
to update q̃t which is then used to update in the spirit of
Equation (8). Unfortunately, ensuring the privacy of s̃t,i
that way, leads to a cumulative noise in the global estimate
q̃t, which leads to highly suboptimal performance. Next, we
will see how to mend this approach by injecting correlated
noise to st,i, which leads to noise cancellation at q̃t, thus
enabling to achieve optimal performance.

4.2. Noise Cancellation

We focus on addressing the untrusted server partial-
participation case. Towards doing so, we provide an alterna-
tive perspective on the approach of (Reshef & Levy, 2024)
for the full-participation. In the full-participation case, Equa-
tion (11) implies qt,i =

∑t
τ=1 sτ,i. Since q̃t,i = qt,i + Yt,i,

we can write the update rule for q̃t in the PS like this:

q̃t = q̃t−1 + st + Yt − Yt−1 := q̃t−1 + s̃t

Where st := 1
M

∑M
i=1 st,i, Yt := 1

M

∑M
i=1 Yt,i, and

s̃t := st + Yt − Yt−1. The above update rule for q̃t can
be equivalently achieved as follows: at every round t each
machine i computes s̃t,i = st,i + Yt,i − Yt−1,i, which is
equivalent to injecting st with a fresh noise term while can-
celing the previous one. Then each machine sends s̃t,i to
the PS, which aggregates them into s̃t = 1

M

∑M
i=1 s̃t,i,

and updates the estimate q̃t = q̃t−1 + s̃t. The sequence of
noise terms that we inject into st,i, {Yt,i − Yt−1,i}t, is now
correlated.

This perspective now induces the following approach for the
partial-participation setting: at each time-step t, only some
of the machines, Mt ⊆ [M ], are participating. We employ
this update rule (Algorithm 1):

st,i =αt∇f(xt; zt,i)− αt−1∇f(xt−1; zt,i)

s̃t,i =st,i + Yt,i − Yt−1,i

s̃t =
1

m

∑
i∈Mt

s̃t,i & q̃t = q̃t−1 + s̃t (13)
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And the PS then uses q̃t to update wt and xt as in Equa-
tion (8). The noise Yt,i being:

Yt,i =

{
yt,i i ∈ Mt

Yt−1,i i /∈ Mt

(14)

Where the noise yt,i ∼ Pt,i is the new independent noise
generated at time-step t in machine i, and Yt,i is the last
noise generated up to time-step t in machine i. As we can
see, for the machines that participate at time-step t, we gen-
erate a new noise, and the machines that do not participate
at time-step t retain their previous noise. Using this noise,
we can see how q̃t looks like (proof in Appendix D.1):

Lemma 4.1. Our definitions of q̃t, qt, Yt,i above imply:

q̃t = qt +
1

m

M∑
i=1

Yt,i

Due to our noise cancellation, the effective injected noise
on the PS at time t is Yt =

1
m

∑M
i=1 Yt,i. Note that Yt is

a sum a total of M different independent noises (one from
each machine), but normalized by the number of machines
participating at each round m. Also note that since for some
machines Yt,i = Yt−1,i, the noises of different time-steps
are not independent. These two points will make it harder
for us to evaluate the effect of this noise on the excess loss.

4.3. Gradient Error & Sensitivity Analysis

Here we analyze the properties of the st,i estimates depicted
above, as well as discuss the properties of qt. These proper-
ties are crucial for analyzing the privacy and performance
of our approach. Our analysis follows similar lines to (Levy,
2023; Reshef & Levy, 2024).

We define: gt,i := ∇fi(xt; zt,i), g̃t,i := ∇fi(xt, zt+1,i),
ḡt,i := ∇fi(xt), ḡt := ∇f(xt). By these notation we
can write st,i = αtgt,i − αt−1g̃t−1,i. We will also use the
notation Et−1 [·] to denote the expectation conditioned over
all randomization up to time-step t− 1. Using this notation
we get that: Et−1 [st,i] = αtḡt,i − αt−1ḡt−1,i. We define
s̄t,i := αtḡt,i − αt−1ḡt−1,i, and s̄t = αtḡt − αt−1ḡt−1.
Next we bound st,i (proof in Lemma 4.2):

Lemma 4.2 ((Reshef & Levy, 2024)). Let K ⊂ Rd be a
convex set of diameter D, and {fi(·; z)}z∈Zi

be a family of
convex G-Lipschitz and L-smooth functions. Assume αt = t
and define S := G+2LD, σ̃ := σ+2σLD, ξ̃ := ξ+2ξLD:

∥st,i∥ ≤ S , and E ∥st − s̄t∥2 ≤ 1

m

(
σ̃2 +

M −m

M − 1
ξ̃2
)

Where the in expectation bound further assumes that the
samples in Zi arrive from i.i.d. Di.

Now, we will define the error of of our weighted corrected
momentum estimate εt := qt − αt∇f(xt). Note that the
update rule for εt is (proof in Appendix D.3):

εt = εt−1 + (st − s̄t) (15)

And the above implies εt =
∑t

τ=1(sτ − s̄τ ). The above
enable to bound the error εt (proof in Appendix D.4):

Lemma 4.3 ((Reshef & Levy, 2024)). Algorithm 1 with
weights αt = t ensures:

E ∥εt∥2 := E ∥qt − αt∇f(xt)∥2 ≤ t

m

(
σ̃2 +

M −m

M − 1
ξ̃2
)

5. DP-µ2-FL with Partial-Participation
Our complete algorithm depicted in Algorithm 1, is based
on the noise cancellation idea we describe in Equations (13)
and (14), combined with the µ2-SGD approach described
in Equation (8). At each time-step t, we select a subset
of m machines Mt. Each machine i ∈ Mt computes
the gradient estimate correction st,i, and then adds a fresh
noise term yt,i and removes the previous noise Yi := Yt−1,i

(omitting the time-step index for practical implementation)
to get a private correction s̃t,i. It is transmitted to the PS,
which averages these corrections, updates its weighted noisy
gradient estimate q̃t, and in turn uses q̃t to compute the next
iterate wt+1 and query point xt+1.

To balance privacy with performance, we found it neces-
sary to set each machine’s noise injection proportionally
to the number of time-steps it participated in up until now,
because a machine that participates more rounds may leak
more private data, which requires more noise to maintain its
privacy. Thus, we set σ2

t,i ∝ Nt,i, where Nt,i is the number
of time-steps machine i participated up to time step t.

5.1. Privacy Guarantees

We shows how the privacy of Algorithm 1 depends on the
injected noises {yt,i} (proof in Appendix E.1):

Theorem 5.1. Let K ⊂ Rd be a convex set of diameter D,
and {fi(·; z)}z∈Zi

be a family of convex G-Lipschitz and L-
smooth functions, and S = G+ 2LD. Then invoking Algo-
rithm 1 with noise distributions yt,i ∼ Pt,i = N

(
0, Iσ2

t,i

)
,

and any learning rate η > 0, ensures that for any machine
i ∈ [M ], that acts at time-steps Ti, the resulting sequences
{s̃t,i}t∈Ti is ρ2

i

2 -zCDP, where: ρi = 2S
√∑

t∈Ti

1
σ2
t,i

.

Proof Sketch. First, assume that Si and S ′
i are neighboring

datasets, meaning that there exists only a single time-step
τ∗ ∈ Ti where they differ, i.e. that zτ∗,i ̸= z′τ∗,i.

We then use the post-processing property (Lemma A.4)
to say that the privacy of {s̃t,i}t∈Ti

is equal to the pri-

7
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Algorithm 1 DP-µ2-FL with Partial-Participation
Inputs: #iterations T , #TotalMachines M , #Machines
per step m, initial point x0, learning rate η > 0,
importance weights {αt > 0}, noise distributions{
Pt,i = N (0, Iσ2

t,i)
}

, datasets {Si = {z1,i, . . . , zT,i}}
Initialize: set w1 = x1 = x0, q̃0 = 0, and Yi = 0, ∀i
for t = 1, . . . , T do

Choose Mt ⊆ M with |Mt| = m
for every Machine i ∈ Mt do

Actions of Machine i:
Retrieve zt,i from Si, compute gt,i = ∇f(xt; zt,i),
and g̃t−1,i = ∇f(xt−1; zt,i)
Update st,i = αtgt,i − αt−1g̃t−1,i

Draw yt,i ∼ N
(
0, Iσ2

t,i

)
Update s̃t,i = st,i + yt,i − Yi

Update Yi = yt,i {saving the last noise}
end for
Actions of Server:
Aggregate s̃t =

1
m

∑
i∈Mt

s̃t,i
Update q̃t = q̃t−1 + s̃t
Update wt+1 = ΠK(wt − ηq̃t)

Update xt+1 =
(
1− αt+1

α1:t+1

)
xt +

αt+1

α1:t+1
wt+1

end for
Output: xT

vacy of
{∑

τ≤t&τ∈Ti
s̃τ,i

}
t∈Ti

. Using the composition rule

(Lemma A.3), we bound the privacy of them with the sum
of the privacy of each individual member. Now, recalling
that the noises cancel each other and thus:∑

τ≤t&τ∈Ti

s̃τ,i =
∑

τ≤t&τ∈Ti

sτ,i + yt,i, ∀t ∈ Ti

We may use Lemma 2.3 and obtain that
∑

τ≤t&τ∈Ti
s̃τ,i is

∆2
t,i

2σ2
t,i

-zCDP. Using the bound ∥sτ,i∥ ≤ S, which holds for
any τ ∈ Ti due to Lemma 4.2, we show that ∆t,i ≤ 2S.
Thus, we are 2S2

σ2
t,i

-zCDP. Using the above together, we get

that {s̃t,i}t∈Ti
is 2S2

∑
t∈Ti

1
σ2
t,i

-zCDP.

