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Abstract

Denoising Diffusion Probabilistic Models (DDPMs) typically utilize white Gaus-
sian noise in their processes. In this paper, we explore several theoretical aspects
of noise in DDPMs. We derive a necessary condition for the input of the forward
diffusion process to match the denoised output, as well as a sufficient condition
for when they differ. Our findings show that minimizing the Mean Square Error
(MSE) between the actual and predicted noise in a DDPM is more effective with
colored Gaussian noise than with white Gaussian noise, and that non-Gaussian
noise offers further improvements in MSE minimization. Additionally, we demon-
strate that the probability of error between the input and denoised output in a
DDPM is reduced when using colored Gaussian noise compared to white Gaussian
noise. Furthermore, we show that a DDPM trained with white Gaussian noise
can effectively denoise processes involving any zero-mean symmetric distribution
noise. Theoretical results are validated through experiments using the Hugging
Face Hub 1000 butterfly pictures dataset and the LSUN Church-256 dataset, with
experimental outcomes confirming our theoretical findings.

1 Introduction

Denoising Diffusion Probabilistic Models (DDPMs) have emerged as a powerful class of generative
models, recognized for their ability to produce high-quality samples. Unlike traditional generative
models such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs),
DDPMs are rooted in the principles of diffusion processes from statistical physics [37][15]. The
fundamental concept of DDPMs is to capture the data distribution by inverting a diffusion process
that incrementally adds noise to the data. This method comprises two primary phases: the forward
process and the reverse process.

During the forward diffusion process, a data point is gradually corrupted by Gaussian noise over
a series of time steps, resulting in progressively noisier samples. The reverse denoising process,
which constitutes the generative phase of DDPMs, seeks to recover the original data from these
noisy observations. This process is parameterized by a neural network that learns to denoise the
samples iteratively, effectively reversing the diffusion process. The network is trained by minimizing
a variational bound on the negative log-likelihood of the data, which involves reducing the Kullback-
Leibler (KL) divergence between the true and approximate posterior distributions [15].

In most current implementations of DDPMs, white Gaussian noise is employed because it’s popular
and easy to make analysis. This raises questions: Can colored Gaussian noise or non-Gaussian noise
be used instead? Would the performance in terms of Mean Square Error (MSE) improve with these
alternative noise types? What are the theoretical guidelines to consider different noises in DDPM?
This paper investigates these fundamental theoretical questions.
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The contributions of this paper are as follows:

1. We analyze the probability lower bound for the scenario where the input to the forward
diffusion process matches the denoised output, deriving a necessary condition for this match.
We also establish a sufficient condition for when they differ.

2. To train the noise prediction network in a DDPM, it is essential to minimize the MSE
between the actual noise and the predicted noise. We demonstrate that the MSE is smaller
when the noise is colored Gaussian noise compared to white Gaussian noise.

3. We show that non-Gaussian noise outperforms Gaussian noise in minimizing the MSE
between the actual noise and the predicted noise in a DDPM if they have the same covariance
matrix.

4. We prove that the probability of error between the input and denoised output of a DDPM
has a smaller lower bound when using colored Gaussian noise compared to white Gaussian
noise.

5. We demonstrate that a DDPM trained with white Gaussian noise can be effectively used in
the denoising process when the noise samples follow any zero-mean symmetric distribution.

2 Related Work

DDPM and Modifications: In [31], several modifications to diffusion models were proposed,
including improvements to sampling speed and log-likelihood, such as enhanced noise scheduling
and reduced gradient noise. A Discrete Denoising Diffusion Probabilistic Model (D3PM) was
introduced for discrete data, generalizing the multinomial diffusion model [2]. In [7], an Iterative
Latent Variable Refinement (ILVR) method was proposed for DDPMs to generate high-quality
images using a reference image as guidance. In [49], multimodal image fusion was explored using
DDPMs, where the problem was divided into an unconditional generation subproblem and a maximum
likelihood subproblem. A pyramidal DDPM capable of generating high-resolution images from
much coarser resolution images was proposed in [35], utilizing a single score function trained with
positional embedding. Recently, a multi-task denoising diffusion framework, DiffusionMTL, was
introduced in [46]. It integrates a joint diffusion and denoising paradigm to model potential noisy
distributions in task prediction or feature maps, generating refined outputs for different tasks.

