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ABSTRACT

While embodied agents have made significant progress in performing complex
physical tasks, real-world applications demand more than pure task execution. The
agents must collaborate with unfamiliar agents and human users, whose goals are
often vague and implicit. In such settings, interpreting ambiguous instructions
and uncovering underlying desires is essential for effective assistance. Therefore,
fast and accurate desire alignment becomes a critical capability for embodied
agents. In this work, we first develop a home assistance simulation environment
HA-Desire that integrates an LLM-driven proxy human user exhibiting realistic
value-driven goal selection and communication. The ego agent must interact with
this proxy user to infer and adapt to the user’s latent desires. To achieve this, we
present a novel framework FAMER for fast desire alignment, which introduces a
desire-based mental reasoning mechanism to identify user intent and filter desire-
irrelevant actions. We further design a reflection-based communication module that
reduces redundant inquiries, and incorporate goal-relevant information extraction
with memory persistence to improve information reuse and reduce unnecessary
exploration. Extensive experiments demonstrate that our framework significantly
enhances both task execution and communication efficiency, enabling embodied
agents to quickly adapt to user-specific desires in complex embodied environments.

1 INTRODUCTION

Embodied AI has seen rapid progress in recent years, driven by the collection of large datasets Brohan
et al. (2022; 2023); O’Neill et al. (2024); Fang et al. (2023); Wang et al. (2025b) and the development
of large vision-language-action (VLA) models Black et al. (2024); Driess et al. (2023); Kim et al.
(2024); Team et al. (2024). These advances have paved the way for general-purpose robots capable
of performing complex manipulation tasks in the physical world. However, real-world deployment
of embodied agents requires more than physical capabilities. It also demands the ability to interact
effectively with diverse human users.

One of the key challenges in such interactions lies in the variability of human preferences, values,
and behaviors. Unlike physical tasks with well-defined goals, human desires are often ambiguous,
context-dependent, and implicit. For an embodied agent to be truly helpful, it must be able to rapidly
infer and align with the user’s underlying desires even when explicit instructions are vague or lacking.

A prime example is the home assistant robots. Even if these robots are trained on broad human-centric
datasets, they inevitably face unfamiliar users whose specific values and preferences are unknown
at deployment. To offer effective assistance, the agent must infer and adapt to these user-specific
attributes. In this way, the agent minimizes repetitive communication and demonstrates proactive,
personalized behavior, similar to a considerate human assistant. For instance, as illustrated in Figure
1, a robot enters a new home without prior knowledge of the user. Over time, it gradually learns
that the user is allergic to caffeine and prefers something refreshing for breakfast due to poor sleep
caused by a heavy workload. Therefore, the robot infers that the user wants juice and serves it without
needing to ask. Such behavior highlights the necessity of rapid and accurate desire alignment in
embodied assistance, enabling robots to build trust and deliver truly helpful service.

Previous works have investigated collaboration with unfamiliar partners under the paradigms of
ad-hoc teamwork (AHT) Rahman et al. (2021); Ravula (2019); Stone et al. (2010) and zero-shot
coordination (ZSC) Cui et al. (2021); Hu et al. (2021; 2020). However, these efforts have primarily
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Welcome to 
this home! That’s exactly 

what I want!
I am unfamiliar 
with this user. 

AssistantStranger

I have prepared 
juice for you.

Figure 1: An illustration of Embodied Agent-Human Adaptation. The embodied home assistant robot
encounters a new human user with unknown values and preferences. Through interaction over time,
the agent learns the user’s aversion to caffeine and preference for refreshing drinks in the morning
due to inadequate sleep. By aligning with the user’s implicit desires, the agent proactively serves
juice without being explicitly instructed, demonstrating high-quality assistant service.

focused on simplified domains such as board games like Hanabi Bard et al. (2020) and 2D grid-based
simulations like Level-Based Foraging Albrecht & Ramamoorthy (2015) and Overcooked Carroll et al.
(2019). These environments lack human-like, value-driven goal specification, natural communication
and embodied actions, limiting their applicability to realistic embodied agent-human adaptation.

To bridge this gap, we propose HA-Desire (Home Assistance with diverse Desire), a new embodied
simulation environment built on VirtualHome Puig et al. (2018) that offers rich 3D household scenes,
diverse objects, and tasks such as preparing an afternoon snack. Crucially, it includes an LLM-driven
proxy human user that samples goals from assigned value attributes. Real human users may provide
imprecise instructions, either because their goals are still being formed or because they wish to
minimize communication effort. To reflect this setting, the proxy user communicates with the agent
in natural language without explicitly revealing its goals, instead offering indirect hints such as “I
want something sweet and crunchy.” This design forces the agent to perform strategic inference and
interactive reasoning to uncover latent desires and complete tasks that satisfy the user.

To tackle this challenging problem of fast agent-human adaptation, we propose FAMER (Fast
Adaptation via MEntal Reasoning), a novel framework that leverages the reasoning capabilities and
commonsense knowledge of large vision-language models to improve both communication efficiency
and task execution. At the core of FAMER is a desire-centered mental reasoning module that extracts
confirmed goals from user messages and infers the user’s underlying mental state, including values,
preferences, and latent desires. To reduce redundant communications, FAMER also incorporates a
reflection-based communication mechanism that prompts the agent to reason about what has already
been inferred and to ask only for missing or unconfirmed information. Additionally, FAMER includes
a goal-relevant information extraction module that identifies critical task-related details, such as object
containers or room locations, and stores them in a persistent memory across episodes. This enables
the agent to reuse previously gathered information and avoid unnecessary exploration. Together,
these components allow the ego agent to rapidly align with the user’s desires and plan efficiently in
complex, multi-step embodied tasks.