5.2. Convergence Guarantees

Guarantees of Algorithm 1 (proof in Appendix E.2):

Theorem 5.2. Let K ⊂ Rd be a convex set of diameter
D and {fi(·; z)}i∈[M ],z∈Zi

be a family of G-Lipschitz and
L-smooth functions over K, with σ, ξ ∈ [0, G], σL, ξL ∈
[0, L], and let {Mt}t be subsets of [M ] of size m, define
G∗ := ∇f(x∗), where x∗ = argminx∈K f(x), and S :=
G+ 2LD, σ̃ := σ + 2σLD, ξ̃ := ξ + 2ξLD, moreover let
T ∈ N, ρ > 0.

Then upon invoking Algorithm 1 with αt = t,

η = min

{
ρDm

2ST
√

2Md(1+log T )
, 1
8LT

}
, and σ2

t,i =

4S2(1+log T )
ρ2 Nt,i, with Nt,i being the number of time steps

that machine i participated up to time step t, and for any
datasets {Si ∈ ZT

i }i∈[M ], then Algorithm 1 satisfies ρ2

2 -
zCDP w.r.t gradient estimate correction sequences that each
machine produces, i.e. {s̃t,i}i∈[M ],t∈Ti

.

Furthermore, if Si consists of i.i.d. samples from a distribu-
tion Di for all i ∈ [M ], and Mt are also chosen uniformly
in an i.i.d manner, then Algorithm 1 guarantees:

RT := E [f(xT )]−min
x∈K

f(x) ≤

4D

G∗ + 4LD

T
+

√
σ̃2 + ξ̃2
√
mT

+
2S
√
2Md (1 + log T )

ρmT


Proof Sketch. The privacy guarantees follow directly from
Theorem 5.1, and our choice of σ2

t,i:

2S2
∑
t∈Ti

1

σ2
t,i

= 2S2
∑
t∈Ti

ρ2

4S2 (1 + log T )Nt,i

=
ρ2

2 (1 + log T )

∑
t∈Ti

1

Nt,i
=

ρ2

2 (1 + log T )

|Ti|∑
k=1

1

k

≤ ρ2

2 (1 + log T )
(1 + log |Ti|) ≤

ρ2

2

Regrading convergence, in the spirit of µ2-SGD analysis
(Levy, 2023; Reshef & Levy, 2024), we bound the excess
loss using the anytime theorem (Theorem A.1), rewrite the
expression to get to the form of Lemma A.5 and use it to
bound, and separate the terms of εt and Yt. We already
bounded εt in Lemma 4.3, though we bound M−m

M−1 ≤ 1,
but the bound on the parts of Yt is harder, since the se-
quence {Yt}t∈T is not independent of each other, as it was
in (Reshef & Levy, 2024), since in each round different
machine participate. We get:

t∑
τ=1

E ⟨Yτ , x
∗ − wτ+1⟩ ≤

1

4η

t∑
r=1

E ∥wr − wr+1∥2

+
η

m2p(2− p)

M∑
i=1

t∑
s=1

E ∥ys,i∥2

Where p = m
M is the probability that machine i participate

at time-step t for all machines and time-steps. We then use
our chosen value for σ2

s,i to bound ys,i. We then input all
the bounds, bound the gradient using the excess loss with
Lemma A.6, to get a bound of the excess loss using the
previous excess losses. Using Lemma A.7 we get the final
bound on the excess loss. By inputting our chosen η, that
minimize this expression, we get our bound.
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Table 1. Privacy Level Comparison
Our Work Noisy SGD Other Work

ρ Accuracy Time Accuracy Time Accuracy Time

4 53.8% 13 sec 45.1% 9 sec 47.6% 64 sec

8 63.7% 13 sec 58.9% 9 sec 63.3% 282 sec

12 66.5% 13 sec 63.7% 9 sec 66.7% 730 sec

Since Algorithm 1 uses a total of n = mT samples in
the learning process, our rate translates to O

(
1√
n
+

√
Md
ϵn

)
which matches the lower bound for the untrusted server
case. Moreover, our approach performs two gradient com-
putations per sample, and its computational complexity is
therefore linear in n, which matches standard methods.

5.3. Experiments

We ran Algorithm 1 on MNIST using a logistic regression.
The parameters are G =

√
2 · 785 = 39.6, L = 785/2 =

392.5, D = 0.1, which brings us S = 118.1. Our model
has d = 10 · 785 = 7850 parameters. We compared our al-
gorithm (called ”Our Work”) to SGD with noise, inspired by
(Abadi et al., 2016) (called ”Noisy SGD”), and to the other
work (Lowy & Razaviyayn, 2023) (called ”Other Work”).
We kept the same parameter in all 3 algorithms to the best
of our abilities, and in all tests the total data samples used
across all machines is n = 60, 000. Note that in Our Work
and Noisy SGD, we only do a single-pass over the data,
and each data sample is only used once, while in the Other
Work the same samples are reused, as is done in their al-
gorithm. This fact and the noise added as part of privacy
are part of the reason why the accuracy is bellow 70% in
all experiments. We compare both the test accuracy and
running time.

For our first experiment, we fix m = 50,M = 100, and
compare various values of ρ. We show our results in Table 1.

We can see that by increasing ρ, the accuracy of all algo-
rithms increase. That makes sense, since the higher the
privacy level, the less noise we need. The running time
doesn’t change in Our Work or Noisy SGD, because we
make the same number of computations, just with different
noise, but in the Other Work, they use more iterations with
a higher privacy level, to get better results when allowed, so
the running time drastically increases. Comparing between
the algorithms, the Other Work needs large privacy level to
truly shine, overtaking Our Work in the highest privacy level,
but getting results closer to Noisy SGD in the lowest, albeit
with a much longer running time, with our algorithm being
just slightly longer than Noisy SGD, with better accuracy.

In a second experiment, we fix ρ = 8,M = 100, and com-
pare various values of m. We show our results in Table 2.

Table 2. Participating Machines Comparison
Our Work Noisy SGD Other Work

m Accuracy Time Accuracy Time Accuracy Time

20 60.8% 13 sec 54.9% 9 sec 59.7% 114 sec

50 63.7% 13 sec 58.9% 9 sec 63.3% 282 sec

80 63.8% 13 sec 57.0% 9 sec 65.8% 452 sec

We can see that by increasing m, we increase the accuracy,
except in Noisy SGD, where the higher value is worse than
the middle one. That is because in Our Work and the Other
Work, the less partial the participation is, the less we lose,
but it doesn’t matter for Noisy SGD. In Noisy SGD, m can
be seen as the batch size, which is inverse to the number
of time-steps, which was probably too small in this case.
The change in accuracy is smaller than the one in Table 1,
which implies that the privacy is more important, as can
be seen in our bound in Theorem 5.2. The running time
is unchanged in Our Work and Noisy SGD, since the total
number of samples used is the same, but is increasing in the
Other Work with m, since they make more iterations when
m is larger. Comparing between the algorithms, the Other
Work gets the best accuracy in the largest m, but does so
with a much longer running time. Our Work still has slightly
longer running time than Noisy SGD with better accuracy.

In conclusion, like it was shown from the theoretical bounds,
Our Work is as good as the Other Work in terms of accuracy,
but with much faster running time, while getting only a
slightly longer running time than Noisy SGD but with a
better accuracy.

6. Conclusion
We enhanced DP-µ2-FL to operate in the partial-
participation setting with an untrusted server by introducing
an innovative noise cancellation technique that preserves
privacy while minimizing overall noise. We demonstrated
that this approach achieves optimal excess loss with linear
computational complexity.
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A. Additional Theorems and Lemmas
Here we provide additional theorems and lemmas that are used for our proofs. These were also used in (Reshef & Levy,
2024).