Other Denoising Diffusion Models: A Denoising Diffusion Implicit Model (DDIM) was proposed
in [38], introducing a class of non-Markovian diffusion processes with the same training objective but
a much faster reverse denoising process. In [48], a generalized DDIM was proposed by examining
the mechanism of DDIM from a numerical perspective. A Denoising Diffusion Restoration Model
(DDRM) was introduced to leverage a pre-trained denoising diffusion generative model for solving
any linear inverse problem [20]. In [22], SinDDM was presented as a method to train a DDM
using a single image by learning the internal statistics of the training image through a multi-scale
diffusion process. A Bilateral Denoising Diffusion Model (BDDM), which requires significantly
fewer steps to generate high-quality samples, was proposed in [24]. A Denoising Diffusion Bridge
Model (DDBM) was introduced based on diffusion bridges [50], where the score of the diffusion
bridge was learned from data to map between two endpoint distributions. In [13], a Semi-Implicit
Denoising Diffusion Model (SIDDM) was proposed by matching implicit and explicit factors, where
an implicit model was used to align the noise data marginal distributions with the forward diffusion
explicit conditional distribution. To enable diffusion model training with limited computational
resources while maintaining quality and flexibility, a Latent Diffusion Model (LDM) was proposed
using the latent space of powerful pretrained autoencoders [33]. Stable Diffusion [6, 43, 11], based
on LDM, employs U-Net [34] and transformer-based blocks with a self-attention mechanism [44].
Stable Diffusion is a text-conditioned LDM leveraging Contrastive Language–Image Pre-training
(CLIP) [32, 30, 25]. CLIP connects text with images, and its text encoder transforms text into
numerical representations for stable diffusion [40, 1].

Some Theoretical Foundations of DDPM: In [21], the variational lower bound (VLB) of diffusion
models was simplified to a function of the signal-to-noise ratio of the diffused data. Sampling from
DPMs was studied in [26], where an exact solution to the diffusion ordinary differential equations
(ODEs) was proposed. A Higher-Order Denoising Diffusion Solver (GENIE), based on truncated
Taylor methods, was introduced to accelerate synthesis using higher-order gradients of the perturbed
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data distribution [10]. To minimize the cumulative estimation gap between predicted and actual
trajectories, a sequence-aware loss was proposed to improve sampling quality [29]. In [4], an analytic
diffusion probabilistic model was proposed, which does not require training and can estimate variance
and KL divergence. This work was extended to the scenario with imperfect means for optimal
covariance estimation in diffusion probabilistic models [3].

Noise Reconsideration: In DDPMs, white Gaussian noise has traditionally been used for both
the diffusion and denoising processes [15, 8]. White noise is characterized by a uniform power
spectral density (PSD) across all frequencies [23]. In [28], Gamma noise and a mixture of Gaussian
noise were employed in the diffusion process, leading to improved DDPM performance. Noise level
estimation and noise scheduling adjustments were performed for DDPM in [36]. In [41], the removal
of structured noise in diffusion models was studied. A multi-scale simplex noise diffusion process
was proposed for anomaly detection in [45], where it was found that simplex noise significantly
outperformed Gaussian diffusion. Recently, blue noise, characterized by a PSD that increases with
frequency (indicating higher power at higher frequencies), was used in diffusion models [16]. This
time-varying noise model incorporates correlated noise into the training process, resulting in better
image quality than white Gaussian noise in DDPM [16]. However, these approaches have been
primarily experimental, with no accompanying theoretical analysis. In this paper, we focus on
theoretical studies regarding noise in DDPMs.

3 Background

The forward diffusion process and the reverse denoising process in DDPMs can be mathematically
described as follows.

3.1 Forward Diffusion Process

The forward diffusion process incrementally adds noise to the data over a sequence of T timesteps,
transforming an initial data sample x0 into a noisy sample xT . This process is represented as a
Markov chain, with Gaussian noise added at each step.

Given an initial data sample x0 ∼ q(x0), the forward process is defined as [15]:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)
where βt is a variance schedule that controls the amount of noise added at each timestep t. The full
forward process can be expressed as [15]:

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1). (2)

The marginal distribution of xt given x0 can be derived as [15]:
q(xt | x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I), (3)

where ᾱt =
∏t

s=1(1− βs). The noise scheduler βs is designed such that at the end of the diffusion
process ᾱt → 0, leading to [15]:

q(xT ) ≈ N (xt;0, I), (4)

3.2 Reverse Denoising Process

The reverse denoising process seeks to reconstruct the original data sample x0 from the noisy
sample xT by iteratively removing noise. This process is parameterized by a neural network that
approximates the reverse conditional distributions.

The reverse process is defined as [15]:
pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (5)

where µθ and Σθ are parameters learned by the neural network. The full reverse process is expressed
as [15]:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt), (6)
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where
p(xT ) = N (xt;0, I). (7)

The model is trained by minimizing the variational bound on the negative log-likelihood of the data.
The training objective can be written as [15]:

L = Eq(x0:T )

[
T∑

t=1

DKL(q(xt−1 | xt,x0) ∥ pθ(xt−1 | xt))

]
, (8)

where DKL represents the Kullback-Leibler divergence between the true posterior q(xt−1 | xt,x0)
and the model distribution pθ(xt−1 | xt).

Denoising Diffusion Models provide a robust framework for generative modeling by leveraging an
iterative denoising process. By training a neural network to approximate the reverse process, these
models can generate high-quality samples from complex data distributions.

