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ABSTRACT

Efficiently generating a free-style 3D portrait with high quality and consistency is
a promising yet challenging task. The portrait styles generated by most existing
methods are usually restricted by their 3D generators, which are learned in specific
facial datasets, such as FFHQ. To get a free-style 3D portrait, one can build a large-
scale multi-style database to retrain the 3D generator, or use a off-the-shelf tool
to do the style translation. However, the former is time-consuming due to data
collection and training process, the latter may destroy the multi-view consistency.
To tackle this problem, we propose a fast 3D portrait synthesis framework in this
paper, which enable one to use text prompts to specify styles. Specifically, for
a given portrait style, we first leverage two generative priors, a 3D-aware GAN
generator (EG3D) and a text-guided image editor (Ip2p), to quickly construct a
few-shot training set, where the inference process of Ip2p is optimized to make
editing more stable. Then we replace original triplane generator of EG3D with
a Image-to-Triplane (I2T) module for two purposes: 1) getting rid of the style
constraints of pre-trained EG3D by fine-tuning I2T on the few-shot dataset; 2)
improving training efficiency by fixing all parts of EG3D except I2T. Experimental
results show that our method is capable of synthesizing high-quality 3D portraits
with specified styles in a few minutes, outperforming the state-of-the-art.

1 INTRODUCTION

Portrait synthesis (Karras et al., 2019; 2020; Gu et al., 2022; Chan et al., 2022) is a promising yet
challenging research topic for its wide range of application potential, e.g. game character produc-
tion, Metaverse avatars and digital human. With the rapid development of generative models such as
generative adversarial models (Goodfellow et al., 2014), 2D portrait synthesis has achieved remark-
able success. After that, many methods (Karras et al., 2019; 2020; 2021) are proposed to improve
the generation quality to photo-realistic level.

Recently, 3D portrait synthesis has attracted more and more attention, especially with the emergence
of Neural Radiance Field (NeRF) (Mildenhall et al., 2020). As the representatives among them, 3D-
aware GAN methods (Gu et al., 2022; Chan et al., 2022; Or-El et al., 2022) combine NeRF with
StyleGANs (Karras et al., 2020) to ensure 3D consistency synthesis. By mapping an image to the
3D GAN latent space, 3D GAN inversion approaches (Ko et al., 2023; Lin et al., 2022; Yin et al.,
2022) can generate or edit a specific 3D portrait. However, both of them fail to create a free-style
3D portrait, e.g., a style defined by user’s text prompt, since their generators are usually trained
on a dataset that follows a particular style distribution, such as the realism style in FFHQ (Karras
et al., 2019), which raises a question: how to generate a free-style 3D portrait at a low cost? One
may collect a large number of portrait images with different styles to retrain their models, but the
data preparing and training process are usually time-consuming. Another potential solution is that
synthesizing a style-specific 3D portrait first, then transferring it to any style with a off-the-shelf
style transfer tool. Unfortunately, the 3D consistency will be difficult to be maintained.

To this end, we propose an efficient pipeline to achieve free-style 3D portrait synthesis in this paper.
At first, we leverage the knowledge of two pre-trained generative priors, EG3D (Chan et al., 2022)
and Instruct-pix2pix (Ip2p) (Brooks et al., 2022) to construct a few-shot portrait dataset with a given
style, avoiding dirty data collection and cleaning. The former generates a multi-view 3D portrait,
and the latter performs text-guided style editing in each viewpoint. We empirically find the editing
results of Ip2p vary significantly along viewpoints for some given style, resulting in the issue of
multi-view misalignment. To alleviate this problem, an optimization strategy is introduced into
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Figure 1: Our 3D portrait synthesis results. The first row shows man with different styles, the second
row shows various characters, and the last two rows show diverse identities with different styles from
varied viewpoints.

the inference stage of Ip2p. Secondly, we replace the original triplane generator with a trainable
I2T network, and freeze other parts of EG3D to avoid training the total EG3D. We pre-train the
I2T network to create the mapping from portrait image to triplane feature space, which helps I2T
network fine-tune the few-shot set in a few minutes. Our high-quality stylized 3D portrait synthesis
results are shown in Fig. 1.