Theorem A.1 ((Cutkosky, 2019)). Let f : K → R be a convex function. Also let {αt > 0} and {wt ∈ K}. Let {xt} be the
{ατ}tτ=1 weighted average of {wτ}tτ=1, meaning: xt =

1
α1:t

∑t
τ=1 ατwτ . Then the following holds for all t ≥ 1, x ∈ K:

α1:t(f(xt)− f(x)) ≤
t∑

τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩

Note that the above theorem holds generally for any sequences of iterates {wt}t with weighted averages {xt}t, and as a
private case it holds for the sequences generated by Anytime-SGD. Concretely, the theorem implies that the excess loss of
the weighted average xt can be related to the weighted regret

∑t
τ=1 ατ ⟨∇f(xτ ) , wτ − x⟩.

Proof of Theorem A.1. Proof by induction.
Induction basis: t = 1

α1(f(x1)− f(x)) ≤ α1 ⟨∇f(x1) , x1 − x⟩ = α1 ⟨∇f(x1) , w1 − x⟩

The inequality is from convexity of f , and the equality is because x1 = w1.
Induction assumption: for some t ≥ 1:

α1:t(f(xt)− f(x)) ≤
t∑

τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩

Induction step: proof for t+ 1:

α1:t+1(f(xt+1)− f(x)) =α1:t(f(xt+1)− f(xt) + f(xt)− f(x)) + αt+1(f(xt+1)− f(x))

≤
t∑

τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩+ α1:t(f(xt+1)− f(xt)) + αt+1(f(xt+1)− f(x))

≤
t∑

τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩+ ⟨∇f(xt+1) , α1:t(xt+1 − xt) + αt+1(xt+1 − x)⟩

=
t∑

τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩+ αt+1 ⟨∇f(xt+1) , wt+1 − x⟩ =
t+1∑
τ=1

ατ ⟨∇f(xτ ) , wτ − x⟩

In the first equality we rearranged the terms, and added and subtracted the same thing, we then used the induction
assumption, then used convexity of f on both pairs and added them together, and finally we used the update rule of xt+1:
α1:t+1xt+1 = α1:txt + αt+1wt+1, and added the last member of the sum to get our desired result.

Lemma A.2. Let {Zt} be a Martingale difference sequence w.r.t a Filtration {Ft}t, i.e. E [Zt|Ft−1] = 0, then:

E

∥∥∥∥∥
t∑

τ=1

Zτ

∥∥∥∥∥
2

=

t∑
τ=1

E ∥Zτ∥2

Proof of Lemma A.2. Proof by induction.
Induction basis: t = 1

E

∥∥∥∥∥
1∑

τ=1

Zτ

∥∥∥∥∥
2

= E ∥Z1∥2 =

1∑
τ=1

E ∥Zτ∥2
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Induction assumption: for some t ≥ 1:

E

∥∥∥∥∥
t∑

τ=1

Zτ

∥∥∥∥∥
2

=

t∑
τ=1

E ∥Zτ∥2

Induction step: proof for t+ 1:

E

∥∥∥∥∥
t+1∑
τ=1

Zτ

∥∥∥∥∥
2

= E

∥∥∥∥∥
t+1∑
τ=1

Zτ

∥∥∥∥∥
2

+ 2E

〈
t∑

τ=1

Zτ , Zt+1

〉
+ E ∥Zt+1∥2 =

t∑
τ=1

E ∥Zτ∥2 + E ∥Zt+1∥2 =

t+1∑
τ=1

E ∥Zτ∥2

The first equality is square rules, then we used the induction assumption and the fact that E [Zt+1|Z1, . . . , Zt] = 0, and
finally we added the last term into the sum.

Lemma A.3 ((Mironov, 2017; Bun & Steinke, 2016)). If A1, . . . ,Ak are randomized algorithms satisfying ρ1-zCDP, . . . ,
ρk-zCDP, respectively, then their composition (A1(S) . . . ,Ak(S)) is (ρ1 + . . . ,+ρk)-zCDP. Moreover, the i’th algorithm
Ai, can be chosen on the basis of the outputs of the previous algorithms A1, . . . ,Ai−1.

Proof of Lemma A.3. Proof by induction.
Induction basis: k = 1

Dα (A1(S)∥A1(S ′)) ≤ αρ1

Because A1 is ρ1-zCDP.
Induction assumption: for some k ≥ 1:

Dα

(
{Ai(S)}ki=1∥{Ai(S ′)}ki=1

)
≤ α

k∑
i=1

ρi

Induction step: proof for k + 1

Dα

(
{Ai(S)}k+1

i=1 ∥{Ai(S ′)}k+1
i=1

)
=

1

α− 1
log

EAi∼Ai(S)

( P
{
{Ai(S)}k+1

i=1

}
P
{
{Ai(S ′)}k+1

i=1

})α−1


=
1

α− 1
log

EAi∼Ai(S)

( P
{
Ak+1(S)|{Ai}ki=1

}
P
{
{Ai(S)}ki=1

}
P
{
Ak+1(S ′)|{Ai}ki=1

}
P
{
{Ai(S ′)}ki=1

})α−1


=
1

α− 1
log

EAi∼Ai(S)

( P
{
Ak+1(S)|{Ai}ki=1

}
P
{
Ak+1(S ′)|{Ai}ki=1

})α−1


+
1

α− 1
log

EAi∼Ai(S)

( P
{
{Ai(S)}ki=1

}
P
{
{Ai(S ′)}ki=1

})α−1


=Dα

(
Ak+1(S)∥Ak+1(S ′)|{Ai}ki=1

)
+ Dα

(
{Ai(S)}ki=1∥{Ai(S ′)}ki=1

)
≤αρk+1 + α

k∑
i=1

ρi = α

k+1∑
i=1

ρi

The writing Ai ∼ Ai(S) means that the output of Ai is distributed in the case that the dataset is S . The first equation is the
definition of the Rényi divergence, next we use conditional probability rules, then we use the fact that the output of Ak+1

conditioned on the outputs of the previous algorithms is independent of the outputs of these previous algorithms, and let
the product out of the log as a summery. We then notice that each of the two members are divergences themselves, and
finally, we invoke both the the fact that Ak+1 is ρk+1-zCDP, and the induction assumption, and add them together to the
same sum.
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Lemma A.4 (Post Processing Lemma (van Erven & Harremoës, 2014)). Let X,Y be random variables and A be a
randomized or deterministic algorithm. Then for all α ≥ 1:

Dα (A(X)∥A(Y )) ≤ Dα (X∥Y )

Note that we get equality if A is an invertible function.

Lemma A.5. Let η > 0, and K ⊂ Rd be a convex domain of bounded diameter D, also let {q̃t ∈ Rd}Tt=1 be a sequence of
arbitrary vectors. Then for any starting point w1 ∈ Rd, and an update rule wt+1 = ΠK (wt − ηq̃t) ,∀t ≥ 1, the following
holds ∀x ∈ K:

t∑
τ=1

⟨q̃τ , wτ+1 − x⟩ ≤ D2

2η
− 1

2η

t∑
τ=1

∥wτ − wτ+1∥2

Proof of Lemma A.5. The update rule wt+1 = ΠK (wt − ηq̃t) can be re-written as a convex optimization problem over K:

wt+1 = ΠK (wt − ηq̃t) = argmin
x∈K

{
∥wt − ηq̃t − x∥2

}
= argmin

x∈K

{
⟨q̃t, x− wt⟩+

1

2η
∥x− wt∥2

}
The first equality is our update definition, the second is by the definition of the projection operator, and then we rewrite it in
a way that does not affect the minimum point.

Now, since wt+1 is the minimal point of the above convex problem, then from optimality conditions we obtain:〈
q̃t +

1

η
(wt+1 − wt), x− wt+1

〉
≥ 0, ∀x ∈ K

Re-arranging the above, we get that:

⟨q̃t, wt+1 − x⟩ ≤ 1

η
⟨wt − wt+1, wt+1 − x⟩ = 1

2η
∥wt − x∥2 − 1

2η
∥wt+1 − x∥2 − 1

2η
∥wt − wt+1∥2

Where the equality is an algebraic manipulation. After summing over t we get:

t∑
τ=1

⟨q̃τ , wτ+1 − x⟩ ≤ 1

2η

t∑
τ=1

(
∥wτ − x∥2 − ∥wτ+1 − x∥2 − ∥wτ − wτ+1∥2

)
=

∥w1 − x∥2 − ∥wt+1 − x∥2

2η
− 1

2η

t∑
τ=1

∥wτ − wτ+1∥2 ≤ D2

2η
− 1

2η

t∑
τ=1

∥wτ − wτ+1∥2

Where the second line is due to splitting the sum into two sums, and using the fact that the first one is a telescopic sum, and
lastly, we use the diameter of K. This establishes the lemma.