4 Theoretical Studies on Noise for DDPMs

4.1 A Necessary Condition for Denoised Output Matching Input

For ease of analysis, let us denote the output from the reverse denoising process as x̂0. In most
cases, the denoised output x̂0 differs from the initial input x0. However, understanding the necessary
condition for x̂0 to match x0 is a fundamental question we address before investigating the noise.

Our theoretical findings regarding the condition for x̂0 to match x0 are encapsulated in the following
theorem.
Theorem 1. For a DDPM with input x0 and denoised output x̂0, the probability of error, denoted as
p(e) = Pr(∥x0 − x̂0∥ ≥ ϵ) where ϵ is a small number, is lower bounded by:

p(e) ≥ log(1− ᾱT )− 2

log(2πe)N |Kx0 |
+ 1, (9)

where a necessary condition for the DDPM output x̂0 to match x0 is:

log(1− ᾱT )− 2

log(2πe)N |Kx0 |
+ 1 ≤ 0, (10)

with N representing the length of x0 after vectorization, and Kx0 being the covariance matrix of x0.

The proof of Theorem 1 is provided in the Appendix.
Corollary 1. For a DDPM with input x0 and denoised output x̂0, it is impossible for x0 and x̂0 to
be identical if:

|Kx0 | <
1

(2πe)N
. (11)

The proof of Corollary 1 is provided in Appendix.

4.2 Reconsideration of Noise in DDPM

Blue noise, as utilized in [16], is a specific type of colored noise. In this paper, we explore a more
general case by studying the use of colored Gaussian noise in DDPMs. Colored Gaussian noise has
a spectral density that varies with frequency, meaning that certain frequency components are more
prominent than others [27]. When using colored Gaussian noise, the forward diffusion process can
be defined as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (12)

where ᾱt =
∏t

s=1(1− βs) and ϵ ∼ N (0,Kn). The forward process is given by:

q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtKn), (13)

where Kn is the covariance matrix of the colored Gaussian noise. Unlike white noise, where the
covariance matrix is diagonal (indicating uncorrelated noise components), the covariance matrix of
colored noise is nondiagonal, reflecting the correlation among noise components [23].
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The marginal distribution of xt given x0 can be expressed as:
q(xt | x0) = N (xt;

√
ᾱtx0, (1− ᾱt)Kn), (14)

and at the end of the diffusion process:
q(xT ) ≈ N (xt;0,Kn). (15)

The denoising diffusion process aims to maximize the evidence lower bound (ELBO), which is
equivalent to minimizing the following KL divergence [3]:

min
µn,Kn

DKL(q(x0:N ) ∥ p(x0:N )), (16)

The optimal values of µn and Kn in analytical forms were determined for DDPMs in [4], and
variance for imperfect means was studied in [3]. In [15], the optimal µn was estimated using a noise
prediction network ϵ̂t, obtained by minimizing the Mean Square Error (MSE) [3]:

min
µ̂t,t=1,2,...,T

EtEq(x0,xt) ∥ϵt − ϵ̂t∥22 . (17)

It was shown that the estimated mean value of noise xn is [15]:

µ̂n(xt) = µ̃n(xt,
1√
ᾱn

(xt −
√
β̄tϵ̂n(xt))). (18)

For white Gaussian noise with estimated mean values in (18), the optimal covariance matrix satisfying
(16) is a diagonal matrix with diagonal values [4, 3]:

σ̃∗
n(xt)

2 = λ2
t1+ γ2

t

β̄t

ᾱt
Eq(x0|xn)[(ϵn − ϵ̂n(xt))

2], (19)

which is a vector of length N . Similarly, for colored Gaussian noise with mean values in (18), the
optimal covariance matrix satisfying (16) is [3]:

K∗
n(xt) = λ2

t I+ γ2
t

β̄t

ᾱt
Eq(x0|xn)[(ϵn − ϵ̂n(xt))(ϵn − ϵ̂n(xt))

T ]. (20)

Based on these theoretical results, we can demonstrate that colored Gaussian noise is superior to
white Gaussian noise in DDPMs in terms of MSE and probability of error. We come up with the
following Theorems and Corollaries, and their proofs are provided in the Appendix.
Theorem 2. For a DDPM, to obtain the noise prediction network ϵ̂n, the MSE in (17) must be
minimized. The MSE is smaller when the noise ϵt is colored Gaussian noise compared to white
Gaussian noise.
Corollary 2. For a DDPM, non-Gaussian noise performs better than Gaussian noise in minimizing
the MSE in (17) if they have the same covariance matrix.
Theorem 3. For a DDPM with xt in the forward diffusion process and x̂t in the reverse denoising
process, the probability of error at timestep t, denoted as pt(e) = Pr(xt ̸= x̂t), is lower bounded by:

pt(e) ≥
log(1− ᾱT )− 2

log(2πe)N |Kx0 |
+ 1, (21)

with N representing the length of x0 after vectorization, and Kx0 being the covariance matrix of x0.
Theorem 4. For a DDPM with xt in the forward diffusion process and x̂t in the reverse denoising
process, the probability of error at timestep t, denoted as pt(e) = Pr(xt ̸= x̂t), has a smaller lower
bound with colored Gaussian noise than with white Gaussian noise.
Corollary 3. For a DDPM, it is possible for xt and x̂t to match each other when t = 0.

