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Abstract

Retrieval-augmented generation (RAG) has be-
come a widely recognized paradigm to com-
bine parametric memory with non-parametric
memory. An RAG model consists of two serial
connecting components (retriever and genera-
tor). A major challenge in end-to-end optimiza-
tion of the RAG model is that marginalization
over relevant passages (modeled as discrete la-
tent variables) from a knowledge base is re-
quired. Traditional top-K marginalization and
variational RAG (VRAG) suffer from biased
or high-variance gradient estimates. In this pa-
per, we propose and develop joint stochastic
approximation (JSA) based end-to-end training
of RAG, which is referred to as JSA-RAG. The
JSA algorithm is a stochastic extension of the
EM (expectation-maximization) algorithm and
is particularly powerful in estimating discrete
latent variable models. Extensive experiments
are conducted on five datasets for two tasks
(open-domain question answering, knowledge-
grounded dialogs) and show that JSA-RAG sig-
nificantly outperforms both vanilla RAG and
VRAG. Further analysis shows the efficacy of
JSA-RAG from the perspectives of generation,
retrieval, and low-variance gradient estimate.

1 Introduction

Large language models (LLMs) have been shown
to store factual knowledge in their parameters
through pre-training over large amounts of Internet
corpora (Petroni et al., 2019; Brown et al., 2020).
However, such implicit knowledge cannot be eas-
ily updated, expanded, inspected, and interpreted.
Moreover, for many knowledge-intensive tasks, the
use of external knowledge beyond the parametric
memory of LLLMs to generate responses is critical,
such as in open-domain question answering (QA)
(Chen et al., 2017; Lee et al., 2019; Karpukhin
et al., 2020) and knowledge-grouned dialog sys-
tems (Kim et al.; Mishra et al., 2022; Cai et al.,
2023). To address these issues, hybrid models that

combine parametric memory with nonparametric
memories have emerged (Lee et al., 2019; Guu
et al., 2020), among which retrieval-augmented
generation (RAG) has drawn considerable atten-
tion (Lewis et al., 2020).

During recent years, RAG has not only been
used to refer to the particular method developed
in (Lewis et al., 2020), but also, more often, repre-
sents a general two-step paradigm (retrieve-then-
generate). In the RAG paradigm, given a context
(denoted by x) such as a query in QA or a dialog
context, relevant passages (denoted by h) are first
obtained from external knowledge bases (KBs) by
using a retriever. The retrieved passages are then
combined with the context and fed into a generator
to generate the response y.

Hence, a RAG model consists of two serial con-
necting components (retriever and generator). Dur-
ing training, if the relevant passage is known (e.g.,
human-annotated gold passage), we can supervise
the retriever with that passage, and train the gener-
ator conditioned on that passage as well. However,
collecting human annotations of gold passages is
labor intensive. This challenge leads to the widely
adopted approach of training retrievers and gen-
erators separately. Retrievers are often trained on
one corpus (Karpukhin et al., 2020; Izacard et al.;
Zhang et al., 2023), and then generators are trained
on another different corpus using fixed retrievers
(Khattab et al., 2022; Zhang et al., 2024; Zhao
et al., 2024). While this is fairly easy to implement,
separate training is sub-optimal, for example, the
retriever never improves as the generator learns to
generate responses.

There have been efforts in developing end-to-
end training of an RAG model (Lewis et al., 2020;
Zhang et al., 2022; Han et al., 2023; Zamani and
Bendersky, 2024), which means eliminating the
reliance on intermediate annotations and training
all model components simultaneously. In (Lewis
et al., 2020), to train the retriever and generator



end-to-end, the relevant passage is treated as a dis-
crete latent variable and the following marginal
log-likelihood is to be maximized:

pyle) = p(hla)p(yla, h) (1)
h

Thus end-to-end training of RAG in essence
amounts to unsupervised training of a discrete
latent-variable model, as shown above. Direct
marginalization is intractable; hence, originally,
top-K marginalization (TKM) is used for the ap-
proximation (Lewis et al., 2020), which we refer
to as vanilla RAG. Recently, variational learning
(VL) (Kingma and Welling, 2014) has been applied
to end-to-end training of RAG in two concurrent
and similar works - VRAG (Mishra et al., 2022)
and Hindsight (Paranjape et al.), which we refer
to collectively as VRAG. In VRAG, an auxiliary
inference model is introduced, acting as a poste-
rior retriever. However, for variational learning
of discrete latent variable models, the traditional
Monte Carlo gradient estimator for the inference
model parameter is known to be either biased or
have high-variance (Ou and Song, 2020).