Lemma A.6. If f : K → R is convex and L-smooth, and x∗ = argmin
x∈K

{f(x)}, then ∀x ∈ Rd:

∥∇f(x)−∇f(x∗)∥2 ≤ 2L(f(x)− f(x∗))

Proof of Lemma A.6. Let us define a new function:

h(x) = f(x)− f(x∗)− ⟨∇f(x∗) , x− x∗⟩

Since f is convex and L-smooth, we know that:

0 ≤ h(x) ≤ L

2
∥x− x∗∥2

The gradient of this function is:

∇h(x) = ∇f(x)−∇f(x∗)
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We can see that h(x∗) = 0,∇h(x∗) = 0, and that x∗ is the global minimum. The function h is also convex and L-smooth,
since the gradient is the same as f up to a constant translation. We will add to the domain of h to include all Rd, while still
being convex and L-smooth. Since h is convex then:

h(y) ≥ h(x∗) + ⟨∇h(x∗), y − x∗⟩ = 0, ∀y ∈ Rd

It is true even for points outside of the original domain, meaning that x∗ remains the global minimum even after this. For a
smooth function, ∀x, y ∈ Rd:

h(y) ≤ h(x) + ⟨∇h(x), y − x⟩+ L

2
∥y − x∥2

By picking y = x− 1
L∇h(x), we get:

h(x)− h(y) ≥ 1

2L
∥∇h(x)∥2

Rearranging, we get:

∥∇h(x)∥2 ≤ 2L(h(x)− h(y)) ≤ 2L · h(x)

By using x ∈ K we get:

∥∇f(x)−∇f(x∗)∥2 ≤ 2L(f(x)− f(x∗)− ⟨∇f(x∗) , x− x∗⟩

Since x∗ is the minimum point of f then:

⟨∇f(x∗) , x− x∗⟩ ≥ 0, ∀x ∈ K

Thus we get that:

∥∇f(x)−∇f(x∗)∥2 ≤ 2L(f(x)− f(x∗))

Lemma A.7. If At ≤ 1
2T

∑T
τ=1 Aτ + B,∀t ∈ [T ], then At ≤ 2B,∀t ∈ [T ].

Proof of Lemma A.7. Let’s sum the inequalities:

T∑
t=1

At ≤
T∑

t=1

(
1

2T

T∑
τ=1

Aτ + B

)
=

1

2

T∑
τ=1

Aτ + TB

The inequality is from the assumption, and the equality is because we sum constant values. If we rearrange this we get:

T∑
τ=1

Aτ ≤ 2TB

And then:

At ≤
1

2T

T∑
τ=1

Aτ + B ≤ B + B = 2B
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B. Proofs of Section 2
B.1. Proof of Equations (4) to (7)

Both claims use the same principle:

E ∥X − E [X]∥2 ≤ E ∥X∥2

And so:

E ∥∇fi(x; z)−∇fi(x)∥2 ≤E ∥∇fi(x; z)∥2 ≤ G2

E ∥(∇fi(x; z)−∇fi(x))− (∇fi(y; z)−∇fi(y))∥2 ≤E ∥∇fi(x; z)−∇fi(y; z)∥2 ≤ L2 ∥x− y∥2

With the heterogeneity, ∇f(x) is the empirical mean of ∇fi(x), so the same rule applies:

1

M

M∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤E ∥∇fi(x)∥2 ≤ G2

1

M

M∑
i=1

∥(∇fi(x)−∇f(x))− (∇fi(y)−∇f(y))∥2 ≤E ∥∇fi(x)−∇fi(y)∥2 ≤ L2 ∥x− y∥2

Thus σ, ξ ≤ G and σL, ξL ≤ L.

B.2. Proof of Lemma 2.1

The first part will be a combination of the bounded variance and the bounded heterogeneity. At first, we will assume that M
is fixed:

E ∥g(x)−∇f(x)∥2 = E

∥∥∥∥∥ 1

m

∑
i∈M

∇fi(x; zi)−∇f(x)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

∑
i∈M

∇fi(x)−∇f(x)

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

m

∑
i∈M

∇fi(x; zi)−∇fi(x)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

∑
i∈M

∇fi(x)−∇f(x)

∥∥∥∥∥
2

+
1

m2

∑
i∈M

E ∥∇fi(x; zi)−∇fi(x)∥2

≤

∥∥∥∥∥ 1

m

∑
i∈M

∇fi(x)−∇f(x)

∥∥∥∥∥
2

+
1

m2

∑
i∈M

σ2

=

∥∥∥∥∥ 1

m

∑
i∈M

∇fi(x)−∇f(x)

∥∥∥∥∥
2

+
σ2

m

At first we use the definition of g(x), then we use the fact that E ∥X∥2 = ∥EX∥2 + E ∥X − EX∥2 and E [∇fi(x; zi)] =
∇fi(x). Then we use the fact that the variance of a sum equal to the sum of the variances, and then use the bounded variance.
Next we need to bound the first term:∥∥∥∥∥ 1

m

∑
i∈M

∇fi(x)−∇f(x)

∥∥∥∥∥
2

=
1

m2

∥∥∥∥∥
M∑
i=1

I {i ∈ M} (∇fi(x)−∇f(x))

∥∥∥∥∥
2

=
1

m2

M∑
i=1

M∑
j=1

I {i ∈ M} I {j ∈ M} ⟨∇fi(x)−∇f(x) ,∇fj(x)−∇f(x)⟩

Where we rewrote the sum using the indicator function, and then open the square into two sums. Now we will add an
expectation on the randomness of M. Note that the only random variables here are the indicators. The properties of the
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indicators, given that M is chosen uniformly:

E [I {i ∈ M} I {j ∈ M}] = P {i, j ∈ M} =

{
m
M i = j
m(m−1)
M(M−1) i ̸= j

=
m(m− 1)

M(M − 1)
+

(
m

M
− m(m− 1)

M(M − 1)

)
I {i = j} =

m(m− 1)

M(M − 1)
+

m(M −m)

M(M − 1)
I {i = j}

Where at the end, we wrote it using an indicator, for the case they are equal. Returning to the bound, we get:

E

∥∥∥∥∥ 1

m

∑
i∈M

∇fi(x)−∇f(x)

∥∥∥∥∥
2

=
1

m2

M∑
i=1

M∑
j=1

(
m(m− 1)

M(M − 1)
+

m(M −m)

M(M − 1)
I {i = j}

)
⟨∇fi(x)−∇f(x) ,∇fj(x)−∇f(x)⟩

=
m− 1

mM(M − 1)

M∑
i=1

M∑
j=1

⟨∇fi(x)−∇f(x) ,∇fj(x)−∇f(x)⟩+ M −m

mM(M − 1)

M∑
i=1

∥∇fi(x)−∇f(x)∥2

=
M −m

m(M − 1)

1

M

M∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ M −m

M − 1

ξ2

m

Where at first we inputted the expectation of the indicators, then separated the sum into two, then we see that the first sum is
a multiplication of two independent sums, that are both equal to 0, since ∇f(x) = 1

M

∑M
i=1 ∇fi(x), and finally we use the

definition of ξ. In total we got that:

E ∥g(x)−∇f(x)∥2 ≤ 1

m

(
σ2 +

M −m

M − 1
ξ2
)

For the second part, we will use similar steps, but with the bounded smoothness variance:

E ∥(g(x)−∇f(x))− (g(y)−∇f(y))∥2 = E

∥∥∥∥∥ 1

m

∑
i∈M

((∇fi(x; zi)−∇f(x))− (∇fi(y; zi)−∇f(y)))

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

∑
i∈M

((∇fi(x)−∇f(x))− (∇fi(y)−∇f(y)))

∥∥∥∥∥
2

+E

∥∥∥∥∥ 1

m

∑
i∈M

((∇fi(x; zi)−∇fi(x))− (∇fi(y; zi)−∇fi(y)))

∥∥∥∥∥
2

Where we first used the definitions of g(x), g(y) and the variance rule, the same steps as before. Also as before, we will
bound the second term using the smoothness variance bound:

E

∥∥∥∥∥ 1

m

∑
i∈M

((∇fi(x; zi)−∇fi(x))− (∇fi(y; zi)−∇fi(y)))

∥∥∥∥∥
2

=
1

m2

∑
i∈M

E ∥((∇fi(x; zi)−∇fi(x))− (∇fi(y; zi)−∇fi(y)))∥2

≤ 1

m2

∑
i∈M

σ2
L ∥x− y∥2 =

σ2
L

m
∥x− y∥2

The first term is the difficult one, so we will use indicators, as before. For simplicity of the writing, we will define
∆i = (∇fi(x)−∇f(x))− (∇fi(y)−∇f(y))∥∥∥∥∥ 1

m

∑
i∈M

∆i

∥∥∥∥∥
2

=
1

m2

∥∥∥∥∥
M∑
i=1

I {i ∈ M}∆i

∥∥∥∥∥
2

=
1

m2

M∑
i=1

M∑
j=1

I {i ∈ M} I {j ∈ M} ⟨∆i,∆j⟩
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And just as before, we will use expectation over M:

E

∥∥∥∥∥ 1

m

∑
i∈M

∆i

∥∥∥∥∥
2

=
1

m2

M∑
i=1

M∑
j=1

(
m(m− 1)

M(M − 1)
+

m(M −m)

M(M − 1)
I {i = j}

)
⟨∆i,∆j⟩

=
m− 1

mM(M − 1)

M∑
i=1

M∑
j=1

⟨∆i,∆j⟩+
M −m

mM(M − 1)

M∑
i=1

∥∆i∥2

=
M −m

m(M − 1)

1

M

M∑
i=1

∥∆i∥2 ≤ M −m

M − 1

ξ2L
m

∥x− y∥2

Where we used the same steps, including the fact that
∑M

i=1 ∆i = 0 and the definition of ξL. In total we got that:

E ∥(g(x)−∇f(x))− (g(y)−∇f(y))∥2 ≤ 1

m

(
σ2
L +

M −m

M − 1
ξ2L

)
∥x− y∥2

B.3. Proof of Lemma 2.3

Let us calculate Dα (P∥Q) by definition.

Dα (P∥Q) =
1

α− 1
log

(
EX∼P

[(
P (X)

Q(X)

)α−1
])

=
1

α− 1
log
(
EX∼P

[
e(α−1) 1

2σ2 (∥X−µ−∆∥2−∥X−µ∥2)
])

=
1

α− 1
log
(
EX∼P

[
e

α−1

2σ2 (∥∆∥2−2⟨∆,X−µ⟩)
])

=
1

α− 1
log

(
e

α−1

2σ2 ∥∆∥2+ 1
2σ

2 (α−1)2

4σ4 4∥∆∥2

)
=
∥∆∥2

2σ2
+

(α− 1) ∥∆∥2

2σ2
=

α ∥∆∥2

2σ2

The first equality is the definition of the Rényi divergence, in the second we input the values of P and Q, then we open
the norm, and then we calculate the expectation using the moment generating function of a Gaussian random vector
E
[
e⟨a,X⟩] = e⟨µ,a⟩+

1
2σ

2∥a∥2

, and finally the log and the exponent cancel each other, and we fix things up.

B.4. Proof of Lemma 2.6

We will start with the first part. To do it, we will show another property of the Rényi divergence. Holder’s inequality states that
for any p, q ≥ 1 such that 1/p+ 1/q = 1, we get ∥fg∥1 ≤ ∥f∥p ∥g∥q . We will pick p = α, q = α

α−1 , f = P
Q1/q , g = Q1/q ,

and the norm to be on an arbitrary event A, and then:

P (A) =

∫
A

P (x)dx ≤
(∫

A

(P (x))α

(Q(x))α−1
dx

) 1
α
(∫

A

Q(x)dx

)α−1
α

≤
(
eDα(P∥Q)Q(A)

)α−1
α ≤ (eϵQ(A))

α−1
α

The equality is the definition of the probability of the event, the inequality is from Holder’s, next we expand the integral over
everything to get the Rényi divergence, and finally we bound the Rényi divergence by ϵ. We pick the event A to be A = O,
and then:

P {A(S) = O} ≤ (eϵP {A(S ′) = O})1−
1
α

If (eϵP {A(S ′) = O})1−
1
α ≤ δ then P {A(S) = O} ≤ δ. If (eϵP {A(S ′) = O})1−

1
α > δ then (eϵP {A(S ′) = O})−

1
α <

δ−
1

α−1 = e
log( 1

δ )
α−1 , and then:

P {A(S) = O} ≤ eϵ+
log( 1

δ )
α−1 P {A(S ′) = O}

If we combine both cases, we showed that:

P {A(S) = O} ≤ max

{
eϵ+

log( 1
δ )

α−1 P {A(S ′) = O} , δ

}
≤ eϵ+

log( 1
δ )

α−1 P {A(S ′) = O}+ δ
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Now for the second part. Since A is
(
α, αρ2

2

)
-RDP for every α > 1, then it is also

(
αρ2

2 +
log( 1

δ )
α−1 , δ

)
-DP, for every

α > 1, δ ∈ (0, 1). We will pick the value that minimize this expression α = 1 + 1
ρ

√
2 log

(
1
δ

)
, and get that for every

δ ∈ (0, 1), A is
(

ρ2

2 + ρ
√
2 log

(
1
δ

)
, δ
)

-DP.

C. Proofs of Section 3
C.1. Proof of Equation (10)

We will start with Equation (9), βt = 1− αt−1

αt
and qt = αtdt.

qt =αtdt = αt (∇f(xt; zt) + (1− βt)(dt−1 −∇f(xt−1; zt))) = αt

(
∇f(xt; zt) +

αt−1

αt
(dt−1 −∇f(xt−1; zt))

)
=αtdt + αt−1(dt−1 −∇f(xt−1; zt)) = qt−1 + αtdt − αt−1∇f(xt−1; zt) = qt−1 + st

Where at first we use the definition of qt, then Equation (9), then input our choice of βt, open the brackets and finally reuse
the definition of qt−1 and the definition of st.

D. Proofs of Section 4
D.1. Proof of Lemma 4.1

We will use a definitions of q̃t, qt, s̃t, st, s̃t,i, st,i, Yt,i.

q̃t =

t∑
τ=1

s̃τ =

t∑
τ=1

1

m

∑
i∈Mτ

s̃τ,i =

t∑
τ=1

1

m

∑
i∈Mτ

(sτ,i + Yτ,i − Yτ−1,i)

=

t∑
τ=1

1

m

∑
i∈Mτ

sτ,i +

t∑
τ=1

1

m

∑
i∈Mτ

(Yτ,i − Yτ−1,i)

=

t∑
τ=1

sτ +
1

m

M∑
i=1

∑
τ≤t&τ∈Ti

(Yτ,i − Yτ−1,i) = qt +
1

m

M∑
i=1

Yt,i

At first we used q̃t =
∑t

τ=1 s̃τ , then s̃τ = 1
m

∑
i∈Mτ

s̃τ,i, then s̃τ,i = sτ,i + Yτ,i − Yτ−1,i, then we split the sums using
the linearity of the summation. For the first sum we used sτ,i =

1
m

∑
i∈Mτ

sτ,i and then qt =
∑t

τ=1 sτ . For the second
sum, we switched the order of summation and introduced a new notation Ti = {t|i ∈ Mt} to help us reverse Mτ . Finally,
while it is not very clear, the sum over τ is a telescopic sum, due to the definition of Yτ,i as the last noise generated by
machine i at time-step t, and the fact that we sum over Ti, and thus

∑
τ≤t&τ∈Ti

(Yτ,i − Yτ−1,i) = Yt,i.

D.2. Proof of Lemma 4.2

Before we begin, we shall bound the difference between consecutive query points:

xt − xt−1 = xt −
α1:txt − αtwt

α1:t−1
=

αt

α1:t−1
(wt − xt)

Where the first equality is due to α1:txt = α1:t−1xt−1 + αtwt. Using the above enables to bound the following scaled
difference:

αt−1 ∥xt − xt−1∥ =

(
αt−1αt

α1:t−1

)
∥wt − xt∥ ≤ 2D

Where we use that fact that αt = t, which implies αt−1αt = 2α1:t−1, as well as the bounded diameter assumption.

20



Balancing Partial-Participation and Efficiency via Noise Cancellation

First part:

∥st,i∥ = ∥αtgt,i − αt−1g̃t−1,i∥ ≤ (αt − αt−1) ∥gt,i∥+ αt−1 ∥gt,i − g̃t−1,i∥
=(αt − αt−1) ∥∇f(xt; zt,i)∥+ αt−1 ∥∇f(xt; zt,i)−∇f(xt−1; zt,i)∥
≤(αt − αt−1)G+ αt−1L ∥xt − xt−1∥ ≤ G+ 2LD := S

The first equality is from the definition of st,i, then we use the triangle inequality, then explicitly employ the definitions
of gt,i, g̃t−1,i, next we use Lipschitz and smoothness, and finally, we employ the bound on xt − xt−1 and αt = t, and the
definition of S.

