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ABSTRACT

Estimating conditional average treatment effects (CATEs) from observational data
is relevant in many fields such as personalized medicine. However, in practice,
the treatment assignment is usually confounded by unobserved variables and thus
introduces bias. A remedy to remove the bias is the use of instrumental variables
(IVs). Such settings are widespread in medicine (e.g., trials where the treatment
assignment is used as binary IV). In this paper, we propose a novel, multiply robust
machine learning framework, called MRIV, for estimating CATEs using binary IVs
and thus yield an unbiased CATE estimator. Different from previous work for binary
IVs, our framework estimates the CATE directly via a pseudo-outcome regression.
(1) We provide a theoretical analysis where we show that our framework yields
multiple robust convergence rates: our CATE estimator achieves fast convergence
even if several nuisance estimators converge slowly. (2) We further show that
our framework asymptotically outperforms state-of-the-art plug-in IV methods for
CATE estimation, in the sense that it achieves a faster rate of convergence if the
CATE is smoother than the individual outcome surfaces. (3) We build upon our
theoretical results and propose a tailored deep neural network architecture called
MRIV-Net for CATE estimation using binary IVs. Across various computational
experiments, we demonstrate empirically that our MRIV-Net achieves state-of-the-
art performance. To the best of our knowledge, our MRIV is the first multiply
robust machine learning framework tailored to estimating CATEs in the binary IV
setting.

1 INTRODUCTION

Conditional average treatment effects (CATEs) are relevant across many disciplines such as marketing
(Varian, 2016) and personalized medicine (Yazdani & Boerwinkle, 2015). Knowledge about CATEs
provides insights into the heterogeneity of treatment effects, and thus helps in making potentially
better treatment decisions (Frauen et al., 2023).

Many recent works that use machine learning to estimate causal effects, in particular CATEs, are based
on the assumption of unconfoundedness (Alaa & van der Schaar, 2017; Lim et al., 2018; Melnychuk
et al., 2022a;b). In practice, however, this assumption is often violated because it is common that
some confounders are not reported in the data. Typical examples are income or the socioeconomic
status of patients, which are not stored in medical files. If the confounding is sufficiently strong,
standard methods for estimating CATEs suffer from confounding bias (Pearl, 2009), which may lead
to inferior treatment decisions.

To handle unobserved confounders, instrumental variables (IVs) can be leveraged to relax the
assumption of unconfoundedness and still compute reliable CATE estimates. IV methods were
originally developed in economics (Wright, 1928), but, only recently, there is a growing interest in
combining IV methods with machine learning (see Sec. 3). Importantly, IV methods outperform
classical CATE estimators if a sufficient amount of confounding is not observed (Hartford et al.,
2017). We thus aim at estimating CATEs from observational data under unobserved confounding
using IVs.
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In this paper, we consider the setting where a single binary instrument is available. This setting is
widespread in personalized medicine (and other applications such as marketing or public policy)
(Bloom et al., 1997). In fact, the setting is encountered in essentially all observational or randomized
studies with observed non-compliance (Imbens & Angrist, 1994). As an example, consider a
randomized controlled trial (RCT), where treatments are randomly assigned to patients and their
outcomes are observed. Due to some potentially unobserved confounders (e.g., income, education),
some patients refuse to take the treatment initially assigned to them. Here, the treatment assignment
serves as a binary IV. Moreover, such RCTs have been widely used by public decision-makers, e.g., to
analyze the effect of health insurance on health outcome (see the so-called Oregon health insurance
experiment) (Finkelstein et al., 2012) or the effect of military service on lifetime earnings (Angrist,
1990).

We propose a novel machine learning framework (called MRIV) for estimating CATEs using binary
IVs. Our framework takes an initial CATE estimator and nuisance parameter estimators as input to
perform a pseudo-outcome regression. Different to existing literature, our framework is multiply
robust1, i.e., we show that it is consistent in the union of three different model specifications. This is
different from existing methods for CATE estimation using IVs such as Okui et al. (2012), Syrgkanis
et al. (2019), or plug-in estimators (Bargagli-Stoffi et al., 2021; Imbens & Angrist, 1994).

We provide a theoretical analysis, where we use tools from Kennedy (2022) to show that our
framework achieves a multiply robust convergence rate, i.e., our MRIV converges with a fast rate
even if several nuisance parameters converge slowly. We further show that, compared to existing
plug-in IV methods, the performance of our framework is asymptotically superior. Finally, we
leverage our framework and, on top of it, build a tailored deep neural network called MRIV-Net.

Contributions: (1) We propose a novel, multiply robust machine learning framework (called MRIV)
to learn the CATE using the binary IV setting. To the best of our knowledge, ours is the first that is
shown to be multiply robust, i.e., consistent in the union of three model specifications. For comparison,
existing works for CATE estimation only show double robustness (Wang & Tchetgen Tchetgen, 2018;
Syrgkanis et al., 2019). (2) We prove that MRIV achieves a multiply robust convergence rate. This
is different to methods for IV settings which do not provide robust convergence rates (Syrgkanis
et al., 2019). We further show that our MRIV is asymptotically superior to existing plug-in estimators.
(3) We propose a tailored deep neural network, called MRIV-Net, which builds upon our framework
to estimate CATEs . We demonstrate that MRIV-Net achieves state-of-the-art performance.

2 PROBLEM SETUP

Data generating process: We observe data D = (xi, zi, ai, yi)
n
i=1 consisting of n ∈ N observations

of the tuple (X,Z,A, Y ). Here, X ∈ X are observed confounders, Z ∈ {0, 1} is a binary instrument,
A ∈ {0, 1} is a binary treatment, and Y ∈ R is an outcome of interest. Furthermore, we assume the
existence of unobserved confounders U ∈ U , which affect both the treatment A and the outcome Y .

Figure 1: Underlying
causal graph. The instru-
ment Z has a direct influ-
ence on the treatment A,
but does not have a direct
effect on the outcome Y .
Note that we allow for un-
observed confounders for
both Z–A (dashed line)
and A–Y (given by U ).

The causal graph is shown in Fig. 1.

Applicability: Our proposed framework is widely applicable in practice,
namely to all settings with the above data generating process. This
includes both (1) observational data and (2) RCTs with non-compliance.
For (1), observational data is commonly encountered in, e.g., personalized
medicine. Here, modeling treatments as binary variables is consistent with
previous literature on causal effect estimation and standard in medical
practice (Robins et al., 2000). For (2), our setting is further encountered
in RCTs when the instrument Z is a randomized treatment assignment but
individuals do not comply with their treatment assignment. Such RCTs
have been extensively used by public decision-makers, e.g., to analyze
the effect of health insurance on health outcome (Finkelstein et al., 2012)
or the effect of military service on lifetime earnings (Angrist, 1990).

