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Abstract

Machine learning (ML) approaches have been suc-
cessfully applied to accelerating exact combina-
torial optimization (CO) solvers. However, many
of them fail to explain what patterns they have
learned that accelerate the CO algorithms due to
the black-box nature of ML models like neural net-
works, and thus they prevent researchers from fur-
ther understanding the tasks they are interested in.
To tackle this problem, we propose the first graph-
based algorithm discovery framework—namely,
graph symbolic discovery for exact combinato-
rial optimization solver (GS4CO)—that learns
interpretable branching policies directly from the
general bipartite graph representation of CO prob-
lems. Specifically, we mainly focus on the vari-
able selection part of the branching policy. We
design a unified representation for symbolic vari-
able selection policies with graph inputs, and
then we employ a Transformer with multiple tree-
structural encodings to generate symbolic trees
end-to-end, which effectively reduces the cumula-
tive error from iteratively distilling graph neural
networks. Experiments show that GS4CO learned
interpretable and lightweight policies outperform
all the baselines on CPU machines, including
both the human-designed and the learning-based.
GS4CO shows an encouraging step towards gen-
eral algorithm discovery on modern CO solvers.
Codes are available at https://github.
com/MIRALab-USTC/L2O-GS4CO.
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1. Introduction
Combinatorial optimization (CO) model—which is widely
used to formulate real-world tasks like transportation, man-
agement, and chip design (Liu et al., 2008; Chen, 2010; Ma
et al., 2019; Paschos, 2014)—is one of the most fundamen-
tal models in the field of mathematical optimization (MO).
In practice, complex CO problems are usually solved with
exact CO solvers like SCIP (Achterberg, 2007) and Gurobi
(Gurobi Optimization, LLC, 2023) based on the branch-and-
bound (B&B) framework. However, solving CO problems
is usually highly time-consuming due to its NP-hard nature.
To improve the efficiency of exact CO solvers, recently, re-
searchers incorporate machine learning (ML) techniques to
different components of CO solvers, e.g., branching (Khalil
et al., 2016; Gasse et al., 2019), cut selection (Huang et al.,
2022; Wang et al., 2023b; Tang et al., 2020), and primal
heuristics (Chmiela et al., 2021; Paulus & Krause, 2023;
Nair et al., 2021). These approaches consistently achieve
high performance in terms of the solving efficiency on prob-
lems with chosen implicit distributions (Bengio et al., 2021;
Zhang et al., 2023; Chen et al., 2022), as problems collected
from similar tasks usually share similar structures.

However, due to the black-box nature of many ML mod-
els like neural networks (NNs), learning-based approaches
usually fail to explain what patterns they have learned that
accelerate the solving process. Based on the mixed-integer
linear programming (MILP) formulation, CO problems can
be modeled consistently via the general variable-constraint
bipartite graph representation (Gasse et al., 2019). Thus,
previous research widely incorporate graph neural networks
(GNNs) to different components of exact CO solvers to
learn and leverage the specific problem structures from the
bipartite graphs. However, GNN-based approaches, though
effective in practice, fail to help researchers further under-
stand and improve the hard-coded CO algorithms due to
their limited interpretability (Kuang et al., 2024).

In the age of data-driven scientific discovery (Wang et al.,
2023a), we hope ML approaches on exact CO solvers can
not only accelerate the solvers’ efficiency but also provide
interpretable policies to help researchers further understand
what patterns they have learned. In light of this, a natural
idea is to conduct automated algorithm discovery on CO
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solvers. Intuitively, this is motivated from previous research,
which has shown promising results in algorithms like matrix
multiplication (Fawzi et al., 2022), sorting (Mankowitz et al.,
2023), and NN optimizers (Chen et al., 2023).

However, compared with the research above, two distinct
challenges of algorithm discovery on exact CO solvers make
this topic non-trivial. First, how to represent interpretable
CO policies that take graphs as inputs? Symbolic policies,
which are widely studied in the field of scientific discovery
due to their unreasonable effectiveness in natural science
(Wigner, 1990; Petersen, 2019; Landajuela et al., 2021),
is a natural solution for this challenge. However, the very
recent research (Kuang et al., 2024) only consider sym-
bolic policies that take human-designed fixed-length feature
vectors as inputs. Note that compared with the general bipar-
tite graph representation, human-designed features usually
require extensive domain knowledge to extract different
structural information of input CO problems for different
downstream tasks, which severely limits its wide applica-
tion to general CO algorithms. Thus, a general algorithm
discovery framework on CO solvers need to consider the
representation of symbolic policies that can directly extract
structural features from graphs. Second, how to generate
such interpretable symbolic policies? Previous research
learns scientific laws from graph inputs by distilling sym-
bolic functions from trained GNNs layer by layer (Cranmer
et al., 2020; Shi et al., 2022). However, we observe that in
CO algorithms like branching, such learning paradigm only
leads to suboptimal performance due to the cumulative error
from distilling GNN layers iteratively (see Section 4.1).

To tackle these challenges, we propose the first graph-
based algorithm discovery framework—namely, graph sym-
bolic discovery for exact combinatorial optimization solver
(GS4CO)—that learns interpretable variable selection part
of branching policies directly from the general bipartite
graph representation. First, we propose a unified sym-
bolic tree to consistently represent different functions and
aggregation schemes (Hamilton, 2020b) together in the
graph-based symbolic policy. Then, we employ a Trans-
former model (Lin et al., 2022) with multiple structural
encodings for tree data to generate complex symbolic trees
end-to-end, which effectively reduces the cumulative error
from distilling GNN layers. Finally, we use the full strong
branching (FSB) data as expert demonstrations (Gasse et al.,
2019) and take the imitation learning accuracy as the fit-
ness measure (Poli et al., 2008) for model optimization.
Experiments show that GS4CO learned branching policies—
which are interpretable, lightweight, and efficient for CPU-
based inference—outperform all the baseline approaches on
CPU machines, including both the human-designed and the
learning-based ones.

We summarize our major contributions as follows. (1) Gen-
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Figure 1. Visualize the symbolic branching policy with bipartite
graph inputs on the Setcover benchmark. Specifically, the policy
consists of three different parts: the C-side aggregation function
(Layer 2), the V-side aggregation function (Layer 1), and the
main function (Layer 0). Here ci1 − ci5 are features of the i-th
constraint and vj1 − vj19 are features of the j-th variable. We select
the variable vj with highest score(vj) for branching. See Section
4.2 for detailed descriptions about the unified representation for
symbolic policies with graph inputs.

eral framework. As the bipartite graph representation of
CO problems is widely used, GS4CO provides a general
framework for algorithm discovery on modern CO solvers.
(2) Interpretability. The learned symbolic policies are highly
interpretable, which can help researchers further understand
and optimize existing hard-coded algorithms like branch-
ing policies on solvers. (3) Performance. GS4CO learned
branching policies outperform all the baseline approaches
in terms of the solving efficiency on CPU machines. (4) De-
ployment. GS4CO is efficient for training and inference, and
the learned policies are lightweight. All of these features
highly benefit its wide deployment to modern CO solvers.

2. Related Work
Bengio et al. (2021) divides the existing research on machine
learning for combinatorial optimization into two classes.
One class assumes the existence of complex expert poli-
cies and attempts to replace the heavy computations with
efficient approximations. For example, Gasse et al. (2019)
leverages GNN to replace the strong branching policy in
variable selection; He et al. (2014) employs imitation learn-
ing for optimal node selection policy; Nair et al. (2021)
leverages GNN and MLP for primal heuristics and branch-
ing to achieve end-to-end solution prediction. The other
class assumes insufficient expert knowledge and therefore
uses machine learning to improve the heuristics that are not
satisfactory yet. For example, Wang et al. (2023b) and Tang
et al. (2020) employ reinforcement learning techniques to
enhance the efficacy of cut selection, Chmiela et al. (2021)
learn to schedule established primal heuristics within the
MILP problem to diminish the primal integral. Although
these NN-based approaches achieve high solving efficiency
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(Chen et al., 2022; Zhang et al., 2023), they are integrated
into the solver as a black box that we lack a deep understand-
ing of the learned policies. Intuitively, these approaches can
be regarded as ML-equipped CO approaches, but not the
idea of data-driven CO algorithm discovery.