Recently, the joint stochastic approximation
(JSA) algorithm (Xu and Ou, 2016; Ou and Song,
2020) has emerged to learn discrete latent vari-
able models with better performance than VL. JSA
is a stochastic extension of the EM (expectation-
maximization) algorithm and gives unbiased, low-
variance stochastic gradients for the inference
model.

In this paper, we propose JSA based end-to-end
training of RAG, which is referred to as JSA-RAG,
as overviewed in Figure 1. JSA-RAG makes the
following contributions. First, we design all model
components (including prior retriever, generator,
and posterior retriever) and implement the whole
training and decoding pipeline to enable the suc-
cessful application of JSA. We address some com-
putational challenges to work with large-scale KBs
(e.g., tens of millions of passages in Wikipedia).
Second, we investigate the effect of index rebuild-
ing in training. We study the passage concatenation
strategy for post-training of the generator while fix-
ing the retriever. These further demonstrate the ca-
pability and bonus offered by JSA-RAG. Third, ex-
tensive experiments are conducted on five datasets
for two tasks (open-domain question answering,
knowledge-grounded dialogs) and show that JSA-
RAG outperforms both vanilla RAG and VRAG,
e.g., achieving +4.1% Exact Match on TQA and

+10.3% BLEU-4 on DoQA relative over VRAG.
Improved retriever performance and low-variance
gradients of the posterior retriever are also vali-
dated, e.g.,+8.5% R@1 on NQ and +1.7% R@1 on
OR-QuAC relative over VRAG.

2 Related work

2.1 Retrieval-Augmented Generation (RAG)

RAG (Lewis et al., 2020) has become a widely rec-
ognized paradigm for combining parametric mem-
ory with nonparametric memory. A major chal-
lenge in end-to-end optimization of RAG models
is that the optimization needs to marginalize over
relevant passages, which are modeled as discrete
latent variables with no annotations. Atlas (Izacard
et al., 2023) studies some ad-hoc loss functions
(including the vanilla RAG loss via TKM) to train
the retriever jointly with generator, and does not
observe significant systematic differences between
the different training objectives. This highlights
the need for more principled end-to-end training
method, which our JSA-RAG addresses. In addi-
tion to investigating new training methods for RAG,
there are other research activities around RAG that
are orthogonal to or can benefit from our JSA-RAG.
FiD (Izacard and Grave, 2021) presents a new strat-
egy to aggregate and combine multiple passages
in decoding. In (Siriwardhana et al., 2023), end-
to-end training of RAG is applied to specialized
domains such as healthcare and news.

2.2 Learning with discrete latent-variable
models

End-to-end training of RAG in essence amounts
to learning a discrete latent-variable model. A
class of maximum likelihood methods consists
of the expectation-maximization (EM) algorithm
(Dempster et al., 1977) and its extensions. Vari-
ational learning optimizes the Evidence Lower
Bound (ELBO) instead of directly maximizing the
marginal log-likelihood. VRAG and Hindsight,
both based on variational learning, use the TKM
approximation to optimize ELBO. RetGen (Zhang
et al., 2022) uses the REINFORCE trick (Paisley
et al., 2012). Stochastic RAG (Zamani and Bender-
sky, 2024) uses the Straight-Through trick (Bengio
etal.,2013). These parameter estimators are known
to be biased or have high-variance (Ou and Song,
2020). The JSA algorithm (Xu and Ou, 2016; Ou
and Song, 2020) is a stochastic extension of the
EM algorithm with impressive performance, where
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Figure 1: Overview of JSA-RAG. 1) In addition to the (prior) retriever and generator, JSA-RAG introduces an
(auxiliary) posterior retriever. 2) During training, the posterior retriever proposes relevant passages, which get
accepted or rejected according to the probabilities calculated from the three components. The blue dashed line
shows such Metropolis independence sampling (MIS), which is a Monte Carlo approximation of the E-step in EM.
3) The filtered passages are then treated as pseudo labels, as shown by the red dotted line. 4) Given the pseudo
labels, we can calculate the gradients for prior retriever, posterior retriever, and generator, respectively, and proceed
with parameter updating, very similar to perform supervised training, like the M-step in EM.

both the E-step and the M-step (as they cannot be
performed exactly) are extended by the stochastic

approximation methodology, hence called joint SA.

JSA provides us with a new way to improve the
end-to-end training of RAG.