2 RELATED WORK

2.1 3D-AWARE GAN

With the development of neural implicit representation (NIR) represented by neural radiance fields
(NeRF) (Mildenhall et al., 2020), more and more methods (Michalkiewicz et al., 2019; Niemeyer
et al., 2019; Chibane et al., 2020b; Atzmon & Lipman, 2020; Chabra et al., 2020; Jiang et al., 2020;
Chibane et al., 2020a; Gropp et al., 2020) are focusing on learning 3D scenes and 3D object repre-
sentation using neural networks. NeRF represents the 3D scene as a series of neural radiance and
density fields, and uses volume rendering Kajiya & Von Herzen (1984) technique for 3D reconstruc-
tion. Similarly, some methods Sitzmann et al. (2019); Niemeyer et al. (2020) learn neural implicit
representation using multi-view 2D images without 3D data supervision. However, even multi-view
data is usually expensive to construct in some scenes, such as portraits, so many approaches gradu-
ally migrate to learn 3D-aware GAN using unstructured data, i.e., single-view portraits, based on the
idea of adversarial training. PiGAN Chan et al. (2021) proposes a siren-based neural radiance field
and uses global latent code to control the generation of shapes and textures. GIRAFFE Niemeyer
& Geiger (2021) proposes a two-stage rendering process, which first generates the low-resolution
features with a volume renderer, and then learns to upsample the features with a 2D CNN network.
Some methods introduce StyleGAN structures into the 3D-aware GAN. StyleNeRF Gu et al. (2022)
integrates NeRF into a style-based generator to improve rendering efficiency and 3D-consistency of
high-resolution image generation. StyleSDF Or-El et al. (2022) merges a Signed Distance Fields
representation with a style-based 2D generator. EG3D Chan et al. (2022) proposes a triplane 3D
representation method to improve rendering computational efficiency and generation quality. Some
approaches have also started to focus on the control and editing of 3D-aware GANs. FENeRF (Sun
et al., 2022) and Sem2nerf(Chen et al., 2022) introduce semantic segmentation into the generative
network, and learn a whole neural radiance field with semantic information. CNeRF (Ma et al.,
2023) proposes a compositional neural radiance field to split the portrait into multiple semantic re-
gions, and learns semantic synthesis separately with a local neural radiance field, and finally fuses
them into a complete 3D representation of the portrait. Along with the development of 3D-aware
GAN, 3D GAN Inversion methods (Ko et al., 2023; Lin et al., 2022; Yin et al., 2022) have appeared.
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Figure 2: The framework of our method. We introduce two generative priors EG3D and Ip2p to
quickly build a few-shot stylized portrait dataset Ds. Ip2p is optimized to produce more stable and
consistent text-guided stylization results. With the constructed few-shot dataset, we quickly fine-
tune a pre-trained I2T network to achieve stylized 3D portrait synthesis.

They learn to map real images to the latent space of 3DGAN for image inversion and editing. How-
ever, such methods face a problem that they cannot jump out of the pre-trained 3DGAN prior and
cannot synthesize out-of-distribution portraits. In this paper, we propose a new framework that can
synthesize stylized 3D portraits freely, which is not restricted by the 3D generative prior and can
generate 3D portraits of specific styles based on text prompts.

2.2 TEXT-GUIDED IMAGE EDITING

There are numerous image editing methods, and the performance of text-guided image editing meth-
ods (Avrahami et al., 2022; Hertz et al., 2022; Kawar et al., 2023; Brooks et al., 2022; Haque et al.,
2023; Liu et al., 2023) has been qualitatively improved thanks to the advancement of pre-trained
image generation large models (Rombach et al., 2022; Ramesh et al., 2021; 2022) based on the Dif-
fusion model. Ip2p (Brooks et al., 2022) is a SOTA text-guided image editing method, which uses
two generative priors, GPT-3 Brown et al. (2020) and Stable Diffusion (Rombach et al., 2022), to
synthesize a large number of paired images and then train a conditional diffusion model on them.
This model allows the users to provide a relatively free text instruction to edit a given image, in-
cluding stylistic transfer. Therefore, Ip2p is well suitable as a text-guided image editing prior for
this paper to perform text-guided style transfer on portraits from different viewpoints. However, the
model also has problems, such as poor generation with some simple text prompts and generating
portraits with large stylistic variations for different views of the same portrait. We propose some
improvements to solve these problems in this paper.

