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Abstract

Spatiotemporal graphs are a natural representation of dynamic brain activity derived from
functional magnetic imaging (fMRI) data. Previous works, however, tend to ignore time
dynamics of the brain and focus on static graphs. In this paper, we propose a temporal
graph deep generative model (TG-DGM) which clusters brain regions into communities
that evolve over time. In particular, subject embeddings capture inter-subject variability
and its impact on communities using neural networks. We validate our model on the UK
Biobank data'. Results of up to 0.81 AUC ROC on the task of biological sex classification
demonstrate that injecting time dynamics in our model outperforms a static baseline.
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1. Introduction

The brain can be represented as a temporal graph, where nodes are spatially distributed
regions-of-interest (ROIs) defined by a brain atlas. The edges are determined by a measure
of dynamic functional connectivity (dFC) applied to the fMRI data. Emerging research sug-
gests that temporal dynamics of ROI communities are useful biomarkers for understanding
brain function and dysfunction. The majority of existing methods are limited by assum-
ing either static connectivity, or are difficult to scale to many subjects, or are supervised
(Ting et al., 2020; Gadgil et al., 2020). Based on these limitations, we propose an unsuper-
vised temporal graph deep generative model (TG-DGM) for learning dynamic communities
of brain activity from fMRI data. Our model is inspired by Graph Dynamic Embedding
(GRADE) (Spasov et al., 2020). In particular, we extend GRADE by introducing multi-
graph learning and subject embeddings, giving the ability to quantify subject-specific ef-
fects on community membership and dynamics. We demonstrate that our approach learns
high-quality representations and that taking into account temporal dynamics improves per-
formance on the task of biological sex classification. Possible applications include using
the embeddings to discover novel patient categories, as well as to identify new functional
networks (i.e. clusters) of ROIs.
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2. Method

Denote fMRI data as a set of temporal graphs D = {G&!) : s = 1,...8,t = 1,...T}
where each G = (V, E(S’t)) represents an undirected graph for subject s at time ¢. Nodes

V = {1,...,N} remain fixed across time and edges E®" = {(wp (=) CS;STQ) :n,m € V}
(sit) (s:t)

evolve dynamically, where (wp, ", cnm) represents the edge that connects node w,g S to

its m-th neighbour c(s D The edges B! are produced using a measure of dFC. The
goal is to learn subject, community and node embeddings, o, 3 and ¢ respectively of size
D. TG-DGM uses neural networks (NNs) to transform subject embeddings into subject-
specific node and community representations. Time dynamics are injected by evolving ¢
and 3 with gated recurrent units (GRU). Each node is represented as a mixture of K
communities, and each community is a distribution over the N nodes. These distributions
are parameterized by NN transformations of the node and community embeddings. For each
edge, a community assignment variable z is sampled for the node w,,, and then a neighbour
Cn,m is sampled from the assigned community. The generative process for TG-DGM is:

1. Initialize a learnable subject embeddings matrix o € RS*P.

2. For subject sin 1...5:

(a) Initialise community embeddings 3% = NNg(a(®), where B(=0) ¢ RExP
nitialise node embeddings M= a\?), where e

b) Initial de embeddings ¢(*?) = NN, (a!®)), where ¢(>0) ¢ RV*D

(c) For time t in 1...7"
i. g = GRU (ﬁ<50t D) for kin 1... K, where 8" € RP

ii. ¢ = GRU (¢(s 041y for nin 1... N, where d)(St e RP

. For edge (wT(f ) cnm) in GG

(s,t)

A. Produce community mixture coefficients: my, ;; = softmax(NN( S’t)))
B. Sample community assignment: zr(f%) ~ pﬁ<s,t)(z\w7(f’t))
C. Produce parameters of node distribution: oL = softmax(NN(ﬁgs’t)))
D. Draw linked neighbour: cff,Q ~ Pyl (c\z,(f,%))
To learn the parameters, we can maximize the probability of the observed data D. The
posterior over the community assignment variable p(z|D) is intractable, hence we resort to
optimizing the evidence lower bound (ELBO) using variational inference. The ELBO for a
single subject s at time point ¢ is:

LeY = ZZE% et otoi0n 108 Pygen (el 2D =KLl (=lwie? el lp, 0.0 (21wl )]

n=1m=1

where M = degree(w,,), q(z\w o) cSTQ) is the variational approximation to the prior over

27(157;;?, E[] is the expectation, and KL(.) is the Kullback-Leibler divergence. To produce
q(.), we simply add the dependency of the posterior over z on the neighbour by augmenting
the input to the neural network, which produces the community mixture coefficients during
inference. The distributional parameters for ¢(.) are given by softmax(NN(¢w,, , ¢c, .. )). All

NNs are implemented as linear layers, and the GRUs have a single hidden layer.
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3. Experiments & Discussion

We randomly sample
from S=560 gender and age (55-75)
matched subjects from UK Biobank

fMRI data Table 1: AUC ROC results on biological sex clas-

sification using TG-DGM embeddings

w T e B8 allB

(Sudlow et al., 2015). The data was

preprocessed with standard methods ;lig ; 8;2 i 883 8773 i %%i 8;51 i 882
and parcellated into N=360 ROI time-  "g0" 5 ('7¢ 4 103 0781004 0.80 £ 0.06
series of length 490 using the Glasser 49 19 0794004 0784005 0.80+0.04
atlas (Glasser et al., 2016). For each 35 14 070+ 0.06 0.79 +0.05 0.77 £ 0.04
ROI timeseries, correlation based dFC 14 35 0.80+0.02 0.79 +0.05 0.81 £+ 0.03
was calculated using non-overlapping 7 70 0.69+0.06 0.73+0.07 0.70 £+ 0.06

window sizes of varying length W.
The top 1% of correlations were converted into binary edges E(*) by thresholding.

TG-DGM was trained with the Adam optimizer using a learning rate of 5 x 1073 for
1000 epochs. We set K=7 and D=32. We infer the subject o, community B and node ¢
embeddings for all subjects across all time points. To evaluate the quality of the learned
embeddings, we use them as inputs to a logistic regression classifier to predict biological sex
within a 5-fold cross-validation procedure.

Table 1 presents the AUC ROC obtained from subject embeddings «, the time-averaged
community embeddings 3 for each subject, as well as their concatenation «||3 as inputs to
the logistic regression. The results demonstrate that at a certain temporal resolution, our
model achieves a peak in performance with statistical significance (p-values < 0.05 when
T=35 against a static baseline T=1). This shows dFC has advantages over static connectiv-
ity for understanding brain function. In terms of absolute performance, TG-DGM achieves
strong results in sex classification, and unlike supervised methods applied on the same task
(Gadgil et al., 2020), our model could be used to discover novel subject groupings beyond
established categories. TG-DGM is also interpretable as we can associate the community
embeddings, and their importance for a given task, to the ROIs.
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