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ABSTRACT

Extracting training data from large language models (LLMs) exposes serious
memorization issues and privacy risks. Existing attacks extract data by gener-
ations, followed by membership inference. However, extraction attacks do not
guide such generations, and the extraction scope of member data is limited to the
greedy decoding scheme. Only verbatim memorized member data is being audited
in this process. And a majority of member data remains unexplored, even if it is
partially memorized. In this work, we define a new notion of memorization, k-
amendment-completable, to measure the degree of partial memorization. Greedy
decoding can only extract 0-amendment-completable sequences, which are verba-
tim memorized. To address the limitation in generation, we propose a membership
decoding scheme, which introduces membership information to guide the gener-
ation process. We formulate the training data extraction problem as an iterative
member token inference problem. The token distribution is calibrated with mem-
bership information at each generation step to explore member data. Extensive
experiments show that membership decoding can extract novel member data that
haven’t been studied before. The proposed attack manifests that the privacy risk
in LLMs is underestimated.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable capabilities in text generation Guo et al.
(2025); Comanici et al. (2025). However, their ability to memorize and to reproduce training data
raises significant concerns about extracting private and sensitive information. Works Carlini et al.
(2021); Yu et al. (2023); Hayes et al. (2025); Biderman et al. (2023b) have studied the memorization
of LLMs and estimated the corresponding privacy risk under data extraction attacks. Verbatim
memorization is a well-studied notion, where the model can complete a training prefix with the exact
same training suffix by greedy decoding. Attackers can easily extract and identify these memorized
sequences by prompting a training prefix, followed by membership inference attacks (MIAs) Carlini
et al. (2021; 2022b).

Even though greedy decoding is simple and efficient, it limits the generation scope to verbatim
memorized sequences only in extraction attacks. Due to this decoding limitation, partially memo-
rized sequences are unexplored but remain experiencing significant extraction risks. The generation
diversity can be improved by introducing bias and randomness in the decoding strategies, such as
beam search decoding Wu et al. (2016) top-K sampling Fan et al. (2018), and temperature sampling
Radford et al. (2019). Recent works Hayes et al. (2025); Yu et al. (2023) have studied the memoriza-
tion amplification brought by randomness, generating multiple candidate suffixes on a given training
prefix. Multiple generations and sequence-level MIAs increase the chance of the member hit, but the
computational cost as well. Most importantly, these MIAs after generation methods succeeded only
when the member is extracted in the generation, which is not optimal. The membership information
of the prefix is not fully utilized to guide the generation. The member data that can be extracted with
some membership guidance during decoding remains unexplored.

In this work, we explore the possibility of extracting member data directly by introducing member-
ship bias. The key research question is:

Can LLMs generate partially memorized training data by themselves with a
membership-guided decoding strategy?
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Generation
Member

0,1,· · · -
Amendment
Completable

Verbatim

Figure 1: Relationship between Generation, Member, k-amendment-completable, and Verbatim
memorization.

To answer this question, we define a new notion of memorization, k-amendment-completable, to
measure how much a suffix is partially memorized by LLMs given its training prefix. Specifically, it
computes the number of tokens k that need membership guidance to change during generation. Ver-
batim memorized sequences are 0-amendment-completable sequences that can be extracted with-
out any membership guidance. Our goal is to extract more partially memorized sequences, i.e.,
k-amendment-completable sequences with k > 0, as shown in Figure 1.

By translating the training data extraction problem as a training data completion the problem, we
decompose problem into iterative token-level membership inference attacks during generation. We
identify member data in-generation rather than post-generation. Following this motivation, we pro-
pose Membership Decoding framework, a new decoding strategy that guides the next token predic-
tion with membership information. It allows us to leverage MIA scores to calibrate the prediction
distribution at each generation step. Accordingly, we propose a novel token-level membership in-
ference attack based on maximizing a posterior probability of observing the member prefix.

In this work, we give an affirmative answer. Greedy decoding only reveals a small fraction of
extractable memorization. Studies based on it underestimate the training data extraction risk.
Membership decoding can generate member data beyond fully memorized sequences, extracting
k-amendment-completable sequences with k > 0. It allows us to perform a privacy study on the
unexplored member data. Our contributions are threefold:

1. We define a new notion of memorization in LLM, k-amendment-complement, measuring
the partially memorized sequence that can be generated by LLMs with k token amendment.