3 METHODOLOGY

In this section, we detail our free-style and fast 3D portrait synthesis framework, as shown in Fig. 2.
We first briefly introduce two generative priors, EG3D and Ip2p, and combine them to build a few-
shot dataset with a given style. To describe styles more freely, we optimize Ip2p to make it more
stable for stylizing portraits from different perspectives (Sec. 3.1). We then use the few-shot dataset
to fine-tune our proposed I2T network, which is equipped with EG3D prior to achieve fast stylized
3D portrait synthesis (Sec. 3.2).

3.1 FEW-SHOT DATASET CONSTRUCTION

We denote the input style as t, which is often defined by text prompt from user.
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3D-aware GAN prior. As a state-of-the-art 3D-aware GAN method, EG3D (Chan et al., 2022) can
be expressed as G(θ,w,v), where θ is the model parameters, w is a sampling vector in the W latent
space, and v is the view direction to be rendered. We randomly sample a w vector, and set v as
follows: assuming pitch and yaw angles of front view portrait are zero, v is uniformly sampled i
times within both pitch and yaw range of −30◦ degrees to 30◦ degrees. We denote the candidate set
of v as (P, Y ), which contains i2 sampling results (i pitch× i yaw). Then G can output i2 portrait
images along each v. Note that these portraits keep the same identity since w is only sampled once.

Text-guided image editing prior. Next, we employ Ip2p (Brooks et al., 2022) to perform the
style editing on the portraits generated above. Ip2p implements conditional image editing based
on Stable Diffusion (Rombach et al., 2022), which can be denoted as T (ϕ, I ,n, c), where ϕ is the
model parameters, I is the input portrait, n is the Gaussian noise used in the denoising process, and
c is the text prompt that guides the editing direction. Considering different input noise will generate
different results, we fix n to keep the identity unchanged. Then we set c = t, let I be the portraits
that are produced by EG3D, and use T to generate stylized portraits.

Optimizing Instruct-pix2pix inference. As mentioned above, some t will cause Ip2p to generate
unsatisfactory stylized portraits. For example, the style “Na’vi from Avatar” will make the portrait
style vary greatly from one viewpoint to another. More samples are listed in Sec. 4.4. Therefore, we
want to optimize Ip2p to make it generate stable results for different t. Inspired by SDEdit (Meng
et al., 2021), we replace the original Gaussian noise n with a new noise n∗ during the inference
stage of Ip2p:

n∗ = Add(E(I),n, τ), (1)
where E(I) denotes the latent features obtained from the Stable Diffusion encoder of I , τ is the
degree of noise addition, and Add represents the standard DDPM (Ho et al., 2020) noise addition
operation. In addition, we design an enhanced prompt to further improve the quality of synthesized
portraits: t∗ = {t, td, tn}, where td and tn mean decorative and negative prompts, respectively.
Consequently, our stylized portrait generation can be rewritten as:

Is = T (ϕ,G(θ,w,v),n∗, t∗), (2)

where Is is one stylized portrait. We construct a few-shot stylized portrait dataset Ds using different
v from (P, Y ), so Ds contains i2 stylized portraits. The construction pipeline is summarized in
Algorithm 1.

3.2 IMAGE-TO-TRIPLANE NETWORK

Considering the ability in generating high quality and 3D consistency image, we also utilize EG3D
to synthesize 3D portrait. With the few-shot dataset, an intuitive solution is using it to fine-tune a
pre-trained EG3D. However, we find that training the entire EG3D is not efficient, and the rich facial
prior hidden in the pre-trained EG3D can also be damaged. In order to fully enjoy the priors, one
may invert Ds to the W latent space. Unfortunately, it will limit the portrait style within the scope
of training set that EG3D is pre-trained, since the triplane feature generator is not changed. As a
result, we introduce I2T module to learn the mapping from Ds to triplane feature space. We replace
the original triplane generator of EG3D with our I2T module and keep other parameters unchanged
as a EG3D renderer, reaching a trade-off between training efficiency and prior utilization.