We evaluate FAMER on two representative tasks: Snack & Table, in our HA-Desire environment.
Each task is tested under two settings: Medium and Large, denoting the number of goals to satisfy.
Extensive experiments with the LLM-driven proxy user and real human users show that FAMER
significantly outperforms baselines in task completion score and communication efficiency. Ablation
studies further highlight the contribution of each key component in the framework.

In summary, our contributions include:

• We formulate the novel problem of rapid adaptation to value-driven, unknown users in em-
bodied settings, and introduce HA-Desire, a 3D simulation environment featuring naturalistic
user interactions for evaluating agent-human adaptation.
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• We propose FAMER, a new framework that integrates desire-centered mental state reasoning,
reflection-based efficient communication, and goal-related key information extraction to
enable fast desire alignment for embodied agents.

• We demonstrate the effectiveness of our proposed environment and framework through
extensive quantitative and qualitative experiments.

2 RELATED WORK

Value Alignment has been extensively studied in both language models and agent design. In the
context of LLMs, alignment techniques such as RLHF Ouyang et al. (2022); Dai et al. (2023);
Ji et al. (2023) aim to align models with human preferences, but these efforts primarily focus on
static, text-based tasks and do not address the challenges of dynamic, embodied interactions. In
human-AI collaboration, value alignment involves inferring user preferences through feedback Yuan
et al. (2022); Hiatt et al. (2017); Fisac et al. (2020). More closely related to our setting are mental
reasoning agents inspired by Theory of Mind Rabinowitz et al. (2018); Wang et al. (2022), which
model other agents’ beliefs and desires to support assistance. D2A Wang et al. (2025a) simulates
human desires using LLMs, but is limited to text-based tasks. CHAIC Du et al. (2024) introduces an
embodied social intelligence challenge that focuses on reasoning under physical constraints, but does
not address the diversity of human values and goals. In contrast, our work introduces an embodied
simulation platform with naturalistic, value-driven goal generation and communication.

Adaptive Agents. Adaptation in multi-agent settings has been studied under the paradigms of zero-
shot coordination (ZSC) Hu et al. (2020; 2021); Cui et al. (2021); Lupu et al. (2021); Strouse et al.
(2021) and ad-hoc teamwork (AHT) Stone et al. (2010); Rahman et al. (2021); Chen et al. (2020);
Mirsky et al. (2020); Ma et al. (2024), where agents must coordinate with unseen partners without
prior agreement. While these approaches are effective in structured domains such as Hanabi Bard
et al. (2020) and Overcooked Carroll et al. (2019), they rely on symbolic observations, making
them less suitable for complex, embodied human-agent collaboration. More recently, LLM-based
agent frameworks Li et al. (2023); Yao et al. (2023); Zhang et al. (2024b;a); Liu et al. (2025) have
demonstrated impressive capabilities in reasoning and planning within interactive environments.
However, most assume known goals or static user preferences and lack mechanisms for inferring
latent values through interaction. Our work builds on this line by addressing the challenge of fast
adaptation to unknown, value-driven user goals via desire inference, memory utilization, and efficient,
human-like dialogue in rich embodied tasks.

3 EMBODIED HOME ASSISTANCE SIMULATION ENVIRONMENT

In real-world interactions, human users may provide vague instructions because their goals have
only been partially formed and expressed at an abstract level Bettman et al. (1998). At the same
time, people generally dislike reiterating their needs during communication Clark & Brennan (1991).
Consequently, an effective assistant agent must be able to infer the latent goals and preferences of the
human users and adapt its behavior accordingly, thereby minimizing redundant communication and
execution costs to provide proactive assistance.

To study these challenges of agent–human adaptation in an embodied environment, we present HA-
Desire (Home Assistance with diverse Desire), a novel embodied simulation environment designed
to study agent-human adaptation in realistic home scenarios. As illustrated in Figure 2, HA-Desire
builds upon VirtualHome Puig et al. (2018) and extends it with value-driven proxy human users. It
includes 6 distinct home layouts containing typical rooms such as living rooms, kitchens, bathrooms,
and bedrooms, with an average of 80 objects per room drawn from over 110 object classes. This
diversity of layouts and object assets enables the construction of visually grounded tasks with high
variability, providing a realistic testbed for embodied agent-human adaptation.

We instantiate a proxy human user within the environment. This user is assigned a set of latent value
attributes and begins with only a vague task description. Guided by these values, the user samples
a subset of desire-related goals from a larger goal space. Crucially, these goals are not explicitly
revealed; instead, the proxy user provides only indirect hints about preferences and intentions in
response to the ego agent’s inquiries.

We describe the problem formulation and proxy human user model in more detail below.
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Embodied Simulation Environment Potential Goal Set

Vague Instruction
Prepare an afternoon snack. 

Various Value Attributes

Value-driven Goal Sampling

Thirsty & Hungry & 
Need refreshing:

Desire-centered Human-like 
Communication
How about some 
cupcake and wine?

No, I’m in the mood of 
something crunchy and 
refreshing.

Figure 2: Overview of the HA-Desire environment. The simulation environment contains diverse
objects and scenes. The proxy human user samples value attributes from a task-related space, which
guides goal selection from a potential goal set via LLM. The user is constrained from directly revealing
the true goals and instead communicates through desire-centered hints. This setup encourages the
ego agent to infer user intent through interactive reasoning rather than relying on explicit instructions.

3.1 PROBLEM FORMULATION

In the desire-centered agent-human adaptation problem, the task goal is not explicitly fixed, but the
number of goals is predefined. Instead, there exists a potential goal set Gp, from which the task
goal must be sampled by the human user H and inferred by the ego agent E. Given a vague task
description T , the proxy human user first samples a set of value attributes V from a task-specific value
space. Based on these values and the task description, the user then samples a set of desire-driven
goals G = G(V,Gp, T ) ⊂ Gp.