2. We propose a membership decoding scheme that formulates the training data extraction
problem as iterative membership inference attacks, allowing us to leverage membership
information to generate member data.

3. We define a novel token-level membership attack to generate member data, unifying exist-
ing MIA methods. The extraction of partially memorized sequences manifests the under-
estimated extraction risk in existing literature.

2 RELATED WORK

2.1 MEMBERSHIP INFERENCE ATTACK

Membership inference attacks (MIAs) aim to decide whether a specific data point was included in
the training dataset of a target model Shokri et al. (2017); Yeom et al. (2018); Carlini et al. (2022a);
Ye et al. (2022); Zarifzadeh et al. (2023). MIAs are first introduced for auditing machine learning
algorithms Shokri et al. (2017). This method and subsequent works are based on the training of
many reference models to calibrate the MIA score for the target model behavior.

MIAs on LLMs have been considered a challenging problem Duan et al. (2024). Methods can
be categorized into training-based MIA and training-free MIA. Training-based MIAs, like LiRA
Carlini et al. (2022a); Rossi et al. (2025), train many IN models and OUT models to calibrate the
MIA scores for a specific target sample, which is expensive for LLM. Training-free MIAs Shi et al.
(2023); Mattern et al. (2023); Mireshghallah et al. (2022); Xie et al. (2024) analyze LLM signals
themselves. Min-k Shi et al. (2023) and its variant Min-k++ Zhang et al. (2024a) calibrate the k-
lowest token likelihood, which is insensitive to token changes out of the minimum k. DC-PDD
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Zhang et al. (2024b) calibrate token probability with token frequency distribution. Rather than
identifying true members, they define non-member detectors by catching outlier signals. Neighbor-
comparison Mattern et al. (2023) catches the overfitting signal by referring to neighbor data, which
is inefficient involving massive generations from reference model. RECALL Xie et al. (2024) com-
putes the likelihood shift amount with a non-member prefix. These MIAs catch the average token
signal for sequence MIAs, and thus are not useful when the target extraction is failed in the default
generation. In this work, we design membership-guided generation for better extraction.

2.2 TRAINING DATA EXTRACTION

Data extraction attacks aim to recreate a training data point from a target model. It reveals severe
privacy risks of leaking sensitive and personally identifiable information (PII). Unintentional mem-
orization is recognized as a main source of extraction. Existing extraction attacks can be categorized
as training-based and training-free attacks.

Training-free attacks perform membership inference attacks after massive generations. Carlini et al.
(2021) performed loss-based MIA on text sequences generated with greedy decoding. The ex-
tractable sequences are limited to verbatim memorized sequences. Tiwari & Suh (2024); Hayes
et al. (2025) expanded the generation scope by probabilistic sampling, taking the top-k sampling
method to explore members. Yu et al. (2023) adjusted the probability distribution of tokens with
repetition penalty and temperature to allow diversity in massive generation. However, performing
membership inference attacks on massive generations is expensive and inefficient for extraction.

Training-based attacks train assistant models to extract training data from target models Ozdayi et al.
(2023); Wang et al. (2024). Ozdayi et al. (2023) proposed to learn a model adapter in the form of a
soft prompt to extract training data. Wang et al. (2024) proposed to learn a soft prompt generator to
dynamically enhance the extraction capability. However, these training-based attacks require white-
box access to the target model for gradient computation. They also need a large amount of training
data to train the adapter or generator. They are not applicable in black-box settings where only
output logits or probability distributions are available.

Apart from the extraction of exact suffix, approximate extractions relax the constraints to allow
partial matching Biderman et al. (2023a), n-gram matching Ippolito et al. (2022), and approximate
string matching Kassem et al. (2024). In this work, we focus on the exact suffix extraction, which is
more challenging and more useful in real-world applications.

3 THREAT MODEL

3.1 MEMORIZATION

We define a member sequence x if there exists an exact same sequence x in the training dataset of
a model f . Due to the next token prediction training objective in LLMs, any member’s prefix x<t,
the leading t− 1 tokens of x, is a member as well.