3 Method: JSA-RAG
3.1 Model

Let (x, y) denote the pair of context and response,
both represented by token sequences. Let X denote
the KB, which is a discrete set of text passages
(e.g. Wikipedia chunks). Each passage is also a
token sequence. Let i denote the relevant passage
in JC needed to generate the response y given the
context x, which is treated as a latent variable since
there are no annotations. Therefore, we obtain a
latent variable model for RAG, with parameters
6 = (0., 0,), which can be decomposed as:

po(y, h|w) = py, (h|z)pe, (y|x, h) (2)

Prior retriever py,(h|x), is parameterized by
6, and models the prior relevancy of the passages
in /C with respect to the context x. Similar to the
original RAG, a bi-encoder architecture for the
prior retriever is defined as follows:

exp (ex(h) e, (x))

Da.. (h|$) = Zh/EIC exp (e)\(h’)Ten(w)) @

where e) (x) denote the context encoder, parame-
terized by A, outputting the dense vector representa-
tion (or say, the embedding vector) of the context;
e,(h), the passage encoder, parameterized by 7,
returns the embedding vector of the passage. We
calculate the two embeddings with two separate
neural networks, both initialized from BERT (De-
vlin et al., 2019). Hence, 6, = (A, ).

Generator py, (y|z,h) is parameterized by 6,
and models the sequential generation of the re-
sponse y given the context x and the passage h.
The neural network architecture can be encoder-
decoder or decodely-only. In this work, we employ
decoder-only LL.Ms, which calculates the likeli-
hood of the response y as follows:

logp(ylh,z) =Y logp(y;ly<j,z.h).  (4)
j

where the context x and the retrieved passage h are
concatenated to fed into the LLM to generate .
Posterior retriever is introduced for applying
the JSA algorithm to learn the latent variable model
Eq. (2). It represents an auxiliary inference model
to approximate the posterior probability of select-
ing passage h when given both context x and re-
ponse y. Similar to the prior retriever, a bi-encoder
architecture for the posterior retriever, with param-



eters ¢ = (A, ), is defined as follows:

olhly) = P (o) eelo +1)

P Secexp (ea(W) Teg(w + M)
where the passage encoder e) (h) is shared between
the prior and the posterior retrievers, but a new
BERT based neural network is introduced to calcu-
late the embedding for the combination of context
x and response y. In particular, x and y are con-
catenated, denoted by = + y, and are fed to the
context-response encoder e (-). Note that except
for the index rebuilding experiment, all passage
encoders are fixed.

Computation consideration. The softmax cal-
culation over the entire KB in Eq. (3) and Eq. (5)
for the prior and posterior retrievers are computa-
tionally prohibitive even for moderate-sized KBs
(e.g., thousands of passages). In practice, we main-
tain an index on passage embeddings for the KB
using FAISS (Johnson et al., 2019). Given a pair
of context and reponse (z,y), we can efficiently
retrieve the set of top-k passages under prior and
posterior distributions using Maximum Inner Prod-
uct Search (MIPS) (Johnson et al., 2019), denoted
by SP1r and SP* respectively (k = 10 in our exper-
iments). The two sets occupy the majority of proba-
bilities for the prior and posterior distributions, and
at first thought, can be used to approximate the cal-
culations of Eq. (3) and Eq. (5), respectively. Note
that in order to calculate the importance weights for
sampled passages used in JSA training (to be clear
in Section 3.2 below), we need the prior and poste-
rior probabilities to be calculated over a common
set. Therefore, we form a union set by merging
SPrior and SPOSt, and the softmax calculations in Eq.
(3) and Eq. (5) are only taken over this union set.

3.2 Training

Training the RAG model from complete data, i.e.,
knowing h, can be easily realized by supervised
training. For end-to-end training of the RAG model
(i.e., conducting unsupervised training without
knowing h), we resort to maximizing the marginal
likelihood py(y|x) and applying the JSA algorithm
(Xu and Ou, 2016; Ou and Song, 2020).

JSA involves introducing an auxiliary inference
model to approximate the intractable posterior
po(h|x,y), which, turns out to take the form of
¢s(hlx,y), ie., the posterior retriever. We can
jointly train the three components (prior retriever,
posterior retriever and generator), which is summa-

rized in Algorithm 1. The JSA algorithm can be
viewed as a stochastic extension of the well-known
EM algorithm (Dempster et al., 1977) , which it-
erates Markov Chain Monte Carlo (MCMC) sam-
pling and parameter updating, being analogous to
the E-step and the M-step in EM respectively.

E-Step. The sampling step stochastically re-
trieves passages through sampling from the poste-
rior py(h|z,y). However, direct sampling from the
posterior pg(h|z, y) is intractable, so MCMC sam-
pling is employed. Particularly, using pg(h|z,y)
as the target distribution and ¢4 (h|x, y) as the pro-
posal, we sample h through Metropolis indepen-
dence sampler (MIS) (Liu, 2001) as follows:

1) Propose h ~ qg(h|z,y);

2) Accept h with probability min{ ,%},
where
o, (h|x)py, (y|z, h)
Q¢(h’xa y)

_ p@(h’mv y)
qs(hlz,y)

(6)

is the usual importance ratio between the target and
the proposal distribution and h denotes the previous
value for h along the Markov chain. In practice,
we run MIS for several (m) steps, with the chain is
initialized from py(h|x, y).

