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Abstract001

Retrieval-augmented generation (RAG) has be-002
come a widely recognized paradigm to com-003
bine parametric memory with non-parametric004
memory. An RAG model consists of two serial005
connecting components (retriever and genera-006
tor). A major challenge in end-to-end optimiza-007
tion of the RAG model is that marginalization008
over relevant passages (modeled as discrete la-009
tent variables) from a knowledge base is re-010
quired. Traditional top-K marginalization and011
variational RAG (VRAG) suffer from biased012
or high-variance gradient estimates. In this pa-013
per, we propose and develop joint stochastic014
approximation (JSA) based end-to-end training015
of RAG, which is referred to as JSA-RAG. The016
JSA algorithm is a stochastic extension of the017
EM (expectation-maximization) algorithm and018
is particularly powerful in estimating discrete019
latent variable models. Extensive experiments020
are conducted on five datasets for two tasks021
(open-domain question answering, knowledge-022
grounded dialogs) and show that JSA-RAG sig-023
nificantly outperforms both vanilla RAG and024
VRAG. Further analysis shows the efficacy of025
JSA-RAG from the perspectives of generation,026
retrieval, and low-variance gradient estimate.027

1 Introduction028

Large language models (LLMs) have been shown029

to store factual knowledge in their parameters030

through pre-training over large amounts of Internet031

corpora (Petroni et al., 2019; Brown et al., 2020).032

However, such implicit knowledge cannot be eas-033

ily updated, expanded, inspected, and interpreted.034

Moreover, for many knowledge-intensive tasks, the035

use of external knowledge beyond the parametric036

memory of LLMs to generate responses is critical,037

such as in open-domain question answering (QA)038

(Chen et al., 2017; Lee et al., 2019; Karpukhin039

et al., 2020) and knowledge-grouned dialog sys-040

tems (Kim et al.; Mishra et al., 2022; Cai et al.,041

2023). To address these issues, hybrid models that042

combine parametric memory with nonparametric 043

memories have emerged (Lee et al., 2019; Guu 044

et al., 2020), among which retrieval-augmented 045

generation (RAG) has drawn considerable atten- 046

tion (Lewis et al., 2020). 047

During recent years, RAG has not only been 048

used to refer to the particular method developed 049

in (Lewis et al., 2020), but also, more often, repre- 050

sents a general two-step paradigm (retrieve-then- 051

generate). In the RAG paradigm, given a context 052

(denoted by x) such as a query in QA or a dialog 053

context, relevant passages (denoted by h) are first 054

obtained from external knowledge bases (KBs) by 055

using a retriever. The retrieved passages are then 056

combined with the context and fed into a generator 057

to generate the response y. 058

Hence, a RAG model consists of two serial con- 059

necting components (retriever and generator). Dur- 060

ing training, if the relevant passage is known (e.g., 061

human-annotated gold passage), we can supervise 062

the retriever with that passage, and train the gener- 063

ator conditioned on that passage as well. However, 064

collecting human annotations of gold passages is 065

labor intensive. This challenge leads to the widely 066

adopted approach of training retrievers and gen- 067

erators separately. Retrievers are often trained on 068

one corpus (Karpukhin et al., 2020; Izacard et al.; 069

Zhang et al., 2023), and then generators are trained 070

on another different corpus using fixed retrievers 071

(Khattab et al., 2022; Zhang et al., 2024; Zhao 072

et al., 2024). While this is fairly easy to implement, 073

separate training is sub-optimal, for example, the 074

retriever never improves as the generator learns to 075

generate responses. 076

There have been efforts in developing end-to- 077

end training of an RAG model (Lewis et al., 2020; 078

Zhang et al., 2022; Han et al., 2023; Zamani and 079

Bendersky, 2024), which means eliminating the 080

reliance on intermediate annotations and training 081

all model components simultaneously. In (Lewis 082

et al., 2020), to train the retriever and generator 083
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end-to-end, the relevant passage is treated as a dis-084