ML approaches can acquire implicit rules beyond human
intuition and discover algorithms that outperform handcraft
programs. Lion (EvoLved Sign Momentum) uses evolution-
ary sign momentum optimization to optimize NN optimiz-
ers (Chen et al., 2023). AlphaDev leverages reinforcement
learning and Monte Carlo tree search to optimize traditional
sorting algorithms at the assembly level (Mankowitz et al.,
2023). Though these approaches also focus on the opti-
mization of existing manually designed algorithms, they do
not leverage the prior knowledge of the input data, which
is regard as the core for the acceleration of the NP-hard
solving process in this research field (Bengio et al., 2021).
In contrast, our approach focuses on learning interpretable
policies that explicitly leverage the structural information
of input CO problems. Recently, Kuang et al. (2024) ap-
plies deep symbolic regression to the scoring function in the
branching module to learn interpretable policies. However,
this work heavily depends on handcrafted features designed
for specific downstream task, and thus it is not compatible
to general CO tasks. Bipartite graph representation of CO is
widely employed in many downstream tasks of CO solvers
(Gasse et al., 2019; Nair et al., 2021). It provides a compact
description of the problem structure and usually requires
minimal expert design. Thus, algorithm discovery based on
bipartite graph inputs could be more general in practice.

3. Preliminaries
3.1. Combinatorial Optimization and Mixed-Integer

Linear Programming

In practice, a substantial number of CO problems can be
represented as mixed-integer linear programming (MILP)
problems in the following form:

min
x

cTx

s.t. Ax ≤ b, l ≤x ≤ u, x ∈ Zp × Rn−p

where c ∈ Rn is called the objective coefficient vector,
A ∈ Rm×n the constraint matrix, b ∈ Rm the constraint
right hand side vector, l, u ∈ Rn respectively the lower
and upper bounds and p ≤ n is the number of integer vari-
ables. Popular exact solvers like SCIP (Achterberg, 2007)
and Gurobi (Gurobi Optimization, LLC, 2023) commonly
use the branch-and-bound (B&B) algorithm to solve MILP.
B&B algorithm recursively solves subproblems and orga-
nizes them as nodes of a search tree. The solver selects an
integer variable xi (branching variable) with fractional value
x∗
i in the LP solution when exploring each node. Then, the

solver adds constraints xi ≤ ⌊x∗
i ⌋ and xi ≥ ⌈x∗

i ⌉ to parti-
tion the feasible region and generate two new subproblems,
and the solver selects a new subproblem to explore next.

3.2. Bipartite Graph Representation of MILP and
Graph Neural Network

Gasse et al. (2019) introduces a natural variable-constraint
bipartite graph to represent MILP problems. This graph
involves two sets of nodes. One set of n variable nodes
represents the decision variables, while the other set of m
constraint nodes represents the linear constraints. Each edge
ei,j in the graph with a weight aij represents that the jth

constraint consists of the ith decision variable.

Based on the bipartite graph representation, graph neural
networks (GNNs) are widely used in different downstream
tasks (Gasse et al., 2019; Labassi et al.; Nair et al., 2021;
Fan et al., 2023). Let V denote the set of n variable nodes,
C denote the set of m constraint nodes, and E denote the
set of edges. For integer k > 0, the (2k − 1)th layer passes
information from variables to constraints, and the (2k)th

layer passes from constraints to variables. Then, the GNN
message passing scheme could be written as:

h2k−1
cj

= f̂k
c ({h2k−2

cj
,

∑
(vi,cj)∈E

ĝkc ({h2k−2
vi , h2k−2

cj
})}), cj ∈ C,

h2k
vi = f̂k

v ({h2k−1
vi ,

∑
(vi,cj)∈E

ĝkv ({h2k−1
vi , h2k−1

cj
})}), vi ∈ V,

where f̂k
c , f̂

k
v , ĝ

k
c , ĝ

k
v are multi-layer perceptrons, hk

c and
hk
v denote the constraint’s and variable’s hidden embedding

in the kth layer, respectively.

3.3. Distilling Symbolic Functions from Trained GNNs

Cranmer et al. (2020) introduces a framework to distill inter-
pretable symbolic functions from trained GNNs for scien-
tific discovery. Specifically, it considers an edge model ϕe

that maps connected nodes and edges information to mes-
sage vectors, a node model ϕv that takes the node features
and summed message vectors to compute updated node vec-
tors, and a global model ϕu that aggregates all messages
and updated node vectors to compute a global property. The
approach first trains these NN-based models and then lever-
ages symbolic regression (Poli et al., 2008) to iteratively
approximate ϕe, ϕv and ϕu with symbolic functions.

3.4. Transformer

The Transformer model is composed of transformer lay-
ers. Each transformer layer consists of a self-attention
module and a feed-forward network(Vaswani et al., 2017b).
Let H = [ĥ1; ĥ2; · · · ; ĥn] ∈ Rn×d denote the input of
self-attention module, where ĥi ∈ R1×d means the hid-
den representation of position i and d is the hidden di-
mension. The input H is multiplied by three matrices
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Figure 2. Learning symbolic branching policies that take the bi-
partite graph representation of CO problems as inputs via distilling
trained two-layer GNNs (Gasse et al., 2019). We use a lightweight
GNN (GNN-Light) with only eight-dimensional embedding of
messages to reduce the complexity of distilling. Specifically, “Dis-
till from 0th layer” means we use the trained GNN to generate
2-hop messages and only learn a symbolic function at the final
output; “Distill from 1th layer” means we use the trained GNN for
C-side aggregation and then learn symbolic V-side aggregation
functions and a final output function iteratively; and “Distill from
2th layer” means all the GNN layers are distilled to symbolic func-
tions iteratively. All the distilling processes are conducted with the
GPLearn package (Stephens, 2023). The results show that simply
employing the distilling approach in scientific discovery (Cranmer
et al., 2020) leads to suboptimal results in the branching task.

WQ ∈ Rd×dK ,WK ∈ Rd×dK and WV ∈ Rd×dV to get
Q(query), K(key) and V (value), respectively. Then, the
self-attention can be calculated as follows:

Q = HWQ, K = HWK , V = HWV ,

M =
QKT

√
dK

, Attn(H) = softmax(M)V,

where M captures the similarity between queries and keys.

3.5. Symbolic Optimization

Symbolic optimization utilizes symbolic expressions to op-
timize targeted tasks such as symbolic regression. There
are roughly two approaches for symbolic optimization: one
is based on genetic programming (GP) (Bäck et al., 2018),
and the other is based on deep symbolic optimization (DSO)
(Petersen, 2019). Both of them represent mathematical
expressions in the form of expression trees. In this tree,
the leaf nodes represent variables and constants, and the
internal nodes represent unary (e.g. log, exp) or binary
(e.g. +,−,×,÷, pow) mathematical operators. Then, GP
approaches use selection, crossover, and mutation to search
for symbolic expressions with high fitness. DSO leverages
NN models to learn the distribution of high-quality symbolic
expressions. Then, the model is trained by policy gradient
methods with fitness as rewards.

4. Method
Due to the complexity of modern CO solvers1, conducting
algorithm discovery directly on the whole solver is usually
impractical. However, extensive research shows that the
optimization on specific components of exact CO solvers
(e.g., branching, cut selection, and primal heuristics) can
bring significant acceleration on the efficiency of the solver
(Khalil et al., 2016; Huang et al., 2022; Chmiela et al., 2021).
In this paper, we mainly focus on the branching component
of the exact CO solver, as this small component plays a key
role in the efficiency of the B&B framework (Achterberg,
2007) and there is extensive previous research on it (Khalil
et al., 2016; Gasse et al., 2019; Gupta et al., 2020).