The true goal set G is latent and not directly observable by the ego agent, which must infer it through
interaction. The ego agent and the human user can communicate by exchanging messages ME and
MH , respectively. The ego agent performs actions according to its policy π(A|O,MH , C, T ), where
O denotes the current observation of the environment and C is a cross-episode memory context,
including previous actions and dialogue history.

During task execution, the ego agent receives a positive reward for successfully completing a true sub-
goal in G, and a penalty for executing irrelevant or incorrect goals, which reflects a misalignment with
the user’s desires. The environment supports multi-episode interactions, where the agent repeatedly
engages with the same user. The user’s value attributes V are consistent across episodes, encouraging
the agent to gradually build an internal model of the user.

The objective of the ego agent is to maximize cumulative reward by accurately inferring the user’s
latent desires, while minimizing interaction steps and communication costs. This promotes both task
and communication efficiency, which are critical for effective real-world embodied assistance.

3.2 VALUE-DRIVEN HUMAN USER

As illustrated in Figure 2, the proxy human user begins by sampling discretized value attributes V
from a task-related value space. For example, in the Prepare Snack task, the value space spans five
dimensions: Hungry, Thirsty, SweetTooth, Fruitarian, and Alcoholic, each taking on one of three
discrete levels—Not, Somewhat, or Very. These attributes reflect the user’s latent desires.

Once the value attributes are sampled, the user invokes a large language model to simulate realistic
goal selection. Conditioned on the vague task description T and the sampled values V , the LLM
generates a set of corresponding desire-related goals G = G(V,Gp, T ) ⊂ Gp. Since multiple goals
may align with the same value attribute, this sampling process is intentionally non-deterministic,
mirroring the variability and ambiguity of human decision-making.

To simulate natural and indirect human communication, the user is constrained via LLM prompting
and output filtering to ensure that the true goal set is never revealed explicitly. Instead, it responds
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KeyInfo Extraction

Desire Inference

KeyInfo Context Action & Dialogue History Previous GoalsConfirmed Goals

KeyInfo
Update

Efficient CommunicationGoal Oriented Planning

Obs

𝑴𝑯 Goal 
Confirmation

Dialogue 
History

Environment

Human User

ProgressMemory

Perception

Progress Update

Action

𝑴𝑬

Infer
Goal

Action & Dialogue 
History

Confirmed Goals

Previous Goals

𝑴𝑬

Desire-centered 
Mental Reasoning

Inferred Goal

Dialogue History

Confirmed Goals

Previous Goals Redundant Information 
Reduction

Would you like 
some juice?

Memory

Send Message
Explore bedroom

Check fridge
Grab juice

Grab toothbrush
Grab candle

Goal-related 
Action Filter

Value 
Attributes

Hidden Desires

Agent

Figure 3: Overview of the FAMER framework. FAMER comprises three key components: KeyInfo
Extraction, Desire-Centered Mental Reasoning (including Goal Confirmation and Desire Inference),
and Efficient Communication. These are supported by a memory module, perception module, and
planning module, which together form an integrated pipeline for embodied agent-human adaptation.

with value-driven hints that reflect its preferences and desires. This encourages the ego agent to
reason about the user’s intent through interaction to provide proactive help with minimal repetitive
annoying confirmation. The detailed LLM prompting strategy used to sample goals and generate user
responses is provided in Appendix B.

4 COMMUNICATION-EFFICIENT AGENT-HUMAN ADAPTATION

To enable fast and communication-efficient adaptation to users, we propose a novel framework,
FAMER (Fast Adaptation via MEntal Reasoning), which leverages the reasoning capabilities and
commonsense embedded in large VLMs. In this work, we utilize GPT-4o Hurst et al. (2024).

As illustrated in Figure 3, FAMER integrates three core components: Key Information Extraction,
Desire-Centered Mental Reasoning, and Efficient Communication. These modules work in concert
to help the ego agent infer user intent, plan accurately, and minimize redundant interactions and
communication. We detail each component in the following subsections.

4.1 INFORMATION EXTRACTION

In HA-Desire, the ego agent receives first-person RGB-D images as observations. To extract structured
information from these inputs, we employ a perception module based on Mask R-CNN He et al.
(2017), trained on collected scene images following Zhang et al. (2024b). The module first predicts
instance segmentation masks from the RGB image and then constructs 3D point clouds using the
RGB-D data. These outputs are used to build a scene graph that encodes object locations, categories,
and spatial relationships.

We then introduce the first core component of FAMER: Key Information Extraction. With the
confirmed and inferred goals context, this module filters and stores goal-relevant information extracted
from the scene graph into a dedicated cross-episode memory buffer. For example, if the agent identifies
that juice is located in the fridge within the kitchen, it stores the structured entry “juice in fridge in
kitchen” in memory. During subsequent planning phases, this stored information is used to guide
attention to known facts and reduce redundant exploration. As a result, the agent is better equipped to
reuse previously acquired knowledge across episodes, improving task efficiency.

4.2 DESIRE-CENTERED MENTAL REASONING

This module is composed of two interconnected components: Goal Confirmation and Desire Inference,
as illustrated in Figure 3. Together, they enable the agent to infer the user’s underlying desires.

The Goal Confirmation component extracts confirmed goals from the user’s responses by VLM
reasoning. For example, if the agent asks, “Do you want some juice?” and the user replies, “Correct!
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Try to look for something crunchy,” the system confirms that juice is one of the user’s desired items.
This process grounds part of the goal set and reduces future uncertainty.

Following confirmation, the Desire Inference component leverages the action & dialogue history,
confirmed goals and past episode goals to reason about the user’s mental state, including value
attributes and desires. Since user values remain consistent across episodes, the agent can incrementally
improve its inference accuracy over time. By maintaining an internal model of the user, the agent can
focus on narrowing down the remaining potential goals and avoid repetitive or redundant guesses.