Definition 3.1 (k-extractible). A suffix s is k-extractible if it is generated by the model f when
prompted with a prefix p of length k, and [p∥s] is in the training set of f .

k-extractible is the first memorization notion to estimate the privacy risk of a sequence Carlini et al.
(2021). It studies verbatim memorization by varying the length of prefix k, with which LLMs can
reproduce member data by greedy decoding. The greedy decoding strategy chooses the token with
the highest likelihood as a continuation during generation. In most prior works Carlini et al. (2021;
2022b), greedy decoding is the default setting for one-shot extraction. Sampling introduces ran-
domness for multiple suffix generations, known as multi-shot extraction. A member sequence is
(n, p)-extractible Hayes et al. (2025) if it is generated in n trials with probability p, measuring mem-
orization under probabilistic decoding. However, introducing randomness for n generations and n
sequence-level MIAs is expensive and inefficient for extraction. Instead, we introduce membership
bias into token distribution for efficient one-shot extraction.

Definition 3.2 (k-amendment-completable). A suffix s is k-amendment-completable if f needs k
amendments to generate s during greedy decoding generation when prompted with the prefix p, and
[p∥s] is in the training set of f .
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k-amendment-completable Generation k-extractable
k = 0 [Alice’s office] fax is 555-678 k = | Alice’s office|

[Alice’s office] address is uptown
k = 1 [Alice’s office] fax is 555-678 k = | Alice’s office fax |

[Alice’s office] fax is 555-555
k = 1 [Alice’s office] fax is 555-678 k = | Alice’s office fax is 555-6 |

Table 1: Examples for memorization notions. Red indicates an error decoding token and Green
indicates an amendment token. In the second 1-amendment-completable example, given prefix “Al-
ice’s office”, k-extractable notion underestimates the extraction risk with a longer prefix. But LLMs
memorize most of the tokens, and attackers need only one amendment as the first example.

To capture the extraction risk of a member sequence in one-shot extraction, we introduce a new
memorization notion, k-amendment-completable. Sequences with smaller k remain highly memo-
rized and are more susceptible to extraction attacks. k-extractable considers the number of tokens
needed in the prefix to extract the suffix, while k-amendment-completable considers the number
of tokens needed to be amended on a given prefix. For example, in Table 1, given a 1-amendment-
completable sequence “Alice’s office fax number is 555-678”, prompting prefix “Alice’s office” gen-
erates a non-member suffix “address is uptown”. However, the member is exposed once replacing
one token “address” with “fax” during generation, showing a high privacy risk. This phenomenon
is also observed in Hayes et al. (2025). In experiments, as shown in Figure 2b, we find that k de-
creases in average as model size increases, showing heavier memorization in larger models. And the
extraction success rate decreases as k grows. It manifests that k-amendment-completable notion is
valid and more practical in real-world scenarios.

3.2 PROBLEM DEFINITION

We define the data extraction attack in language models as a training data completion problem:

Definition 3.3 (Training Data Extraction). Given a target language model f trained for next token
prediction on dataset D and any prefix p from a member sequence x = [p|s] ∈ D, the goal is to
design a mechanism g to generate the target suffix s:

g(p, f) = s.

Carlini et al. (2021) defined their extraction mechanism as greedy decoding g := argmaxi(f(p)i).
Hayes et al. (2025) introduced sampling into the generation mechanism g := Samplingi(f(p)i).
However, none of them takes membership information during generation. We explore the member
information of the prefix to calibrate the next token prediction distribution during decoding. Our
goal is to extract member data that is k-amendment-completable with k > 0, broadening
generation scope to partial memorization.

3.3 THREAT MODEL

Following the literature, we consider the threat model defined in Carlini et al. (2021).

Victim Definition The victim provides black-box access to the target language model and returns
the logits or probability at every token prediction on the query sequence.

Adversary’s Capabilities Adversary can query the probability of the next token vi ∈ V on any
sequence x<t. The weight and intermediate prediction of LLM are hidden. An adversary can sample
the member prefix p = x<t with an unknown suffix s.

Adversary Objective The goal of the adversary is to extract the member suffix given the member
prefix. A stronger attack can extract more k-amendment-completable sequences with larger k > 0.
The extraction fills the gap between training data and training data that is decoded by greedy search.
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4 METHOD

In this section, we explain our membership decoding formulation to address the training data extrac-
tion problem. We also propose a new score for token-level membership inference, distinguishing a
member token from a set of non-member tokens in the vocabulary.