Second part: We will also define gt :=
1
m

∑
i∈M gt,i and g̃t :=

1
m

∑
i∈M g̃t,i, so that st = αtgt − αt−1g̃t−1. The proof

will follow similarly to the proof of Lemma 2.1. At first, we will fix Mt:

E ∥st − s̄t∥2 = E

∥∥∥∥∥ 1

m

∑
i∈Mt

(st,i − s̄t)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

∑
i∈Mt

(s̄t,i − s̄t)

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

m

∑
i∈Mt

(st,i − s̄t,i)

∥∥∥∥∥
2

This are the same steps as the proof of Lemma 2.1. The second term is:

E

∥∥∥∥∥ 1

m

∑
i∈Mt

(st,i − s̄t,i)

∥∥∥∥∥
2

=
1

m2

∑
i∈Mt

E ∥st,i − s̄t,i∥2 =
1

m2

∑
i∈Mt

E ∥αt(gt,i − ḡt,i)− αt−1(g̃t−1,i − ḡt−1,i)∥2

≤ 1

m2

∑
i∈Mt

(
(αt − αt−1)

√
E ∥gt,i − ḡt,i∥2 + αt−1

√
E ∥(gt,i − ḡt,i)− (g̃t−1,i − ḡt−1,i)∥2

)2

≤ 1

m2

∑
i∈Mt

((αt − αt−1)σ + αt−1σL ∥xt − xt−1∥)2 ≤ (σ + 2σLD)2

m
=

σ̃2

m

Where we used the fact the each st,i − s̄t,i is independent with zero mean, used the definitions of st,i, s̄t,i, then we use the

inequality: E ∥X + Y ∥2 ≤
(√

E ∥X∥2 +
√
E ∥Y ∥2

)2

, which holds since:

E ∥X + Y ∥2 = E ∥X∥2 + 2E ⟨X,Y ⟩+ E ∥Y ∥2

≤ E ∥X∥2 + 2

√
E ∥X∥2 E ∥Y ∥2 + E ∥Y ∥2 =

(√
E ∥X∥2 +

√
E ∥Y ∥2

)2

And finally, we used Equations (4) and (5), the bounds from the first part, and the definition of σ̃ = σ + 2σLD.

The first term also follows similar steps to the proof of Lemma 2.1:

∥∥∥∥∥ 1

m

∑
i∈Mt

(s̄t,i − s̄t)

∥∥∥∥∥
2

=
1

m2

M∑
i=1

M∑
j=1

I {i ∈ Mt} I {j ∈ Mt} ⟨s̄t,i − s̄t, s̄t,j − s̄t⟩

Taking the expectation over the randomization of Mt that is in the indicators, and following the same steps of the proof of
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Lemma 2.1, we get:

E

∥∥∥∥∥ 1

m

∑
i∈Mt

(s̄t,i − s̄t)

∥∥∥∥∥
2

=
M −m

m(M − 1)

1

M

M∑
i=1

∥s̄t,i − s̄t∥2

=
M −m

m(M − 1)

1

M

M∑
i=1

∥αt(ḡt,i − ḡt)− αt(ḡt−1,i − ḡt−1)∥2

≤ M −m

m(M − 1)

(αt − αt−1)

√√√√ 1

M

M∑
i=1

∥ḡt,i − ḡt∥2 + αt−1

√√√√ 1

M

M∑
i=1

∥(ḡt,i − ḡt)− (ḡt−1,i − ḡt−1)∥2
2

≤ M −m

m(M − 1)
((αt − αt−1)ξ + αt−1ξL ∥xt − xt−1∥)2

≤M −m

M − 1

(ξ + 2ξLD)2

m
=

M −m

M − 1

ξ̃2

m

Where at first we used the steps of the proof of Lemma 2.1, then used the definitions of s̄t,i, s̄t, then used E ∥X + Y ∥2 ≤(√
E ∥X∥2 +

√
E ∥Y ∥2

)2

with empirical mean instead of expectation, and finally used Equations (6) and (7), the bounds

from the first part, and the definitions of ξ̃ = ξ + 2ξLD.

In total, we got:

E ∥st − s̄t∥2 =
1

m

(
σ̃2 +

M −m

M − 1
ξ̃2
)

D.3. Proof of Equation (15)

We will start with the definition of εt and the update rule of qt:

εt = qt − αtḡt = qt−1 + st − αtḡt = εt−1 + αt−1ḡt−1 + st − αtḡt = εt−1 + st − s̄t

Where at first we use the definition of εt, then Equation (10), then the definition of εt−1, and finally the definition of s̄t.

D.4. Proof of Lemma 4.3

Notice that εt is a Martingale sequence with a difference sequence of st − s̄t. It means that:

E ∥εt∥2 =

t∑
τ=1

E ∥sτ − s̄τ∥2 ≤
t∑

τ=1

1

m

(
σ̃2 +

M −m

M − 1
ξ̃2
)

=
t

m

(
σ̃2 +

M −m

M − 1
ξ̃2
)

Where at first we used Lemma A.2, and then used Lemma 4.2.

E. Proofs of Section 5
E.1. Proof of Theorem 5.1

Let us look at a single machine i. Let Si,S ′
i be neighboring datasets of |Ti| samples which differ on a single data point; i.e. as-

sume there exists τ∗ ∈ Ti such that Si := {zt1,i, zt2,i, . . . , zτ∗,i, . . . , zt|Ti|,i
} and S ′

i := {zt1,i, zt2,i, . . . , z′τ∗,i, . . . , zt|Ti|,i
},

and zτ∗ ̸= z′τ∗ .
Notation: We will employ st,i(Si), s̃t,i(Si) to denote the resulting values of these quantities when we invoke our algorithm
with the dataset Si, we will similarly denote st,i(S ′

i), s̃t,i(S ′
i).

Setup: At first let’s bound the sensitivity of sτ∗,i meaning the difference between sτ∗,i(Si) and sτ∗,i(S ′
i) conditioned on

the values of {xτ}τ
∗

τ=1. The value of xt+1 is calculated using s̃t,i and the other signals from the other machines, and the
server sends xt+1 to them afterwards. Thus, we may assume that prior to the computation of st,i, we are given {xτ}tτ=1.
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Note that given the query history x1, . . . , xτ∗ , and the dataset Si, sτ∗,i(Si) is known (respectively sτ∗,i(S ′
i) is known given

the dataset S ′
i and the query history). Also note that st,i is calculated using only xt, xt−1, zt,i, and thus for all t ̸= τ∗ we get

st,i(Si) = st,i(S ′
i), thus we only need the sensitivity of sτ∗,i (but for all possible values of τ∗, i).

Sensitivity: Since ∥sτ∗,i∥ ≤ S (Lemma 4.2), then ∥sτ∗,i(Si)− sτ∗,i(S ′
i)∥ ≤ ∥sτ∗,i(Si)∥+ ∥sτ∗,i(S ′

i)∥ ≤ 2S.
Bounding the Divergence: Here we will bound the Rényi Divergence of the sequence {s̃t,i}t∈Ti

. Note that s̃t,i =
st,i + yt,i − Yt−1,i, and that ∀t ∈ Ti, we get that

∑
τ≤t&τ∈Ti

s̃τ,i =
∑

τ≤t&τ∈Ti
sτ,i + yt,i. It means that:

Dα ({s̃t,i(Si)}t∈Ti
∥{s̃t,i(S ′

i)}t∈Ti
) =Dα

 ∑
τ≤t&τ∈Ti

s̃τ,i(Si)


t∈Ti

∥

 ∑
τ≤t&τ∈Ti

s̃τ,i(S ′
i)


t∈Ti


≤
∑
t∈Ti

Dα

 ∑
τ≤t&τ∈Ti

s̃τ,i(Si)∥
∑

τ≤t&τ∈Ti

s̃τ,i(S ′
i)


=
∑
t∈Ti

α
∥∥∥∑τ≤t&τ∈Ti

sτ,i(Si)−
∑

τ≤t&τ∈Ti
sτ,i(S ′

i)
∥∥∥2

2σ2
t

=α
∑

t∈Ti&t≥τ∗

∥sτ∗,i(Si)− sτ∗,i(S ′
i)∥

2

2σ2
t

≤ 2αS2
∑
t∈Ti

1

σ2
t

Where at first we use the post-processing property (Lemma A.4), then to composition rule (Lemma A.3), then we use
the result of the Gaussian mechanism (Lemma 2.3), then use the fact that sτ,i(Si) = sτ,i(S ′

i) for all τ ̸= τ∗, and finally
we bound each difference by 2S and sum more terms. We got that our algorithm is 2S2

∑
t∈Ti

1
σ2
t

-zCDP, meaning it is
ρ2
i

2 -zCDP if ρi = 2S
√∑

t∈Ti

1
σ2
t

.