With both inferred and confirmed goals in hand, the agent filters out irrelevant actions during planning.
As shown in Figure 3, if the current goals do not involve a toothbrush or candle, then actions involving
those objects are ignored. This reduces distraction and helps the agent maintain focus on goal-relevant
objects and activities, thereby improving planning efficiency and task performance.

4.3 EFFICIENT COMMUNICATION

Excessive or repetitive communication can diminish user satisfaction and hinder overall system
efficiency. To address this, FAMER integrates an Efficient Communication module that promotes
purposeful, context-aware dialogue between the agent and the user.

This module leverages both the dialogue history and the agent’s inferred model of the user’s mental
state to decide when and what to ask. Before initiating a new query, the agent performs an internal
reflection over its current knowledge—what goals have been confirmed, which value attributes have
been inferred, and what uncertainties remain. This reflective mechanism helps avoid redundant or
previously resolved questions, particularly across multi-episode interactions.

When communication is necessary, the agent formulates targeted, desire-aligned questions aimed at
resolving specific ambiguities. For example, if the agent has inferred a preference for sweet items
but is uncertain about texture, it may ask “I found a cupcake. Would you like it?” instead of issuing
vague or open-ended queries. This focused interaction strategy minimizes the communication burden
on the user while enabling the agent to efficiently acquire high-value information.

5 EXPERIMENT

5.1 TASKS & METRICS

We evaluate FAMER in two representative tasks instantiated within our proposed HA-Desire en-
vironment: Prepare Afternoon Snack and Set Up Dinner Table. Each task is associated with a
five-dimensional value space that governs user preferences. The Snack task includes 10 potential
goals, while the Table task contains 8. Each task is further divided into two levels: Medium and Large.
In Medium setting, the number of target goals is 2, and the maximum episode length is 60 steps.
In Large setting, the agent must satisfy 4 goals within 120 steps. For example, the Snack-M task
involves a total of C(10, 2) = 45 possible goal combinations. The reason why we set the maximum
goal space to 4 varying objects is that for daily tasks such as meal preparation, people often share
a stable backbone of common objects and a small consideration subset of items (≈3–5) that vary
depending on individual preferences due to limited cognitive constraints Schank & Abelson (1975);
Wood et al. (2022); Hauser & Wernerfelt (1990). Details of the tasks are provided in Appendix B.

For each task at a given level, every method is evaluated over 6 independent runs. In each run, the
agent interacts with the human user for 3 episodes, with the user’s value attributes fixed throughout to
match the agent-human adaptation setting. All reported results are averaged over the 6 runs.

We evaluate performance using the following metrics:

Score: Given N total goals, the agent receives a reward of 1
N for each correct goal achieved.

Completing an incorrect or distracting goal incurs a penalty of − 1
2N . The maximum achievable score

per episode is 1, corresponding to the completion of all goals without any mistakes.

Communication Cost: The total number of tokens exchanged in messages between the agent and
the user, including both queries and responses.

Notably, HA-Desire supports diverse objects and scenes, and goal generation is automated, making it
easy to extend to other tasks. Further details of the environments are provided in Appendix B.
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Figure 4: Quantitative results in Snack-M and Snack-L. Ep. denotes Episode, M denotes Medium,
and L denotes Large, which applies to all subsequent figures and tables. FAMER achieves a perfect
score by the third episode and outperforms baselines in both task score and communication efficiency.

Figure 5: Quantitative results in Table-M and Table-L. FAMER achieves higher scores and superior
communication efficiency compared to all baselines.

5.2 BASELINES & ABLATIONS

We compare FAMER against three baselines and three ablated variants.

CoELA Zhang et al. (2024b): An LLM-based multiagent cooperation framework that includes
perception, communication, planning, memory, and execution modules. In its original form, CoELA
assumes full observability of goals. To adapt it to our setting, we modify its prompting so that the
agent is only aware of the potential goal set and the number of target goals.

ProAgent Zhang et al. (2024a): A proactive LLM-based agent framework designed for collaboration
in fixed-goal tasks. It lacks mechanisms for handling goal uncertainty or communication. We extend
ProAgent by adding cross-episode memory to support adaptation to latent user desires.

MHP: An MCTS-based Hierarchical goal-sampling Planner adapted from the Watch-and-Help
Challenge Puig et al. (2021). We introduce subgoal sampling to handle uncertain goals and maintain
a cross-episode success memory. Like ProAgent, MHP does not support communication.

FAMER w/o Desire: Removes the Goal Confirmation, Desire Inference, and goal-related action
filtering modules. Communication quality is reduced due to the lack of inferred or confirmed goals.

FAMER w/o EC: Disables the Efficient Communication module, leading to less targeted and
potentially redundant dialogue.

FAMER w/o KeyInfo: Removes the Key Information Extraction module, preventing the agent from
leveraging cross-episode memory for known object-location pairs.

5.3 EXPERIMENTAL RESULTS

We evaluate performance using the two metrics on both Snack and Table tasks at two difficulty levels:
Medium and Large. Results for the Snack-M and Snack-L tasks are shown in Figure 4, while those
for Table-M and Table-L are presented in Figure 5. For each method, the three adjacent bars represent
performance across three consecutive episodes with the same user.

From the figures, it is evident that FAMER consistently outperforms all three baselines across all
metrics. In terms of score, FAMER achieves the maximum value of 1.0 in the third episode, indicating
that it successfully infers the desired goals of the human user within only 3 episodes and completes
all of them. CoELA performs second best but falls short due to its reliance on long-context LLM

7
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Figure 6: Ablation results on Snack-M. Removing any component of FAMER degrades performance
in both scores and communication efficiency. w/o KeyInfo is least affected, still reaching full score
by the third episode. In contrast, w/o EC and w/o Desire both cause notable score drops, with w/o EC
also sharply raising communication cost. These results confirm the importance of all three modules.

prompting alone, which leads to occasional misinterpretation of user desires. This limitation will
be further illustrated in the qualitative analysis in Appendix C.4. MHP and ProAgent perform the
worst, as they lack communication capabilities and rely solely on trial-and-error to identify goals.
Such an inefficient process often incurs penalties. Notably, their performance gradually improves
across episodes, reflecting slow adaptation to latent user desires through repeated interactions.