crete latent variable and the following marginal085

log-likelihood is to be maximized:086

p(y|x) =
∑
h

p(h|x)p(y|x, h) (1)087

Thus end-to-end training of RAG in essence088

amounts to unsupervised training of a discrete089

latent-variable model, as shown above. Direct090

marginalization is intractable; hence, originally,091

top-K marginalization (TKM) is used for the ap-092

proximation (Lewis et al., 2020), which we refer093

to as vanilla RAG. Recently, variational learning094

(VL) (Kingma and Welling, 2014) has been applied095

to end-to-end training of RAG in two concurrent096

and similar works - VRAG (Mishra et al., 2022)097

and Hindsight (Paranjape et al.), which we refer098

to collectively as VRAG. In VRAG, an auxiliary099

inference model is introduced, acting as a poste-100

rior retriever. However, for variational learning101

of discrete latent variable models, the traditional102

Monte Carlo gradient estimator for the inference103

model parameter is known to be either biased or104

have high-variance (Ou and Song, 2020).105

Recently, the joint stochastic approximation106

(JSA) algorithm (Xu and Ou, 2016; Ou and Song,107

2020) has emerged to learn discrete latent vari-108

able models with better performance than VL. JSA109

is a stochastic extension of the EM (expectation-110

maximization) algorithm and gives unbiased, low-111

variance stochastic gradients for the inference112

model.113

In this paper, we propose JSA based end-to-end114

training of RAG, which is referred to as JSA-RAG,115

as overviewed in Figure 1. JSA-RAG makes the116

following contributions. First, we design all model117

components (including prior retriever, generator,118

and posterior retriever) and implement the whole119

training and decoding pipeline to enable the suc-120

cessful application of JSA. We address some com-121

putational challenges to work with large-scale KBs122

(e.g., tens of millions of passages in Wikipedia).123

Second, we investigate the effect of index rebuild-124

ing in training. We study the passage concatenation125

strategy for post-training of the generator while fix-126

ing the retriever. These further demonstrate the ca-127

pability and bonus offered by JSA-RAG. Third, ex-128

tensive experiments are conducted on five datasets129

for two tasks (open-domain question answering,130

knowledge-grounded dialogs) and show that JSA-131

RAG outperforms both vanilla RAG and VRAG,132

e.g., achieving +4.1% Exact Match on TQA and133

+10.3% BLEU-4 on DoQA relative over VRAG. 134

Improved retriever performance and low-variance 135

gradients of the posterior retriever are also vali- 136

dated, e.g.,+8.5% R@1 on NQ and +1.7% R@1 on 137

OR-QuAC relative over VRAG. 138

2 Related work 139

2.1 Retrieval-Augmented Generation (RAG) 140

RAG (Lewis et al., 2020) has become a widely rec- 141

ognized paradigm for combining parametric mem- 142

ory with nonparametric memory. A major chal- 143

lenge in end-to-end optimization of RAG models 144

is that the optimization needs to marginalize over 145

relevant passages, which are modeled as discrete 146

latent variables with no annotations. Atlas (Izacard 147

et al., 2023) studies some ad-hoc loss functions 148

(including the vanilla RAG loss via TKM) to train 149

the retriever jointly with generator, and does not 150

observe significant systematic differences between 151

the different training objectives. This highlights 152

the need for more principled end-to-end training 153

method, which our JSA-RAG addresses. In addi- 154

tion to investigating new training methods for RAG, 155

there are other research activities around RAG that 156

are orthogonal to or can benefit from our JSA-RAG. 157

FiD (Izacard and Grave, 2021) presents a new strat- 158

egy to aggregate and combine multiple passages 159

in decoding. In (Siriwardhana et al., 2023), end- 160

to-end training of RAG is applied to specialized 161

domains such as healthcare and news. 162

2.2 Learning with discrete latent-variable 163

models 164

End-to-end training of RAG in essence amounts 165

to learning a discrete latent-variable model. A 166

class of maximum likelihood methods consists 167

of the expectation-maximization (EM) algorithm 168

(Dempster et al., 1977) and its extensions. Vari- 169

ational learning optimizes the Evidence Lower 170

Bound (ELBO) instead of directly maximizing the 171

marginal log-likelihood. VRAG and Hindsight, 172

both based on variational learning, use the TKM 173

approximation to optimize ELBO. RetGen (Zhang 174

et al., 2022) uses the REINFORCE trick (Paisley 175

et al., 2012). Stochastic RAG (Zamani and Bender- 176

sky, 2024) uses the Straight-Through trick (Bengio 177

et al., 2013). These parameter estimators are known 178

to be biased or have high-variance (Ou and Song, 179

2020). The JSA algorithm (Xu and Ou, 2016; Ou 180

and Song, 2020) is a stochastic extension of the 181

EM algorithm with impressive performance, where 182
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Figure 1: Overview of JSA-RAG. 1) In addition to the (prior) retriever and generator, JSA-RAG introduces an
(auxiliary) posterior retriever. 2) During training, the posterior retriever proposes relevant passages, which get
accepted or rejected according to the probabilities calculated from the three components. The blue dashed line
shows such Metropolis independence sampling (MIS), which is a Monte Carlo approximation of the E-step in EM.
3) The filtered passages are then treated as pseudo labels, as shown by the red dotted line. 4) Given the pseudo
labels, we can calculate the gradients for prior retriever, posterior retriever, and generator, respectively, and proceed
with parameter updating, very similar to perform supervised training, like the M-step in EM.

both the E-step and the M-step (as they cannot be183

performed exactly) are extended by the stochastic184

approximation methodology, hence called joint SA.185

JSA provides us with a new way to improve the186

end-to-end training of RAG.187

3 Method: JSA-RAG188

3.1 Model189

Let (x, y) denote the pair of context and response,190

both represented by token sequences. Let K denote191

the KB, which is a discrete set of text passages192

(e.g. Wikipedia chunks). Each passage is also a193

token sequence. Let h denote the relevant passage194

in K needed to generate the response y given the195

context x, which is treated as a latent variable since196

there are no annotations. Therefore, we obtain a197

latent variable model for RAG, with parameters198

θ = (θr, θg), which can be decomposed as:199

pθ(y, h|x) = pθr(h|x)pθg(y|x, h) (2)200

Prior retriever pθr(h|x), is parameterized by201

θr and models the prior relevancy of the passages202

in K with respect to the context x. Similar to the203

original RAG, a bi-encoder architecture for the204

prior retriever is defined as follows:205

pθr(h|x) =
exp

(
eλ(h)

⊤eη(x)
)∑

h′∈K exp (eλ(h′)⊤eη(x))
(3)206

where eλ(x) denote the context encoder, parame- 207

terized by λ, outputting the dense vector representa- 208

tion (or say, the embedding vector) of the context; 209

eη(h), the passage encoder, parameterized by η, 210

returns the embedding vector of the passage. We 211

calculate the two embeddings with two separate 212

neural networks, both initialized from BERT (De- 213

vlin et al., 2019). Hence, θr = (λ, η). 214

Generator pθg(y|x, h) is parameterized by θg 215

and models the sequential generation of the re- 216

sponse y given the context x and the passage h. 217

The neural network architecture can be encoder- 218

decoder or decodely-only. In this work, we employ 219

decoder-only LLMs, which calculates the likeli- 220

hood of the response y as follows: 221

log p(y|h, x) =
∑
j

log p(yj |y<j , x, h). (4) 222

where the context x and the retrieved passage h are 223

concatenated to fed into the LLM to generate y. 224

Posterior retriever is introduced for applying 225

the JSA algorithm to learn the latent variable model 226

Eq. (2). It represents an auxiliary inference model 227

to approximate the posterior probability of select- 228

ing passage h when given both context x and re- 229

ponse y. Similar to the prior retriever, a bi-encoder 230

architecture for the posterior retriever, with param- 231
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eters ϕ = (λ, ξ), is defined as follows:232

qϕ(h|x, y) =
exp

(
eλ(h)