A DDPM trained with white Gaussian noise can effectively perform the denoising diffusion process
even if the noise samples in xT follow any symmetric distribution with a zero mean. We provide the
following theorem.
Theorem 5. Let a DDPM (variance-preserving (VP) diffusion) be trained with a Gaussian forward
process q(xt | x0) = N

(√
ᾱt x0, (1 − ᾱt)I

)
and let its score network be exact, i.e. sθ(x, t) =

∇x log qt(x). Consider sampling with the probability flow Ordinary Differential Equation (ODE)
associated with the VP Stochastic Differential Equation (SDE). If the initial sample xT is drawn
from any zero-mean symmetric distribution rT with a density and finite second moment, then the
reverse-time dynamics {xt}t↓0 produced by the ODE effectively performs denoising diffusion in the
sense that the KL divergence between the law µt of xt and the Gaussian-corrupted data marginal qt
is nonincreasing in t and equals 0 at t = 0. In particular, the terminal law rT need not be Gaussian.
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5 Experiments

We conducted experiments using two datasets. The first dataset consists of 1000 butterfly images from
the Hugging Face Hub [18], with each image having a resolution of 3× 32× 32. This dataset was
used to test scenarios where the noise in both the forward diffusion and reverse denoising processes
follows the same statistical distribution, such as when both are uniform noise. The second dataset
used is the LSUN-Church dataset [47], which has images with a resolution of 3× 256× 256. This
dataset was employed to explore cases where the forward diffusion process uses white Gaussian
noise, while the noise samples in the reverse denoising process might follow different distributions,
such as Laplacian noise.

Our DDPM followed the design described in [15]. We conducted experiments to validate our
theoretical findings using white Gaussian, colored Gaussian, and non-Gaussian noises. A 2D UNet
architecture was employed for the DDPM [34].

In Fig. 1, we illustrate two examples of zero-mean Gaussian noise with different covariance matrices
Kn. Despite having different covariance structures, all noise types share the same average power:

P = tr(Kn), (22)

since their traces are identical. Fig. 1(a) represents white Gaussian noise with a unit covariance
matrix, while Fig. 1(b) shows colored Gaussian noise.

(a) (b)

Figure 1: Illustration of Gaussian noises. (a) White Gaussian noise with zero-mean and Kn =[
1 0
0 1

]
, (b) Colored Gaussian noise with zero-mean and Kn =

[
1 0.5
0.5 1

]
.

As shown in Fig. 1, white Gaussian noise (Fig. 1a) has no directional preference, while colored
Gaussian noise (Fig. 1b) exhibits directional preferences. The colored noise has stronger power

(larger eigenvalue of Kn, 1.5) in the direction
[
1
1

]
compared to the weaker direction

[
−1
1

]
, which

has a smaller eigenvalue of Kn, 0.5. We also used non-Gaussian noise, specifically uniform noise,
which also has a power of 1 in each dimension (details in the supplementary material). These noises
were used in our experiments on both datasets.

5.1 Experiments with Butterfly Pictures Dataset

For this dataset, the training noise and the noise used in the denoising process share the same statistical
distributions. Our 2D-UNet encoder consists of four downsample blocks, and the decoder has four
upsample blocks. Each UNet block contains two ResNet layers. In Fig. 2, we summarize the MSE
versus the number of epochs during 2D-UNet training. As shown, colored Gaussian noise results in
lower MSE than white Gaussian noise, which aligns with our theoretical result in Theorem 2.

We present the generated outputs from the DDPM for the three different noises in Fig. 3. We used
T = 1000 in our experiments and provided one set of examples for each noise in the denoising
diffusion process from t = 300 to t = 0. As shown, all three types of noise were able to produce
high-quality butterfly images after denoising.
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Figure 2: MSE versus the number of training epochs for different noises.

(a)

(b)

(c)

Figure 3: The reverse denoising process of DDPM at different times t for different zero-mean noises.
(a) White Gaussian noise, (b) Colored Gaussian noise, (c) Uniform noise.

We used the Fréchet Inception Distance (FID) to evaluate the similarity of generated images to real
ones. The FID is defined as [14]:

FID = ∥µr − µg∥22 + tr
(
Σr +Σg − 2

√
ΣrΣg

)
, (23)

where µr and µg are the mean vectors of the real and generated data features, respectively, and Σr

and Σg are the covariance matrices of the real and generated data features, respectively. ∥·∥2 denotes
the Euclidean distance. The FID evaluation was implemented using the Inception-v3 network [42], as
described in [39]. In Table 1, we summarize the FID values for the three image datasets generated by
the three different noises. For each noise case, we generated 100 images to evaluate the FID between
the generated images dataset and the Hugging Face 1000 butterfly images.