Similar to the triplane generation network of the original EG3D, I2T consists of multiple StyleGAN
modulation layers (SMLs) and a style encoder E, as shown at the bottom left corner of Fig. 2. Due
to the small size of Ds, we expand the latent code ws along spatial dimension (from c to c× k× k)
to enrich it with style and structural information. Then we adopt E to learn ws first, and feed it into
SMLs to generate stylized triplane. For a particular feature layer F i ∈ RCi×Hi×Wi in SMLs, we
have the following formula:

F i
c,h,w = γi

h,w(ws)×
F i
c,h,w − µi

h,w

σi
h,w

+ βi
h,w(ws), (3)

where µi
h,w and σi

h,w represent the calculated mean and standard deviation across channel dimen-
sion, respectively. γi

h,w and βi
h,w are learnable weight networks. It is noted that, to ensure stable

feature learning, the input portrait of E is always of front view, which contains richest style infor-
mation compared with other viewpoint.
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Algorithm 1 Few-shot dataset construction

1: Input: w ∼ W, n ∼ N (0, 1), t, Ds = ∅
2: for v in (P, Y ) do
3: I = G(θ,w,v)
4: n∗ = Add(E(I),n, τ)
5: Is = T (ϕ, I,n∗, t∗)
6: Ds = Ds ∪ Is
7: end for

Algorithm 2 The I2T network training

1: Input: Ds, Pre-trained I2T
2: Init I2T net using the pre-trained I2T
3: repeat
4: Select Iv , If from Ds

5: Fine-tuning I2T net in Ds using loss:
6: Ltotal = λrecLrec + λdrLdr
7: until end of iterations

Although I2T network can be trained on Ds, it still suffers from two challenges: First, Ds is a few-
shot dataset, it has no more than 100 images for a style in practice. Second, the portraits in Ds have
more or less differences in style, resulting in 3D inconsistency. We alleviate this problem by pre-
training the I2T network on the portraits generated by EG3D prior. In particular, in each iteration of
the pre-training, we randomly generate a portrait from EG3D, and record its triplane representation
as p ∈ R256×256×96, its front view as If ∈ R512×512×3. Then the I2T network is pre-trained using
the following loss function:

LI2T = EIf ,p[∥H (If )− p∥1], (4)
where H represents the I2T network. After some iterations, we can learn the mapping between the
input portrait and its triplane representation.

Training. After being pre-trained, the I2T network can be quickly fine-tuned on the stylized multi-
view portrait dataset Ds, as shown in the lower part of Fig. 2. For an arbitrary view portrait Iv and
front view portrait If in Ds, we use the following image reconstruction loss:

Lrec = EIv ,If ∈Ds [∥G∗(If ,v)− Iv∥1 + lpips(G∗(If ,v), Iv )], (5)

where ∥·∥1 is the L1 reconstruction loss, G∗ represents the new EG3D model with I2T network.
lpips(·, ·) is the Learned Perceptual Image Patch Similarity (Zhang et al., 2018) loss, which calcu-
lates the distance of the latent features extracted from the VGG network. In addition to the recon-
struction loss, we add the density regularization, which encourages smoothness of the density field
rendered by triplane and prevents sharp or hollow portrait shapes during fine-tuning. The density
regularization loss is shown as follows,

Ldr = Ex,δ[∥σ(x)− σ(x+ δ · x)∥1], (6)

where x are the random sampling points in the volume rendering, δ is a small Gaussian noise, and
σ(x) denotes the density rendering process. Thus the final loss function is:

Ltotal = λrecLrec + λdrLdr, (7)

where λrec and λdr are loss weights.