⊤eξ(x+ y)
)∑

h′∈K exp (eλ(h′)⊤eξ(x+ y))
(5)233

where the passage encoder eλ(h) is shared between234

the prior and the posterior retrievers, but a new235

BERT based neural network is introduced to calcu-236

late the embedding for the combination of context237

x and response y. In particular, x and y are con-238

catenated, denoted by x + y, and are fed to the239

context-response encoder eξ(·). Note that except240

for the index rebuilding experiment, all passage241

encoders are fixed.242

Computation consideration. The softmax cal-243

culation over the entire KB in Eq. (3) and Eq. (5)244

for the prior and posterior retrievers are computa-245

tionally prohibitive even for moderate-sized KBs246

(e.g., thousands of passages). In practice, we main-247

tain an index on passage embeddings for the KB248

using FAISS (Johnson et al., 2019). Given a pair249

of context and reponse (x, y), we can efficiently250

retrieve the set of top-k passages under prior and251

posterior distributions using Maximum Inner Prod-252

uct Search (MIPS) (Johnson et al., 2019), denoted253

by Sprior and Spost respectively (k = 10 in our exper-254

iments). The two sets occupy the majority of proba-255

bilities for the prior and posterior distributions, and256

at first thought, can be used to approximate the cal-257

culations of Eq. (3) and Eq. (5), respectively. Note258

that in order to calculate the importance weights for259

sampled passages used in JSA training (to be clear260

in Section 3.2 below), we need the prior and poste-261

rior probabilities to be calculated over a common262

set. Therefore, we form a union set by merging263

Sprior and Spost, and the softmax calculations in Eq.264

(3) and Eq. (5) are only taken over this union set.265

3.2 Training266

Training the RAG model from complete data, i.e.,267

knowing h, can be easily realized by supervised268

training. For end-to-end training of the RAG model269

(i.e., conducting unsupervised training without270

knowing h), we resort to maximizing the marginal271

likelihood pθ(y|x) and applying the JSA algorithm272

(Xu and Ou, 2016; Ou and Song, 2020).273

JSA involves introducing an auxiliary inference274

model to approximate the intractable posterior275

pθ(h|x, y), which, turns out to take the form of276

qϕ(h|x, y), i.e., the posterior retriever. We can277

jointly train the three components (prior retriever,278

posterior retriever and generator), which is summa-279

rized in Algorithm 1. The JSA algorithm can be 280

viewed as a stochastic extension of the well-known 281

EM algorithm (Dempster et al., 1977) , which it- 282

erates Markov Chain Monte Carlo (MCMC) sam- 283

pling and parameter updating, being analogous to 284

the E-step and the M-step in EM respectively. 285

E-Step. The sampling step stochastically re- 286

trieves passages through sampling from the poste- 287

rior pθ(h|x, y). However, direct sampling from the 288

posterior pθ(h|x, y) is intractable, so MCMC sam- 289

pling is employed. Particularly, using pθ(h|x, y) 290

as the target distribution and qϕ(h|x, y) as the pro- 291

posal, we sample h through Metropolis indepen- 292

dence sampler (MIS) (Liu, 2001) as follows: 293

1) Propose h ∼ qϕ(h|x, y); 294

2) Accept h with probability min
{
1, w(h)

w(h̃)

}
, 295

where 296

w(h) =
pθ(h|x, y)
qϕ(h|x, y)

∝
pθr(h|x)pθg(y|x, h)

qϕ(h|x, y)
(6) 297

is the usual importance ratio between the target and 298

the proposal distribution and h̃ denotes the previous 299

value for h along the Markov chain. In practice, 300

we run MIS for several (m) steps, with the chain is 301

initialized from pθ(h|x, y). 302

M-Step. Once we obtain the accepted pseudo 303

labels {h(1), h(2), ..., h(m)} from MIS, we can treat 304

them as being given. We calculate the gradients for 305

the prior retriever, posterior retriever, and generator 306

models, respectively, and proceed with parameter 307

updating, very similar to the process in supervised 308

training. This is analogous to the M-step in EM, 309

but the proposal qϕ is also adapted. In summary, 310

the loss function can be written as: 311

LJSA = − 1

m

m∑
i=1

(
log pθr(h

(i)|x)

+ log pθg(y|x, h(i)) + log qϕ(h
(i)|x, y)

)
(7) 312

3.3 Index rebuilding and passage 313

concatenation 314

Index Rebuilding. In previous work, during train- 315

ing, the index of passage embeddings for the KB 316

is often fixed; therefore, the parameters of the pas- 317

sage encoder (λ) are frozen (Lewis et al., 2020; 318

Mishra et al., 2022; Lin et al., 2023). In this work, 319

to study whether JSA-RAG can perform end-to-end 320

optimization of all modules - including the passage 321

encoder, we explore an index rebuilding scheme. 322

During training, we no longer freeze the parameters 323
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Algorithm 1 The JSA-RAG algorithm

Require: Training dataset D = {(x, y)}, prior
retriever pθr(h|x), posterior retriever qϕ(h|x, y),
generator pθg(y|x, h), MIS step number m.
repeat

Draw a pair of context and response (x, y);
Monte Carlo sampling:
Use MIS to draw {h(1), h(2), ..., h(m)};
Parameter updating:
Update θ by ascending:
1
m

∑m
i=1∇θ log

[
pθr(h

(i)|x)pθg(y|x, h(i))
]
;