Table 1: FID values for DDPMs with different noises.

White Gaussian Colored Gaussian Uniform
104.41 69.89 78.49

A lower FID indicates that the generated images are closer to real images. As observed, both colored
Gaussian and uniform noise achieved better performance than white Gaussian noise, with the images
generated by colored Gaussian noise having the lowest FID value.

The above experiments were performed using Google Colab with T4 GPU. The total running time
was around 250 minutes.

5.2 Experiments with LSUN Church-256 Dataset

For this dataset, the DDPM was pre-trained using zero-mean white Gaussian noise, but the noise
samples used in the reverse denoising process may follow different statistical distributions.
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A simple unconditional image generation model, UNet2DModel, was pre-trained on the LSUN
church images dataset, specifically using the google/ddpm-church-256 [17]. The UNet2DModel’s
encoder consists of 6 down-sampling 2D blocks, while its decoder comprises 6 up-sampling 2D
blocks, with each block containing 2 ResNet layers. The model remains fixed during the denoising
process.

For illustration, we plotted an output generated by the DDPM using zero-mean white and colored
Gaussian noise in Fig. 4. By varying the noise seeds, we could generate any number of outputs.
Notably, high-quality images were consistently produced.

(a) (b)

Figure 4: Generated outputs of DDPM with Gaussian noises. (a) White Gaussian noise, (b) Colored
Gaussian noise.

Additional experiments are provided in the Appendix.

6 Conclusions

Current DDPM research predominantly relies on white Gaussian noise. We have proposed a reconsid-
eration of the types of noise used in DDPMs, both during the training of the noise estimation network
and in the denoising process of a trained DDPM. Although some previous works have experimented
with non-Gaussian noises, there has been a lack of theoretical investigation.

In our work, we have proposed and analyzed the probability lower bound for scenarios where the
input to the forward diffusion process aligns with the denoised output, deriving a necessary condition
for this alignment.

To train the noise prediction network in a DDPM, it is crucial to minimize the MSE between the actual
noise and the predicted noise. We have shown that the MSE is reduced when using colored Gaussian
noise as opposed to white Gaussian noise. Furthermore, we have demonstrated that non-Gaussian
noise outperforms Gaussian noise in minimizing the MSE between actual and predicted noise in a
DDPM if they have the same covariance matrix.

We have proved and verified that the probability of error between the input and denoised output in
a DDPM has a lower bound that is smaller when using colored Gaussian noise compared to white
Gaussian noise. Moreover, we have shown that a DDPM trained with white Gaussian noise can be
effectively applied to denoise processes involving any zero-mean symmetric distribution noise. Our
theoretical findings have been validated using two Gaussian and six non-Gaussian noise distributions.

In summary, colored Gaussian noise is superior to white Gaussian noise, and non-Gaussian noise
outperforms Gaussian noise in a DDPM. Additionally, any zero-mean symmetric distribution noise
can generate a denoised image using a trained DDPM by zero-mean white Gaussian noise. This helps
DDPMs with applications where noise may have uncertain distributions.
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A Proof of Theorem 1

Proof. For a DDPM, the initial data sample x0, the final diffusion outcome xT , and the denoised
estimate x̂0 form a Markov chain:

x0 → xT → x̂0. (24)
The input x0 to the diffusion process could be either a matrix or a vector. If it is a matrix, we can
vectorize it [5], and assume the vector length is N .

For the continuous variables, define the error e as:

e =

{
1 if ∥x0 − x̂0∥ ≥ ϵ,

0 if ∥x0 − x̂0∥ < ϵ.
(25)

where ϵ is a very small number. Fano’s inequality can be used for discrete variables as well as
continuous variables. In [9], Fano’s inequality was applied to Gaussian waveform channel for channel
capacity analysis, which is a continuous variable case application. Based on Fano’s inequality [9, 12]:

p(e) ≥ h(x0 | xT )− 1

h(x0)
(26)

=
h(x0,xT )− h(xT )− 1

h(x0)
(27)

=
h(xT | x0) + h(x0)− h(xT )− 1

h(x0)
(28)

=
h(xT | x0)− h(xT )− 1

h(x0)
+ 1. (29)

Based on equation (3) from the main paper:

q(xT | x0) = N (xT ;
√
ᾱTx0, (1− ᾱT )I), (30)

we have:
h(xT | x0) =

1

2
log(2πe)N (1− ᾱT ). (31)

Based on equation (4) from the main paper:

h(xT ) =
1

2
log(2πe)N . (32)

Substituting into equation (29), we get:

p(e) ≥
1
2 log(2πe)