Thanks to the pre-trained I2T, we can quickly extend the domain of I2T to stylized portraits Ds with
only a few training iterations. The total training process is listed in Algorithm 2.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAIL

Our method is implemented in PyTorch using an NVIDIA A100. We use Adam optimizer with
learning rate of 0.002 and β1 = 0, β2 = 0.99. The number of samples i in few-shot dataset con-
struction is 10. Other parameters, such as camera focal length, use the EG3D default settings. In
Ip2p inference, we set the number of time step s in DDIM (Song et al., 2021) to 20. The degree of
noise addition τ is 0.9, and the image guide and text guide weight parameters of Ip2p are set to 1.5
and 20.0. The decorative prompt td is “realistic, detail, 8k, photorealistic”, then the positive prompt
input for Ip2p is “turn the head into t, td”. The negative prompt tn is “unclear facial features, non-
face objects, ugly, bad”. Note that we fix td and tn, and only change t in all following experiments.
Fine-tuning td or tn will polish the generated results, but it’s not the scope of this paper. For each
text prompt t we randomly sample a w and construct the few-shot dataset according to Algorithm
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Figure 3: Multi-style and Multi-identity 3D portrait synthesis results.
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Figure 4: The outputs of different stages in our method.

1. In I2T network, The spatial dimension k of ws is 32. SMLs consists of 7 modulation layers. The
I2T network is pre-trained on EG3D randomly sampled data for 100k iterations. When fine-tuning
the I2T network on the few-shot dataset, the loss weights are set as λrec = 10.0 and λdr = 0.2.

4.2 FREE-STYLE 3D PORTRAIT SYNTHESIS

In this section, we show the 3D portrait synthesis results of our approach. As shown in Fig. 3, our
method can generate diverse style 3D portrait, and the synthesized portraits are high quality and 3D
consistent, proving our ability of free-style generation. Then, we display the outputs of different
stage (i.e., EG3D, IP2P and final output) in Fig. 4, it can be seen EG3D outputs the original 3D
portrait, IP2P will add the style into the portrait images (the facial details and consistency can not be
guaranteed), our method will generate the final high quality and 3D-consistency results. In addition,
we generate the 3D geometry results of different style in Fig. 5, which can accurately reflect the
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Figure 5: Visualization of 3D geometry from different stylized generation results.
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Figure 6: The 3D portrait results synthesized by mixing different styles in the ws latent space.

given style. Last but not least, Fig. 6 shows the smooth style mixing results of our method. We
interpolate the encoded features of two different style in the ws latent space, and use the new triplane
representation to synthesize 3D portraits. The results reveal the controllability and potential style
editing ability of our model.

4.3 COMPARISON EXPERIMENTS

Baselines. We divide the baselines into two categories. 1) Text-to-3D. DreamFusion1 (Poole et al.,
2022) is a representative method that generates 3D images based on the text prompts. 2) Image style
transfer + 3D GAN Inversion. 3DGAN-Inv (Ko et al., 2023) and HFGI3D (Xie et al., 2023) are two
SOTA methods of 3D GAN inversion. We use them with Instruct-pix2pix as the baselines.

The results of our method compared with baselines are shown in Fig. 7. DreamFusion, the represen-
tative of the Text-to-3D method, is able to optimize the model to synthesize 3D portraits based on
text prompts, such as ”A Disney style Elf”, but the generated results have low quality, while for more
specific portrait styles, such as ”sand painting style”, no results can be synthesized. What’s more,
the portraits with large stylistic variations cannot be inverted well using the 3DGAN-Inv, because
the 3D portraits synthesized by this method cannot escape from the domain of the pre-trained 3D-
aware GAN model. The results of HFGI3D are better, but the 3D shape is destroyed after inversion,
as shown in the Elf’s face. At the same time, for some more difficult samples, this method cannot
produce effective results, such as the last two lines. In contrast, our method is able to synthesize
high quality 3D portraits that satisfy both 3D consistency and stylization.