Update ϕ by ascending:
1
m

∑m
i=1∇ϕ log qϕ(h

(i)|x, y);
until convergence
return θ and ϕ

of the passage encoder and recalculate the passage324

embeddings in the index using the updated passage325

encoder at regular intervals. During passage em-326

bedding recalculation, the training process waits;327

the training is resumed after the index update is328

completed.329

Passage Concatenation. Note that the prior330

retriever is improved after end-to-end learning. In-331

spired by FiD (Izacard and Grave, 2021), we con-332

sider a passage concatenation strategy for post-333

training of the generator while fixing the retriever.334

The top-k prior retrieved passages are concate-335

nated and append to the context, forming a com-336

bined sequence that is fed into the generator for337

response generation. In this way, the generator is338

post-trained and in the same way, the generator is339

used in decoding. This shows the bonus offered by340

JSA-RAG.341

Note that the above two methods are only used342

in the experiments described in Section 4.5.343

3.4 Decoding344

During testing, we use “Top-k Documents Decod-345

ing”, following VRAG (Mishra et al., 2022), with346

k = 10. Specifically, given a context x, we em-347

ploy the trained prior retriever to fetch the top-k348

passages {h(1), · · · , h(k)}. The context x and the349

retrieved passage h(i) are concatenated and fed into350

the generator, a beam search is performed to gen-351

erate the top response y(i), i = 1, · · · , k. We es-352

timate p(y(i)|x) using the product of two terms:353

p(y(i)|x) ≈ p(h(i)|x)p(y(i)|h(i), x). Finally, we354

select the response y(i) with the highest estimated355

probability as the final output for the given context356

x. This is a simplified “Fast Decoding” in (Lewis357

et al., 2020) and performs well in our experiments. 358

4 Experiment 359

To evaluate the effectiveness of the JSA-RAG 360

method, we use VRAG and RAG as baseline 361

end-to-end methods. The evaluation is taken on 362

two tasks - open-domain question answering and 363

knowledge-grounded dialogs. Comprehensive ex- 364

periments are conducted to evaluate the perfor- 365

mance of JSA-RAG, focusing on aspects such as 366

generation quality and retrieval recall. Ablation 367

studies are also conducted to analyze the effects of 368

JSA-RAG in controlling gradient variance and op- 369

timizing retrieval efficiency. Specifically, we com- 370

pare the performance of the posterior retrievers in 371

JSA-RAG and VRAG, as well as fluncations in gra- 372

dient norms. For all experiments, top-10 retrieval 373

is used for both the prior and posterior retrievers 374

during training and testing. 375

4.1 Datasets 376

Open-domain question answering: Unlike or- 377

dinary QA, open-domain question answering 378

(ODQA) requires extensive external knowledge 379

to answer questions, which is the primary task 380

explored with RAG systems. We mainly con- 381

sider three ODQA datasets: NaturalQuestions (NQ) 382

(Kwiatkowski et al., 2019), TriviaQA (TQA) (Joshi 383

et al., 2017), and MS-MARCO (Bajaj et al., 2016)1. 384

For NQ and TQA, we use the Wikipedia Decem- 385

ber 2018 dump, which contains a total of 24M 386

chunks (passages); for MS-MARCO, instead of us- 387

ing the 10 provided reference passages, we extract 388

its QA pairs and use the MS-MARCO passages 389

from TREC2019 as the KB (Bajaj et al., 2016). 390

Knowledge grounded dialogs: In dialog datasets, 391

we use conversation history turns as x to retrieve 392

relevant passages and take the response of the cur- 393

rent turn as y, thus constructing (x, y) pairs. We 394

use the OR-QuAC (Qu et al., 2020) and the DoQA 395

(Campos et al., 2020) datasets. OR-QuAC is an 396

open-domain dialog question answering dataset 397

derived from the QUAC (Question Answering in 398

Context) corpus, requiring models to retrieve and 399

reason over external knowledge to answer multi- 400

turn conversational questions. DoQA comprises 401

of open-ended dialog conversations on different 402

domains like cooking, travel and movies. Both 403

datasets follow the knowledge base settings used 404

1Note that the MS-MARCO dataset has two versions, and
the version we use in this work is MS-MARCO v1.
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in VRAG (Mishra et al., 2022). For OR-QuAC, its405

KB contains 68k passages, while for DoQA, its KB406

contains 1.2k passages.407

4.2 Experiment settings408

In open-domain QA tasks, we employ BGE-large409

(326M parameters) (Zhang et al., 2023) to initial-410

ize both the prior and posterior retrievers and use411

Mistral-7B (Jiang et al., 2023) as the generator,412

which is fine-tuned with LoRA (Hu et al., 2022;413

Han et al.) during training. To evaluate end-to-414

end generation, we use Exact Match for NQ and415

TQA, and BLEU-1 and Rouge-L for MS-MARCO.416

For retriever performance, we use Recall@1 and417

Recall@10 to measure the accuracy of retrieved418

results for all three datasets.419

For knowledge-grounded dialog tasks, we ini-420

tialize the prior and posterior retrievers with DPR421

(124M parameters) (Karpukhin et al., 2020) and422

use GPT-2 (124M parameters) (Radford et al.,423

2019) as the generator. For end-to-end generation424

evaluation, we use BLEU-1, BLEU-4 (Papineni425

et al., 2002), and F1; for retriever performance, we426

employ metrics the same as in open-domain QA.427

Remarkably, for NQ, TQA, and MS-MARCO428

without gold passage annotations, the BGE-429

intialized posterior retriever first retrieves top 100430

passages per question from KB, and GPT-4o se-431

lects the most relevant as the gold annotation. See432

Appendix C for details.433

Technically, we construct an FAISS index for434

fast retrieval and deploy it as a standalone server.435

This allows the main program to perform retrieval436

via API calls. This setup optimizes GPU memory437

utilization: by eliminating the need to pre-reserve438

GPU memory for index loading, the main program439

can allocate more dedicated VRAM to model com-440

putations. Notably, the index persists across exper-441

iments (when different experiments use the same442

Wikepedia KB), eliminating redundant embedding443

recomputation and significantly reducing training444

time.445

Additional training details are provided in Ap-446

pendix A. The Prompt Template for the generator447

LLM is shown in Appendix D.448

4.3 Main result449

Based on the results in Table 1 and Table 2, JSA-450

RAG demonstrates significant superiority on dialog451

datasets (DoQA and OR-QUAC) and open-domain452

QA tasks, with all evaluated metrics outperforming453

baselines (vanilla RAG and VRAG).454

Table 1: Generative performance comparison of differ-
ent models on knowledge-grounded dialog datasets

DoQA OR-QUAC

Method BLEU-4 BLEU-1 F1 BLEU-4 BLEU-1 F1

RAG 15.39 21.69 25.91 6.57 13.51 17.28
VRAG 15.51 21.55 26.02 6.71 13.87 17.63
JSA-RAG 17.11 23.36 27.84 7.76 14.59 18.41

Table 2: Performance comparison of different models
on open-domain question answering datasets