E.2. Proof of Theorem 5.2

Start by bounding the excess loss Rt:

α1:tRt =α1:t (E [f(xt)]− f(x∗)) ≤
t∑

τ=1

E [ατ ⟨∇f(xτ ) , wτ − x∗⟩] =
t∑

τ=1

E ⟨q̃τ − ετ − Yτ , wτ − x∗⟩

=

t∑
τ=1

E ⟨q̃τ , wτ − x∗⟩+
t∑

τ=1

E ⟨ετ + Yτ , x
∗ − wτ ⟩

=

t∑
τ=1

E ⟨q̃τ , wτ+1 − x∗⟩+
t∑

τ=1

E ⟨q̃τ , wτ − wτ+1⟩+
t∑

τ=1

E ⟨ετ + Yτ , x
∗ − wτ ⟩

≤D2

2η
− 1

2η

t∑
τ=1

E ∥wτ − wτ+1∥2 +
t∑

τ=1

E ⟨q̃τ , wτ − wτ+1⟩+
t∑

τ=1

E ⟨ετ + Yτ , x
∗ − wτ ⟩

≤D2

2η
+

t∑
τ=1

ατE ⟨∇f(xτ )−∇f(x∗) , wτ − wτ+1⟩ −
1

2η
∥wτ − wτ+1∥2

+

t∑
τ=1

E ⟨ατ∇f(x∗) , wτ − wτ+1⟩︸ ︷︷ ︸
(A)

+

t∑
τ=1

E ⟨ετ , x∗ − wτ+1⟩︸ ︷︷ ︸
(B)

+

t∑
τ=1

E ⟨Yτ , x
∗ − wτ+1⟩︸ ︷︷ ︸

(C)

The first inequality is the anytime theorem (Theorem A.1), then we use q̃t = qt + εt + Yt, split it into two sums, split the
first sum using wt+1, bound the first sum using Lemma A.5, and finally we add and subtract ∇f(x∗) and reuse the definition
of q̃t and add it to the other sums. We will now bound the bottom terms:
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Bounding (A): This term can be written as follows:

(A) :=
t∑

τ=1

E ⟨ατ∇f(x∗) , wτ − wτ+1⟩ =
t∑

τ=1

(ατ − ατ−1)E ⟨∇f(x∗) , wτ ⟩ − αtE ⟨∇f(x∗) , wt+1⟩

=

t∑
τ=1

(ατ − ατ−1)E ⟨∇f(x∗) , wτ − wt+1⟩ ≤
t∑

τ=1

(ατ − ατ−1) ∥∇f(x∗)∥E [∥wτ − wt+1∥]

≤D ∥∇f(x∗)∥
t∑

τ=1

(ατ − ατ−1) = αtD ∥∇f(x∗)∥ = αtDG∗

The first equality is rearrangement of the sum while defining α0 = 0, then we put the last term into the sum, and use Cauchy-
Schwartz. Finally, we use the diameter bound and telescope the sum. Note that we use the definition G∗ := ∥∇f(x∗)∥, and
that G∗ ∈ [0, G].
Bounding (B): This term is bounded as follows:

(B) :=
t∑

τ=1

E ⟨ετ , x∗ − wτ+1⟩ ≤
t∑

τ=1

E [∥ετ∥ · ∥x∗ − wτ+1∥]

≤D

t∑
τ=1

√
E ∥ετ∥2 ≤ D

t∑
τ=1

√√√√(σ̃2 + ξ̃2
)
τ

m
≤

D

√
σ̃2 + ξ̃2t1.5
√
m

The first inequality is Cauchy-Schwartz, and the second is using the bounded diameter and Jensen’s inequality w.r.t. concave
function

√
x, then we use Lemma 4.3, and finally increase τ to t.

Bounding (C): This term is bounded as follows:

(C) :=
t∑

τ=1

E ⟨Yτ , x
∗ − wτ+1⟩ =

t∑
τ=1

1

m

M∑
i=1

E ⟨Yτ,i, x
∗ − wτ+1⟩

=
1

m

M∑
i=1

t∑
τ=1

τ∑
s=1

p(1− p)τ−sE ⟨ys,i, x∗ − wτ+1⟩ =
p

m

M∑
i=1

t∑
τ=1

τ∑
s=1

(1− p)τ−sE ⟨ys,i, ws − wτ+1⟩

=
p

m

M∑
i=1

t∑
τ=1

τ∑
s=1

(1− p)τ−s
τ∑

r=s

E ⟨ys,i, wr − wr+1⟩

=
p

m

M∑
i=1

t∑
r=1

r∑
s=1

(1− p)r−sE ⟨ys,i, wr − wr+1⟩
t∑

τ=r

(1− p)τ−r

≤ 1

m

M∑
i=1

t∑
r=1

r∑
s=1

(1− p)r−sE ⟨ys,i, wr − wr+1⟩ =
t∑

r=1

E

〈(
1

m

M∑
i=1

r∑
s=1

(1− p)r−sys,i

)
, wr − wr+1

〉

≤ 1

4η

t∑
r=1

E ∥wr − wr+1∥2 + η

t∑
r=1

E

∥∥∥∥∥ 1

m

M∑
i=1

r∑
s=1

(1− p)r−sys,i

∥∥∥∥∥
2

At first we write Yτ as shown in Lemma 4.1, then we know that Yτ,i is actually ys,i, where s is a geometric random variable
that starts at τ downwards with probability p = m

M . ys,i is independent of everything up to the time step s, so we replace x∗

with ws, divide ws −wτ+1 into a sum of differences, then rearrange the order of summation, and the sum in τ is a geometric
sum bounded by 1

p . We put the sum of r outside and use Cauchy-Schwartz with 1
4η and η to split it into two sums. We will
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now bound the second sum:

η

t∑
r=1

E

∥∥∥∥∥ 1

m

M∑
i=1

r∑
s=1

(1− p)r−sys,i

∥∥∥∥∥
2

≤ η

m2

t∑
r=1

M∑
i=1

r∑
s=1

(1− p)2(r−s)E ∥ys,i∥2

=
η

m2

M∑
i=1

t∑
s=1

E ∥ys,i∥2
t∑

r=s

(1− p)2(r−s) ≤ η

m2p(2− p)

M∑
i=1

t∑
s=1

E ∥ys,i∥2

=
η

m2p(2− p)

M∑
i=1

t∑
s=1

4S2d (1 + log T )

ρ2
E [Ns,i] =

4S2ηd (1 + log T )

ρ2m2p(2− p)

M∑
i=1

t∑
s=1

(1 + p(s− 1))

=
4S2ηMd (1 + log T )

ρ2m2p(2− p)

(
t+ p

t(t− 1)

2

)
=

2S2ηd (1 + log T )

ρ2mp2(2− p)

(
pt2 + (2− p)t

)
≤ 2S2ηtd (1 + log T )

ρ2mp2
(pt+ 1)

Each ys,i is independent of each other and with zero mean, so the variance of the sum is the sum of variances, with the
factors squared. We rearrange the summation order and the sum of r is a geometric sum that is bounded by 1

p(2−p) , and then
we use the variance of ys,i, which is proportional to the number of time steps of machine i played up to the time step s,
which we call Ns,i. Ns,i − 1 is binomial random variables with s− 1 trials with probability p, so we input the expectation of
it, then we solve both remaining sums. We input M = m

p , and finally we cancel the two 2− p and bound it from below by 1.

In total, we get:

α1:tRt ≤
t∑

τ=1

ατE ⟨∇f(xτ )−∇f(x∗) , wτ − wτ+1⟩ −
1

4η
∥wτ − wτ+1∥2

+
D2

2η
+ αtDG∗ +

D

√
σ̃2 + ξ̃2t1.5
√
m

+
2S2ηtd (1 + log T )

ρ2mp2
(pt+ 1)

≤η

t∑
τ=1

α2
τE ∥∇f(xτ )−∇f(x∗)∥2 + D2

2η
+ αtDG∗ +

D

√
σ̃2 + ξ̃2t1.5
√
m

+
2S2ηtd (1 + log T )

ρ2mp2
(pt+ 1)

≤4ηL

t∑
τ=1

α1:τRτ +
D2

2η
+ αtDG∗ +

D

√
σ̃2 + ξ̃2t1.5
√
m

+
2S2ηtd (1 + log T )

ρ2mp

(
t+

1

p

)
Where at first we inputted what we got, used Cauchy-Schwartz, and finally bounded α2

τ ≤ 2α1:τ and
E ∥∇f(xτ )−∇f(x∗)∥2 ≤ 2LRτ (Lemma A.6). If we enforce η ≤ 1

8LT we can use Lemma A.7 to get:

α1:TRT ≤ D2

η
+ 2αTDG∗ +

2D

√
σ̃2 + ξ̃2T 1.5

√
m

+
4S2ηTd (1 + log T )

ρ2mp

(
T +

1

p

)
Then after dividing by α1:T and using 1

p = M
m ≤ T , we get:

RT ≤ 2D2

ηT 2
+

4DG∗

T
+

4D

√
σ̃2 + ξ̃2

√
mT

+
16S2ηMd (1 + log T )