We build upon the potential outcomes framework (Rubin, 1974) for
modeling causal effects. Let Y (a, z) denote the potential outcome that

1For a detailed introduction to multiple robustness and its importance in treatment effect estimation, we refer
to (Wang & Tchetgen Tchetgen, 2018), Section 4.5.
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would have been observed under A = a and Z = z. Following previous literature on IV estimation
(Wang & Tchetgen Tchetgen, 2018), we impose the following standard IV assumptions on the data
generating process.
Assumption 1 (Standard IV assumptions (Wang & Tchetgen Tchetgen, 2018; Wooldridge, 2013)).
We assume: (1) Exclusion: Y (a, z) = Y (a) for all a, z ∈ {0, 1}, i.e., the instrument has no direct
effect on the patient outcome; (2) Independence: Z ⊥⊥ U | X; (3) Relevance: Z ⊥̸⊥ A | X , (iv) The
model includes all A–Y confounder: Y (a) ⊥⊥ (A,Z) | (X,U) for all a ∈ {0, 1}.

Assumption 1 is standard for IV methods and fulfilled in practical settings where IV methods are
applied (Angrist, 1990; Angrist & Krueger, 1991; Imbens & Angrist, 1994). Note that Assumption 1
does not prohibit the existence of unobserved Z–A confounders. On the contrary, it merely prohibits
the existence of unobserved counfounders that affect all Z, A, and Y simultaneously, as it is standard
in IV settings (Wooldridge, 2013). A practical and widespread example where Assumption 1 is
satisfied are randomized controlled trials (RCTs) with non-compliance (Imbens & Angrist, 1994).
Here, the treatment assignment Z is randomized, but the actual relationship between treatment A
and outcome Y may still be confounded. For instance, in the Oregon health insurance experiment
(Finkelstein et al., 2012), people were given access to health insurance (Z) by a lottery with aim to
study the effect of health insurance (A) on health outcome (Y ) (Finkelstein et al., 2012). Here, the
lottery winners needed to sign up for health insurance and thus both Z andA are observed. Objective:
In this paper, we are interested in estimating the conditional average treatment effect (CATE)

τ(x) = E[Y (1)− Y (0) | X = x]. (1)

If there is no unobserved confounding (U = ∅), the CATE is identifiable from observational data
(Shalit et al., 2017). However, in practice, it is often unlikely that all confounders are observable.
To account for this, we leverage the instrument Z to identify the CATE. We state the following
assumption for identifiability.
Assumption 2 (Identifiability of the CATE (Wang & Tchetgen Tchetgen, 2018)). At least one of the
following two statements holds true: (1) E[A | Z = 1, X, U ]− E[A | Z = 0, X, U ] = E[A | Z =
1, X]− E[A | Z = 0, X]; or (2) E[Y (1)− Y (0) | X,U ] = E[Y (1)− Y (0) | X].

Example: Assumption 1 holds when the function f(a,X,U) = E[Y (a) | X,U ] is additive with
respect to a and U , e.g., f(a,X,U) = g(a,X) + h(U) for measurable functions h and g. This
implies that no unobserved confounder affects the outcome through a path which is also affected by
the treatment. For example, with patient income as unobserved confounder, the treatment should not
affect the (future) patient income.

Under Assumptions 1 and 2, the CATE is identifiable (Wang & Tchetgen Tchetgen, 2018). It can be
written as

τ(x) =
µY
1 (x)− µY

0 (x)

µA
1 (x)− µA

0 (x)
=
δY (x)

δA(x)
, (2)

where µY
i (x) = E[Y | Z = i,X = x] and µA

i (x) = E[A | Z = i,X = x]. Even if Assumption 2
does not hold, all our results in this paper still hold for the quantity on the right-hand side of Eq. (2).
In certain cases, this quantity still allows for interpretation: If no unobserved Z–A confounders
exist, it can be interpreted as conditional version of the local average treatment effect (LATE)
(Imbens & Angrist, 1994) under a monotonicity assumption. Furthermore, under a no-current-
treatment-value-interaction assumption, it can be interpreted as conditional treatment effect on the
treated (ETT) (Wang & Tchetgen Tchetgen, 2018).2 This has an important implication for our results:
If Assumption 2 does not hold in practice, our estimates still provide conditional LATE or ETT
estimates under the respective assumptions because they are based on Eq. (2). If Assumption 2 does
hold, all three – i.e., CATE, conditional LATE, and ETT – coincide (Wang & Tchetgen Tchetgen,
2018).

3 RELATED WORK

Machine learning methods for IV: Only recently, machine learning has been integrated into IV
methods. These are: Singh et al. (2019) and Xu et al. (2021a) generalize 2SLS by learning complex

2The conditional LATE measures the CATE for individuals which are part of the complier subpopulation,
i.e., for whom A(Z = 1) > A(Z = 0). The conditional ETT measures the CATE for treated individuals.
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feature maps using kernel methods and deep learning, respectively. Hartford et al. (2017) adopts a
two-stage neural network architecture that performs the first stage via conditional density estimation.
Bennett et al. (2019) leverages moment conditions for IV estimation. However, the aforementioned
methods are not specifically designed for the binary IV setting but, rather, for multiple IVs or
treatment scenarios. In particular, they impose stronger assumptions such as additive confounding in
order to identify the CATE. Note that additive confounding is a special case of our Assumption 2.
Moreover, they do not have robustness properties. In the binary IV setting, current methods proceed
by estimating µY

i (x) and µA
i (x) separately, before plugging them in Eq. 2 (Imbens & Angrist, 1994;

Angrist et al., 1996; Bargagli-Stoffi et al., 2021). As a result, these suffer from plug-in bias and do
not offer robustness properties. Table 1: Key methods for causal effect estimation