NQ TQA MS-MARCO

Method Exact Match Exact Match BLEU-1 Rouge-L

RAG 50.52 72.82 34.23 36.54
VRAG 49.03 72.26 34.14 36.70
JSA-RAG 51.05 75.23 35.28 37.96

End-to-end generation performance. On 455

DoQA, JSA-RAG achieves a BLEU-4 score of 456

17.11 (+10.3% relative over VRAG) and an F1 457

score of 27.84 (+6.9% relative over VRAG), and 458

on OR-QUAC, its F1 score of 18.41 represents a 459

relative 4.4% gain over VRAG, highlighting supe- 460

rior contextual knowledge integration for complex 461

dialog reasoning. In open-domain QA, JSA-RAG 462

excels in TQA with an Exact Match score of 75.23 463

(+4.1% relative over VRAG) and NQ with an Exact 464

Match score of 51.05 (+4.1% relative over VRAG), 465

indicating robust handling of multi-step questions, 466

and in MS-MARCO with a Rouge-L score of 37.96 467

(+3.4% relative over VRAG), reflecting fluent and 468

contextually faithful generation. JSA-RAG shows 469

significant improvements on the NQ dataset as well. 470

From these results, we can observe that JSA-RAG 471

completely outperforms the other two methods in 472

end-to-end generation. 473

Retrieval performance. Going beyond end- 474

to-end generation performance, we aim to explore 475

whether the JSA-RAG promotes joint improvement 476

of retriever and generator in end-to-end training. 477

Thus, we conduct experiments to evaluate the re- 478

trieval performance. On Table 3, JSA-RAG demon- 479

strates consistent improvements in prior retriever 480

performance across dialogs (OR-QUAC, DoQA) 481

and open-domain QA (NQ, TQA, MS-MARCO) 482

datasets. This reveals that the retrievers can get 483

enhanced in JSA-RAG end-to-end training. On 484

OR-QUAC, JSA-RAG achieves the highest R@1 485

(39.56, +1.7% relative over VRAG), R@10 (84.76, 486

+1.5% relative over VRAG) and MRR@10 (57.51, 487

+2.7% relative over VRAG), reflecting success- 488

ful optimizations for dialog retrieval. In open- 489

domain QA, JSA-RAG outperforms baselines on 490

NQ (R@1: 29.23 +8.5%, R@10: 67.27 +5.0%, 491
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Table 3: Performance evaluation of the prior retrievers
for different methods.

Dataset Method R@1 R@10 MRR@10

OR-QUAC

DPR 31.16 77.74 48.28
RAG 38.97 83.35 55.93

VRAG 38.91 83.48 55.98
JSA-RAG 39.56 84.76 57.51

DoQA

DPR 58.59 83.13 66.94
RAG 67.61 87.33 74.74

VRAG 68.01 87.49 74.78
JSA-RAG 68.09 87.57 75.06

NQ

BGE 26.25 63.73 37.64
RAG 27.58 66.97 39.96

VRAG 26.95 64.04 38.21
JSA-RAG 29.23 67.27 41.04

TQA

BGE 33.33 66.73 44.21
RAG 36.01 69.48 46.19

VRAG 36.81 70.07 46.73
JSA-RAG 37.39 70.67 46.90

MS-MARCO

BGE 10.51 36.81 17.91
RAG 23.17 68.66 36.48

VRAG 23.68 68.81 37.53
JSA-RAG 24.75 71.32 38.65

Table 4: Performance evaluation of the posterior retriev-
ers on the OR-QuAC dataset.

Dataset Method R@1 R@10 MRR@10

OR-QuAC
DPR 44.32 90.72 63.88

VRAG 45.66 91.26 64.52
JSA-RAG 46.91 91.43 65.42

MRR@10:41.04 +7.4% relative over VRAG), TQA492

(R@1: 37.39, +1.5% relative over VRAG) and MS-493

MARCO (R@1: 24.75 +4.5%, R@10:71.32 +3.6%494

relative over VRAG), indicating stronger retrieval495

of relevant passages. The superiority of JSA-RAG496

in R@1 and R@10 across multiple datasets indi-497

cates that passages filtered by MIS are more helpful498

in guiding the training of retrievers, compared to499

simply using a posterior retriever to fetch top-10500

passages.501

Comparative analysis. By combining the anal-502

ysis of end-to-end generation performance and re-503

triever performance, we find that JSA-RAG com-504

prehensively outperforms both RAG and VRAG.505

Notably, on TQA and MS-MARCO, although506

VRAG introduces the posterior retriever and im-507

proves retriever performance, its generation perfor-508

mance declines compared to RAG. This exhibits509

asynchrony in end-to-end optimization, where re-510

triever performance improves while generator per-511

formance decreases instead. In contrast, JSA-512

RAG enables more effective joint optimization be-513

tween retrievers and generators, achieving simul-514

Figure 2: Comparison of the gradient norms from the
posterior retriever for the first 4000 steps during training,
using variational and JSA methods respectively.

taneous improvements in both retriever accuracy 515

(e.g., higher R@1, R@10, MRR@10) and gener- 516

ative quality (e.g., superior BLEU-4, F1 scores). 517

This demonstrates that the knowledge pieces se- 518

lected by JSA-RAG’s MIS step can not only en- 519

hance retriever performance but also align well 520

with the preferences for generating response, rather 521

than merely maximizing the relevance scores of 522

retrieved knowledge pieces. 523

4.4 Ablations 524

We conduct ablation experiments on the posterior 525

retriever from two aspects to help understand intu- 526

itively why JSA-RAG outperforms VRAG. First, 527

we analyze the performance of the posterior re- 528

triever. We test the trained posterior retriever on 529

recall@1, recall@10, and MRR@10 metrics using 530

the OR-QUAC dataset, a moderately scaled dataset 531

with gold passage annotations. Second, we moni- 532

tor the gradient variation of the posterior retriever 533

during training. This allows us to observe how the 534

gradients fluctuate along the training steps to intu- 535

itively compare the gradient variance between JSA 536

and VRAG. 537

Performance of posterior retriever. As shown 538

in Table 4, on the QuAC dataset, JSA-RAG’s pos- 539

terior retriever outperforms VRAG across all eval- 540

uated metrics: R@1 (46.91 vs. 45.66), R@10 541

(91.43 vs. 91.26), and MRR@10 (65.42 vs. 64.52), 542

achieving improvements of 2.7%, 0.2%, and 1.4% 543

respectively. These results indicate that JSA- 544

RAG’s posterior retriever captures relevant knowl- 545

edge pieces more accurately. Presumably, this is 546

because the low-variance gradients allow the pos- 547

terior retriever to converge more efficiently toward 548

the true posterior distribution during training. Sim- 549

ilarly, better quality of passages retrieved by MIS 550
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Table 5: In evaluating the performance of index rebuild-
ing on OR-QuAC, the index is rebuilt every 100 steps
during training.