4.1. Problem Setup

Limitations of GNN-Based Approaches Previous research
widely incorporates GNNs to tackle the bipartite graph
inputs, and these approaches achieve encouraging perfor-
mance in terms of the efficiency of solving CO problems
(Zhang et al., 2023). However, as mentioned in Kuang
et al. (2024), NN-based approaches have several general
limitations when deploying to modern CO solvers: 1) Ex-
tensive training data required. Collecting training data for
NN models is usually challenging due to reasons like propri-
etary issues (Geng et al., 2023). 2) High-end GPUs required.
Servers for CO solvers are usually purely CPU-based (Gupta
et al., 2020). 3) The black-box models. ML models like neu-
ral networks fail to help researchers understand and optimize
the hard-coded algorithms due to the lack of interpretability
(Kuang et al., 2024). These limitations severely hinder the
wide application of ML approaches to modern CO solvers.

Challenges for Generating Symbolic Policies To address
the above limitations, a natural solution is learning sym-
bolic policies that takes graphs as inputs to replace the GNN
models. However, in practice, we observe two distinct chal-
lenges when learning such symbolic policies:

1. Symbolic policy representation. Previous research em-
ploys symbolic trees to represent functions with fixed-
length inputs, but in CO algorithms we need to design
a representation for policies with graph inputs, i.e., rep-
resenting different functions and aggregation schemes
consistently in a graph-based symbolic policy.

2. Symbolic policy generation. Existing approaches in
scientific discovery learn symbolic functions by distill-
ing the trained GNNs layer by layer (Cranmer et al.,
2020; Shi et al., 2022). However, we observe this leads

1For example, the open-source CO solver SCIP (Gleixner et al.,
2018) contains roughly 900 thousand lines of C/C++ code in total,
which is significantly larger than algorithms like matrix multiplica-
tion (Fawzi et al., 2022) and sorting (Mankowitz et al., 2023).
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Figure 3. Illustration of the graph-based symbolic discovery framework on branching. We employ a unified symbolic representation for
functions on graphs and a Transformer with tree-structural encodings to generate symbolic policies end-to-end. These policies can directly
tackle bipartite graphs. Then, we use the imitation learning accuracy on expert data collected from the FSB policy as the fitness measure.

to suboptimal performance in this task due to the learn-
ing error accumulated by layers (see Figure 2).

To tackle these challenges, we propose the graph-based
symbolic discovery framework for exact combinatorial op-
timization solver (GS4CO). We illustrate our approach in
Figure 3 and the pseudo code in Algorithm 1 in Appendix.

4.2. Representing Symbolic Policy with Graph Inputs

In genetic programming (Poli et al., 2008), we represent
functions as symbolic trees, where leaf nodes are features or
constants and other nodes are mathematical operators. For
the branching task, the symbolic functions take the variable-
constraint bipartite graph representation of CO problems as
inputs and output the scores for all branching variables.

Features, Operators, and Constants We use all the
features from the variable-constraint bipartite graphs de-
fined in (Gasse et al., 2019). Specifically, these features
can be categorized into three groups, i.e., the variable
node features (nineteen-dimensional), the constraint node
features (five-dimensional), and the edge features (one-
dimensional). We note that compared with the human-
designed 91-dimensional features used by Gupta et al.
(2020), all of these graph features are: 1) simple to de-
sign, as they are all commonly used to describe the input
problems and the current status of the CO solver (Gasse
et al., 2019; Labassi et al.; Fan et al., 2023); 2) cheap to ob-
tain, as they are recorded by most CO solvers by default. We
employ {+,−,×,÷, log, exp, pow} as mathematical oper-
ators and {0.2, 0.5, 2.0, 5.0} as constants. Furthermore, we
employ four unary operators for neighborhood aggregation
on graphs, i.e., {min,max,mean, sum}. These aggregation
operators play the same role as that in GNNs (Hamilton,
2020b), but now they are used in the following symbolic

aggregation functions to generate structural features.

Symbolic Aggregation Function In GNNs, we extract
structural information from the input graphs via neigh-
borhood aggregation schemes (Hamilton, 2020b), which
can be regarded as generalized convolution operations on
graphs. Thus, it is a natural idea to generalize the aggrega-
tion schemes to symbolic aggregation functions, which are
employed in the symbolic main function to extract structural
information as new node features. Specifically, a symbolic
aggregation function takes all features listed above (i.e., the
constraint, the variable, and the edge features) as inputs to
calculate a new feature (i.e., a one-dimensional message).
This new feature will then be used in its parent function,
which is either the main function or another aggregation
function. Similar to that in GNNs, this process can also be
conducted iteratively to obtain multi-hop information from
input graphs. Thus, if we represent the branching policy as
a symbolic tree, then the symbolic aggregation functions
can be represented as subtrees on it, and the root node of
each subtree is selected from the aggregation operators men-
tioned above to describe its aggregation scheme. We provide
a toy example to illustrate it in Figure 3 Part a).

Symbolic Function with Bipartite Graph Inputs As illus-
trated in Figure 1 and Figure 3 Part b), we can divide the
symbolic branching policy with general variable-constraint
bipartite graph inputs into three different parts, i.e., the
C-side aggregation functions (at Layers 2k, k ≥ 1), the
V-side aggregation functions (at Layers 2k − 1), and the
main function (at Layer 0). Formally, at Layer 2k, the tth

C-side aggregation function f c,2k
t passes the message from

variables to constraints to generate a new feature ĉi2k,t for
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all constraint node i = 1, · · · ,m, i.e.,

ĉi2k,t =AGGR({f c,2k
t (ci1, · · · , ci5, ei,j , v

j
1, · · · , v

j
19,

v̂j2k+1,1, · · · , v̂
j
2k+1,T2k+1

) | ei,j ∈ E}),
(1)

where AGGR is the aggregation operator selected from the
for operators mentioned above, v̂j2k+1,· is the new structural
feature of variable j generated at Layer 2k+1, and T2k+1 =
0 if no new features is generated. Similarly, for tth V-side
aggregation function fv,2k−1

t at Layer 2k − 1,

v̂j2k−1,t =AGGR({fv,2k−1
t (ci1, · · · , ci5, ei,j , v

j
1, · · · ,

vj19, ĉ
i
2k,1, · · · , ĉi2k,T2k

) | ei,j ∈ E}).
(2)

Finally, the main function f0 at Layer 0 takes all the variable
features (both the original and the generated ones) as inputs,
and it outputs the scores for all branching variables, i.e.,

score(vj) = f0(v
j
1, · · · , v

j
19, v̂

j
1,1, · · · , v̂

j
1,T1

), (3)

which can be regarded as a standard symbolic regression
formulation with a vector feature as input.

4.3. Generating Symbolic Branching Policies via
Sequential Model

Given a fixed traversal, a symbolic function (represented by
the symbolic tree) is one-to-one to a symbolic sequence as
τ = τ1τ2 · · · τn, and thus sequential models are widely em-
ployed (Petersen, 2019; Landajuela et al., 2021) to generate
such sequence. Intuitively, generating branching functions
with graph inputs could be more complex, as we need to
generate multiple symbolic aggregation sub-functions to
extract structural features from graphs. Note that the search
space of all the feasible τ grows exponentially with the com-
plexity of the symbolic policy (Poli et al., 2008). To tackle
this challenge, we employ a Transformer model (Lin et al.,
2022) with multiple structural encodings to encode complex
tree-structural information at each step and generate such
symbolic trees end-to-end, as illustrated in Figure 3 Part a).

Sequential Formulation We formulate the symbolic tree
generation task as a sequence generation task with a given
depth-first traversal. Then, we output a categorical distri-
bution over all possible tokens (as listed in Section 4.2) to
sample the current token at each step. That is,

pθ(τ) = Π
|τ |
i=1pθ(τi | τ1:(i−1)), (4)

where pθ(τ) is the probability of generating the expression
sequence τ , pθ(τi | τ1:(i−1)) is the probability of selecting
the token at i-th step , and θ is the learnable parameters of
the sequential model. In GS4CO, we employ a decoder-only
Transformer as the sequential model, i.e., pθ(τi | τ1:(i−1))
is approximated via a Transformer model.