with IVs and associated robustness properties
```````````Robustness

Estimand ATE ITE

Doubly robust Okui et al. (2012) Syrgkanis et al. (2019)
Multiply robust Wang & Tchetgen Tchetgen (2018) MRIV (ours)

Doubly robust IV methods: Recently, doubly
robust methods have been proposed for IV set-
tings: Kennedy et al. (2019) propose a pseudo
regression estimator for the local average treat-
ment effect using continuous instruments, which has been extended to conditional effects by Semen-
ova & Chernozhukov (2021). Furthermore, Singh & Sun (2019) use a doubly robust approach to esti-
mate average compiler parameters. Finally, Ogburn et al. (2015) and Syrgkanis et al. (2019) propose
doubly robust CATE estimators in the IV setting which both rely on doubly robust parametrizations
of the uncentered efficient influence function (Okui et al., 2012). However, none of these estimators
has been shown to be multiply robust in the sense that they are consistent in the union of more than
two model specifications (Wang & Tchetgen Tchetgen, 2018).

Multiply robust IV methods: Multiply robust estimators for IV settings have been proposed only for
average treatment effects (ATEs) (Wang & Tchetgen Tchetgen, 2018) and optimal treatment regimes
(Cui & Tchetgen, 2021) but not for CATEs . In particular, Wang & Tchetgen Tchetgen (2018) derive
a multiply robust parametrization of the efficient influence function for the ATE. However, there
exists no method that leverages this result for CATE estimation. We provide a detailed, technical
comparison of existing methods and our framework in Appendix G.

Doubly robust rates for CATE estimation: Kennedy (2022) analyzed the doubly robust learner
in the standard (non-IV) setting and derived doubly robust convergence rates. However, Kennedy’s
result is not applicable in the IV setting, because we use the multiply robust parametrization of the
efficient influence function from Wang & Tchetgen Tchetgen (2018). In our paper, we rely on certain
results from Kennedy, but use these to derive of a multiply robust rate. In particular, this required the
derivation of the bias term for a larger number of nuisance parameters (see Appendix B).

Research gap: To the best of our knowledge, there exists no method for CATE estimation under
unobserved confounding that has been shown to be multiply robust. To fill this gap, we propose
MRIV: a multiply robust machine learning framework tailored to the binary IV setting. For this, we
build upon the approach by Kennedy (2022) to derive robust convergence rates, yet this approach has
not been adapted to IV settings, which is our contribution.

4 MRIV FOR ESTIMATING CATES USING BINARY INSTRUMENTS

In the following, we present our MRIV framework for estimating CATEs under unobserved con-
founding (Sec. 4.1). We then derive an asymptotic convergence rate for MRIV (Sec. 4.2) and finally
use our framework to develop a tailored deep neural network called MRIV-Net (Sec. 4.4).

4.1 FRAMEWORK

Motivation: A naı̈ve approach to estimate the CATE is to leverage the identification result in Eq. (2).
Assuming that we have estimated the nuisance components µ̂Y

i and µ̂A
i for i ∈ {0, 1}, we can simply

plug them into Eq. (2) to obtain the so-called (plug-in) Wald estimator τ̂W(x) (Wald, 1940).

However, in practice, the true CATE curve τ(x) is often simpler (e.g., smoother, more sparse) than
its complements µY

i (x) or µA
i (x) (Künzel et al., 2019). In this case, τ̂W(x) is inefficient because it

models all components separately, and, to address this, our proposed framework estimates τ directly
using a pseudo-outcome regression.
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Overview: We now propose MRIV. MRIV is a two-stage meta learner that takes any base method for
CATE estimation as input. For instance, the base method could be the Wald estimator from Eq. (2),
any other IV method such as 2SLS, or a deep neural network (as we propose in our MRIV-Net later
in Sec. 4.4). In Stage 1, MRIV produces nuisance estimators µ̂Y

0 (x), µ̂
A
0 (x), δ̂A(x), and π̂(x), where

π̂(x) is an estimator of the propensity score π(x) = P(Z = 1 | X = x). In Stage 2, MRIV estimates
τ(x) directly using a pseudo outcome ŶMR as a regression target.

Given an arbitrary initial CATE estimator τ̂init(x) and nuisance estimates µ̂Y
0 (x), µ̂

A
0 (x), δ̂A(x), and

π̂(x), we define the pseudo outcome

ŶMR =
(

Z−(1−Z)

δ̂A(X)

)(
Y−(µ̂Y

0 (X)+τ̂init(X) (A−µ̂A
0 (X)))

Z π̂(X)+(1−Z)(1−π̂(X))

)
+ τ̂init(X). (3)

Algorithm 1: MRIV
Input : data (X,Z,A, Y ), initial CATE estimator τ̂init(x)
// Stage 1: Estimate nuisance components

π̂(x)← Ê[Z | X = x],
µ̂Y
0 (x)← Ê[Y | X = x, Z = 0],

µ̂A
0 (x)← Ê[A | X = x, Z = 0]

δ̂A(x)← Ê[A | X = x, Z = 1]− Ê[A | X = x, Z = 0]
// Stage 2: pseudo-outcome regression

ŶMR ←(
Z−(1−Z)

δ̂A(X)

)(
Y −A τ̂init(X)−µ̂Y

0 (X)+µ̂A
0 (X) τ̂init(X)

Z π̂(X)+(1−Z)(1−π̂(X))

)
+

τ̂init(X)

τ̂MRIV(x)← Ê[ŶMR | X = x]

The pseudo outcome ŶMR in Eq. (3) is a multi-
ply robust parameterization of the (uncentered)
efficient influence function for the average treat-
ment effect EX [τ(X)] (see the derivation in
(Wang & Tchetgen Tchetgen, 2018)). Once
we have obtained the pseudo outcome ŶMR, we
regress it on X to obtain the Stage 2 MRIV esti-
mator τ̂MRIV(x) for τ(x). The pseudocode for
MRIV is given in Algorithm 1. MRIV can be
interpreted as a way to remove plug-in bias from
τ̂init(x) (Curth et al., 2020). Using the fact that
ŶMR is a multiply robust parametrization of the

efficient influence function, we derive a multiple robustness property of τ̂MRIV(x).

Theorem 1 (multiple robustness property). Let µ̂Y
0 (x), µ̂

A
0 (x), δ̂A(x), π̂(x), and τ̂init(x) denote

estimators of µY
0 (x), µ

A
0 (x), δA(x), π(x), and τ(x), respectively. Then, for all x ∈ X , it holds that

E[ŶMR | X = x] = τ(x),if least one of the following conditions is satisfied: (1) µ̂Y
0 = µY

0 , µ̂A
0 = µA

0 ,
and τ̂init = τ ; or (2) π̂ = π and δ̂A = δA; or (3) π̂ = π and τ̂init = τ .

The equalities in Theorem 1 are meant to hold almost surely. Consistency of τ̂MRIV(x) is a direct
consequence: If either the nuisance estimators in (1), (2), or (3) converge to their oracle estimands,