M-Step. Once we obtain the accepted pseudo
labels {1, h(2), ... (™)} from MIS, we can treat
them as being given. We calculate the gradients for
the prior retriever, posterior retriever, and generator
models, respectively, and proceed with parameter
updating, very similar to the process in supervised
training. This is analogous to the M-step in EM,
but the proposal g is also adapted. In summary,
the loss function can be written as:

1 & ,
Lisa = - Zl (10gp9r(h(l)’3?)

+10gpa, (yle, AO) + 10g g5 (V2. )
(7N

3.3 Index rebuilding and passage
concatenation

Index Rebuilding. In previous work, during train-
ing, the index of passage embeddings for the KB
is often fixed; therefore, the parameters of the pas-
sage encoder (\) are frozen (Lewis et al., 2020;
Mishra et al., 2022; Lin et al., 2023). In this work,
to study whether JSA-RAG can perform end-to-end
optimization of all modules - including the passage
encoder, we explore an index rebuilding scheme.
During training, we no longer freeze the parameters



Algorithm 1 The JSA-RAG algorithm

Require: Training dataset D = {(z,y)}, prior
retriever pg, (h|x), posterior retriever g4 (h|z, y),
generator py, (y|x, h), MIS step number m.
repeat
Draw a pair of context and response (x,y);
Monte Carlo sampling:
Use MIS to draw {h(D (D) . h(™)};
Parameter updating:
Update 6 by ascending:
=3 Vglog [pg, (hD]z)pg, (ylz, hD)];
Update ¢ by ascending:
=30 Ve log go(h9 |z, y);

until convergence

return 6 and ¢

of the passage encoder and recalculate the passage
embeddings in the index using the updated passage
encoder at regular intervals. During passage em-
bedding recalculation, the training process waits;
the training is resumed after the index update is
completed.

Passage Concatenation. Note that the prior
retriever is improved after end-to-end learning. In-
spired by FiD (Izacard and Grave, 2021), we con-
sider a passage concatenation strategy for post-
training of the generator while fixing the retriever.
The top-k prior retrieved passages are concate-
nated and append to the context, forming a com-
bined sequence that is fed into the generator for
response generation. In this way, the generator is
post-trained and in the same way, the generator is
used in decoding. This shows the bonus offered by
JSA-RAG.

Note that the above two methods are only used
in the experiments described in Section 4.5.

3.4 Decoding

During testing, we use “Top-k Documents Decod-
ing”, following VRAG (Mishra et al., 2022), with
k = 10. Specifically, given a context x, we em-
ploy the trained prior retriever to fetch the top-k
passages {h(1), ...  h(¥)} The context z and the
retrieved passage h(?) are concatenated and fed into
the generator, a beam search is performed to gen-
erate the top response yW, i =1,--- k. Wees-
timate p(y?|z) using the product of two terms:
p(yVz) ~ p(h®|z)p(y®|hl), z). Finally, we
select the response y(?) with the highest estimated
probability as the final output for the given context
x. This is a simplified “Fast Decoding” in (Lewis

et al., 2020) and performs well in our experiments.

4 Experiment

To evaluate the effectiveness of the JSA-RAG
method, we use VRAG and RAG as baseline
end-to-end methods. The evaluation is taken on
two tasks - open-domain question answering and
knowledge-grounded dialogs. Comprehensive ex-
periments are conducted to evaluate the perfor-
mance of JSA-RAG, focusing on aspects such as
generation quality and retrieval recall. Ablation
studies are also conducted to analyze the effects of
JSA-RAG in controlling gradient variance and op-
timizing retrieval efficiency. Specifically, we com-
pare the performance of the posterior retrievers in
JSA-RAG and VRAG, as well as fluncations in gra-
dient norms. For all experiments, top-10 retrieval
is used for both the prior and posterior retrievers
during training and testing.

4.1 Datasets

Open-domain question answering: Unlike or-
dinary QA, open-domain question answering
(ODQA) requires extensive external knowledge
to answer questions, which is the primary task
explored with RAG systems. We mainly con-
sider three ODQA datasets: NaturalQuestions (NQ)
(Kwiatkowski et al., 2019), TriviaQA (TQA) (Joshi
et al., 2017), and MS-MARCO (Bajaj et al., 2016)!.
For NQ and TQA, we use the Wikipedia Decem-
ber 2018 dump, which contains a total of 24M
chunks (passages); for MS-MARCO, instead of us-
ing the 10 provided reference passages, we extract
its QA pairs and use the MS-MARCO passages
from TREC2019 as the KB (Bajaj et al., 2016).