Tree-Structural Information Encodings In practice, we
observe that a vanilla Transformer model achieves subopti-
mal performance as it ignores the tree-structural information
of the symbolic trees (see Section 5.3 for comparisons). To
further improve the performance of the Transformer model,
we employ four different encodings to extract the tree’s
structural information as follows, including three types of
encodings that are specially designed for the tree structure.

1) Positional encoding. We use the vanilla positional encod-
ing as that in the original Transformer model (Vaswani et al.,
2017a). The positional encoding of token τi is:

PE(τi,2j) = sin(i/100002j/d) (5a)

PE(τi,2j+1) = cos(i/100002j/d) (5b)

where d is the total dimensions of the word embeddings and
j is the jth dimension (Vaswani et al., 2017a).

2) Layer encoding. We employ learnable layer encodings to
encode the layer information of the nodes on the tree:

LE(τi) = αli , li = 0, 1, · · · , Lmax (6)

where li is the layer of token τi, Lmax is the maximal layer,
and αli is a d-dimensional learnable vector indexed by li.

3) Active parent & sibling encoding. Given the already
selected tokens τ0, · · · , τi−1, the current candidate token τi,
and the parent and the sibling τpi

, τsi of τi (if τpi
, τsi exist),

we encode the information of them via:

APE(τpi
) = βp; APE(τsi) = βs, (7)

where βp, βs are d-dimensional learnable vectors.

4) Spatial encoding. We use spatial encoding to capture
the tree-structural information of the symbolic tree, which
is mainly motivated from the Graphormer model proposed
by Ying et al. (2021). Let τi, τj denote two nodes in the
symbolic tree. Then, the spatial encoding SE is:

SE(τi, τj) =


γp, if τj is the parent of τi;
γc, if τj is the child of τi;
γs, if τi, τj are siblings;
0, otherwise.

(8)

where γ = [γp, γc, γs] is a 3-dimensional learnable vector.
We add the spatial encoding before calculating attentions to
leverage the structural information of the tree:

M new
i,j = Mi,j + SE(τi, τj), (9)

where M new
i,j ,Mi,j are used for attentions (see Section 3.4).

Constraints for Symbolic Policies on Graphs We employ
the following six different types of constraints on the search
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space to avoid trivial functions and accelerate the train-
ing process, including three constraints that are specially
designed for graph inputs. 1) Aggregation function input
constraints. If a symbolic aggregation function is C-side,
then it needs to contain at least one variable feature as in-
put, and vice versa for V-side aggregation functions. This
constraint helps us avoid generating trivial aggregation func-
tions. 2) Main function input constraints. The main function
only uses the structural features extracted by aggregation
functions together with the original variable features. 3)
Aggregation function layer constraints. The layers (similar
to the layers in GNNs) of the aggregation functions are con-
strained to no more than two, as two-layer GNNs are widely
used in previous research (Gasse et al., 2019; Labassi et al.).
4) Length constraints. The complexity of the expression
is restricted to specific ranges to avoid too simple or too
complex expressions. 5) Inverse operator constraints. The
child of a unary operator can not be the inverse of its parent.
6) Nontrivial constraints. The functions need to contain at
least one graph feature to avoid trivial expressions.

4.4. Fitness Measure and Model Training

The Fitness Measure Due to the NP-hard nature of solving
CO problems, it is extremely intractable to train with end-
to-end solving time as fitness measure. Thus, we use the
full strong branching (FSB) policy (Achterberg, 2007) as
an expert and use imitation accuracy as the fitness measure
like that in previous research (Gasse et al., 2019; Gupta
et al., 2020). The collected data is D = {(st, u1:kt

)Tt=1},
where st = (G, C,V, E) denote the features of the bipartite
graph and ui the FSB scores for all branching candidates
i = 1, 2, · · · , kt at each node t = 1, 2, · · · , T . Then, the
fitness measure is

r(τ) = E
(st,u1:k)∼D

[I{i|ui≥uj ,1≤j≤k}(argmax
1:k

τ(s))], (10)

where (s, u1:k) is sampled from D as an expert demonstra-
tion, τ(s) returns a vector of length k that represents the
branching scores calculated by the symbolic policy τ on
all the branching candidates, and IA(x) is the indicator
function of set A that returns 1 if and only if x ∈ A, and
otherwise returns 0. Then, the fitness measure is the average
number of branching variables that the symbolic policy τ
selects with the maximal FSB score.

The Model Training With the generator pθ and the fit-
ness measure r(τ), we can optimize θ to maximize the
probability of τ with high fitness. We use reinforcement
learning (RL) (Sutton & Barto, 2018) for optimization as
the objective is non-differentiable for θ. The training task
is formulated as a continuous bandit problem, the pθ(τ) is
the parameterized policy, the expression sequence τ is the
action we select, and r(τ) is the reward function. Then,
we employ the risk-seeking objective (Tamar et al., 2014;

Petersen, 2019) to optimize the best-case performance, i.e.

J(θ; ϵ) = Eτ∼pθ(τ)[r(τ)|r(τ) ≥ rϵ(τ)], (11)

where rϵ(τ) is the (1− ϵ) quantile of current batch rewards.
We employ proximal policy optimization (PPO) (Schul-
man et al., 2017) to maximize the objective above, and we
employ both the hierarchical entropy regularizer and the
soft-length regularizer as that in (Landajuela et al., 2021).

5. Experiments
We conduct extensive experiments on GS4CO to 1) illus-
trate it significantly outperforms existing CPU-based ap-
proaches in terms of the end-to-end performance; 2) analyse
the learned graph-based policies for better interpretability
and understanding; 3) conduct ablation studies on all pro-
posed components to show their effectiveness.

5.1. Experimental Settings

Baselines There are five baselines to compare in this section
to illustrate the superior performance of GS4CO. Specifi-
cally, the reliability pseudocost branching (RPB) and the full
strong branching (FSB)3 are two human-designed branching
policies integrated in modern solvers like SCIP by default
(Achterberg, 2007); the Trees model (Alvarez et al., 2017)
is a baseline that serves as an interpretable branching policy;
the GNN (Hamilton, 2020a) model proposed in Gasse et al.
(2019) is a baseline that serves as an branching policy with
graph inputs; the Hybrid model proposed in Gupta et al.
(2020) is a strong baseline for purely CPU-based devices.

Benchmarks We employ four standard benchmarks used
in previous research (Gasse et al., 2019) for performance
evaluation. Specifically, the benchmarks include the set
covering (Setcover) (Balas & Ho, 1980), the combinatorial
auction (Cauctions) (Leyton-Brown et al., 2000), the capac-
itated facility location (Facilities) (Cornuéjols et al., 1991),
and the maximum independent set (Indset) (Bergman et al.,
2015). For each benchmark, we generate small instances
(Easy) for training and testing and generate larger instances
(Medium and Hard) to evaluate the generalization ability.

Training To train GS4CO, we generate 100 instances for
training and 20 instances for validation, and we obtain
10, 000 and 2, 000 samples via the FSB policy; for training
the GNN, the Hybrid, and the Trees models, we generate
10, 000 and 2, 000 instances, 100, 000 and 20, 000 samples,
respectively. We use the codes provided by Gupta et al.
(2020) to generate the MILP instances and the training sam-

2Since most of the instances have not been solved, the number
of nodes expanded is small but can not reflect the real solving
ability

3FSB and RPB do not leverage instance information from the
training dataset
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Table 1. Compare GS4CO with five different baselines to illustrate the superior performance of learned symbolic policies in terms of the
end-to-end solving efficiency. All results are evaluated with the time limit of 3000s over 50 test instances, and the number after wins
records the success time that the SCIP solver solve the instances to optimal within the given time limit. We report the time and the nodes
with the 1-shifted geometric mean to reduce the effect of extreme values. All models are trained on the Easy instances only and then
evaluated on the Easy, the Medium, and the Hard datasets. Results show that GS4CO outperforms all the baselines on CPU machines.