The first challenge is that the candidate space of possible member suffixes is huge. It grows expo-
nentially in the suffix length N − n: |V |N−n, where N is the length of the target sequence and n is
the prefix length. The second challenge is that the membership inference attack score is not accurate
when the data is not verbatim memorized. The score is computed as the likelihood of suffix given
prefix Pf (xn,··· ,xN−1

|x<n) =
∏N−1

t=n Pf (xt|x<t).

4.1 MEMBERSHIP DECODING

We address the first challenge by formulating the training data extraction problem as a training data
completion problem. We decompose it into a sequence of membership inference attacks during the
generation. The key insight is that the prefix of any length of a member sequence is also a member.
Thus, we can perform membership inference attacks on the next member token prediction given the
member prefix. In particular, due to the auto-regressive nature of LLMs, the training objective of a
training sequence is a sequence of token predictions with cross-entropy loss l:

L(x<N ) =

N−1∑
t=1

l(xt|f(x<t)).

Each prefix x<t serves as a member as the target sequence x<N in the training dataset. The model
is trained to predict the next member token xt given its prefix x<t. Thus, to extract the training data
with a member prefix, we can perform token-level membership inference attacks during generation.

We alter the usual token generation to member token generation for the extraction of the member
sequence auto-regressively. At each step, a member sequence is identified by a membership infer-
ence attack among the candidates. The candidate space is reduced to the size of vocabulary |V | at
each step and grows linearly with the suffix length. The membership decoding process is defined as
follows: Given a prefix x<n, and a target sequence length N − 1,

1. Construct the candidate member set at step t ≥ n: {cti = [x<t, vi]}|V |
i=1.

2. Compute the membership score ScoreMIA(c
t
i, f) for each candidate given its prefix x<t

is a member of f .

3. Select the candidate with a maximum score g(x<t, f) := argmaxi(ScoreMIA(c
t
i, f)).

4. Iterate over steps 1-3 until t = N − 1.

We define the mechanism g as a next member token prediction function that takes the prefix x<t and
the model f to predict the next member token xt until the member sequence x<N is completed.

g(x<t, f) = xt, ∀t = n, n+ 1, · · · , N − 1

In each next token prediction, the mechanism g leverages membership score to select a member
token as the next token. This process calibrates the default token distribution to favor member
tokens, bringing minor overhead to the default decoding process. Thus, we name this framework as
Membership Decoding, aiming to pop up the member token during the generation. It allows us to
explore different membership attacks by varying the membership score in Step 2.

In the next section, we explain our design for membership score. Greedy decoding is a special case of
membership decoding. It implements Loss-based MIA Yeom et al. (2018), computing membership
score as the likelihood of a candidate token given the prefix:

ScoreLoss(f, c
t) = Prf (xt|x<t).

However, this MIA score fails to calibrate the hardness of the target sample Carlini et al. (2022a).
Without calibration, the membership scores are not accurate when the data is partially memorized.
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4.2 MAXIMIZE A POSTERIOR AS MIA SCORE

In this section, we propose our score computation method in performing membership inference
attacks. Given x<t,∀t < n are members of the model f , we aim to evaluate the probability of
observing (x<t, xt = vi) as a member sequence. To address the second challenge, we need to
calibrate the membership score to better distinguish the member sequence from the non-member
sequences. The key insight is that if vm is the member continuation of x<t, the posterior probability
of observing the member prefix x<t should be higher than given a non-member continuation vnm.

We define MIA score as the probability of “f is trained on x<t” given “f is trained on (x<t, xt =
vi)”: P (f, x<t|xt = vi). However, we cannot directly compute this probability of a candidate
sequence cti given the prefix x<t. It requires computing the probability of observing “f is trained
on x<t” over all possible training datasets. Thus, we apply Bayes’ rule to compute the posterior
probability of a candidate sequence cti given the prefix x<t:

vm = argmax
vi

P (f, x<t|xt = vi), (1)

(with Bayes) = argmax
vi

P (f, x<t)P (xt = vi|f, x<t)

P (xt = vi)
, (2)

(Independent) ∝ argmax
vi

P (xt = vi|f, x<t)

P (xt = vi)
, (3)

where prior P (f, x<t), the probability of “f is trained on x<t”, is independent to candidates and
left out. We approximate likelihood with next token prediction probability on f :