N (1− ᾱT )− 1
2 log(2πe)

N − 1

h(x0)
+ 1 (33)

=
1
2 log(1− ᾱT )− 1

h(x0)
+ 1. (34)

Regardless of the distribution of x0, assume it has covariance matrix Kx0 . Then, its entropy has an
upper bound [9]:

h(x0) ≤
1

2
log(2πe)N |Kx0

|, (35)

with equality if and only if x0 has a Gaussian distribution. Thus, p(e) is lower bounded by:

p(e) ≥
1
2 log(1− ᾱT )− 1
1
2 log(2πe)

N |Kx0 |
+ 1 (36)

=
log(1− ᾱT )− 2

log(2πe)N |Kx0
|
+ 1. (37)

To make p(e) equal to 0, the right-hand side of equation (37) must satisfy:

log(1− ᾱT )− 2

log(2πe)N |Kx0
|
+ 1 ≤ 0. (38)

This condition ensures that p(e) is bounded away from 0, making it possible for p(e) = 0, which
implies x̂0 matches x0.
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B Proof of Corollary 1

Proof. For a DDPM, we have:
q(xT ) ≈ N (xt;0, I), (39)

so for t = T in (3), we obtain:
ᾱT ≈ 0. (40)

Based on Theorem 1, equation (9) becomes:

p(e) ≥ log(1− 0)− 2

log(2πe)N |Kx0 |
+ 1 (41)

= 1− 2

log(2πe)N |Kx0 |
. (42)

If:
2

log(2πe)N |Kx0 |
≤ 0, (43)

then:
p(e) ≥ 1, (44)

which implies that x0 ̸= x̂0. To satisfy equation (43), it is required that:
log(2πe)N |Kx0 | < 0, (45)

(2πe)N |Kx0 | < 1, (46)

|Kx0 | <
1

(2πe)N
. (47)

C Proof of Theorem 2

Proof. Based on the estimation error and differential entropy theorem in [9]:

min
µ̂t,t=1,2,...,T

EtEq(x0,xt) ∥ϵt − ϵ̂t∥22 ≥ 1

(2πe)N
e2h(ϵ), (48)

where h(ϵ) is the entropy of ϵ, and N is the dimension of the noise vector ϵ. Equality holds when ϵ
follows a Gaussian distribution, which is the case for ϵ in DDPMs.

h(ϵ) =
1

2
log(2πe)N |Kn|, (49)

where |Kn| is the determinant of covariance matrix of ϵ. Observing the optimal covariance matrices
for white Gaussian noise in (19) and for colored Gaussian noise in (20), they share the same diagonal
values. Based on Hadamard’s inequality [9]:

|K∗
n(xt)| ≤

N∏
i=1

K∗
nii(xt) (50)

=

N∏
i=1

σ̃∗
n(xt)

2
i , (51)

colored Gaussian noise has a smaller determinant, indicating lower entropy and, therefore, a smaller
MSE.

D Proof of Corollary 2

Proof. As shown in [9]:

h(ϵ) ≤ 1

2
log(2πe)N |Kn|, (52)

with equality if and only if ϵ follows a Gaussian distribution. Therefore, non-Gaussian noise has
lower entropy. Based on equation (48), a variable with lower entropy results in lower MSE, meaning
that non-Gaussian noise performs better than Gaussian noise in minimizing the MSE in (17) if they
have the same covariance matrix.
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E Proof of Theorem 3

Proof. For a DDPM, the variables in the forward diffusion process x0, . . . ,xt, . . . ,xT and the
variables in the reverse denoising process x̂T , . . . , x̂t, . . . , x̂0 form the following Markov chain:

x0 → · · · → xt → · · · → xT → x̂T → · · · x̂t → · · · → x̂0. (53)

These variables can be represented as either matrices or vectors. If they are matrices, they can be
vectorized [5], with the vector length assumed to be N .

Define the error e in pt(e) as:

e =

{
1 if ∥x0 − x̂0∥ ≥ ϵ,

0 if ∥x0 − x̂0∥ < ϵ.
(54)

where ϵ is a very small number. Using Fano’s inequality [9, 12], we have:

pt(e) ≥
h(x0 | xT )− 1

h(x0)
(55)

=
h(x0,xT )− h(xT )− 1

h(x0)
(56)

=
h(xT | x0) + h(x0)− h(xT )− 1

h(x0)
(57)

=
h(xT | x0)− h(xT )− 1

h(x0)
+ 1. (58)

Following similar steps as in the proof of Theorem 1, we can demonstrate that:

pt(e) ≥
log(1− ᾱT )− 2

log(2πe)N |Kx0 |
+ 1. (59)

F Proof of Theorem 4

Proof. In a DDPM, the noise ϵt can be obtained based on equation (12):

ϵt =
xt −

√
ᾱtx0√
β̄t

, (60)

which is used to generate xt. The covariance matrix for noise ϵt given xt is computed as [3]:

Kn = Covq(x0|xt)

(
xt −

√
ᾱtx0√
β̄t

)
(61)

=
ᾱt

β̄t
Kx0 , (62)

so

Kx0 =
β̄t

ᾱt
Kn. (63)

Based on this result, the lower bound in equation (21) from Theorem 3 becomes:

pt(e) ≥ log(1− ᾱT )− 2

log(2πe)N β̄t

ᾱt
|Kn|

+ 1 (64)

≈ 1− 2

log(2πe)N β̄t

ᾱt
|Kn|

(65)

= 1− 2ᾱt

log(2πe)N β̄t|Kn|
. (66)

From equation (64) to (65) is based on ᾱT ≈ 0. For |Kn| in equation (66), we have shown in equation
(51) that colored Gaussian noise has a smaller determinant, so the lower bound in equation (66) is
smaller for colored Gaussian noise.
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G Proof of Corollary 3

Proof. At t = 0, β̄t → 0, so 2ᾱt

log(2πe)N β̄t|Kn|
→ ∞, meaning that the right-hand side of equation

(66) is less than 0. Thus, it is possible for pt(e) = 0, indicating that x0 and x̂0 could match each
other.

H Proof of Theorem 5

Proof. Step 1 (Probability flow ODE). For the VP SDE in diffusion models, the forward-time
marginal qt solves a Fokker–Planck equation. The corresponding probability flow ODE has drift
vt(x) = ft(x)− g(t)2 ∇x log qt(x), where for VP, ft(x) = − 1

2β(t)x and g(t)2 = β(t). The ODE
ẋ = vt(x) induces a (deterministic) flow ΦT→t on Rd. Let µt be the pushforward of the arbitrary
initial law rT by this flow: µt = (ΦT→t)#rT . By construction µt satisfies the continuity equation

∂tµt +∇·
(
µt vt

)
= 0. (67)

The data-corrupted marginal qt (the target at noise level t) also satisfies the same continuity equation
but with its own initial condition qT = N (0, I) (for standard VP schedules).

Step 2 (KL dissipation along the flow). Define the KL divergence K(t) = KL(µt ∥ qt) =∫
µt log

(
µt/qt

)
dx. Differentiate K with respect to t and use the product rule:

d

dt
K(t) =

∫
∂tµt log

(µt

qt

)
dx +

∫
µt ∂t log

(µt

qt

)
dx. (68)

Since ∂t log(µt/qt) = (∂tµt)/µt − ∂t log qt, the second integral becomes
∫
∂tµt dx −∫

µt ∂t log qt dx = −
∫
µt ∂t log qt dx because

∫
∂tµt = ∂t

∫
µt = 0. Insert (67) and integrate

by parts in the first term of (68):

d

dt
K(t) =

∫ [
−∇· (µtvt)

]
log
(µt

qt

)
dx −

∫
µt ∂t log qt dx (69)

=

∫
µt vt · ∇ log

(µt

qt

)
dx −

∫
µt ∂t log qt dx. (70)

Using vt = ft − g(t)2 ∇ log qt,∫
µt vt ·∇ log

(µt

qt

)
=

∫
µt ft ·

(
∇ logµt−∇ log qt

)
dx − g(t)2

∫
µt ∥∇ logµt−∇ log qt∥2 dx.

Next, recall that qt satisfies the same continuity equation ∂tqt +∇· (qtvt) = 0. Dividing by qt gives
∂t log qt = −∇· vt − vt · ∇ log qt. Multiplying by µt and integrating yields

−
∫

µt ∂t log qt dx =

∫
µt ∇· vt dx+

∫
µt vt · ∇ log qt dx.

Combine these identities in (70) and use that ∇· (µtft) = µt ∇· ft + µt ft · ∇ logµt to cancel all
terms involving ft and divergences (standard calculus under vanishing boundary conditions). One
obtains the dissipation identity

d

dt
K(t) = − g(t)2

∫
µt

∥∥∇ logµt −∇ log qt
∥∥2 dx︸ ︷︷ ︸

= J (µt ∥ qt) ≥ 0

, (71)

where J (µt ∥ qt) is the (generalized) Fisher/Stein divergence.

Step 3 (Monotonicity and endpoint). Because β(t) = g(t)2 > 0 for t ∈ (0, T ], (71) implies
d
dtK(t) ≤ 0 with equality iff ∇ logµt = ∇ log qt, i.e. µt = qt. Hence, K(t) is nonincreasing along
the reverse-time integration and limt↓0 K(t) = K(0) = 0 because q0 is the data distribution and the
flow is well-posed with an exact score.
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Step 4 (Independence from the terminal law). The derivation above makes no assumption on
the shape of the initial law rT beyond mild regularity (density, finite second moment) to justify
integrations by parts. In particular, rT may be any symmetric zero-mean distribution (not necessarily
Gaussian). The probability flow dynamics uses only the pointwise score ∇ log qt and schedule g(t);
the initial law affects only which trajectories are instantiated, not the form of the denoising vector
field. Therefore the sampler effectively denoises from any such rT : the discrepancy to the target
marginal strictly decreases according to (71) and vanishes at t = 0.