Method Rebuild BLEU-4 R@1 R@10 MRR@10

RAG
No-rebuild 6.576 38.973 83.353 55.931

Rebuild 8.500 47.772 89.753 65.390

VRAG
No-rebuild 6.717 38.910 83.483 55.987

Rebuild 8.583 48.541 90.093 65.901

JSA-RAG
No-rebuild 7.760 40.353 84.664 57.970

Rebuild 10.263 49.446 90.115 66.361

also benefit posterior retriever.551

Variance in gradient norm. As shown in the552

Figure 2, we record the gradient norms of the pos-553

terior retrievers for JSA-RAG and VRAG every554

50 steps during the first 4,000 training steps. The555

gradient norms of JSA are of low variance, while556

the gradient norms of VRAG frequently exhibit557

"sharp" spikes. This observation confirms that558

during training, JSA-RAG provides gradients with559

lower variance, enabling more stable training dy-560

namics and thus yielding higher performance.561

4.5 Experiments on index rebuilding and562

passage concatenation563

Index rebuilding. In the index rebuilding ex-564

periment, unlike the main experiments, we do not565

freeze the parameters of the passage encoder, which566

is often overlooked in previous work. As Table 5567

shows, updating the index every 100 training steps568

on OR-QuAC improves all metrics for all meth-569

ods, with substantial gains in retriever performance,570

and JSA-RAG remains the top performance. These571

findings demonstrate that incorporating the passage572

encoder into training and updating the index is ef-573

fective and that JSA-RAG is able to enhance the574

performance of all system components in an end-575

to-end training framework. Meanwhile, it should576

be noted that rebuilding the knowledge base index577

for the OR-QuAC dataset takes less than 2 min-578

utes, which hardly affects the training time, since579

OR-QuAC KB contains 68k passages. We leave580

asynchronous index rebuilding to work with much581

larger KBs for future work.582

Passage concatenation. In the passage concate-583

nation strategy, we freeze all parameters except the584

generator. As shown in Table 6. On the dataset585

NQ,TQA and MS-MARCO, post-training with the586

passage concatenation strategy is found to improve587

performance across all methods. After all meth-588

ods are subjected to post-training, JSA-RAG still589

significantly outperforms RAG and VRAG. This590

robustness shows the practical applicability of the591

Table 6: In evaluating the passage concatenation method
on ODQA, we fix the retrievers and directly concatenate
the top 10 retrieved passages with the context, then
feed this concatenated input into the generator for post-
training and testing.

NQ TQA MS-MARCO

Method concat or not Exact Match Exact Match BLEU-1 Rouge-L

RAG
No-concat 50.526 72.828 34.238 36.546

concat 51.105 74.843 34.002 37.319

VRAG
No-concat 49.033 72.262 34.148 36.700

concat 51.994 75.541 34.810 37.862

JSA-RAG
No-concat 51.053 75.232 35.277 37.961

concat 52.355 76.116 35.613 38.811

JSA-RAG approach. 592

5 Conclusion and Future Work 593

A major challenge in end-to-end optimization of 594

the RAG model is that the optimization needs to 595

marginalize over relevant passages from a knowl- 596

edge base, which are modeled as discrete latent 597

variables with no annotations. Traditional top-K 598

marginalization and variational RAG (VRAG) suf- 599

fer from biased or high-variance gradient estimates. 600

In this paper, we propose and develop joint stochas- 601

tic approximation (JSA) based end-to-end training 602

of RAG, which is referred to as JSA-RAG. The 603

JSA algorithm is a stochastic extension of the EM 604

algorithm and is particularly powerful in estimating 605

discrete latent variable models. JSA-RAG achieves 606

substantial improvements across multiple tasks and 607

datasets, compared to vanilla RAG and VRAG. No- 608

tably, it can be seen from Appendix B that the train- 609

ing time cost of JSA-RAG is comparable to RAG 610

and VRAG. Beyond performance evaluation, we 611

demonstrate that JSA-RAG exhibits lower gradient 612

variance than VRAG. We also conduct extensive 613

investigations to further strengthen the JSA-RAG 614

framework, including the index rebuilding and the 615

passage concatenation strategies. 616

Remarkably, the potential advantage of the JSA- 617

RAG approach in learning discrete latent vari- 618

able models suggests promising directions for fu- 619

ture research, particularly in learning multi-step 620

agents. Basically, RAG can be viewed as a two- 621

step (retrieve-then-generate) agent. Currently, the 622

multi-step trajectory of thinking, reasoning, tool 623

use, and planning in building agents needs to be 624

synthesized or annotated. The JSA-RAG method- 625

ology investigated in this paper can be extended to 626

learning such multi-step agents. This avenue of ex- 627

ploration is highly promising and warrants further 628

investigation. 629
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Limitations630

Index rebuilding incurs significant computational631

cost for large KBs. Rebuilding the index scales632

with the KB size, drastically increasing the training633

time. In such cases, we need to adopt asynchronous634

index rebuilding. We leave asynchronous index635

rebuilding to work with much larger KBs for future636

work.637

References638

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,639
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,640
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,641
et al. 2016. Ms marco: A human generated ma-642
chine reading comprehension dataset. arXiv preprint643
arXiv:1611.09268.644

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.645
2013. Estimating or propagating gradients through646
stochastic neurons for conditional computation.647
arXiv preprint arXiv:1308.3432.648

Tom Brown, Benjamin Mann, Nick Ryder, Melanie649
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind650
Neelakantan, Pranav Shyam, Girish Sastry, Amanda651
Askell, et al. 2020. Language models are few-shot652
learners. Advances in neural information processing653
systems, 33:1877–1901.654

Yucheng Cai, Hong Liu, Zhijian Ou, Yi Huang, and Jun-655
lan Feng. 2023. Knowledge-retrieval task-oriented656
dialog systems with semi-supervision. In Proc. Inter-657
speech 2023, pages 4673–4677.658

Jon Ander Campos, Arantxa Otegi, Aitor Soroa, Jan Mi-659
lan Deriu, Mark Cieliebak, and Eneko Agirre. 2020.660
Doqa-accessing domain-specific faqs via conversa-661
tional qa. In Proceedings of the 58th Annual Meet-662
ing of the Association for Computational Linguistics,663
pages 7302–7314.664

Danqi Chen, Adam Fisch, Jason Weston, and Antoine665
Bordes. 2017. Reading wikipedia to answer open-666
domain questions. pages 1870–1879.667

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin.668
1977. Maximum likelihood from incomplete data via669
the EM algorithm. Journal of the Royal Statistical670
Society, 39.671