Knowledge grounded dialogs: In dialog datasets,
we use conversation history turns as x to retrieve
relevant passages and take the response of the cur-
rent turn as y, thus constructing (z,y) pairs. We
use the OR-QuAC (Qu et al., 2020) and the DoQA
(Campos et al., 2020) datasets. OR-QuAC is an
open-domain dialog question answering dataset
derived from the QUAC (Question Answering in
Context) corpus, requiring models to retrieve and
reason over external knowledge to answer multi-
turn conversational questions. DoQA comprises
of open-ended dialog conversations on different
domains like cooking, travel and movies. Both
datasets follow the knowledge base settings used

"Note that the MS-MARCO dataset has two versions, and
the version we use in this work is MS-MARCO vl1.



in VRAG (Mishra et al., 2022). For OR-QuAGC, its
KB contains 68k passages, while for DoQA, its KB
contains 1.2k passages.

4.2 Experiment settings

In open-domain QA tasks, we employ BGE-large
(326M parameters) (Zhang et al., 2023) to initial-
ize both the prior and posterior retrievers and use
Mistral-7B (Jiang et al., 2023) as the generator,
which is fine-tuned with LoRA (Hu et al., 2022;
Han et al.) during training. To evaluate end-to-
end generation, we use Exact Match for NQ and
TQA, and BLEU-1 and Rouge-L for MS-MARCO.
For retriever performance, we use Recall@1 and
Recall@10 to measure the accuracy of retrieved
results for all three datasets.

For knowledge-grounded dialog tasks, we ini-
tialize the prior and posterior retrievers with DPR
(124M parameters) (Karpukhin et al., 2020) and
use GPT-2 (124M parameters) (Radford et al.,
2019) as the generator. For end-to-end generation
evaluation, we use BLEU-1, BLEU-4 (Papineni
et al., 2002), and F1; for retriever performance, we
employ metrics the same as in open-domain QA.

Remarkably, for NQ, TQA, and MS-MARCO
without gold passage annotations, the BGE-
intialized posterior retriever first retrieves top 100
passages per question from KB, and GPT-40 se-
lects the most relevant as the gold annotation. See
Appendix C for details.

Technically, we construct an FAISS index for
fast retrieval and deploy it as a standalone server.
This allows the main program to perform retrieval
via API calls. This setup optimizes GPU memory
utilization: by eliminating the need to pre-reserve
GPU memory for index loading, the main program
can allocate more dedicated VRAM to model com-
putations. Notably, the index persists across exper-
iments (when different experiments use the same
Wikepedia KB), eliminating redundant embedding
recomputation and significantly reducing training
time.

Additional training details are provided in Ap-
pendix A. The Prompt Template for the generator
LLM is shown in Appendix D.

4.3 Main result

Based on the results in Table 1 and Table 2, JSA-
RAG demonstrates significant superiority on dialog
datasets (DoQA and OR-QUAC) and open-domain
QA tasks, with all evaluated metrics outperforming
baselines (vanilla RAG and VRAG).

Table 1: Generative performance comparison of differ-
ent models on knowledge-grounded dialog datasets

DoQA OR-QUAC
Method  BLEU-4 BLEU-1 Fl BLEU4 BLEU-1 Fl

RAG 1539 2169 2591  6.57 1351 17.28
VRAG 15.51 2155 2602 671 13.87  17.63
JSA-RAG 1711 2336 2784 776 1459  18.41

Table 2: Performance comparison of different models
on open-domain question answering datasets

NQ TQA MS-MARCO
Method Exact Match Exact Match BLEU-1 Rouge-L
RAG 50.52 72.82 34.23 36.54
VRAG 49.03 72.26 34.14 36.70
JSA-RAG 51.05 75.23 35.28 37.96

End-to-end generation performance. On
DoQA, JSA-RAG achieves a BLEU-4 score of
17.11 (+10.3% relative over VRAG) and an F1
score of 27.84 (+6.9% relative over VRAG), and
on OR-QUAUQ, its F1 score of 18.41 represents a
relative 4.4% gain over VRAG, highlighting supe-
rior contextual knowledge integration for complex
dialog reasoning. In open-domain QA, JSA-RAG
excels in TQA with an Exact Match score of 75.23
(+4.1% relative over VRAG) and NQ with an Exact
Match score of 51.05 (+4.1% relative over VRAG),
indicating robust handling of multi-step questions,
and in MS-MARCO with a Rouge-L score of 37.96
(+3.4% relative over VRAG), reflecting fluent and
contextually faithful generation. JSA-RAG shows
significant improvements on the NQ dataset as well.
From these results, we can observe that JSA-RAG
completely outperforms the other two methods in
end-to-end generation.