Indset: Easy Medium Hard

Model Time(s) Wins Nodes Time(s) Wins Nodes Time(s) Wins Nodes

FSB 243.58 0/50 67.8 2432.30 0/28 82.7 3000.00 0/0 25.4

RPB 75.14 2/50 1690.6 357.56 2/50 8503.8 2640.00 5/28 30976.6
Trees 142.55 0/50 1515.7 1206.56 0/41 13582.2 2963.21 0/4 15917.8 2

GNN 54.60 11/50 863.9 432.52 3/50 9712.4 2852.30 0/10 45386.0
Hybrid 61.83 4/50 2150.7 309.91 7/50 9123.1 2223.04 8/33 33852.6
GS4CO 53.18 33/50 912.5 217.67 38/50 4812.5 2157.23 24/37 34061.5

GNN-GPU 47.25 -/50 863.9 262.52 -/50 9712.4 2456.80 -/34 36532.4

Cauctions: Easy Medium Hard

Model Time(s) Wins Nodes Time(s) Wins Nodes Time(s) Wins Nodes

FSB 9.31 0/50 12.7 220.58 0/50 113 2372.31 0/24 437.2

RPB 5.11 3/50 33.2 37.25 3/50 1308.6 331.52 15/50 13372.6
Trees 5.03 0/50 146.5 48.38 0/50 1786.0 889.28 0/42 23788.4
GNN 3.75 0/50 115.3 33.34 8/50 1050.1 403.59 2/50 11489.9

Hybrid 3.35 17/50 120.8 33.12 11/50 1270.9 351.75 12/50 15349.0
GS4CO 3.16 30/50 130.1 30.58 28/50 1314.0 326.19 21/50 14044.7

GNN-GPU 3.00 -/50 115.3 23.10 -/50 1050.1 289.62 -/50 11489.9

Setcover: Easy Medium Hard

Model Time(s) Wins Nodes Time(s) Wins Nodes Time(s) Wins Nodes

FSB 47.60 0/50 29.3 843.61 0/50 233.8 2944.07 0/2 389.5

RPB 18.12 8/50 174.4 110.19 12/50 3288.8 2237.32 6/25 62706.2
Trees 19.76 0/50 384.1 224.40 0/50 5132.3 2709.57 0/15 29939.8
GNN 19.26 0/50 223.8 201.80 0/50 2338.1 2694.93 0/21 20017.8

Hybrid 13.88 18/50 279.2 105.13 17/50 2761.8 2160.35 8/29 43636.2
GS4CO 13.29 24/50 310.7 103.74 21/50 3591.3 2100.53 15/29 59915.1

GNN-GPU 12.41 -/50 223.8 79.60 -/50 2338.1 2011.74 -/50 53405.2

Facilities: Easy Medium Hard

Model Time(s) Wins Nodes Time(s) Wins Nodes Time(s) Wins Nodes

FSB 93.14 0/50 96.5 569.90 0/49 178.5 1452.65 0/40 86.5

RPB 78.75 10/50 195.5 314.90 13/50 343.5 1232.94 10/45 256.0
Trees 75.28 1/50 425.7 358.94 0/50 708.7 1306.05 0/43 542.1
GNN 79.00 0/50 328.6 363.26 0/50 563.0 1305.70 2/45 449.1

Hybrid 71.11 23/50 378.7 284.24 21/50 557.5 1219.91 11/45 412.0
GS4CO 76.27 16/50 353.3 295.82 16/50 528.1 1018.70 22/45 421.5

GNN-GPU 63.45 -/50 328.6 253.95 -/50 563.0 948.09 -/48 530.7

ples. Then, we record all the symbolic policies with top
ten imitation learning accuracy on each benchmark, and we
evaluate all of them to select the one with best end-to-end
performance on the validation instances for testing. We
terminate the training process (i.e., early stop) if there is no
performance improvement for 2000 iterations. For the other
baselines, we use the codes provided by Gupta et al. (2020).

Evaluation All evaluations are conducted over 50 test in-
stances. We report the 1-shifted geometric mean (Achter-
berg, 2007) of all the results, which is widely used in pre-
vious work (Gasse et al., 2019; Gupta et al., 2020) as the
evaluation metric. We report the end-to-end running time,
the B&B tree nodes, and the wins for comparison. See
Appendix B for more details about the implementations.

5.2. Comparative Evaluation

End-to-End Performance We compare GS4CO to all the
baselines in Table 1. Results show that GS4CO outperforms
all the other baselines on CPU machines, including both
human-designed and learning-based ones4. It also general-
izes well to larger datasets. The results show that GS4CO
extracted structural features from bipartite graphs are ef-
fective for the downstream task. We further compare the
imitation learning accuracy of all the approaches in Table
2. Results show that GS4CO learned symbolic policies
significantly outperform the interpretable Tree model.

Strengths for Deployment We show the strengths of

4RPB achieves minimum number of nodes since in SCIP it
employs multiple strategies for probing and cutting off child nodes.
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Table 2. The imitation learning accuracy of different approaches
on test sets. Results show that: 1) GS4CO learned symbolic
policies significantly outperform the interpretable Tree model; 2)
GS4CO significantly improves the learning accuracy for symbolic
approaches via avoiding distilling GNN layers; 3) the Transformer
model, the tree-structural encodings, and the constraints for graph
inputs all effectively improve the performance of GS4CO.

Type Model Setcover(%) Facilities(%) Indset(%) Cauctions(%)

White-box: Tree 40.43 63.39 24.61 38.72

Black-box: Hybrid 48.75 66.83 51.40 44.30
GNN 54.18 69.33 56.42 47.50

Symbolic:

Distilling-GNN 37.28 66.15 29.70 36.70
LSTM 40.05 66.30 36.45 31.61

No-Encodings 35.73 66.78 36.78 38.40
No-Constraints 41.85 66.78 39.50 38.76

GS4CO 44.13 66.78 40.78 41.13

Table 3. Compare the model size and the inference time on CPU
machines for different ML models on Setcover. Results show that
GS4CO learned graph-based policies are highly lightweight and ef-
ficient compared with GNN models. These strengths significantly
benefit the wide deployment of GS4CO to modern CO solvers.

ML Model Tree GNN Hybrid GS4CO

Model Size (KB) 3.04e6 266 1331 0.49
Inference Time (ms) 27.45 33.88 7.92 1.84

GS4CO for deployment. 1) Lightness. We compare the size
of learned models in Table 3. Results show that GS4CO
learned policies are roughly 500 times lighter than GNNs.
2) Inference efficiency. We compare the inference efficiency
on CPU in Table 3. Results show that GS4CO are roughly
20 times faster than GNNs for inference on CPU machines.
3) Sample efficiency. As reported in Section 5.1, we use
only 1% CO instances and 10% FSB samples compared
with GNNs. All of these features significantly benefit the
wide deployment of GS4CO to modern CO solvers.

Interpretability We visualize the symbolic tree represen-
tation of the branching policy on Setcover in Figure 1 and
report all symbolic policies in Table B5 in Appendix. Since
the learned policies are highly interpretable, they can help re-
searchers further understand what patterns they have learned
on the branching component. Specifically, we observe that:
1) all the learned symbolic policies use two-hop structural
information from the bipartite graph, which is consistent
to the implementation in previous GNN-based approach
(Gasse et al., 2019); 2) all the policies ignore the edge fea-
ture and only a small subset of node features are used, which
indicates that the effective information in the bipartite graph
representation is relatively sparse. We believe these results
can further help researchers to optimize both the hard-coded
and the learning-based algorithms on this component.