In terms of communication efficiency, FAMER significantly outperforms CoELA, as shown in Figures
4 and 5. This efficiency stems from FAMER’s reflection-based communication strategy, which avoids
repeated or redundant questions. In contrast, CoELA frequently issues similar or vague queries due
to its lack of explicit goal-tracking mechanisms.

5.4 ABLATION STUDY

We further evaluate the contribution of each FAMER component through ablation studies on the
Snack-M task. As shown in Figure 6, all three ablated variants exhibit performance degradation
across the evaluated metrics. Among them, FAMER w/o KeyInfo is able to eventually achieve a full
score in the third episode, similar to the full model, but its scores in the first two episodes are lower
and it incurs slightly higher communication costs. This indicates that the Key Information Extraction
module primarily improves efficiency by reducing unnecessary exploration.

Figure 7: Impact of maximum episode
length on average score in Snack-M.

In contrast, substantial performance drops are observed in
FAMER w/o Desire and w/o EC, underscoring the central
roles of desire modeling and efficient communication in
agent-human adaptation. Without goal confirmation, de-
sire inference, and goal-aligned action filtering, the agent
struggles to correctly interpret user intent, leading to in-
correct or inefficient actions. Moreover, the sharp increase
in communication cost for FAMER w/o EC highlights that
reflection-based communication is crucial for minimizing
redundant messages and maintaining efficiency.

Impact of Episode Length on Score. We evaluate how
maximum episode length affects performance on Snack-M
by varying the limit from 20 to 100 steps and averaging
scores across three episodes (Figure 7). When the limit is
below 30, all methods score zero, as no goal can be com-
pleted. With more steps, FAMER and CoELA improve in-episode due to their ability to communicate,
while FAMER reaches a perfect score once the limit exceeds 90 steps, showing it can fully adapt in
the first episode given enough steps. In contrast, ProAgent and MHP may decline as episode length
grows, since they rely on trial-and-error for adaptation, which leads to more wrong-goal penalties.

Human Reveal Goals. We also test a setting where the human user directly reveals the goals in
each episode, removing the need for goal inference. Results on Snack-M (Table 1) show all methods
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Table 1: Score results across
three episodes in the Human Re-
veal Goals setting on Snack-M.

Method Ep. 1 Ep. 2 Ep. 3
CoELA 0.67 0.83 0.83
MHP 0.42 0.33 0.42

ProAgent 0.50 0.50 0.58
FAMER 0.67 1.00 1.00

Table 2: Human study results on Snack-M and Table-L. Par-
ticipants rated Satisfaction, Helpfulness, and Communication
Efficiency on a 7-point Likert scale.

Method Satisfaction Helpfulness Comm Efficiency
CoELA 4.4±0.6 4.7±0.6 4.2±0.6

FAMER w/o Desire 4.4±0.5 4.6±0.6 4.8±0.5
FAMER w/o EC 4.8±0.7 5.2±0.7 4.3±0.5

FAMER 5.6±0.6 5.9±0.6 5.6±0.6

improve, but FAMER still leads. Its Key Information Extraction module stores goal-related details
like object positions across episodes, avoiding redundant exploration, while baselines such as CoELA
must still search extensively in each episode. Combined with goal-oriented planning that prunes
irrelevant actions, this allows FAMER to outperform baselines even when goals are explicitly given.

5.5 HUMAN STUDY

To evaluate how FAMER performs with real human users, we recruited 8 participants to serve as
users in two scenarios: Snack-M and Table-M. Each participant was randomly assigned a set of value
attributes and asked to act as the human user in HA-Desire, communicating with the agents and
evaluating whether they successfully satisfied the assigned values.

For each task, participants interacted with four agents: CoELA, FAMER w/o Desire, FAMER w/o EC,
and FAMER, in random order. Each agent was tested for 3 episodes, following the same protocol as
in the simulation setting. After each session, participants rated the assigned agent on a 7-point Likert
scale with respect to three dimensions: (1) Satisfaction: I am satisfied with the overall performance
of the agent. (2) Helpfulness: The agent helped me obtain what I wanted. (3) Communication
Efficiency: The agent communicated efficiently without asking redundant or irrelevant questions.
Each participant evaluated all four agents across both tasks for three episodes, resulting in a total of
192 episodes of human-agent interactions.

Results are presented in Table 2. FAMER consistently achieved the highest ratings across all three
criteria, further supporting its effectiveness in real human-agent adaptation scenarios.

6 CONCLUSION

We address the critical problem of adapting embodied agents to unfamiliar human users with implicit
values and desires, which is a key challenge for real-world deployment of assistive AI. To facilitate
development and evaluation in this setting, we introduce HA-Desire, a novel 3D simulation environ-
ment featuring value-driven proxy users, natural language communication, and object-rich household
tasks. Unlike prior benchmarks, HA-Desire captures the complexity of real-world assistance by
simulating ambiguous goal specifications and indirect, human-like communication.

Building on this environment, we propose FAMER, a framework for fast desire alignment that
integrates three key components: Key Information Extraction, Desire-Centered Mental Reasoning,
and Efficient Communication. These modules work together to help the agent interpret vague
instructions, infer user intent, and act with high efficiency while minimizing redundant dialogue.

Extensive experiments on two representative tasks at varying difficulty levels show that FAMER
consistently outperforms strong baselines in task execution and communication cost. Ablation studies
confirm the significance of each component, particularly the central role of desire modeling in
achieving user-aligned behavior. Additional analysis, including the human-revealed-goal setting, the
impact of episode length, and a human-subject study, further validates the robustness of our approach.