Retrieval performance. Going beyond end-
to-end generation performance, we aim to explore
whether the JSA-RAG promotes joint improvement
of retriever and generator in end-to-end training.
Thus, we conduct experiments to evaluate the re-
trieval performance. On Table 3, JSA-RAG demon-
strates consistent improvements in prior retriever
performance across dialogs (OR-QUAC, DoQA)
and open-domain QA (NQ, TQA, MS-MARCO)
datasets. This reveals that the retrievers can get
enhanced in JSA-RAG end-to-end training. On
OR-QUAC, JSA-RAG achieves the highest R@1
(39.56, +1.7% relative over VRAG), R@10 (84.76,
+1.5% relative over VRAG) and MRR@10 (57.51,
+2.7% relative over VRAG), reflecting success-
ful optimizations for dialog retrieval. In open-
domain QA, JSA-RAG outperforms baselines on
NQ (R@1: 29.23 +8.5%, R@10: 67.27 +5.0%,



Table 3: Performance evaluation of the prior retrievers
for different methods.

Dataset Method R@l R@10 MRR@I0
DPR 31.16  77.74 48.28
RAG 38.97 83.35 55.93
OR-QUAC VRAG 3891 83.48 55.98
JSA-RAG 39.56 84.76 57.51
DPR 58.59 83.13 66.94
RAG 67.61 87.33 74.74
DoQA VRAG  68.01 87.49 74.78
JSA-RAG 68.09 87.57 75.06
BGE 26.25 63.73 37.64
NO RAG 2758  66.97 39.96
VRAG 2695 64.04 38.21
JSA-RAG 2923 67.27 41.04
BGE 3333 66.73 4421
TOA RAG 36.01 69.48 46.19
VRAG  36.81 70.07 46.73
JSA-RAG 3739 70.67 46.90
BGE 10.51 36.81 17.91
RAG 23.17 68.66 36.48
MS-MARCO VRAG  23.68 68.81 37.53
JSA-RAG 24.75 71.32 38.65

Table 4: Performance evaluation of the posterior retriev-
ers on the OR-QuAC dataset.

Dataset Method R@1 R@10 MRR@10
DPR 44.32  90.72 63.88
OR-QuAC VRAG 4566 91.26 64.52
JSA-RAG 4691 9143 65.42

MRR @10:41.04 +7.4% relative over VRAG), TQA
(R@1: 37.39, +1.5% relative over VRAG) and MS-
MARCO (R@1: 24.75 +4.5%, R@10:71.32 +3.6%
relative over VRAG), indicating stronger retrieval
of relevant passages. The superiority of JSA-RAG
in R@1 and R@10 across multiple datasets indi-
cates that passages filtered by MIS are more helpful
in guiding the training of retrievers, compared to
simply using a posterior retriever to fetch top-10
passages.

Comparative analysis. By combining the anal-
ysis of end-to-end generation performance and re-
triever performance, we find that JSA-RAG com-
prehensively outperforms both RAG and VRAG.
Notably, on TQA and MS-MARCO, although
VRAG introduces the posterior retriever and im-
proves retriever performance, its generation perfor-
mance declines compared to RAG. This exhibits
asynchrony in end-to-end optimization, where re-
triever performance improves while generator per-
formance decreases instead. In contrast, JSA-
RAG enables more effective joint optimization be-
tween retrievers and generators, achieving simul-
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Figure 2: Comparison of the gradient norms from the
posterior retriever for the first 4000 steps during training,
using variational and JSA methods respectively.

taneous improvements in both retriever accuracy
(e.g., higher R@1, R@10, MRR@10) and gener-
ative quality (e.g., superior BLEU-4, F1 scores).
This demonstrates that the knowledge pieces se-
lected by JSA-RAG’s MIS step can not only en-
hance retriever performance but also align well
with the preferences for generating response, rather
than merely maximizing the relevance scores of
retrieved knowledge pieces.

4.4 Ablations

We conduct ablation experiments on the posterior
retriever from two aspects to help understand intu-
itively why JSA-RAG outperforms VRAG. First,
we analyze the performance of the posterior re-
triever. We test the trained posterior retriever on
recall@1, recall@10, and MRR @ 10 metrics using
the OR-QUAC dataset, a moderately scaled dataset
with gold passage annotations. Second, we moni-
tor the gradient variation of the posterior retriever
during training. This allows us to observe how the
gradients fluctuate along the training steps to intu-
itively compare the gradient variance between JSA
and VRAG.