τ̂MRIV(x) will converge to the true CATE. As a result, our MRIV framework is multiply robust in the
sense that our estimator, τ̂MRIV(x), is consistent in the union of three different model specifications.
Importantly, this is different from doubly robust estimators which are only consistent in the union of
two model specifications (Wang & Tchetgen Tchetgen, 2018). Our MRIV is directly applicable to
RCTs with non-compliance: Here, the treatment assignment is randomized and the propensity score
π(x) is known. Our MRIV framework can be thus adopted by plugging in the known π(x) into the
pseudo outcome in Eq. (3). Moreover, τ̂MRIV(x) is already consistent if either τ̂init(x) or δ̂A(x) are.

4.2 THEORETICAL ANALYSIS

We derive the asymptotic bound on the convergence rate of MRIV under smoothness assumptions.
For this, we define s-smooth functions as functions contained in the Hölder class H(s), associated
with Stone’s minimax rate (Stone, 1980) of n−2s/(2s+p), where p is the dimension of X .

Assumption 3 (Smoothness). We assume that (1) the nuisance component µY
0 (·) is α-smooth, µA

0 (·)
is β-smooth, π(·) is γ-smooth, and δA(·) is δ-smooth; (2) all nuisance components are estimated
with their respective minimax rate of n

−2k
2k+p , where k ∈ {α, β, γ, δ}; and (3) the oracle CATE τ(·)

is η-smooth and the initial CATE estimator τ̂init converges with rate rτ (n). We provide a rigorous
definition in Appendix D.

Assumption 3 for smoothness provides us with a way to quantify the difficulty of the underlying
nonparametric regression problems. Similar assumptions have been imposed for asymptotic analysis
of previous CATE estimators in (Kennedy, 2022; Curth & van der Schaar, 2021). They can be replaced
with other assumptions such as assumptions on the level of sparsity of the CATE components. We
also provide an asymptotic analysis under sparsity assumptions (see Appendix C).
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Assumption 4 (Boundedness). We assume that there exist constants C, ρ, ρ̃, ϵ,K > 0 such that for
all x ∈ X it holds that: (1) |µY

i (x)| ≤ C; (2) |δA(x)| = |µA
1 (x) − µA

0 (x)| ≥ ρ and |δ̂A(x)| ≥ ρ̃;
(3) ϵ ≤ π̂(x) ≤ 1− ϵ; and (4) |τ̂init(x)| ≤ K.

Assumptions 4.1, 4.3, and 4.4 are standard and in line with previous works on theoretical analyses
of CATE estimators (Curth & van der Schaar, 2021; Kennedy, 2022). Assumption 4.2 ensures that
both the oracle CATE and the estimator are bounded. Violations of Assumption 4.2 may occur when
working with “weak” instruments, which are IVs that are only weakly correlated with the treatment.
Using IV methods with weak instruments should generally be avoided (Li et al., 2022). However, in
many applications such as RCTs with non-compliance, weak instruments are unlikely to occur as
patients’ compliance decisions are generally correlated with the initial treatment assignments.

We state now our main theoretical result: an upper bound on the oracle risk of the MRIV estimator.
To derive our bound, we leverage the sample splitting approach from (Kennedy, 2022). The approach
in (Kennedy, 2022) has been initially used to analyze the DR-learner for CATE estimation under
unconfoundedness and allows for the derivation of robust convergence rates. It has later been adapted
to several other meta learners (Curth & van der Schaar, 2021), yet not for IV methods.

Theorem 2 (Oracle upper bound under smoothness). Let Dℓ for ℓ ∈ {1, 2, 3} be independent samples
of size n. Let τ̂init(x), µ̂Y

0 (x), and µ̂A
0 (x) be trained on D1, and let δ̂A(x) and π̂(x) be trained on

D2. We denote ŶMR as the pseudo outcome from Eq. (3) and τ̂MRIV(x) = Ên[ŶMR | X = x] as the
pseudo-outcome regression on D3 for some generic estimator Ên[· | X = x] of E[· | X = x].

We assume that the second-stage estimator Ên yields the minimax rate n−
2η

2η+p and satisfies the
stability assumption from Kennedy (2022), Proposition 1 (see Appendix B). Then, under Assumptions
1-4 the oracle risk is upper bounded by

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲ n

−2η
2η+p+rτ (n)

(
n

−2γ
2γ+p + n

−2δ
2δ+p

)
+n−2(

α
2α+p+

γ
2γ+p )+n−2(

β
2β+p+

γ
2γ+p ).

Proof. See Appendix B. The proof provides a more general bound which depends on the pointwise
mean squared errors of the nuisance parameters (Lemma 2).

Recall that the first summand of the lower bound in Eq. (2) is the minimax rate for the oracle CATE
τ(x) which cannot be improved upon. Hence, for a fast convergence rate of τ̂MRIV(x), it is sufficient
if either: (1) rτ (n) decreases fast and α, β are large; (2) γ and δ are large; or (3) rτ (n) decreases fast
and γ is large. This is in line with the multiply robustness property of MRIV (Theorem 1) and means
that MRIV achieves a fast rate even if the initial or several nuisance estimators converge slowly.

Improvement over τ̂init(x): From the bound in Eq. (2), it follows that τ̂MRIV(x) improves on the
convergence rate of the initial CATE estimator τ̂init(x) if its rate rτ (n) is lower bounded by

rτ (n) ≳ n
−2η
2η+p + n−2 (

α
2α+p+

γ
2γ+p ) + n−2 (

β
2β+p+

γ
2γ+p ). (4)

Hence, our MRIV estimator is more likely to improve on the initial estimator τ̂init(x) if either (1) γ
is large or (2) α and β are large. Note that the margin of improvement depends also on the size of
γ and δ, i.e., on the smoothness of π(x) and δA(x). In fact, this is widely fulfilled in practice. For
example, the former is fulfilled for RCTs with non-compliance, where π(x) is often some known,
fixed number p ∈ (0, 1).

4.3 MRIV VS. WALD ESTIMATOR

We compare τ̂MRIV(x) to the Wald estimator τ̂W(x). First, we derive an asymptotic upper bound.

Theorem 3 (Wald oracle upper bound). Assume that µY
1 (x), µ

Y
0 (x) are α-smooth, µA

1 (x), µ
A
0 (x)

are β-smooth, and are estimated with their respective minimax rate. Let δ̂A(x) = µ̂A
1 (x)− µ̂A

0 (x)
satisfy Assumption 4. Then, the oracle risk of the Wald estimator τ̂W (x) is bounded by

E
[
(τ̂W(x)− τ(x))2

]
≲ n−

2α
2α+p + n−

2β
2β+p . (5)

Proof. See Appendix B.
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We now consider the MRIV estimator τ̂MRIV(x) with τ̂init = τ̂W(x), i.e., initialized with the Wald
estimator (under sample splitting). Plugging the Wald rate from Eq. (5) into the Eq. (2) yields