P (xt = vi|f, x<t) = Prf (xt = vi|x<t). (4)
The evidence P (xt = vi) is the total probability of “observing the token vi as the next token given
the prefix x<t”. It is computed by marginalizing all possible models h evaluated on the prefix x<t:

P (xt = vi) =
∑
h,x<t

P (h, x<t)P (xt = vi|h, x<t). (5)

We can resort to open-weight LLMs as the reference models to compute the evidence. However,
it is challenging to find reference LLMs h that are trained on the same target sequence x<N . And
thus the estimation is biased to the models that are not trained on sequence x<N , i.e., OUT models.
We calibrate this bias by assuming that the estimation on IN models is an affine function of the
estimation in OUT models as RMIA Zarifzadeh et al. (2023):

P (xt = vi|hIN , x<t) = a · P (xt = vi|hOUT , x<t) + (1− a) ∈ [0, 1], (6)
where a is a hyper-parameter to control the calibration strength. a = 0 overestimates the likelihood
of IN models with 1, assuming the model perfectly fits the target sequence. While a = 1 underesti-
mates the likelihood of IN models, assuming no probability difference after training with the target
sequence. Finally, the evidence is approximated as follows:

P (xt = vi) ≈
1

2
((1 + a) · P (xt = vi|h, x<t) + (1− a)). (7)

We take a = 0.5 throughout the experiment as a trade-off. The additional overhead is the generation
process on the reference model h. However, the reference model is usually much smaller than the
target model, and the generation is efficient. The membership decoding process is efficient with
minor overhead compared to the default decoding process. For a robust calibration, we take the
top-20 tokens from the target model as the candidate set at each step in experiments. It avoids the
computation instability when the token probability is too tiny. And a token with a tiny probability is
unlikely to be a member token. Overall, we compute our token-level membership score as follows:

ScoreMIA(c
t
i, f) =

2 · Prf (xt = vi|x<t)

(1 + a) · Prh(xt = vi|x<t) + (1− a)
(8)

In summary, we define the membership score by calibrating the next token prediction probability
with the evidence of observing token vi as the member continuation over all possible models h.
Greedy decoding Carlini et al. (2021) takes no calibration as a Loss-based MIA method. Reference-
based Mireshghallah et al. (2022) methods calibrates with the likelihood of a reference model, which
is a = 1 in our case. DC-PDD Zhang et al. (2024b) calibrates with P (xt = vi) by taking it as a prior
distribution and computing it as the token frequency distribution. However, it is not accurate and
requires access to the training dataset. We unify these MIA methods in our membership decoding
framework by varying the membership score.
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5 EXPERIMENT

In this section, we first verify our memorization notion k-amendment-completable in the existing
LLM models. Then we evaluate the effectiveness of membership decoding in generating partially
memorized training data.

5.1 EXPERIMENT SETUP

We evaluate on the MIMIR benchmark Duan et al. (2024). The MIMIR dataset is created from the
Pile datasetGao et al. (2020) for MIA evaluation. We take 7 datasets from different domain: “Pile
CC”, “ArXiv”, “Pubmed Central”, “HackerNews”, “DM Mathematics”, “GitHub”, “Wikipedia”,
each of which contains 1, 000 member sequences. We also take the “Full Pile” dataset containing
10, 000 training examples. The last 10 tokens are taken as the target suffix and all leading tokens as
the prefix.

For all the experiment, we take the transformer models introduced in Pythia-suit Biderman et al.
(2023b). The target models are Pythia-1B, 1.4B, 2.8B, 6.9B, 12B, and the reference model is the
smallest model, Pythia-170m, consistent with Shi et al. (2023); Xie et al. (2024). Smaller mod-
els tend to memorize less of the training data Biderman et al. (2023a). For Pythia-12B, the prefix
length is limited to 300 tokens due to the memory limitation. All experiments are conducted on two
NVIDIA RTX-TITAN GPUs with 24GB of memory. The model weights and datasets are loaded
from HuggingFace Wolf et al. (2020). No randomness is introduced in both generation and mem-
bership inference attacks.

We compare four decoding baselines:

• Loss (greedy Yeom et al. (2018)): It selects the token with the highest probability at each
step, defining MIA score as Eqn. 4.

• Ref (a = 1 Mireshghallah et al. (2022)): It calibrates MIA score with reference OUT
model by likelihood ratio, i.e., a = 1 in Eqn. 8, catching the token that has the greatest
increase rate compared to the reference model.