5.3. Ablation Study

We conduct experiments to show the effectiveness of the
unified representation, the Transformer model, the structural

encodings, and the constraints for graph inputs proposed in
Section 4. The results are shown in Table 2. Specifically,
we compare the model employed in GS4CO to: 1) distill-
ing symbolic functions iteratively from trained lightweight
GNNs (Distilling-GNN) as that widely employed in scien-
tific discovery approaches (Cranmer et al., 2020; Shi et al.,
2022); 2) using the long short-term memory (LSTM) net-
work as the sequential model as that in DSO (Petersen, 2019;
Landajuela et al., 2021); 3) using the vanilla Transformer
model without the three specially designed tree-structural
encodings (No-Encodings); 4) only using the constraint
proposed by Petersen (2019) without the three constraints
designed for graph inputs (No-Constraints). Results show
that all the components proposed in Section 4 effectively
improve the learning accuracy of GS4CO.

6. Conclusion
In this paper, we propose a graph-based symbolic discov-
ery framework for exact combinatorial optimization solver
(GS4CO) to learn interpretable branching policies directly
from the general bipartite graph representation of CO prob-
lems. Experiments show the superior end-to-end perfor-
mance of GS4CO learned symbolic policies on purely CPU-
based machines and their strengths for the wide deployment
to modern CO solvers. Applying GS4CO to more com-
ponents in modern CO solvers like primal heuristics (Nair
et al., 2021), node selection (Labassi et al.), and initial basis
(Fan et al., 2023) are exciting avenues for further work.
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Table B4. The features of constraints, edges and variables used for symbolic functions, following previous research (Gasse et al., 2019)

Features Name Description

c[1] Cosine Similarity Cosine similarity between constraint coefficients and objective coefficients vector
c[2] Bias Right hand side value normalized with constraint coefficients
c[3] Tight Indicator Indicate whether the constraint is tight
c[4] Dual Value Normalized dual solution value
c[5] Age LP age normalized by the total number of LP iterations

e[1] Edge Coefficient Coefficient of the variables in the constraint, normalized per constraint

v[1-4] Type Type of the variables (Binary, Integer, Continuous, Implied Integer)
v[5] Variable Coefficient Normalized variable coefficient in the objective

v[6-7] Specified Bounds Whether the variable has a lower bound (upper bound)
v[8-9] Solution Bounds Whether the solution value of the variable equals lower bound (upper bound)
v[10] Fractionality Variable solution value fractionality

v[11-14] Basis One of four basis classes (lower, basic, upper, zero)
v[15] Reduced Cost Normalized reduced cost
v[16] Age LP age normalized by the total number of LP iterations
v[17] Solution Value Variable value in the LP solution
v[18] Incumbent Value Value of the incumbent
v[19] Average Primal Value Average value of the variable of all feasible solutions

Table B5. The learned graph-based symbolic policies on all benchmarks. Here AGGRc represents the C-side aggregation and AGGRv

represents the V-side aggregation, and AGGR is selected from the four aggregation operators mentioned in Section 4.2. We found that the
symbolic policy learned on the benchmark Cautions generalizes well to the benchmark Indset. Thus, we simply use the same policy here.

Setcover ((((((sumv(meanc((((c2 ∗ ((((((v5 ∗ (0.1 ∗ v5)) + (c5 + c3)) + c2)−
0.2) + c3) + c3)) + c3) + c3))) ∗ v5)− v10)− v5) ∗ v10)− 2v5) + v10)

Facilities meanv((((((sumc(v14)− meanc(v6)) ∗ sumc(v10)) + meanc(v6)) ∗ sumc(v4)) ∗ meanc(v10)))

Indset&Cauctions (((sumv((meanc(((v13 ∗ ((((((((((((((c4 − v8) ∗ v11)− v5) ∗ c3) ∗ v17) + 2.0) ∗ v6)−
v4)− v13) + v17) ∗ v15) + v17) + c2)− v7)) + v6))− v10)) + v17) + 2.0) ∗ v10)

A. Features and Learned Policies
Input Features We use the 5-dimension constraint features, 1-dimension edge features and 19-dimension variable features
based on the previous research (Gasse et al., 2019). See Table B for detailed descriptions for all the features.

Learned Policies We report the learned symbolic branching policies on all the benchmarks in Table B5. These policies
directly take the general variable-constraint bipartite graph representation as input and output the scores of all the branching
candidates. We observe that: 1) all these policies use the two-hop information of the bipartite graphs, which is consistent to
the implementation of previous GNN-based approach (Gasse et al., 2019); 2) all the policies ignore the edge feature and
only a small subset of node features appear in them, indicating that the useful information in the bipartite graph is sparse.

B. Implementation Details
Pseudo Code for GS4CO We provide the pseudo code of GS4CO in Algorithm 1. The algorithm includes two phase, i.e.,
the data collection phase and the model training phase. We execute FSB policy to collect expert demonstrations during the
first phase, which is just the same as many previous approaches (Gasse et al., 2019; Gupta et al., 2020). Then, we employ
PPO with the risk-seeking objective (Tamar et al., 2014) to train the sequential model at the second phase. This process is
similar to previous research for symbolic regression tasks (Petersen, 2019; Landajuela et al., 2021), but we use the imitation
learning accuracy as the fitness measure instead.

Model Architecture and Hyperparameters GS4CO leverages a decoder-only transformer to generate symbolic branching
policies. Specifically, we report the network structure and the training hyperparameters in Table B7, in which we report both
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Algorithm 1 Graph Symbolic Discovery for Exact Combinatorial Optimization Solver (GS4CO)
Input: the Transformer-based sequential model pθ, the library of all the tokens L (features, operators, and constants), and
the distribution of CO problems I from which we can generate new instances.
// Collect expert demonstration with strong branching:
Initial expert demonstration buffer: D ← ∅.
while | D |< S do

Sample CO problem I ∼ I, and solve I with full strong branching.
Collect variable features and SB scores: D ← D ∪ {(st, u1:kt)

T
t=1}.

end while
// Train the sequential model pθ:
while not early stop do

Sample J symbolic functions using tokens in L: τ1:J ∼ pθ.
// Calculate the fitness of each symbolic function:
for j = 1, 2, · · · , J do

rj(τ) = E
(st,u1:k)∼D

[I{i|ui≥uj ,1≤j≤k}(argmax
1:k

τ(s))]

end for
Train the sequential model pθ via PPO by optimizing J(θ; ϵ) = Eτ∼pθ(τ)[r(τ)|r(τ) ≥ rϵ(τ)].

end while
Output: Symbolic function τbest with highest r(·) on the validation dataset.

Table B6. Instance generation algorithms and the detailed hyperparameters.

Benchmark Algorithms Hyperparameters

Set covering (Balas & Ho, 1980)
Easy: 500 rows 1000 columns

Medium: 1000 rows 1000 columns
Hard: 2000 rows 1000 columns

Combinatorial auction (Leyton-Brown et al., 2000)
Easy: 100 items for 500 bids

Medium: 200 items for 1000 bids
Hard: 300 items 1500 bids

Capacitated facility location (Cornuéjols et al., 1991)
Easy: 100 facilities with 100 customers

Medium: 100 facilities with 200 customers
Hard: 100 facilities with 400 customers

Maximum independent set (Bergman et al., 2015)
Easy: 750 nodes with affinity 4

Medium: 1000 nodes with affinity 4
Hard: 1500 nodes with affinity 4

the LSTM-based and the Transformer-based implementation of our GS4CO. All the other baselines are executed via the
codes provided in Gupta et al. (2020), we use the official implementations with the default hyperparameter settings, and the
detailed parameters can be referred in the papers (Alvarez et al., 2017; Gasse et al., 2019; Gupta et al., 2020). We execute all
experiments on the machine with Intel Xeon Platinum CPUs @ 2.50GHz and NVIDIA Tesla V100 GPUs.