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲ n

−2η
2η+p + n−2(

α
2α+p+

δ
2δ+p ) + n−2(

β
2β+p+

δ
2δ+p ) + n−2(

α
2α+p+

γ
2γ+p ) + n−2(

β
2β+p+

γ
2γ+p ).

Forα = β = γ = δ, the rates of τ̂MRIV(x) and τ̂W(x) reduce to E
[
(τ̂MRIV(x)− τ(x))

2
]
≲ n

−2η
2η+p+

n
−4α
2α+p and E

[
(τ̂W(x)− τ(x))

2
]
≲ n

−2α
2α+p . Hence, τ̂MRIV(x) outperforms τ̂W(x) asymptotically

for η > α, i.e., when the CATE τ(x) is smoother than its components, which is usually the case in
practice (Künzel et al., 2019). For η = α, the rates of both estimators coincide. Hence, we should
expect MRIV to improve on the Wald estimator in real-world settings with large sample size.

4.4 MRIV-NET

Based on our MRIV framwork, we develop a tailored deep neural network called MRIV-Net for
CATE estimation using IVs. Our MRIV-Net produces both an initial CATE estimator τ̂init(x) and
nuisance estimators µ̂Y

0 (x), µ̂
A
0 (x), δ̂A(x), and π̂(x).

FF
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Figure 2: Architecture of
MRIV-Net.

For MRIV-Net, we choose deep neural networks for the nuisance com-
ponents due to their predictive power and their ability to learn complex
shared representations for several nuisance components. Sharing repre-
sentations between nuisance components has been exploited previously
for CATE estimation, yet only under unconfoundedness (Shalit et al.,
2017; Curth & van der Schaar, 2021). Building shared representations
is more efficient in finite sample regimes than estimating all nuisance
components separately as they usually share some common structure.

In MRIV-Net, not all nuisance components should share a representation.
Recall that, in Theorem 2, we assumed that (1) τ̂init(x), µ̂Y

0 (x), and µ̂A
0 (x); and (2) δ̂A(x) and

π̂(x) are trained on two independent samples in order to derive the upper bound on the oracle risk.
Hence, we propose to build two separate representations Φ1 and Φ2, so that (i) Φ1 is used to learn
the parameters (1), and (ii) Φ2 is used to learn the parameters (2). This ensures that the nuisance
estimators (1) share minimal information with nuisance estimators (2) even though they are estimated
on the same data (cf. (Curth & van der Schaar, 2021)).

The architecture of MRIV-Net is shown in Fig. 2. MRIV-Net takes the observed covariatesX as input
to build the two representations Φ1 and Φ2. The first representation Φ1 is used to output estimates
µ̂Y
1 (x), µ̂

Y
0 (x), µ̂

A
1 (x), and µ̂A

0 (x) of the CATE components. The second representation Φ2 is used
to output estimates µ̃A

1 (x), µ̃
A
0 (x), and π̂(x). MRIV-Net is trained by minimizing an overall loss

L(θ) =
∑n

i=1

[(
µ̂Y
zi(xi)− yi

)2
+BCE

(
µ̂A
zi(xi), ai

)
+BCE

(
µ̃A
zi(xi), ai

)
+BCE (π̂(xi), zi)

]
, (6)

where θ denotes the neural network parameters and BCE is the binary cross entropy loss. After
training MRIV-Net, we obtain the τ̂init(x) =

µ̂Y
1 (x)−µ̂Y

0 (x)

µ̂A
1 (x)−µ̂A

0 (x)
and obtain the nuisance estimators µ̂Y

0 (x),

µ̂A
0 (x), δ̂A(x) = µ̃A

1 (x) − µ̃A
0 (x) and π̂(x). Then, we perform, we perform the pseudo regression

(Stage 2) of MRIV to obtain τ̂MRIV(x).

Implementation: Details on the implementation, the network architecture and hyperparameter tuning
are in Appendix I. We perform both the training of MRIV-Net and the pseudo-outcome regression
on the full training data. Needless to say, MRIV-Net can be easily adopted for sample splitting or
cross-fitting procedures as in Chernozhukov et al. (2018), namely, by learning separate networks for
each representation Φ1 and Φ2. In our experiments, we do not use sample splitting or cross-fitting,
as this can affect the performance in finite sample regimes. Of note, our choice is consistent with
previous work (Curth & van der Schaar, 2021). In Appendix K we report results using cross-fitting.

5 COMPUTATIONAL EXPERIMENTS

5.1 SIMULATED DATA

In causal inference literature, it is common practice to use simulated data for performance evaluations
(Bica et al., 2020a; Curth & van der Schaar, 2021; Hartford et al., 2017). Simulated data offers the
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crucial benefit that it provides ground-truth information on the counterfactual outcomes and thus
allows for direct benchmarking against the oracle CATE.

Data generation: We generate simulated data by sampling the oracle CATE τ(x) and the nuisance
components µY

i (x), µ
A
i (x), and π(x) from Gaussian process priors. Using Gaussian processes

has the following advantages: (1) It allows for a fair method comparison, as there is no need to
explicitly specify the nuisance components, which could lead to unwanted inductive biases favoring a
specific method; (2) the sampled nuisance components are non-linear and thus resemble real-world
scenarios where machine learning methods would be applied; and, (3) by sampling from the prior
induced by the Matérn kernel (Rasmussen & Williams, 2008), we can control the smoothness of the
nuisance components, which allows us to confirm our theoretical results from Sec. 4.2. For a detailed
description of our data generating process, we refer to Appendix E.

Baselines: We compare our MRIV-Net with state-of-the-art IV baselines. Details regarding baselines
and nuisance parameter estimation are in Appendix G. Note that many of the baselines do not directly
aim at CATE estimation but rather at counterfactual outcome prediction. We nevertheless use these
methods as baselines and, for this, obtain the CATE by taking the difference between the predictions
of the factual and counterfactual outcomes.

Table 2: Performance comparison: our MRIV-Net vs. ex-
isting baselines.

Method n = 3000 n = 5000 n = 8000

(1) STANDARD ITE
TARNet (Shalit et al., 2017) 0.76± 0.14 0.70± 0.12 0.69± 0.17
TARNet + DR (Shalit et al., 2017; Kennedy, 2022) 0.78± 0.10 0.66± 0.09 0.70± 0.10

(2) GENERAL IV
2SLS (Wooldridge, 2013) 1.22± 0.23 0.79± 0.37 1.12± 0.29
KIV (Singh et al., 2019) 1.54± 0.53 1.18± 1.14 3.80± 4.71
DFIV (Xu et al., 2021a) 0.43± 0.11 0.40± 0.21 0.46± 0.54
DeepIV (Hartford et al., 2017) 0.96± 0.30 0.28± 0.09 0.23± 0.04
DeepGMM (Bennett et al., 2019) 0.95± 0.38 0.37± 0.09 0.42± 0.14
DMLIV (Syrgkanis et al., 2019) 1.92± 0.71 0.92± 0.41 1.14± 0.24