Performance of posterior retriever. As shown
in Table 4, on the QuAC dataset, JSA-RAG’s pos-
terior retriever outperforms VRAG across all eval-
uated metrics: R@1 (46.91 vs. 45.66), R@10
(91.43 vs. 91.26), and MRR@10 (65.42 vs. 64.52),
achieving improvements of 2.7%, 0.2%, and 1.4%
respectively. These results indicate that JSA-
RAG?’s posterior retriever captures relevant knowl-
edge pieces more accurately. Presumably, this is
because the low-variance gradients allow the pos-
terior retriever to converge more efficiently toward
the true posterior distribution during training. Sim-
ilarly, better quality of passages retrieved by MIS



Table 5: In evaluating the performance of index rebuild-
ing on OR-QuAC, the index is rebuilt every 100 steps
during training.

Method Rebuild BLEU-4 R@]1 R@10 MRR@10
RAG Norebuild 6576 38973 83353 55931
Rebuild 8500 47772 89753  65.390
vrag  Norebuild 6717 38910 83483 55987
Rebuild  8.583 48541 90.093 65901
Norebuild 7760 40353 84664  57.970
ISA-RAG " pobuild 10263 49.446 90115  66.361

also benefit posterior retriever.

Variance in gradient norm. As shown in the
Figure 2, we record the gradient norms of the pos-
terior retrievers for JSA-RAG and VRAG every
50 steps during the first 4,000 training steps. The
gradient norms of JSA are of low variance, while
the gradient norms of VRAG frequently exhibit
"sharp" spikes. This observation confirms that
during training, JSA-RAG provides gradients with
lower variance, enabling more stable training dy-
namics and thus yielding higher performance.

4.5 Experiments on index rebuilding and
passage concatenation

Index rebuilding. In the index rebuilding ex-
periment, unlike the main experiments, we do not
freeze the parameters of the passage encoder, which
is often overlooked in previous work. As Table 5
shows, updating the index every 100 training steps
on OR-QuAC improves all metrics for all meth-
ods, with substantial gains in retriever performance,
and JSA-RAG remains the top performance. These
findings demonstrate that incorporating the passage
encoder into training and updating the index is ef-
fective and that JSA-RAG is able to enhance the
performance of all system components in an end-
to-end training framework. Meanwhile, it should
be noted that rebuilding the knowledge base index
for the OR-QuAC dataset takes less than 2 min-
utes, which hardly affects the training time, since
OR-QuAC KB contains 68k passages. We leave
asynchronous index rebuilding to work with much
larger KBs for future work.

Passage concatenation. In the passage concate-
nation strategy, we freeze all parameters except the
generator. As shown in Table 6. On the dataset
NQ,TQA and MS-MARCO, post-training with the
passage concatenation strategy is found to improve
performance across all methods. After all meth-
ods are subjected to post-training, JSA-RAG still
significantly outperforms RAG and VRAG. This
robustness shows the practical applicability of the

Table 6: In evaluating the passage concatenation method
on ODQA, we fix the retrievers and directly concatenate
the top 10 retrieved passages with the context, then
feed this concatenated input into the generator for post-
training and testing.

NQ TQA MS-MARCO
BLEU-1 Rouge-L
34.238 36.546

Method concat or not Exact Match  Exact Match

50.526 72.828

No-concat

RAG concat 51.105 74.843 34.002 37.319
VRAG No-concat 49.033 72.262 34.148 36.700

concat 51.994 75.541 34.810 37.862
JSA-RAG No-concat 51.053 75.232 35.277 37.961

concat 52.355 76.116 35.613 38.811

JSA-RAG approach.

5 Conclusion and Future Work

A major challenge in end-to-end optimization of
the RAG model is that the optimization needs to
marginalize over relevant passages from a knowl-
edge base, which are modeled as discrete latent
variables with no annotations. Traditional top-K
marginalization and variational RAG (VRAG) suf-
fer from biased or high-variance gradient estimates.
In this paper, we propose and develop joint stochas-
tic approximation (JSA) based end-to-end training
of RAG, which is referred to as JSA-RAG. The
JSA algorithm is a stochastic extension of the EM
algorithm and is particularly powerful in estimating
discrete latent variable models. JSA-RAG achieves
substantial improvements across multiple tasks and
datasets, compared to vanilla RAG and VRAG. No-
tably, it can be seen from Appendix B that the train-
ing time cost of JSA-RAG is comparable to RAG
and VRAG. Beyond performance evaluation, we
demonstrate that JSA-RAG exhibits lower gradient
variance than VRAG. We also conduct extensive
investigations to further strengthen the JSSA-RAG
framework, including the index rebuilding and the
passage concatenation strategies.