• Minus: It computes the MIA score as the probability difference, catching the token that
has the greatest probability gains compared to the reference model.

• Our (a = 0.5): It compares the token distribution with the total probability calibrated by
an affine transformation as Eqn. 8.

The performance is measured by the sequence-level exact match accuracy in one-shot extraction.

To evaluate the next member token prediction task, we construct two settings: Hard and Easy.
The Hard setting requires performing the next 10 member tokens extraction. The Easy setting
requires performing the next single member tokens prediction at the failure case of greedy decoding.
Evaluation data is constructed by the failure case of greedy decoding, where the token with the
highest probability is not a member token.

5.2 MEMORIZATION WITH k-AMENDMENT-COMPLETABLE

In this section, we verify the validity of our memorization notion k-amendment-completable on
existing LLMs, and estimate the privacy risk of extraction for each model and dataset. To evaluate
k for each sequence, we query the target model with the prefix and continue the generation by
amending the incorrect token with the suffix token. The k is the number of amended tokens in
the greedy decoding process. The target sequence is extracted when the attacks perform the same
operation. Computing this notion of memorization is efficient as the generation process.

To evaluate the extraction risk across data domains, we present the k distribution among differ-
ent domains on Pythia-6.9B in Figure 2a. The results on the other model scales are similar. The
HackerNews dataset is mainly composed by 6 and 7-amendment-completable sequences, while the
GitHub dataset has a majority of 0 and 1-amendment-completable sequences. Our notion indicates
that the model memorizes more GitHub samples than HackerNews samples. And GitHub could be
more susceptible to privacy attacks. The observation on their MIA success rates in Duan et al. (2024)
supports our findings. The GitHub dataset is more vulnerable to MIA attacks. It suggests that the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) k distribution on 8 datasets (b) Average k vs model scale

Figure 2: Memorization analysis using k-amendment-completable notion. (a) k distribution of
Pythia-6.9B model shows different memorization degrees across domains, with GitHub having the
smallest average k value. (b) the average k value decreases as model size increases, indicating that
larger models memorize more training data.

Figure 3: Easy: Result of single token MIA on each k-amendment-completable sequence on Pythia-
6.9B. The membership information can recover the member token when the greedy decoding fails.

k-amendment-completable concept is a fine-grained measure of memorization. Sequences with
small k are highly memorized and under a high risk of being extracted.

To evaluate the relationship between memorization and model scale, we also present the average k
value over datasets for each model scale in Figure 2b. We introduce a smaller model with 410m pa-
rameters for a full-scale comparison. The average k value decreases when the model scales up across
all the datasets. This phenomenon suggests that larger models memorize more training data than
smaller models. It also supports us to take smaller models as reference models in membership
decoding, as they memorize less training data.

5.3 RESULTS IN EASY SETTING

In this setting, our main goal is to evaluate how well the decoding method can recover the member
token when the greedy decoding fails. It evaluates the case where the attacker has prior knowledge
on the candidate token set but greedy decoding returns an outlier, like those in constrained decoding
Melcer et al. (2024). We measure the top@m hits (m = 1, 2, 4, 8, 16) of the membership inference
attack at a single token. For every sequence in this setting, greedy decoding fails for top@1 by
definition. Examples in this setting could leak the non-member information as prior knowledge
from attackers, as the token with the highest probability is not a member. We leave the rigorous
evaluation in the Hard setting.
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Table 2: One-shot Extraction Accuracy (%) by k, Method, Dataset, and Model Size

k Method HackerNews Pile-CC PubMed Central ArXiv

1b 1.4b 2.8b 6.9b 12b 1b 1.4b 2.8b 6.9b 12b 1b 1.4b 2.8b 6.9b 12b 1b 1.4b 2.8b 6.9b 12b

0
Ref – – – – – – – – – – – – – – – – – – – –
Minus 16.0 22.2 11.5 29.2 29.2 28.1 26.7 27.3 48.7 52.4 – 12.5 – 9.1 15.4 7.1 12.5 10.5 16.7 35.3
Our 96.0 92.6 80.8 95.8 91.7 93.8 93.3 87.9 92.3 90.5 69.2 100.0 77.8 81.8 76.9 71.4 68.8 68.4 58.3 76.5