Symbolic Policy Deployment As pointing out by previous research (Gupta et al., 2020), extracting the variable-constraint
bipartite graph state s (Gasse et al., 2019) is usually significantly faster than generating the human-designed fixed-length
feature vector (Khalil et al., 2016). Thus, we directly use the graph feature extraction codes implemented in previous
research (Gupta et al., 2020) and the learned Python expression for deployment with the official Python interface of SCIP
(i.e., the PySCIPOpt package). However, we note that GS4CO learned policies are very similar to human-designed branching
policies like pseudocost branching. Thus, it can also be implemented via C/C++ codes when considering the software
distribution. We deploy the graph-based symbolic policies at the first 25 layers of the B&B tree and switch the branching
policy to RPB when depth is larger than that, as in deep layers the RPB policy is both efficient and precise (Achterberg,
2007). This deployment method has limited effect for Easy and Medium datasets, since many B&B trees of these problems
have a depth less than that, but it consistently improves the end-to-end performance on Hard datasets. All the instances are
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solved with the SCIP seed 0 to reduce randomness from the solver.

Distilling Symbolic Functions from GNN Layers We distilling lightweight GNNs with only eight-dimensional embedding
of messages to reduce the complexity of distilling. Specifically, we follow the methods proposed by Cranmer et al. (2020).
That is, we firstly train a sparse GNN network, and then use the genetic programming package (Poli et al., 2008) to distill the
message functions and the node embedding functions iteratively. We report the hyperparameters in GPLearn in Table B7.

Data Generation We follow the dataset generation process in (Gasse et al., 2019), using four CO problem benchmarks
including set covering (Setcover), capacitated facility (Facilities), combinatorial auction (Cauctions) and maximum in-
dependent set (Indset). We set three levels (i.e. easy, medium and hard) of difficulty by increasing problem scales for
each benchmark. For GS4CO, we generate ten training instances and four validation instances. To obtain the datasets of
state-action pairs, we first leverage SCIP to solve the training instances. Then, we record new states and FSB decisions in the
B&B process. We get 1,000 training samples with 400 for validation. For other ML-based approaches, we generate 10,000
instances for training and 2,000 instances for validation. Then, we attain 100,000 training and 20,000 validation state-action
pairs on all benchmarks. We evaluate all the methods on 240 instances with a 3,000s time limit (80 easy, 80 medium and 80
hard instances). We list the instance generation algorithms with hyperparameters for each benchmark in Table B6.

Description of the Optimization Problem

• Set covering(Setcover): Given a set of elements {1, 2, . . . , n} (called the universe) and a collection S of m subsets
whose union equals the universe, the set cover problem is to identify the smallest sub-collection of S whose union
equals the universe.

• Capacitated facility location (Facilities): The capacitated facility location problem involves determining the optimal
placement of a set of facilities to serve multiple sites efficiently at the lowest cost. Each site has specific demand
requirements, while each facility has capacity constraints. The cost associated with operating a facility includes a fixed
opening fee and transportation costs incurred for serving each site from the facility.

• Combinatorial auction (Cauctions): A combinatorial auction problem involves allocating multiple items to bidders
where bids can be made on combinations of items rather than individual ones, aiming to maximize overall value while
considering complex interactions between different item combinations and bids.

• Maximum independent set (Indset): The Maximum Independent Set problem involves finding the largest set of
vertices in a graph such that no two vertices are adjacent (i.e., there is no edge between them). In mathematical terms,
it aims to find a subset S of the vertices in a graph G = (V,E) such that for any two vertices (u, v) ∈ S, the edge
(u, v) /∈ E, and |S| is maximized.

1-shifted Geometric Mean Formula We use the 1-shifted geometric mean for the experiment which is the same as (Gasse
et al., 2019). Specifically, the formula is

G(x1, x2, x3, ..., xN ) = (

N∏
k=1

(1 + xk))
1
N

C. Further Discussions
The Comparison of Kuang et al. (2024) and GS4CO Compared with Kuang et al. (2024), the novelty of GS4CO lies in
the following aspects.

1. The motivation. Our approach is the first symbolic approach that takes the graph representation as feature inputs. In
contrast, Kuang et al. (2024) only handles human-designed fixed length features. In the variable selection task, Kuang
et al. (2024) employs more than ninety different human-designed branching features, while a rich set of these features
require extensive domain knowledge for their design and understand. For example, Kuang et al. (2024) uses eight
features to describe the statistics over the ratios of a variable’s coefficient to the sum over all other variables’. For
non-experts in the field of OR, these features are complex for implementation and challenging to understand.

5Soft length prior is used in soft length regularizer (Landajuela et al., 2021)
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2. The approach. Our approach aims to learn symbolic policies with graph inputs, while the cumulative error from
iteratively distilling graph neural networks makes all the existing approaches fail. Thus, we propose a unified
representation for symbolic graph policies and a novel model to generate symbolic graph policies end-to-end.

3. The impact. Our approach is a more significant step towards general algorithm discovery for combinatorial optimization
(CO), as representing CO problems via graphs is a more general way for learning-based approaches.

In conclusion, compared with previous research, e.g.,Symb4CO (Kuang et al., 2024), Lion (Chen et al., 2023), AlphaDev
(Mankowitz et al., 2023), the core challenge in this new research field is that we have to discover new algorithms and
paradigms directly from graphs, which is a highly challenging and non-trivial research topic.

Analysis on What GS4CO Learned We emphasize that without enough expert knowledge from the research field of
combinatorial optimization, quantifying the learned symbolic policies is challenging for researchers in the machine learning
community. Thus, the analyses we provided in Section 4.2 are mainly high-level observations. Based on the insightful
question of the reviewer, we further interpret the learned policy on Setcover (in Figure 1) as follows.

1. What is an important constraint? From the right part of Figure 1, a constraint is important if it is tight (feature
c3) currently and if it relates to variables that have a large objective coefficient (feature v5) in average (the mean
aggregation operator).

2. What is a preferred variable for branching? From the left part of Figure 1, a preferred variable is usually related to many
important constraints (v̂1) in total (the sum aggregation operator), and it usually has a larger variable fractionality (v10)
and objective coefficient (feature v5).

Note that these observations are very consistent with our intuition and experience on the variable selection task. However,
rather than simple human intuition, the learned symbolic policies give a more quantitative description of these correlations.
These observations are still simple due to our lack of domain knowledge of CO solver design. However, we highly believe
these policies can help the developers of CO solvers to further optimize the branching policies.

The Trade-Off between A Broader and A Narrower Search Paradigm Symbolic regression based algorithms do often
encounter the dilemma of interpretability and prediction accuracy. Intuitively, neural networks can be viewed as a particular
solution to the symbolic regression search space, which achieves high accuracy at the expense of good interpretability, while
greatly increasing the cost of training and inference. In this paper, we choose to limit the upper bound on the prediction
accuracy of the symbolic model to obtain better interpretability and ease of deployment. However, to further improve the
performance of GS4CO, using more complex symbolic expressions is not the only way. Generally, there are roughly two
types of symbolic discovery methods:

1. One type is based on purely mathematical expressions, usually in the form of symbolic regressions, to learn a symbolic
mapping of functions, e.g. the DSR (Petersen, 2019).

2. The other type is a more general program expression that uses function logics like Python programs. For example, Lion
(Chen et al., 2023) learns the flow of function execution to train neural networks.

Intuitively, the first type can be seen as a special case of the second. At this stage, the policy learned by GS4CO is more like
a data-driven version of the human-designed pseudocost branching (PB) (Achterberg, 2007) policy integrated in modern CO
solvers. However, in human-designed branching policies, experts have greatly improved the accuracy of branching strategies
by expanding the simple scoring strategy PB into reliability pseudocost branching policy (RPB) with complex execution
logic to combine the advantages of PB scoring and FSB scoring functions. Consequently, an exciting avenue for future
work is to extend the symbolic policy into a more complex function flows like RPB via adding more function logics into the
choice of primitives (as asked by Reviewer HrSu). Generally, this is a highly challenging task, as the searching space goes
exponentially with the complexity of the learning objective, and branching policies like RPB is very complex (more than
1000 lines of C codes in SCIP). However, the rapid development of large language models gives us an exciting opportunity
to employ prior knowledge to reduce the searching complexity for algorithm discovery.
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D. Additional Experimental Results
Ablation on the Aggregation Layers vs. the Performance To show that GS4CO effectively leverages the variable-
constraint graph structure, we conduct an ablation study to compare the imitation learning accuracy of GS4CO with different
layers of neighborhood aggregations from zero to two. Specifically, this can be easily done via changing the aggregation
function layer constraint (constraint 3 in Section 3.3). We report the results in the table below, which indicates that GS4CO
effectively leverages the variable-constraint graph structure as expected. We report the results in Table D8, which indicates
that GS4CO effectively leverages the variable-constraint graph structure as expected.