Remarkably, the potential advantage of the JSA-
RAG approach in learning discrete latent vari-
able models suggests promising directions for fu-
ture research, particularly in learning multi-step
agents. Basically, RAG can be viewed as a two-
step (retrieve-then-generate) agent. Currently, the
multi-step trajectory of thinking, reasoning, tool
use, and planning in building agents needs to be
synthesized or annotated. The JSA-RAG method-
ology investigated in this paper can be extended to
learning such multi-step agents. This avenue of ex-
ploration is highly promising and warrants further
investigation.



Limitations

Index rebuilding incurs significant computational
cost for large KBs. Rebuilding the index scales
with the KB size, drastically increasing the training
time. In such cases, we need to adopt asynchronous
index rebuilding. We leave asynchronous index
rebuilding to work with much larger KBs for future
work.
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A Training Details

Our overall experiments were run for 20,000 steps
and the best results were recorded. During train-
ing, we set different learning rates for the retriever
and generator. The loss was optimized using the
AdamW optimizer. For the dialog task, using GPT-
2 and DPR models, the learning rates for the gener-
ator and retriever were setto 1 x 107° and 1 x 1075,
respectively. For the ODQA task with Mistral-7B
and BGE models, the learning rates for the gen-
erator and retriever were 2 x 102 and 1 x 107°,
respectively. In the passage concatenation experi-
ment, only the generator was post-trained at a learn-
ing rate of 1 x 10~° for 10,000 steps. Additionally,
the hyperparameter involved in JSA include: MIS
sampling steps m = 50.

For training with the dialog datasets, we used
8 NVIDIA 3090 GPUs with 24GB VRAM for
both training and index storing. For ODQA exper-
iments, training was conducted on 8 A100 GPUs
with 40GB VRAM, where 4 GPUs were dedicated
to main training and the other 4 to building the
index server.

GPT-2 was fine-tuned with full parameters,
while the Mistral-7B model was wrapped with a
PEFT model for LoRA fine-tuning. The configura-
tion of Low-Rank Adaptation (LoRA) parameters
used in this study is presented in Table 7. These
settings were applied uniformly across all experi-
ments unless otherwise specified.

Table 7: LoRA Hyperparameter Settings

Parameter Value

Task Type Causal Language Modeling (CAUSAL_LM)
Rank Reduction Factor (r) 8

LoRA Scaling Factor («) 16.0

Dropout Probability 0.0

None
k_proj, q_proj, v_proj, o_proj,
gate_proj, down_proj, up_proj

Bias Training Strategy
Target Modules

B Computation Cost in Training

To evaluate the computational efficiency of differ-
ent methods, we measure the training time per 10
iterations on the QuAC dataset (batch size = 1).
The results are summarized in Table 8. It can be
seen that the training time cost of JSA-RAG is
comparable to RAG and VRAG.

C Gold Passage Annotation

Datasets such as NQ, TQA, and MS-MARCO do
not have annotations for gold passages in their
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Table 8: Computation cost comparison on QuAC dataset

Method Time (Seconds / 10 iterations)
JSA-RAG 29 - 30

VRAG 28

RAG 23

corresponding KBs. A gold passage refers to a
passage containing information capable of answer-
ing a question. To obtain such passages or to find
them as closely as possible, we first use the BGE-
intialized posterior retriever to retrieve 100 relevant
passages from the knowledge base for each ques-
tion (the posterior retriever performs retrieval using
question-answer pairs to incorporate more informa-
tion). We then prompt GPT-40 to select the one
passage that it deems most capable of answering
the question from the 100 candidates. The specific
prompt is shown in Table 9.

D LLM Prompt Template

During training, to enable the generator to more
clearly combine the context and the retrieved pas-
sages, we employ different LLM Prompt Templates
for different tasks, as shown in Table 10.



Table 9: Prompt for gold passage selection via GPT-40

Task Type Prompt Text

Gold Passage Selection "Question: {question}, Provided Answers: {answers}.
Please select the ID of the passage that best answers
the question from the following paragraphs.
If there is no passage you think can generate the correct answer,
select the ID of the passage that comes closest to answering the question.
Note!!! Only return the value of the passage’s id key.”

Table 10: LLM prompt templates used in evaluation for different tasks

Tasks LLM Prompt Template

ODQA [INST] Give a short answer to the Question based on
relevant information given in Input.
\nInput:{retrieved passage}\nQuestion: {q}
\n[/INST]{answer}

dialogs Input:{retrieved passage}\n
<speaker1>{turnil}<speaker2>{turn2}
<speaker1>{turn3}<speaker2>{answer}
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