Future work includes deploying FAMER on real robotic platforms to assess its effectiveness in real-
world physical environments, and exploring post-training strategies to further align large language
models with human values and preferences.

9
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Ethics statement This work includes a human-subject study designed to evaluate agent-human
adaptation in household tasks. The study involved 8 adult participants, all of whom were volunteers
recruited from the authors’ institution. Prior to participation, individuals were informed of the study
objectives, the nature of the tasks, and the type of data to be collected. No personally identifiable
information was collected. All procedures were conducted in accordance with ethical standards.
The tasks posed no physical or psychological risks to participants, as interactions were limited to
computer-based simulations and short surveys.

Reproducibility statement The details of the simulation environment, baselines and computing
resources are provided in the Appendix. We also include the LLM prompts used for goal generation
and user-agent communication, enabling others to reproduce our proxy user design and experimental
setup. The full source code, along with configuration files and scripts for running experiments, will be
released publicly upon acceptance of the paper. This will allow researchers to reproduce our results
and extend our framework to new tasks and environments.
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A USE OF LARGE LANGUAGE MODELS

Besides the LLM-driven proxy user construction in HA-Desire, Large Language Models (LLMs)
were utilized exclusively for language refinement, specifically to improve wording and to identify
grammatical and spelling errors. The content and intellectual contributions of this manuscript were
generated entirely by the authors. LLMs were employed to enhance clarity and readability of the text.

B ENVIRONMENT DETAILS

HA-Desire is built upon VirtualHome Puig et al. (2018), a widely adopted testbed for embodied
multi-agent cooperation. In this work, we modify the simulation to specifically address the challenge
of embodied agent-human adaptation with a focus on desire alignment. In the following sections, we
provide further details on the human user agent and the tasks designed to evaluate this problem.

B.1 HUMAN USER

As discussed in Section 3, HA-Desire is designed to evaluate the ability of embodied agents to rapidly
infer the underlying desires of human users and take actions to fulfill those desires. To achieve this,
we integrate a proxy human user within the environment, which serves two main functions:

1. The human user determines the specific goal set from a set of potential goals, based on a vague
task description and a sampled set of value attributes.

2. The human user responds to the agent’s inquiries in natural language, ensuring that the goal set is
not directly revealed. Instead, the user implies their goals by providing hints about object properties,
reflecting their underlying preferences.

To achieve these functions, we empower the human user with large language models (LLMs),
specifically GPT-4o. The prompts used to generate goals and responses for communication are
outlined below.

We incorporate a Chain of Thought prompt at the end of each query to encourage the human user
to think more thoroughly, leading to more accurate goal selection and communication. After the
LLM generates results, we instruct it to extract the exact goals or messages, forming the final output.
Several variables are included in the prompts, prefixed with a ”$”. During inference, these variables
are replaced with context-specific information.

Goal Generation:

I am Bob, a human user living at home with a humanoid assistant named
Alice. I have several personal value attributes (e.g., hungry, thirsty,
alcoholic), each rated at one of three levels: Not, Somewhat, or Very.
Given a specific set of my current attribute states, along with a high-
level task description, your task is to select the most appropriate goal
set from a given potential set of goals. For example, if I am Very
thirsty, the goal set should include beverages. If I am not SweetTooth,
the goal set should include less sweet food objects. Please help me
choose the best goal set to reflect my value attributes. Select
$GOAL_CNT$ objects as the goal set. Provide your answer as a comma-
separated list of object names.
An example output is: cupcake, milk, pudding.
Value Attribute: $Value$
Task: $Task$
Potential Goals: $GOAL$
Answer:
Let’s think step by step.

Communication:

I am Bob, a human user living at home with a humanoid assistant named
Alice. I need Alice to help me with a household task, which is described
in a high-level instruction without specific goals provided. I have
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several personal value attributes (e.g., hungry, thirsty, alcoholic) that
determine the goal, but this goal is only visible to me and not to Alice

. Since Alice is unaware of the specific goal, she may ask me questions
about it. However, I do not want to directly tell her the goal; instead,
I want her to gradually understand my preferences and needs through
interaction. Over time, I expect her to infer the goal on her own without
needing to ask. The following Status shows the number of EPISODEs I have
interacted with Alice. The larger the number is, the less willing I am

to talk to Alice. If Alice proposes a goal or action that is incorrect, I
can point out the mistake. If the dialogue progresses but the task is

not progressing, I may be more inclined to correct her by hinting at one
of the goals, but I will never reveal the entire goal set at once unless
Alice herself proposes the exact whole goal set.
Task: $Task$
Status: This is the $EPISODE$-th time I interact with Alice.
Goal: $GOAL$
Progress: $PROGRESS$
Alice Previous Action: $ACTION_HISTORY$
Previous Dialogue History:
Alice: "Hi, I’ll let you know if I find any goal objects and finish any
subgoals, and ask for your instruction and clarification when necessary."
Bob: "Thanks! Let me know if you are uncertain about the goal objects."
$DIALOGUE_HISTORY$
Alice asks this time: $QUESTION$
Note:
1. The generated message should be accurate and brief. Use simple
expressions more often. Do not generate repetitive messages.
2. Do not directly tell Alice the specific goal name at the first time. (
The most important). Instead, hint through some vague descriptions that
reveal some properties of the goals, such as sweet, crunchy, alcoholic,
etc.
3. Confirm Alice’s correct guess (or partly correct guess). But if the
guess contains too many objects compared to the goal set, I should not
confirm any of the objects and hint at some descriptions instead. For
example, suppose the correct goal set is [apple, orange]. If Alice
guesses [bottle, banana, apple, orange, milk, chips] in one round, I
should not confirm the goal as the guess contains too many objects. If
Alice guesses [chips, apple], then I should confirm that apple is correct
, even though the chips guess is wrong. If Alice guesses [apple, orange],
I should say these two objects are exactly what I want.