ρ2m2

Picking η = min

{
ρDm

2ST
√

2Md(1+log T )
, 1
8LT

}
, we get:

RT ≤ 4D(G∗ + 4LD)

T
+

4D

√
σ̃2 + ξ̃2

√
mT

+
8DS

√
2Md (1 + log T )

ρmT

F. Trusted Server
The algorithm for the trusted server case is almost the same as the one in (Reshef & Levy, 2024). The only difference is that
we use m machines instead of M at each time-step, and that we let the server hold qt, instead of each machine holding its
own qt,i. Algorithm 2 depicts our approach.
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Algorithm 2 DP-µ2-FL for Trusted Server
Inputs: #iterations T , #machines in total M , #machines per step m, initial point x0, learning rate η > 0, im-
portance weights {αt > 0}, noise distributions

{
Pt = N (0, Iσ2

t )
}

, per-machine i ∈ [M ] a dataset of samples
Si = {z1,i, . . . , zT,i}
Initialize: set w1 = x1 = x0, and q0 = 0
for t = 1, . . . , T do

Choose Mt ⊆ M with |Mt| = m
for every Machine i ∈ Mt do

Actions of Machine i:
Retrieve zt,i from Si, compute gt,i = ∇f(xt; zt,i), and g̃t−1,i = ∇f(xt−1; zt,i)
Update st,i = αtgt,i − αt−1g̃t−1,i

end for
Actions of Server:
Aggregate st =

1
m

∑
i∈Mt

st,i
Update qt = qt−1 + st
Draw Yt ∼ N

(
0, Iσ2

t

)
Update q̃t = qt + Yt

Update wt+1 = ΠK(wt − ηq̃t)

Update xt+1 =
(
1− αt+1

α1:t+1

)
xt +

αt+1

α1:t+1
wt+1

end for
Output: xT

F.1. Privacy Guarantees

Here we establish the privacy guarantees of Algorithm 1. Concretely, the following theorem shows how does the privacy of
our algorithm depends on the variances of injected noise {yt,i}t.
Theorem F.1. Let K ⊂ Rd be a convex set of diameter D, and {fi(·; z)}z∈Zi be a family of convex G-Lipschitz and
L-smooth functions, and SD = G+ 2LD. Then invoking Algorithm 2 with number of participating machines |Mt| = m,
noise distributions Yt ∼ Pt,i = N

(
0, Iσ2

t

)
, and any learning rate η > 0, the resulting sequences {xt}t is ρ2

2 -zCDP, where:

ρ = 2S
m

√∑T
t=1

1
σ2
t

.

The proof is the same as the one in (Reshef & Levy, 2024).

Proof Sketch. First, assume that Si and S ′
i are neighboring datasets, meaning that there exists only a single time-step

τ∗ ∈ Ti where they differ, i.e. that zτ∗,i ̸= z′τ∗,i.

Then, we use the post-processing property of privacy (Lemma A.4) to say that the privacy of {xt}t is bounded by the privacy
of {q̃t}t. Using the composition rule (Lemma A.3), we bound the privacy of them with the sum of the privacy of each

individual member. We may use Lemma 2.3 and obtain that q̃t is ∆2
t

2σ2
t

-zCDP. Using the bound ∥sτ,i∥ ≤ S, from Lemma 4.2,

we show that ∆t ≤ 2S
m . Thus, we are 2S2

m2σ2
t

-zCDP. Using the above together, we get that {xt}t is 2S2

m2

∑T
t=1

1
σ2
t

-zCDP.

F.2. Convergence Guarantees

Here we establish the convergence guarantees of Algorithm 2.

Theorem F.2. Let K ⊂ Rd be a convex set of diameter D and {fi(·; z)}i∈[M ],z∈Zi
be a family of G-Lipschitz and L-smooth

functions over K, with σ, ξ ∈ [0, G], σL, ξL ∈ [0, L], and let Mt be a subset of [M ] of size m, define G∗ := ∇f(x∗), where
x∗ = argminx∈K f(x), and S := G+ 2LD, σ̃ := σ + 2σLD, ξ̃ := ξ + 2ξLD, moreover let T ∈ N, ρ > 0.

Then, upon invoking Algorithm 2 with αt = t, η = min
{

ρDm

2ST
√
d
, 1
4LT

}
, and σ2

t = 4S2T
ρ2m2 , with Nt,i being the number of

time steps that machine i participated up to time step t, and any starting point x1 ∈ K and datasets {Si ∈ ZT
i }i∈[M ], then

Algorithm 2 satisfies ρ2

2 -zCDP w.r.t the query point, i.e. {xt}t.
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Furthermore, if Si consists of i.i.d. samples from a distribution Di for all i ∈ [M ], and Mi are also chosen uniformly and
i.i.d then Algorithm 2 guarantees:

RT := E [f(xT )]−min
x∈K

f(x) ≤ 4D

G∗ + 2LD

T
+

√
σ̃2 + ξ̃2
√
mT

+
2S

√
d

ρmT


The proof is the same as the one in (Reshef & Levy, 2024). Notably, the above bounds are optimal.

Proof Sketch. The privacy guarantees follow directly from Theorem 5.1, and our choice of σ2
t :

2S2
T∑

t=1

1

σ2
t

=
2S2

m2

T∑
t=1

ρ2m2

4S2T
=

ρ2

2T

T∑
t=1

1 =
ρ2

2

Regrading convergence, in the spirit of µ2-SGD analysis (Levy, 2023; Reshef & Levy, 2024), we bound the excess loss
using the anytime theorem (Theorem A.1), rewrite the expression to get to the form of Lemma A.5 and use it to bound, and
separate the terms of εt and Yt. We already bounded εt in Lemma 4.3, though we bound M−m

M−1 ≤ 1, and now the bound
on Yt is easy, since the sequence {Yt}t is i.i.d., so we can use the technique of the proof in (Reshef & Levy, 2024). We
then input all the bounds, bound the gradient using the excess loss with Lemma A.6, to get a bound of the excess loss using
the previous excess losses. Using Lemma A.7 we get the final bound on the excess loss. By inputting our chosen η, that
minimize this expression, we get our bound.

G. Analysis of Alternative Method
Here we provide a simplified analysis which demonstrates the suboptimality of the approach we present in Equation (12).
We show that the delayed updated lead to an excessive error of the gradient estimates which translates to a degraded bound,
even in the non private case.

We start by bounding the error of gradient estimate, εt, similarly to Lemma 4.3. At first, we will define εt,i := qt,i −
αt∇fi(xt), and notice that:

εt =
1

m

∑
i∈Mt

εt,i + αt

(
1

m

∑
i∈Mt

∇fi(xt)−∇f(xt)

)
If we ignore heterogeneity for simplicity, we get:

E ∥εt∥2 =
1

m2

∑
i∈Mt

E ∥εt,i∥2

Now let us look at εt,i. Similarly to Equation (15), we can write the update step of εt,i as:

εt,i = εt−τ,i + αt(∇fi(xt; zt)−∇fi(xt))− αt−τ (∇fi(xt−τ ; zt)−∇fi(xt−τ ))

We can see that εt,i is a martingale given the time-steps machine i participates Ti. Similarly to Lemma 4.2:

E ∥αt(∇fi(xt; zt)−∇fi(xt))− αt−τ (∇fi(xt−τ ; zt)−∇fi(xt−τ ))∥2

≤ ((αt − αt−τ )σ + αt−τσL ∥xt − xt−τ∥)2 ≤ σ̃2τ2

Since we know that:

αt−τ ∥xt − xt−τ∥ ≤ αt−τ
αt−τ+1:t

α1:t
D =

(t− τ)(2t− τ + 1)τ

(t+ 1)t
D ≤ 2τD

Note that τ is a geometric random variable with probability p = m
M . Nevertheless, to simplify the analysis let us look at the

”average case”, where τ = M
m :

E ∥εt,i∥2 ≤ E ∥εt−τ,i∥2 + σ̃2τ2 ≤ σ̃2

t/τ∑
k=1

τ2 = σ̃2tτ =
Mt

m
σ̃2
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Thus, in total, we get:

E ∥εt∥2 =
1

m2

∑
i∈Mt

E ∥εt,i∥2 ≤ 1

m2

∑
i∈Mt

Mt

m
σ̃2 =

Mt

m2
σ̃2

It is M
m times larger than what we get in Lemma 4.3. Plugging these bounds back into the bound for Rt, in a similar manner

to what we do in the proof of Theorem 5.2 (see Appendix E.2) leads to the following additive term in the error bound,

2

α1:T
D

T∑
τ=1

√
E ∥ετ∥2 ≤ 4D

T 2

√
M

m

T∑
τ=1

√√√√(σ̃2 + ξ̃2
)
τ

m
≤

4D

√
σ̃2 + ξ̃2

√
mT

√
M

m

This substantiates the degradation.
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