This proves the claim.

Remarks. (1) The proof uses the deterministic probability-flow sampler (DDIM, η = 0). With
stochastic DDPM sampling (η > 0), an analogous KL decay can be shown at the level of the reverse
SDE using standard score-based diffusion arguments. (2) The zero-mean symmetry of rT is natural
in practice (it preserves centering) but not essential for the KL dissipation identity (71); it ensures
well-behaved moments and unbiased initialization.

I Additional Experiments

We evaluate the performance of the DDPM trained with zero-mean, unit-variance white Gaussian
noise by testing its output against six types of non-Gaussian noise. To ensure a fair comparison, we
designed 2D noise with an average power of 2 (with a power of 1 in each dimension).

Below, we provide a brief introduction to four symmetric non-Gaussian noises:

1. The probability density function (PDF) of the Uniform Distribution in each dimension is
given by [19]:

f(x) =

{
1

2
√
3
, x ∈ [−

√
3,
√
3],

0, otherwise.
(72)

This distribution has a power of 1 in each dimension.

2. The PDF of the Laplace Distribution is expressed as [19]:

f(x | µ, b) = 1

2b
exp

(
−|x− µ|

b

)
, (73)

where µ is the location parameter (mean), and b is the scale parameter. We set µ = 0 and
b = 1√

2
to ensure that the average power is 1 in each dimension.

3. The PDF of the Cosine Distribution is given by [19]:

f(x) =

{
1
2b

[
1 + cos

(
π(x−a)

b

)]
, a− b ≤ x ≤ a+ b,

0, otherwise.
(74)

Here, a is the location parameter (mean), and b is the scale parameter (controlling the
spread). This distribution is symmetric around a and is confined to the interval [a− b, a+ b].
The Cosine Distribution’s compact support and smoothness make it useful in applications
involving directional data and circular statistics.

4. The PDF of the Logistic Distribution is defined as [19]:

f(x;µ, s) =
e−

x−µ
s

s
(
1 + e−

x−µ
s

)2 , (75)

where µ is the location parameter (analogous to the mean), and s is the scale parameter (con-
trolling the spread). The Logistic Distribution is symmetric around its mean µ, similar to the
normal distribution, but with heavier tails. This property makes it useful in scenarios where
outliers are expected, or where a distribution with fatter tails than the normal distribution is
needed.
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(a) (b)

(c) (d)

Figure 5: Histograms of symmetric non-Gaussian noises used for DDPM evaluation. (a) Uniform
distribution; (b) Laplace distribution; (c) Cosine distribution; (d) Logistic distribution.

In Fig. 5, we present the histograms of these four symmetric non-Gaussian noises, all of which have
zero-mean and unit power in each dimension.

We also introduce two asymmetric non-Gaussian noises:

1. The PDF of the Gamma Distribution is given by [19]:

f(x;α, β) =
βα

Γ(α)
xα−1e−βx, for x > 0, (76)

where α > 0 is the shape parameter, β > 0 is the rate parameter, and Γ(α) is the Gamma
function. The Gamma Distribution is versatile and can take various shapes depending on the
values of α and β. It is widely used to model phenomena where the occurrence rate varies
over time.

2. The PDF of the Exponential Distribution is given by [19]:

f(x;λ) = λe−λx, for x ≥ 0, (77)

where λ > 0 is the rate parameter, which is the inverse of the mean. The Exponential
Distribution is memoryless, meaning the probability of an event occurring in the next
interval is independent of how much time has already passed.

In Fig. 6, we present the histograms of these two asymmetric non-Gaussian noises, both with
zero-mean and unit power in each dimension.

(a) (b)

Figure 6: Histograms of asymmetric non-Gaussian noises used for DDPM evaluation. (a) Gamma
distribution; (b) Exponential distribution.

In Fig. 7, we present the outputs generated by the DDPM using six different non-Gaussian noise
distributions.

As shown in Fig. 7, the zero-mean symmetric noise distributions successfully generated high-
resolution images, whereas the asymmetric noise distributions failed to produce any images. These
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Generated outputs of DDPM with zero-mean non-Gaussian noises. (a) Uniform distribution
noise, (b) Laplacian distribution noise, (c) Cosine distribution noise, (d) Logistic distribution noise,
(e) Gamma distribution noise, (f) Exponential distribution noise.

experiments demonstrate that noise samples with a zero-mean symmetric distribution can generate
high-quality images, even when the DDPM was trained with white Gaussian noise, thus confirming
Theorem 5.

The above experiments on LSUN Church-256 were performed using Google Colab with T4 GPU.
The total running time was around 60 minutes.
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