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and672
Kristina Toutanova. 2019. Bert: Pre-training of deep673
bidirectional transformers for language understand-674
ing. In Proc. of the Conference of the North Amer-675
ican Chapter of the Association for Computational676
Linguistics: Human Language Technologies.677

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-678
pat, and Mingwei Chang. 2020. Retrieval augmented679
language model pre-training. In International confer-680
ence on machine learning, pages 3929–3938. PMLR.681

Gunsoo Han, Daejin Jo, Daniel Nam, Eunseop Yoon, 682
Taehwan Kwon, Seungeun Rho, Kyoung-Woon On, 683
Chang Yoo, and Sungwoong Kim. 2023. Efficient 684
latent variable modeling for knowledge-grounded di- 685
alogue generation. In Findings of the Association 686
for Computational Linguistics: EMNLP 2023, pages 687
2683–2702. 688

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and 689
Sai Qian Zhang. Parameter-efficient fine-tuning for 690
large models: A comprehensive survey. Transactions 691
on Machine Learning Research. 692

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 693
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 694
Weizhu Chen, et al. 2022. Lora: Low-rank adap- 695
tation of large language models. ICLR, 1(2):3. 696

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se- 697
bastian Riedel, Piotr Bojanowski, Armand Joulin, 698
and Edouard Grave. Unsupervised dense informa- 699
tion retrieval with contrastive learning. Transactions 700
on Machine Learning Research. 701

Gautier Izacard and Édouard Grave. 2021. Leveraging 702
passage retrieval with generative models for open do- 703
main question answering. In Proceedings of the 16th 704
Conference of the European Chapter of the Associ- 705
ation for Computational Linguistics: Main Volume, 706
pages 874–880. 707

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas 708
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi- 709
Yu, Armand Joulin, Sebastian Riedel, and Edouard 710
Grave. 2023. Atlas: Few-shot learning with retrieval 711
augmented language models. Journal of Machine 712
Learning Research, 24(251):1–43. 713

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur 714
Mensch, Chris Bamford, Devendra Singh Chap- 715
lot, Diego de Las Casas, Florian Bressand, Gi- 716
anna Lengyel, Guillaume Lample, Lucile Saulnier, 717
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre 718
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, 719
Timothée Lacroix, and William El Sayed. 2023. Mis- 720
tral 7b. ArXiv, abs/2310.06825. 721

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. 722
Billion-scale similarity search with gpus. IEEE 723
Transactions on Big Data, 7(3):535–547. 724

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke 725
Zettlemoyer. 2017. Triviaqa: A large scale distantly 726
supervised challenge dataset for reading comprehen- 727
sion. In Proceedings of the 55th Annual Meeting of 728
the Association for Computational Linguistics (Vol- 729
ume 1: Long Papers), pages 1601–1611. 730

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 731
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 732
Wen-tau Yih. 2020. Dense passage retrieval for open- 733
domain question answering. In Proceedings of the 734
2020 Conference on Empirical Methods in Natu- 735
ral Language Processing (EMNLP). Association for 736
Computational Linguistics. 737

9

https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494


Omar Khattab, Keshav Santhanam, Xiang Lisa738
Li, David Hall, Percy Liang, Christopher Potts,739
and Matei Zaharia. 2022. Demonstrate-search-740
predict: Composing retrieval and language mod-741
els for knowledge-intensive nlp. arXiv preprint742
arXiv:2212.14024.743

Byeongchang Kim, Jaewoo Ahn, and Gunhee Kim. Se-744
quential latent knowledge selection for knowledge-745
grounded dialogue.746

Diederik P. Kingma and Max Welling. 2014. Auto-747
encoding variational bayes. In 2nd International748
Conference on Learning Representations (ICLR).749

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-750
field, Michael Collins, Ankur Parikh, Chris Alberti,751
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-752
ton Lee, et al. 2019. Natural questions: a benchmark753
for question answering research. Transactions of the754
Association for Computational Linguistics, 7:453–755
466.756

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.757
2019. Latent retrieval for weakly supervised open do-758
main question answering. In Proceedings of the 57th759
Annual Meeting of the Association for Computational760
Linguistics, pages 6086–6096.761

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio762
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-763
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-764
täschel, et al. 2020. Retrieval-augmented generation765
for knowledge-intensive nlp tasks. Advances in neu-766
ral information processing systems, 33:9459–9474.767

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi,768
Maria Lomeli, Richard James, Pedro Rodriguez, Ja-769
cob Kahn, Gergely Szilvasy, Mike Lewis, et al. 2023.770
Ra-dit: Retrieval-augmented dual instruction tuning.771
In The Twelfth International Conference on Learning772
Representations.773

Jun S Liu. 2001. Monte Carlo strategies in scientific774
computing, volume 10. Springer.775

Mayank Mishra, Dhiraj Madan, Gaurav Pandey, and776
Danish Contractor. 2022. Variational learning for777
unsupervised knowledge grounded dialogs. In Inter-778
national Joint Conference on Artificial Intelligence.779

Zhijian Ou and Yunfu Song. 2020. Joint stochastic780
approximation and its application to learning discrete781
latent variable models. In Conference on Uncertainty782
in Artificial Intelligence, pages 929–938. PMLR.783

John Paisley, David M Blei, and Michael I Jordan. 2012.784
Variational bayesian inference with stochastic search.785
In Proceedings of the 29th International Coference786
on International Conference on Machine Learning,787
pages 1363–1370.788

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-789
Jing Zhu. 2002. Bleu: a method for automatic eval-790
uation of machine translation. In Proceedings of791

the 40th annual meeting on association for computa- 792
tional linguistics (ACL), pages 311–318. Association 793
for Computational Linguistics. 794

Ashwin Paranjape, Omar Khattab, Christopher Potts, 795
Matei Zaharia, and Christopher D Manning. Hind- 796
sight: Posterior-guided training of retrievers for im- 797
proved open-ended generation. In International Con- 798
ference on Learning Representations. 799

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, 800
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and 801
Alexander Miller. 2019. Language models as knowl- 802
edge bases? In Proceedings of the 2019 Confer- 803
ence on Empirical Methods in Natural Language Pro- 804
cessing and the 9th International Joint Conference 805
on Natural Language Processing (EMNLP-IJCNLP), 806
pages 2463–2473. 807