DMLIV + DRIV (Syrgkanis et al., 2019) 0.41± 0.12 0.22± 0.04 0.21± 0.06

(3) WALD ESTIMATOR (WALD, 1940)
Linear 1.06± 0.63 0.62± 0.22 0.81± 0.34
BART 0.95± 0.30 0.63± 0.33 0.88± 0.28

MRIV-Net (ours) 0.26 ± 0.11 0.15 ± 0.03 0.13 ± 0.03

Reported: RMSE for base methods (mean± standard deviation). Lower = better (best in bold)

Performance evaluation: For all exper-
iments, we use a 80/20 split as train-
ing/test set. We calcalute the root mean
squared errors (RMSE) between the
CATE estimates and the oracle CATE on
the test set. We report the mean RMSE
and the standard deviation over five data
sets generated from random seeds.

Results: Table 2 shows the results for
all baselines. Here, the DR-learner does
not improve the performance of TAR-
Net, which is reasonable as both the DR-
learner and TARNet assume unconfoundedness and are thus biased in our setting. Our MRIV-Net
outperforms all baselines. Our MRIV-Net also achieves a smaller standard deviation. For additional
results, we refer to Appendix J.

We further compare the performance of two different meta-learner frameworks – DRIV (Syrgka-
nis et al., 2019) and our MRIV– across different base methods. The results are in Table 3.
The nuisance parameters are estimated using feed forward neural networks (DRIV) or TAR-

Table 3: Base model with different meta-learners (i.e., none, DRIV, and our MRIV).
n = 3000 n = 5000 n = 8000

hhhhhhhhhhhhhhBase methods
Meta-learners

None DRIV MRIV (ours) None DRIV MRIV (ours) None DRIV MRIV (ours)

(1) STANDARD ITE
TARNet (Shalit et al., 2017) 0.76± 0.14 0.31 ± 0.05 0.34± 0.13 0.70± 0.12 0.17 ± 0.06 0.17 ± 0.05 0.69± 0.17 0.21± 0.04 0.16 ± 0.04

(2) GENERAL IV
2SLS (Wooldridge, 2013) 1.22± 0.23 0.40± 0.11 0.31 ± 0.08 0.79± 0.37 0.17 ± 0.09 0.19± 0.05 1.12± 0.29 0.21± 0.05 0.16 ± 0.02
KIV (Singh et al., 2019) 1.54± 0.53 0.40± 0.10 0.39 ± 0.11 1.18± 1.14 0.20± 0.08 0.17 ± 0.06 3.80± 4.71 0.31± 0.18 0.28 ± 0.19
DFIV (Xu et al., 2021a) 0.43± 0.11 0.26 ± 0.05 0.27± 0.07 0.40± 0.21 0.18± 0.09 0.16 ± 0.04 0.46± 0.54 0.21± 0.06 0.18 ± 0.05
DeepIV (Hartford et al., 2017) 0.96± 0.30 0.27± 0.03 0.26 ± 0.05 0.28± 0.09 0.18 ± 0.08 0.18 ± 0.05 0.23± 0.04 0.21± 0.03 0.16 ± 0.03
DeepGMM (Bennett et al., 2019) 0.95± 0.38 0.40± 0.15 0.36 ± 0.13 0.37± 0.09 0.24± 0.12 0.16 ± 0.05 0.42± 0.14 0.21± 0.03 0.17 ± 0.03
DMLIV (Syrgkanis et al., 2019) 1.92± 0.71 0.41± 0.12 0.37 ± 0.11 0.92± 0.41 0.22± 0.05 0.16 ± 0.05 1.14± 0.24 0.21± 0.06 0.18 ± 0.05

(3) WALD ESTIMATOR (WALD, 1940)
Linear 1.06± 0.63 0.42± 0.15 0.38 ± 0.14 0.62± 0.22 0.19 ± 0.09 0.25± 0.09 0.81± 0.34 0.19± 0.09 0.18 ± 0.04
BART 0.95± 0.30 0.48± 0.14 0.46 ± 0.12 0.63± 0.33 0.26± 0.13 0.20 ± 0.07 0.88± 0.28 0.31± 0.08 0.29 ± 0.04

MRIV-Net\w network only (ours) 0.39± 0.13 0.35± 0.12 0.26 ± 0.11 0.31± 0.04 0.19± 0.13 0.15 ± 0.03 0.26± 0.06 0.18± 0.08 0.13 ± 0.03

Reported: RMSE (mean ± standard deviation). Lower = better (best improvement over none meta-learner in bold)

Nets with either binary or continuous outputs (MRIV). Our MRIV improves over the vari-
ant without any meta-learner framework across all base methods (both in terms of RMSE
and standard deviation). Furthermore, MRIV is clearly superior over DRIV. This demon-
strates the effectiveness of our MRIV across different base methods (note: MRIV with an
arbitrary base model is typically superior to DRIV with our custom network from above).

Table 4: Ablation study.

Method n = 3000 n = 5000 n = 8000

MRIV-Net\w network only 0.39± 0.13 0.31± 0.04 0.26± 0.06
MRIV-Net\w single repr. 0.28± 0.12 0.21± 0.04 0.32± 0.10
MRIV-Net (ours) 0.26 ± 0.11 0.15 ± 0.03 0.13 ± 0.03

Reported: RMSE (mean± standard deviation). Lower = better (best in bold)

MRIV-Net is overall best. We also per-
formed additional experiments where
we used semi-synthetic data and cross-
fitting approaches for both meta-learners
(see Appendix J and K).
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Ablation study: Table 4 compares different variants of our MRIV-Net. These are: (1) MRIV but
network only; (2) MRIV-Net with a single representation for all nuisance estimators; and (3) our
MRIV-Net from above. We observe that MRIV-Net is best. This justifies our proposed network
architecture for MRIV-Net. Hence, combing the result from above, our performance gain must be
attributed to both our framework and the architecture of our deep neural network.

1 2 3 4 5
Confounding level U

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

n = 3000

1 2 3 4 5
Confounding level U

n = 5000

1 2 3 4 5
Confounding level U

n = 8000

Method
TARNet
TARNet + DR
MRIV-Net\w network only
MRIV-Net (ours)

Figure 3: Results over different levels of confounding αU . Shaded
area shows standard deviation.

Robustness checks for
unobserved confounding
and smoothness: Here, we
demonstrate the importance
of handling unobserved
confounding (as we do in our
MRIV framework). For this,
Fig. 3 plots the results for
our MRIV-Net vs. standard
CATE without customization for confounding (i.e., TARNet with and without the DR-learner)
over over different levels of unobserved confounding. The RMSE of both TARNet variants
increase almost linearly with increasing confounding. In contrast, the RMSE of our MRIV-Net
only marginally. Even for low confounding regimes, our MRIV-Net performs competitively.

5 10
Smoothness 

0.10

0.15

0.20

0.25

0.30

0.35

RM
SE Method

DeepIV
MRIV-Net\w network only
MRIV-Net (ours)

Figure 4: Results over different lev-
els of smoothness α of µY

i (·), sam-
ple size n = 8000. Larger α =
smoother. Shaded areas show stan-
dard deviation.

Fig. 4 varies the smoothness level. This is given by α of µY
i (·)

(controlled by the Matérn kernel prior). Here, the performance
decreases for the baselines, i.e., DeepIV and our network with-
out MRIV framework. In contrast, the peformance of our
MRIV-Net remains robust and outperforms the baselines. This
confirms our theoretical results from above. It thus indicates
that our MRIV framework works best when the oracle CATE
τ(x) is smoother than the nuisance parameters µY

i (x).

5.2 CASE STUDY WITH REAL-WORLD DATA

Setting: We demonstrate effectiveness of our framework using
a case study with real-world, medical data. Here, we use medi-