1
Ref – – – – – – – – – – – – – – – – – – – –
Minus 6.2 – 10.0 7.7 6.2 – – 5.3 – 9.1 – – – – – 1.8 – 3.6 4.3 5.4
Our 6.2 – 10.0 7.7 6.2 – – – 4.5 9.1 – 2.9 – 5.4 5.4 7.3 5.3 3.6 5.8 8.1

2
Ref – – – – – – – – – – – – – – – – – – – –
Minus – – – – – – – – – – – 1.5 1.2 – 1.0 – – – 0.9 –
Our – – – – – 2.6 – – – – – – – – – – – 1.0 0.9 –

k Method Wikipedia DM Mathematics GitHub Full Pile

1b 1.4b 2.8b 6.9b 12b 1b 1.4b 2.8b 6.9b 12b 1b 1.4b 2.8b 6.9b 12b 1b 1.4b 2.8b 6.9b 12b

0
Ref – – – – – – – – – – – – – – – – – – 0.2 –
Minus 15.2 19.6 15.0 19.2 22.7 2.5 2.9 2.3 7.0 9.1 32.7 27.7 32.8 42.5 43.0 38.5 30.2 32.4 39.6 38.3
Our 88.6 85.3 80.4 80.0 77.3 72.5 71.4 74.4 79.1 79.5 93.6 89.0 90.4 91.9 88.9 90.2 86.7 86.7 88.8 88.3

1
Ref – – – – – – – – – – – – – – – – – – – –
Minus 1.5 1.7 1.4 2.2 3.6 – – 1.1 – – 12.4 6.2 6.8 6.8 7.1 2.7 2.5 3.9 2.9 4.0
Our 4.6 5.9 4.3 10.4 5.8 4.8 4.3 4.5 4.7 3.7 15.7 14.3 10.4 8.2 11.9 5.3 3.9 6.4 5.5 5.7

2
Ref – – – – – – – – – – – – – – – – – – – –
Minus – – – – – – – – – – 2.4 – 1.4 1.3 – 0.6 0.6 0.1 0.6 0.2
Our 0.9 – – – – – – 0.5 – 0.6 1.6 0.7 1.4 1.3 – 0.3 0.4 0.3 0.5 0.2

The experiment results are shown in Figure 3. All four membership score methods can rescue some
member tokens when the greedy decoding fails. Our score is able to rescue greedy decoding on
Top@1 while maintaining a comparable accuracy on Top@16. Compared to Ref without calibration,
this result suggests that the total probability calibration in Eq. 7 is effective to keep more member
tokens. Our score can effectively calibrate the token distribution to better distinguish the member
tokens from non-member tokens. The high Top@16 accuracy of Loss manifests that extraction
attacks can generate a member token with a high probability with appropriate calibrations. Training
data could face a high risk of being extracted, even if not verbatim memorized.

5.4 RESULT ON HARD SETTING

In this setting, we answer the question can LLMs generate partially memorized training data
with the proposed extraction attack? We evaluate the membership decoding on generating the
next 10 consecutive member tokens on each group of k-amendment-completable sequences. The
extraction difficulty increases with a larger k. With a larger k, membership decoding is required to
amend more tokens during generation for a successful extraction. The Loss baseline is left out as
the group k is defined by it.

The experiment results are shown in Table 2, and 0 accuracy is represented by “–” for better expo-
sition. The key finding is that LLMs can recover partially memorized sequences with membership
guidance in decoding. Our method can extract sequences with k = 1, 2 by token-level MIA. At the
same time, our method maintains a high accuracy on the 0-amendment-completable sequences as
the greedy decoding. The accuracy drops as k increases, as the model memorizes them less, and the
extraction becomes more challenging. Compared to Ref, the calibration on total probability in Eq.
7 improves the overall utility of the membership decoding as well. The GitHub dataset also presents
a higher vulnerability to extraction attacks, which is consistent with the observation of average k
value in Fig. 2a.

6 CONCLUSION

In this work, we introduce a novel notion of memorization, k-amendment-completable, to measure
the memorization effect in a more fine-grained way. We formulate the training data extraction prob-
lem as an iterative membership inference problem. We introduce a membership decoding strategy
and calibrate token distribution to extract training data. Extensive experiments show that member-
ship decoding with the proposed score can extract partially memorized sequences, which haven’t
been studied before.
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