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W Bruce 808
Croft, and Mohit Iyyer. 2020. Open-retrieval con- 809
versational question answering. In Proceedings of 810
the 43rd International ACM SIGIR conference on 811
research and development in Information Retrieval, 812
pages 539–548. 813

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 814
Dario Amodei, Ilya Sutskever, et al. 2019. Language 815
models are unsupervised multitask learners. OpenAI 816
blog, 1(8):9. 817

Shamane Siriwardhana, Rivindu Weerasekera, Elliott 818
Wen, Tharindu Kaluarachchi, Rajib Rana, and 819
Suranga Nanayakkara. 2023. Improving the domain 820
adaptation of retrieval augmented generation (rag) 821
models for open domain question answering. Trans- 822
actions of the Association for Computational Linguis- 823
tics, 11:1–17. 824

Haotian Xu and Zhijian Ou. 2016. Joint stochastic 825
approximation learning of Helmholtz machines. In 826
ICLR Workshop Track. 827

Hamed Zamani and Michael Bendersky. 2024. Stochas- 828
tic rag: End-to-end retrieval-augmented generation 829
through expected utility maximization. In Proceed- 830
ings of the 47th International ACM SIGIR Confer- 831
ence on Research and Development in Information 832
Retrieval, pages 2641–2646. 833

Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng 834
Dou, and Jian-Yun Nie. 2023. Retrieve anything 835
to augment large language models. arXiv preprint 836
arXiv:2310.07554. 837

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng 838
Shen, Matei Zaharia, Ion Stoica, and Joseph E Gon- 839
zalez. 2024. Raft: Adapting language model to do- 840
main specific rag. In First Conference on Language 841
Modeling. 842

Yizhe Zhang, Siqi Sun, Xiang Gao, Yuwei Fang, Chris 843
Brockett, Michel Galley, Jianfeng Gao, and Bill 844
Dolan. 2022. Retgen: A joint framework for retrieval 845
and grounded text generation modeling. In Proceed- 846
ings of the AAAI Conference on Artificial Intelligence, 847
volume 36, pages 11739–11747. 848

10



Yuetong Zhao, Hongyu Cao, Xianyu Zhao, and Zhi-849
jian Ou. 2024. An empirical study of retrieval aug-850
mented generation with chain-of-thought. In 2024851
IEEE 14th International Symposium on Chinese Spo-852
ken Language Processing (ISCSLP), pages 436–440.853
IEEE.854

11



A Training Details855

Our overall experiments were run for 20,000 steps856

and the best results were recorded. During train-857

ing, we set different learning rates for the retriever858

and generator. The loss was optimized using the859

AdamW optimizer. For the dialog task, using GPT-860

2 and DPR models, the learning rates for the gener-861

ator and retriever were set to 1×10−5 and 1×10−5,862

respectively. For the ODQA task with Mistral-7B863

and BGE models, the learning rates for the gen-864

erator and retriever were 2 × 10−5 and 1 × 10−5,865

respectively. In the passage concatenation experi-866

ment, only the generator was post-trained at a learn-867

ing rate of 1× 10−5 for 10,000 steps. Additionally,868

the hyperparameter involved in JSA include: MIS869

sampling steps m = 50.870

For training with the dialog datasets, we used871

8 NVIDIA 3090 GPUs with 24GB VRAM for872

both training and index storing. For ODQA exper-873

iments, training was conducted on 8 A100 GPUs874

with 40GB VRAM, where 4 GPUs were dedicated875

to main training and the other 4 to building the876

index server.877

GPT-2 was fine-tuned with full parameters,878

while the Mistral-7B model was wrapped with a879

PEFT model for LoRA fine-tuning. The configura-880

tion of Low-Rank Adaptation (LoRA) parameters881

used in this study is presented in Table 7. These882

settings were applied uniformly across all experi-883

ments unless otherwise specified.884

Table 7: LoRA Hyperparameter Settings

Parameter Value

Task Type Causal Language Modeling (CAUSAL_LM)
Rank Reduction Factor (r) 8
LoRA Scaling Factor (α) 16.0
Dropout Probability 0.0
Bias Training Strategy None
Target Modules k_proj, q_proj, v_proj, o_proj,

gate_proj, down_proj, up_proj

B Computation Cost in Training885

To evaluate the computational efficiency of differ-886

ent methods, we measure the training time per 10887

iterations on the QuAC dataset (batch size = 1).888

The results are summarized in Table 8. It can be889

seen that the training time cost of JSA-RAG is890

comparable to RAG and VRAG.891

C Gold Passage Annotation892

Datasets such as NQ, TQA, and MS-MARCO do893

not have annotations for gold passages in their894

Table 8: Computation cost comparison on QuAC dataset

Method Time (Seconds / 10 iterations)

JSA-RAG 29 - 30
VRAG 28
RAG 23

corresponding KBs. A gold passage refers to a 895

passage containing information capable of answer- 896

ing a question. To obtain such passages or to find 897

them as closely as possible, we first use the BGE- 898

intialized posterior retriever to retrieve 100 relevant 899

passages from the knowledge base for each ques- 900

tion (the posterior retriever performs retrieval using 901

question-answer pairs to incorporate more informa- 902

tion). We then prompt GPT-4o to select the one 903

passage that it deems most capable of answering 904

the question from the 100 candidates. The specific 905

prompt is shown in Table 9. 906

D LLM Prompt Template 907

During training, to enable the generator to more 908

clearly combine the context and the retrieved pas- 909

sages, we employ different LLM Prompt Templates 910

for different tasks, as shown in Table 10. 911

12



Table 9: Prompt for gold passage selection via GPT-4o

Task Type Prompt Text

Gold Passage Selection "Question: {question}, Provided Answers: {answers}.
Please select the ID of the passage that best answers
the question from the following paragraphs.
If there is no passage you think can generate the correct answer,
select the ID of the passage that comes closest to answering the question.
Note!!! Only return the value of the passage’s id key."

Table 10: LLM prompt templates used in evaluation for different tasks

Tasks LLM Prompt Template

ODQA [INST] Give a short answer to the Question based on
relevant information given in Input.
\nInput:{retrieved passage}\nQuestion: {q}
\n[/INST]{answer}

dialogs Input:{retrieved passage}\n
<speaker1>{turn1}<speaker2>{turn2}
<speaker1>{turn3}<speaker2>{answer}
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