4. Do NOT guess the location of objects or tell Alice where to find the
goal objects.
5. Be aware of the number of EPISODEs: A larger number means lower
communication willingness.
6. Even if the guess is incomplete, I should confirm the correct goals if
there are any.

7. If Alice has guessed something correctly in previous dialogue, try to
focus on the new goal objects in this message.
Please think step by step:

B.2 TASKS

As described in Section 5, we evaluate our method, along with baselines and ablations, on two tasks:
Prepare Afternoon Snack and Set Up Dinner Table. The details of these tasks are provided below.

Snack. This task involves ten potential goals: cupcake, wine, milk, cereal, chips, apple, juice,
pudding, creamybuns, and chocolatesyrup. The value space consists of five dimensions: Hungry,
Thirsty, SweetTooth, Fruitarian, and Alcoholic, each of which takes one of three discrete levels: Not,
Somewhat, or Very. The human user randomly samples values for these dimensions and then uses a
language model to generate the corresponding goal set. The Snack-M level represents the medium
difficulty, with 2 goals and a maximum of 60 steps. The Snack-L level represents the large difficulty,
with 4 goals and a maximum of 120 steps. Performance is evaluated using two metrics: score and
communication cost, as described in Section 5.
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Table. This task includes eight potential goals: coffeepot, breadslice, cutleryknife, mug, plate,
wineglass, cutleryfork, and waterglass. The value space consists of five dimensions: NeedRefresh,
Thirsty, MeatLove, CaffeinTolerable, and Alcoholic. The value levels, number of goals, step limit,
and evaluation metrics are identical to those in the Snack task.

The Snack and Table tasks serve as representative home assistance tasks in our evaluation. However,
the VirtualHome simulator supports a wide range of object assets and activities, allowing for the easy
extension of HA-Desire to additional household tasks. By defining the appropriate value space and
potential goal set, new tasks can be seamlessly incorporated into the environment.

C EXPERIMENT DETAILS

C.1 COMPUTING RESOURCE

The experiments were conducted on a workstation equipped with an NVIDIA GeForce RTX 4090
GPU and an Intel Core i9-13900K CPU. The large vision-language model used in this study is
GPT-4o.

C.2 FAMER IMPLEMENTATION

The perception module of FAMER in HA-Desire follows the design of CoELA Zhang et al. (2024b).
It employs a Mask-RCNN to generate segmentation masks from RGB images, then combines them
with depth information to build 3D point clouds of objects. From these, the agent extracts high-
level information such as the position of key objects and constructs a structured semantic map for
downstream reasoning and planning.

The memory module of FAMER maintains several types of information, as illustrated in Figure 3:
Confirmed Goals, KeyInfo Context, Task Progress, Previously Achieved Goals, and Action &
Dialogue History. The first four categories represent compact summaries of task state and goal
inference, and thus grow slowly during interaction; each typically contains fewer than 20 entries,
making it feasible to store them entirely. In contrast, Action & Dialogue History grows linearly with
the number of steps. To manage this, we retain only the latest 10 entries in the memory context.
Since the key information context preserves important earlier details, essential knowledge from prior
interactions is not lost.

C.3 BASELINES

Here, we provide the detailed prompts for CoELA and ProAgent, which are adapted from their
original versions to help the agents account for uncertain goals.

CoELA Planning

I’m $AGENT_NAME$, a humanoid home assistant. I’m in a hurry to finish the
housework for my owner $OPPO_NAME$. I know the high-level instruction of
the task, but I am not certain about the specific goal determined by

$OPPO_NAME$.
Given the potential goal, dialogue history, and my progress and previous
actions, please help me infer and choose the best available action to
achieve the underlying goal as soon as possible.
Note that I can hold two objects at a time and there are no costs for
holding objects. All objects are denoted as <name> (id), such as <table>
(712).
Task Name: $Task$
Potential Goal: $GOAL_CNT$ object(s) determined by human user from the
set $GOAL$. Put them $REL_TARGET$
Progress: $PROGRESS$
Dialogue history:
Alice: ""Hi, I’ll let you know if I find any goal objects and finish any
subgoals, and ask for your instruction and clarification when necessary
.""
Bob: ""Thanks! Let me know if you are uncertain about the goal objects.""
$DIALOGUE_HISTORY$
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Previous actions: $ACTION_HISTORY$
Available actions:
$AVAILABLE_ACTIONS$
Answer:

CoELA Communication

I’m $AGENT_NAME$, a humanoid home assistant. I’m in a hurry to finish the
housework for my owner $OPPO_NAME$. I know the high-level instruction of
the task, but I am not certain about the specific goal determined by

$OPPO_NAME$.
Given the potential goal, dialogue history, and my progress and previous
actions, please help me generate a short message to send to my owner
$OPPO_NAME$ to help us achieve the underlying goal as soon as possible.
Note that I can hold two objects at a time and there are no costs for
holding objects. All objects are denoted as <name> (id), such as <table>
(712).
Potential Goal: $GOAL_CNT$ objects determined by human user from the set
$GOAL$. Put them $REL_TARGET$
Progress: $PROGRESS$
Previous actions: $ACTION_HISTORY$
Dialogue history:
Alice: ""Hi, I’ll let you know if I find any goal objects and finish any
subgoals, and ask for your instruction and clarification when necessary
.""
Bob: ""Thanks! Let me know if you are uncertain about the goal objects.""
$DIALOGUE_HISTORY$

Note: The generated message should be accurate and brief. Do not generate
repetitive messages.