Reducing the Size of GNN and Hybrid to Improve the Inference Speed For GNN, we trained neural networks with
embedding sizes 64, 32, 8. We report the learning accuracy and the end-to-end solving time (seconds) on Setcover in Table
D9. Results show that small GNNs tend to be more efficient on purely CPU-based devices, but they still fail to outperform
the extremely lightweight graph symbolic policies. The main reason is that even with reduced hidden sizes, two-layer GNNs
are still inefficient for inference compared with symbolic models. For Hybrid, we record the different parts of the inference
time (in seconds) of Hybrid model on Setcover. That is, the time for feature extraction and the time for model inference.
Results in Table D10 show that the main time cost for the inference of Hybrid approach is from feature extraction, rather
than the model inference. More specifically, these results show that even if we consider a smaller Hybrid model that takes
little time for model inference, its end-to-end performance still fails to outperform GS4CO.

Sensitivity to Different Sizes To further evaluate the sensitivity to problems generated with different parameters, we
generate multiple datasets with a larger variance of generating hyperparameters. Specifically, we generate Setcover and
Indset problems, and we report the performance of reliability pseudocost branching (RPB) policy in terms of time or gap, the
relative performance of GS4CO, and the relative performance of GNNs on purely CPU-based devices. Table D11 includes
results on Setcover (with rows and densities change) and Indset (with nodes and affinities change). Each entry of the table is
evaluated on 20 instances, and the results are reported in the form of “RPB performance/GS4CO relative performance/GNN
relative performance”. Results show that symbolic policies are relatively insensitive to different problem sizes and difficulty.

Comparison between GS4CO and Symb4CO (Kuang et al., 2024) We implement both a Python version and a C version
of the learned symbolic policies provided of Symb4CO (Kuang et al., 2024). For the Python version, the implementation is
mainly based on the codes implemented by Gupta et al. (2020). Note that our approach is purely Python implemented. We
report the accuracy and the end-to-end performance, and we conclude them as follows.

1. Results in Table D12 show that directly learning symbolic policies from the graph structure (GS4CO) achieves slightly
lower accuracy than Symb4CO. The core reason accounting for this result is that the human-designed features employ
highly complex rules to extract features that describe the structure of input problems. For example, a rich set of
dynamic features in Gupta et al. (2020) are generated via complex logics to traverse the whole bipartite graph (see
Lines 4631-4789 in scip.pyx). These can be regarded as human-designed two-layer aggregation functions with complex
logics. In contrast, GS4CO extract graph structural features via simpler mathematical functions, and it is purely
learning-based. However, we emphasise that GS4CO is more general and compatible to different downstream tasks. It
requires only limited domain knowledge, which significantly reduces the challenges of feature design for researchers
from the machine learning community.

2. The results in Table D13 show that Python implemented symbolic policies with graph inputs achieve slightly lower
performance than the C++ implemented symbolic policies, in which the features requires extensive domain knowledge
and human efforts for design. However, our graph symbolic policies outperform the Python implementation of
Symb4CO (Kuang et al., 2024). The core reason is that extracting the whole set of fix-length features (i.e., the Khalil
features) via the Python interface is very time-consuming. These results are consistent with the observations reported
by Gupta et al. (2020).
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Table B7. The hyperparameters for GS4CO.

Parameter Value

GS4CO-Transformer (ours):
Transformer embedding dimension 32
Transformer attention heads 4
Transformer feed-forward model dimension 128
Transformer number of layers 4

GS4CO-LSTM (for ablation):
LSTM layers 2
LSTM hidden size 128

Distilling-GNN (for ablation):
Embedding size of messages 8
population size 512
initial depth 4-6
tournament size 10
stopping criteria 0.05
training iterations 10000

GS4CO shared parameters:
Batch size 500
Expression minimal length 4
Expression maximum length 64
Soft length prior λ 32
Soft length prior5σ2 16
Maximum layers of aggregation functions 2

RL parameters:
Risk factor 0.2
Number of training CO problems 100
Number of training FSB samples 10, 000
Number of validation CO problems 20
Number of validation FSB samples 2, 000
Training data batch size 1000
Hierarchical entropy regularizer γ 0.95
PPO learning rate 5e-5
PPO entropy coefficient 0.2
PPO epochs at each iteration 10
Optimizer Adam (Kingma & Ba, 2015)
Number of iterations before early stop 2000

Table D8. The ablation study to compare the imitation learning accuracy of GS4CO with different layers of neighborhood aggregations
from zero to two, which indicates that GS4CO effectively leverages the variable-constraint graph structure as expected.

Depth Cauctions Indset Setcover Facilities

0 37.12 26.75 33.65 65.86
1 40.25 39.25 41.40 66.50
2 41.13 40.78 44.13 66.78
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Table D9. The learning accuracy and the end-to-end solving time (seconds) on Setcover with different embedding sizes. Results show that
small GNNs tend to be more efficient on purely CPU-based devices, but they still fail to outperform the extremely lightweight graph
symbolic policies.

Method Accuracy Time (s)

RPB - 18.1
GNN-64(Default) 54.2 19.3
GNN-32(Default) 52.3 17.4
GNN-8(Default) 46.3 15.7

GS4CO 44.1 13.3

Table D10. Record the different parts of the inference time (in seconds) of Hybrid model on Setcover. Results show that the main time
cost for the inference of Hybrid approach is from feature extraction, indicating even if we consider a smaller Hybrid model that takes little
time for model inference, its end-to-end performance still fails to outperform GS4CO.

Hybrid GS4CO

Total Feature Extraction Model Inference (Total) − (Model inference) Total
13.88 1.95 0.42 13.46 13.29

Table D11. Evaluate 1) the performance of reliability pseudocost branching (RPB) policy; 2) the relative performance of GS4CO; and
3) the relative performance of GNNs on purely CPU-based devices. Results show that symbolic policies are relatively insensitive to
disturbances from different problem sizes and difficulty.

Row\Density 0.03 0.05 0.07

300 5.8/0.83/0.85 8.0/0.77/0.88 7.8/0.79/0.99
500 18.2/0.67/0.81 15.2/0.78/1.00 18.4/0.80/1.21
700 82.9/1.31/1.64 65.1/0.94/1.59 40.5/0.93/1.96

Nodes\Affinity 3 4 5

500 (time) 113.6/0.78/4.54 109.2/0.74/3.06 100.8/0.76/5.57
750 (time) 2537.0/0.73/0.97 2547.4/0.75/0.81 2230.0/0.80/1.11
1000 (gap) 5.14/0.81/1.05 5.37/0.86/1.12 5.42/0.81/1.08

Table D12. Compare the learning accuracy between Symb4CO and GS4CO.

Method Cauctions Indset Setcover Facilities

Symb4CO 43.42 45.31 45.37 66.50
GS4CO 41.13 40.78 44.13 66.78

Table D13. Compare the end-to-end performance between Symb4CO and GS4CO.

Method Cauctions Indset Setcover Facilities

RPB 5.11 75.14 18.12 78.75
Symb4CO-Python 3.31 60.47 14.92 73.32

Symb4CO-C 2.87 55.43 13.45 60.26
GS4CO(-Python) 3.16 53.18 13.29 76.27

19