cal data from the so-called Oregon health insurance experiment
(OHIE) (Finkelstein et al., 2012). It provides data for an RCT with non-compliance: In 2008, ∼30,000
low-income, uninsured adults in Oregon were offered participation in a health insurance program by
a lottery. Individuals whose names were drawn could decide to sign up for health insurance. After a
period of 12 months, in-person interviews took place to evaluate the health condition of the respective
participant.
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ed

 IT
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gender = male

20 40 60
Age

gender = female

Method
TARNet
MRIV-Net\w network only
MRIV-Net (ours)
DMLIV + DRIV

Figure 5: Results on real-world medical data.

In our analysis, the lottery assignment is the in-
strument Z, the decision to sign up for health
insurance is treatment A, and an overall health
score is the outcome Y . We also include five
covariates X , including age and gender. For de-
tails, we refer to Appendix F. We first estimate
the CATE function and then report the treatment
effect heterogeneity w.r.t. age and gender, while

fixing the other covariates. The results for MRIV-Net, our neural network architecture without the
MRIV framework, and TARNet are in Fig. 5.

Results: Our MRIV-Net estimates larger causal effects for an older age. In contrast, TARNet does
not estimate positive CATEs even for an older age. Even though we cannot evaluate the estimation
quality on real-world data, our estimates seem reasonable in light of the medical literature: the
benefit of health insurance should increase with older age. This showcases that TARNet may suffer
from bias induced by unobserved confounders. We also report the results for DRIV with DMLIV
as base method, and observe that in contrast to MRIV-Net, the corresponding CATE does not vary
much between ages. Interestingly, both our MRIV-Net estimate a somewhat smaller CATE for
middle ages (around 30–50 yrs). In sum, the findings from our case study are of direct relevance for
decision-makers in public health (Imbens & Angrist, 1994), and highlight the practical value of our
framework. We performed further experiments on real-world data which are reported in Appendix L.
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Reproducibility: The codes for reproducing the experimental results can be found at https:
//github.com/DennisFrauen/MRIV-Net.
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A EXTENDED RELATED WORK

CATE methods without unconfoundedness: Various machine learning methods for estimating
CATEs without unobserved confounding have been proposed in recent literature (Alaa & van der
Schaar, 2017; Curth & van der Schaar, 2021; Künzel et al., 2019; Lim et al., 2018; Shalit et al., 2017;
Wager & Athey, 2018; Yoon et al., 2018; Zhang et al., 2020). To remove plug-in bias, the DR-learner
performs a second stage regression on the uncentered influence function of the average treatment
effect (Kennedy, 2022). However, under unobserved confounding, all of these methods are biased
(see Appendix G). As a result, this hampers their performance in our setting.

Non-IV methods for unobserved confounding: There is a rich literature for causal effect estimation
under unobserved confounding, which does not assume the existence of instrumental variables.
Methods include deconfounding methods (Wang & Blei, 2019; Bica et al., 2020b), proxy learning
methods (Cui et al., 2020; Xu et al., 2021b), and causal sensitivity analysis (Kallus et al., 2019; Jesson
et al., 2021)..

Classical IV methods: IV methods address the problem of unobserved confounding by exploiting
the variance in treatment and outcome induced by the instruments. Traditionally, two-stage least
squares (2SLS) has been used for estimating causal effects (Wright, 1928; Angrist & Krueger, 1991).
2SLS was originally developed in economics, and follows a two-stage procedure: it performs a first
stage regression of treatment A on the instrument Z, and then uses the fitted values for a second
stage regression to predict the outcome Y . Several nonparametric methods have been developed in
econometric to generalize 2SLS in order to account for non-linearities within the data (Newey &
Powell, 2003; Wang et al., 2021), yet these are limited to low-dimensional settings.

13



Published as a conference paper at ICLR 2023

B PROOFS

We start by deriving an auxiliary Lemma. That is, we derive an explicit expression for the Stage 2
oracle pseudo-outcome regression E[ŶMR | X = x] of MRIV.

Lemma 1.

E[ŶMR | X = x]

=
π(x)

δ̂A(x)π̂(x)

(
µY
1 (x)− µA

1 (x) τ̂init(x)
)
+

(1− π(x))

δ̂A(x)(1− π̂(x))

(
µA
0 (x) τ̂init(x)− µY

0 (x)
)

+
µ̂A
0 (x) τ̂init(x)− µ̂Y

0 (x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
+ τ̂init(x)

(7)

Proof.

E[ŶMR | X = x] (8)

=π(x)E

[
Y −A τ̂init(X)− µ̂Y

0 (X) + µ̂A
0 (X) τ̂init(X)

δ̂A(X) π̂(X)

∣∣∣∣∣ X = x, Z = 1

]

+ (1− π(x))E

[
Y −A τ̂init(X)− µ̂Y

0 (X) + µ̂A
0 (X) τ̂init(X)

δ̂A(X) (1− π̂(X))

∣∣∣∣∣ X = x, Z = 0

]
+ τ̂init(x)

(9)

=
π(x)

δ̂A(x) π̂(x)

(
µY
1 (x)− µA

1 (x) τ̂init(x)− µ̂Y
0 (x) + µ̂A

0 (x) τ̂init(x)
)

+
1− π(x)

δ̂A(x) (1− π̂(x))

(
µY
0 (x)− µA

0 (x) τ̂init(x)− µ̂Y
0 (x) + µ̂A

0 (x) τ̂init(x)
)
+ τ̂init(x) (10)

Rearranging the terms yields the desired result.

B.1 PROOF OF THEOREM 1 (MULTIPLE ROBUSTNESS PROPERTY)

We use Lemma 1 to show that under each of the three conditions it follows that E[ŶMR | X = x] =
τ(x).

1.

E[ŶMR | X = x] (11)

=
π(x)

δ̂A(x) π̂(x)

(
µY
1 (x)− µA

1 (x) τ(x) + µA
0 (x) τ(x)− µY

0 (x)
)

+
(1− π(x))

δ̂A(x) (1− π̂(x))

(
µA
0 (x) τ(x)− µY

0 (x)− µA
0 (x) τ(x) + µY

0 (x)
)
+ τ(x) (12)

=
π(x)

δ̂A(x) π̂(x)
(δY (x)− δY (x)) + τ(x) = τ(x). (13)

2.

E[ŶMR | X = x] =

(
µY
1 (x)− µA

1 (x) τ̂init(x)
)

δA(x)
+

(
µA
0 (x) τ̂init(x)− µY

0 (x)
)

δA(x)
+ τ̂init(x)

(14)

=
δY (x)− τ̂init(x) δA(x)

δA(x)
+ τ̂init(x) = τ(x). (15)
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3.

E[ŶMR | X = x] =

(
µY
1 (x)− µA

1 (x) τ(x)
)

δ̂A(x)
+

(
µA
0 (x) τ(x)− µY

0 (x)
)

δ̂A(x)
+ τ(x) (16)

=
δY (x)

δ̂A(x)
− τ(x)

δA(x)

δ̂A(x)
+ τ(x) = τ(x) (17)

B.2 PROOF OF THEOREM 2 (CONVERGENCE RATE OF MRIV)