For quantitative evaluation, we conduct a user study. We invite 30 volunteers to evaluate each
method from three perspectives, namely the text-image similarity, the quality of the generated im-
ages, and the 3D consistency of the results. Each item is scored on a 5-point scale, and the average
is calculated as the final result. As shown in Tab. 1, our approach achieves the best scores under
each dimension. We also calculate the CLIP Score for each method shown in Tab. 1, which uses the
CLIP (Radford et al., 2021) model to extract features and calculate cosine similarity between input
text and generated image. Our method also achieves optimal result. In addition, our method also has
a significant advantage in running time, as shown in Tab. 1. Our method is able to fine-tune model
on the given text prompt in about 3 minutes, while other approaches require more time. Although

1https://github.com/ashawkey/stable-dreamfusion
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Figure 7: Qualitative comparison results between our method and baselines. Reference image repre-
sents the result after Ip2p style transformation, which is used as the input of the 3D GAN Inversion
methods.

Table 1: User Study, quantitative evaluation and running time of different methods.

method Text-image Similarity Image Quality 3D Consistency CLIP Score Average Time

DreamFusion 2.82 2.24 3.18 0.304 ∼ 40 mins
3DGAN-Inv 2.04 1.90 2.59 0.229 ∼ 3 mins

HFGI3D 3.40 3.54 3.67 0.310 ∼ 10 mins
Ours 4.05 4.27 4.34 0.332 ∼ 3 mins

3DGAN-Inv costs comparable running time to ours, its portrait generation quality is poor and fails
to generate free-style portraits.

4.4 ABLATION STUDY

Table 2: Quantitative results on I2T network.

method CLIP Score

w/o I2T 0.251
w/o I2T pre-training 0.113

w/o ws spatial dimension 0.282
Ours 0.332

We conduct the ablation studies of our method from
three aspects, which are shown in Fig. 8. First, when
we do not optimize the Ip2p inference, some charac-
ter prompts generate poor results, such as the exam-
ple in (a) of Fig. 8). Second, we perform the abla-
tion of the I2T network in (b) of Fig. 8. 1) When we
remove the I2T network and instead add two mod-
ulation layers directly to the original EG3D triplane
generator (only the modulation layers are trainable,
original EG3D triplane generator is fixed), we can
achieve some stylization effect. However, the gen-
eration quality is limited by the lightweight modula-
tion layer. 2) When using our I2T network without pre-training, training I2T from scratch on the
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Figure 8: The ablation studies of our approach. (a) Ip2p generated results w/ or w/o inference
optimization. (b) 3D portrait synthesis results in different I2T network settings. (c) 3D shape outputs
w/ or w/o dr loss.

few-shot dataset will cause mode collapse. Because it is difficult to establish the mapping from
the image to the triplane representation only using 3D inconsistent data. 3) When the ws code of
our I2T network is a vector without spatial dimension, the learned 3D portrait is blurred and lacks
details. Furthermore, we calculate the CLIP Score of different ablation models in Tab. 2, and our
method achieves the best result. In addition, we ablate the density regularization (dr) loss used in
model training, shown in (c) of Fig. 8. When the density regularization is not used, the synthesized
portrait shape will have rough surfaces.

5 LIMITATION
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Figure 9: Some bad cases.

Our approach is based on two powerful pre-trained generative
priors, which are the basis of our method’s ability to synthe-
size high-quality stylized 3D portraits. At the same time, our
method is limited by both priors, especially Ip2p, which is un-
able to achieve perfect 3D-consistent portrait stylization in dif-
ferent viewpoints, so the final synthesized 3D portrait of our
method differs slightly from the style generated by Ip2p. Mean-
while, some stylistic changes that differ significantly from the
human portrait shape, such as ”Iron Man” and ”Stormtrooper”
in Fig. 9, result in poorer quality 3D portraits compared to hu-
man portraits. Because when Ip2p generates this type of style,
the stylization effect will be more different under different views.

6 CONCLUSIONS

This paper proposes a novel free-style and fast 3D portrait synthesis framework. Our method is
based on two pre-trained generative priors, EG3D and Ip2p. We optimize Ip2p inference in order
to stylize portraits at different views more freely and stable. We can quickly construct a few-shot
training set of stylized portraits using the two generative priors, and fast fine-tune the EG3D prior.
Moreover, We replace the original triplane generator in EG3D with a trainable I2T network to help
fine-tune EG3D more efficiently. A large number of high-quality 3D portrait synthesis results and
comparison experiments with baselines show the superiority of our method.
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