ProAgent

I’m $AGENT_NAME$, a humanoid home assistant. I’m in a hurry to finish the
housework for my owner $OPPO_NAME$. I know the high-level instruction of
the task, but I am not certain about the specific goal determined by

$OPPO_NAME$.
Given the potential goal, my progress, and previous actions, please help
me infer and choose the best available action to achieve the underlying
goal as soon as possible.
Note that I can hold two objects at a time and there are no costs for
holding objects. All objects are denoted as <name> (id), such as <table>
(712).

Potential Goal: $GOAL_CNT$ object(s) determined by human user from the
set $GOAL$. Put them $REL_TARGET$.

Important Instruction:
$AGENT_NAME$ has previously achieved and found these subgoals.This is its
success experience.

You should focus only on actions that help achieve the goal items, i.e.,
those in the target set provided.
Ignore or deprioritize any actions unrelated to acquiring or placing goal
items.

When reviewing previous successful experiences, only reuse or adapt steps
that directly contribute to acquiring or placing goal items.For example,
ignore exploration, object grabbing, or placing steps for items not

included in the current potential goal set.
When the current situation even partially matches any past success (e.g.,
similar object types, room layout, or goal structure), you should

prioritize reusing or adapting the proven action sequences:
$HISTORY_OF_SUCCESSFUL_SUBGOALS$

Progress: $PROGRESS$
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Previous actions: $ACTION_HISTORY$

Belief State: $BELIEF_STATE$

Available actions:
$AVAILABLE_ACTIONS$

Required Output Format:
- Analysis: [Infer and choose the best available action to achieve the
underlying goal]
- Best Next Action: [Single most optimal action from available options]
- Intention for $OPPO_NAME$’s Underlying Goal: [Inference about the true
goal]

1 2 3 4

5 6 7 8

1 2 3

4 5 6

True Goals: cereal, creamybuns, cupcake, apple
Alice:  Do you want 'wine' and 'milk'?
Bob:  I want something sweet and a bit fruity.
Alice:  How about 'creamybuns', 'cupcake', 'juice' and 'apple'?
Bob: Something crunchy and sweet along with what you have.
Alice:  Then maybe 'creamybuns', 'chips', 'cupcake', 'apple'?
Bob:  'creamybuns', 'cupcake', and 'apple' are great. Think crunchy 
and sweet for the missing item.
Alice:  Confirmed the three objects. Is the missing item 'cereal'?
Bob:  Yes, 'cereal' is one of them. Remember the creamy, sweet, 
fruity combination we've been discussing. You're getting closer!

Wrong Desire

Redundant Action

Redundant Communication

FAMER

Bob: Think about items that can be crunchy or refreshing. 
Step 1: Grab apple. (True: chips & juice)
Bob: Instead of 'apple', think of something that complements tea.
Step 6: Grab cupcake. (True: milk)

Step 3 & 4 Repeatedly grab & put apple. 
CoELA

True Goals: creamybuns,milk,juice,chips

Alice:  "Hi Bob, I've placed <creamybuns> and <chips> on the <coffeetable>. I found <apple> here, 
which can be refreshing. Shall I add it, or would you prefer another item like <juice> or <wine>? "
Bob:  "Juice sounds good for refreshing. Keep going!"
Alice:  "Hi Bob, I've added <creamybuns>, <chips>, and <juice> to the <coffeetable>. I'm holding 
<apple>. Please confirm if <apple> should be the final item or suggest another crunchy or 
refreshing option from the kitchen or unexplored areas. Thanks!"
Bob:  "Hi Alice, you've done well with 'creamybuns', 'chips', and 'juice'. Instead of 'apple', think of 
something that complements tea well. Keep exploring!"

Figure 8: Qualitative comparison between CoELA and FAMER on the Snack-L task. The figure
shows a sequence of key frames illustrating agent behavior across one episode. CoELA exhibits
three typical failure modes: 1. Misinterpreting latent user desire 2. Redundant actions 3. Excessive,
repetitive communication. FAMER demonstrates more accurate desire inference, targeted questions,
and efficient planning. It successfully identifies all four goals with minimal trial-and-error and
completes the task with fewer steps and lower communication cost.

C.4 QUALITATIVE ANALYSIS

To further highlight FAMER’s strengths, we present an intuitive comparison against CoELA on the
Snack-L task. As illustrated in Figure 8, we visualize the agents’ behavior through a series of key
frames sampled across the episode. In this example, Alice refers to the ego agent and Bob refers
to the human user. During task execution, the CoELA agent demonstrates three typical issues that
contribute to its inferior performance.

First, CoELA struggles to correctly extract and infer desires. For instance, when the user says, “I want
something crunchy or refreshing,” which aligns with chips and juice, CoELA incorrectly interprets
this as a preference for apple, and retrieves it as the first item. Similarly, in step 6, when the user
mentions wanting “something that complements tea,” the agent mistakenly infers cupcake instead of
the intended milk. These errors illustrate CoELA’s limited ability to perform precise desire inference,
particularly in the face of ambiguous or indirect language.

Second, CoELA exhibits repeated and inconsistent behavior due to insufficient integration between
planning and memory. In steps 3 and 4, the agent redundantly grabs and places an apple on the
coffee table, mistakenly treating it as an unfulfilled goal. This reflects a lack of attention to confirmed
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goals or past actions. In contrast, FAMER incorporates goal-aligned action filtering to suppress such
irrelevant behaviors once a goal has been ruled out.

Third, CoELA engages in redundant communication. As shown in Figure 8, the agent repeatedly
mentions creamybuns and chips to the user, even after those items have already been retrieved and
confirmed. This not only wastes communication bandwidth but also reflects poor tracking of dialogue.

In contrast, the FAMER agent asks focused questions to resolve uncertainty. Within a limited number
of interactions, it successfully infers all four desired items and efficiently retrieves and places them on
the coffee table. This example illustrates FAMER’s advantages in goal inferring, memory-informed
planning, and communication efficiency, enabling superior performance in complex scenarios.
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