To prove Theorem 2, we need an additional assumption on the second stage regression estimator Ên.
We refer to Kennedy (2022) (Proposition 1) for a detailed discussion on this assumption.

Assumption 5 (From Proposition 1 of Kennedy (2022)). Let YMR be the corresponding oracle to the
estimated pseudo-outcome ŶMR. We assume that the pseudo-regression estimator Ên satisfies

Ên[ŶMR | X = x]− Ên[YMR | X = x]− Ên[ŶMR − YMR | X = x]√
E
[(

Ên[YMR | X = x]− E[YMR | X = x]
)2] p→ 0 (18)

and

E
[
Ên[r̂(X) | X = x]2

]
≍ E

[
r̂(x)2

]
, (19)

where r(x) = E[ŶMR | X = x]− τ(x)

To prove Theorem 2, we derive a more general bound the depends on the pointwise mean squared
errors of the nuisance estimators. Theorem 2 follows immediately by applying Assumption 3.

Lemma 2. Consider the setting described in Theorem 2. Then,

E
[
(τ̂init(x)− τ(x))

2
]

(20)

≲R(x) + E
[
(τ̂init(x)− τ(x))

2
](

E
[(
δ̂A(x)− δA(x)

)2]
+ E

[
(π̂(x)− π(x))

2
])

+ E
[
(π̂(x)− π(x))

2
] (

E
[(
µ̂Y
0 (x)− µY

0 (x)
)2]

+ E
[(
µ̂A
0 (x)− µA

0 (x)
)2])

. (21)

Proof. Let YMR be the corresponding oracle to ŶMR and define τ̃MRIV(x) = Ên[YMR | X = x].
Using Assumption 5, we can apply Proposition 1 of Kennedy (2022) and obtain

E
[
(τ̂init(x)− τ(x))

2
]
≲ R(x) + E

[
r̂(x)2

]
, (22)
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where R(x) = E
[
(τ̃MR(x)− τ(x))

2
]

is the oracle risk of the second stage regression. We can apply
Lemma 1 to obtain

r̂(x) =
π(x)

δ̂A(x) π̂(x)

(
µY
1 (x)− µA

1 (x) τ̂init(x)
)
+

(1− π(x))

δ̂A(x) (1− π̂(x))

(
µA
0 (x) τ̂init(x)− µY

0 (x)
)

+
µ̂A
0 (x) τ̂init(x)− µ̂Y

0 (x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
+ τ̂init(x)− τ(x) (23)

=

(
µY
1 (x)− µY

0 (x)

δ̂A(x)

)
π(x)

π̂(x)
+
µY
0 (x)− µ̂Y

0 (x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
+ (τ̂init(x)− τ(x))

+

(
(µA

0 (x)− µA
1 (x)) τ̂init(x)

δ̂A(x)

)
π(x)

π̂(x)
+

(µ̂D
0 (x)− µD

0 (x)) τ̂init(x)

δ̂A(x)

(
π(x)

π̂(x)
− 1− π(x)

1− π̂(x)

)
(24)

=
δY (x)π(x)

δ̂A(x) π̂(x)
+

(
µY
0 (x)− µ̂Y

0 (x)
)
(π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))
+ (τ̂init(x)− τ(x))

− δA(x)π(x) τ̂init(x)

δ̂A(x) π̂(x)
+

(
µ̂A
0 (x)− µA

0 (x)
)
τ̂init(x) (π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))
(25)

=
(π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))

[(
µY
0 (x)− µ̂Y

0 (x)
)
+
(
µ̂A
0 (x)− µA

0 (x)
)
τ̂init(x)

]
+ (τ̂init(x)− τ(x)) +

π(x)δA(x)

π̂(x)δ̂A(x)
(τ(x)− τ̂init(x)) (26)

=
(π(x)− π̂(x))

δ̂A(x) π̂(x) (1− π̂(x))

[(
µY
0 (x)− µ̂Y

0 (x)
)
+
(
µ̂A
0 (x)− µA

0 (x)
)
τ̂init(x)

]
+ (τ(x)− τ̂init(x))

(
δA(x)− δ̂A(x)

)
π(x) + (τ(x)− τ̂init(x)) (π(x)− π̂(x)) δ̂A(x).

(27)

Applying the inequality (a+ b)2 ≤ 2(a2+ b2) together with Assumption 4 and the fact that π(x) ≤ 1
yields

r̂(x)2 ≤ 4

ϵ4ρ2
(π(x)− π̂(x))

2
[(
µY
0 (x)− µ̂Y

0 (x)
)2

+
(
µ̂A
0 (x)− µA

0 (x)
)2
K2
]

+ 4 (τ(x)− τ̂init(x))
2
(
δA(x)− δ̂A(x)

)2
+ 4 (τ(x)− τ̂init(x))

2
(π(x)− π̂(x))

2
. (28)

By setting K̃ = max{K, 1}, we obtain

r̂(x)2 ≤ 4K̃2

ϵ4ρ2

(
(π(x)− π̂(x))

2
[(
µY
0 (x)− µ̂Y

0 (x)
)2

+
(
µ̂A
0 (x)− µA

0 (x)
)2

+ (τ̂init(x)− τ(x))
2
]

+ (τ(x)− τ̂init(x))
2
(
δA(x)− δ̂A(x)

)2)
. (29)

Applying expectations on both sides yields the results, because (π̂(x), δ̂A(x)) ⊥⊥
(µ̂Y

0 (x), µ̂
A
0 (x), τ̂init(x)) due to sample splitting.
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B.3 PROOF OF THEOREM 3 (CONVERGENCE RATE OF THE WALD ESTIMATOR)

Proof. We define C̃ = max{C, 1} and obtain the upper bound

(τ̂W (x)− τ(x))2 (30)

=

(
(µ̂Y

1 (x)− µY
1 (x)) δA(x) + (µY

0 (x)− µ̂Y
0 (x)) δA(x) + (δA(x)− δ̂A(x)) δY (x)

δA(x) δ̂A(x)

)2

(31)

≤ 4C̃2

ρ2ρ̃2

[
(µ̂Y

1 (x)− µY
1 (x))

2 + (µ̂Y
0 (x)− µY

0 (x))
2 + (δA(x)− δ̂A(x))

2
]

(32)

≤ 8C̃2

ρ2ρ̃2
[
(µ̂Y

1 (x)− µY
1 (x))

2 + (µ̂Y
0 (x)− µY

0 (x))
2 + (µ̂A

1 (x)− µA
1 (x))

2

+(µ̂A
0 (x)− µA

0 (x))
2
]
, (33)

where we used the inequality (a+ b)2 ≤ 2(a2 + b2) several times. Taking expectations and applying
the smoothness assumptions yields the result.
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C THEORETICAL ANALYSIS UNDER SPARSITY ASSUMPTIONS

In Sec. 4.2, we analyzed MRIV theoretically by imposing smoothness assumptions on the underlying
data generating process. In particular, we derived a multiple robust convergence rate and showed
that MRIV outperforms the Wald estimator if the oracle CATE is smoother than its components. In
this section, we derive similar results by relying on a different set of assumptions. Instead of using
smoothness, we make assumptions on the level of sparsity of the CATE components. This assumption
is often imposed in high-dimensional settings (n < p) and is in line with previous literature on
analyzing CATE estimators (Curth & van der Schaar, 2021; Kennedy, 2022).

In the following, we say a function f(x) is k-sparse, if it is linear in x ∈ Rp and it only depends on
k < min{n, p} predictors. (Yang & Tokdar, 2015) showed, that in this case the minimax rate of f(x)
is given by k log(p)

n . The linearity assumption can be relaxed to an additive structural assumption,
which we omit here for simplicity. In the following, we replace the smoothness conditions in
Assumption 3 with sparsity conditions.
Assumption 6 (Sparsity). We assume that (1) the nuisance components µY

i (·) are α-sparse, µA
i (·)

and δA(·) are β-sparse, and π(·) is δ-sparse; (2) all nuisance components are estimated with their
respective minimax rate of k log(p)

n , where k ∈ {α, β, δ}; and (3) the oracle CATE τ(·) is γ-sparse
and the initial CATE estimator τ̂init converges with rate rτ (n).

We restate now our result from Theorem 3 for MRIV using the sparsity assumption.
Theorem 4 (MRIV upper bound under sparsity). We consider the same setting as in Theorem 2
under the sparsity assumption 6. If the second-stage estimator Ên yields the minimax rate γ log(p)

n
and satisfies Assumption 5, the oracle risk is upper bounded by

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲
γ log(p)

n
+ rτ (n)

(β + δ) log(p)

n
+

(α+ β)δ log2(p)

n2
.

Proof. Follows immediately from Lemma 2 by applying Ass- 6.

Again, we obtain a multiple robust convergence rate for MRIV in the sense that MRIV achieves a fast
rate even if the initial estimator or several nuisance estimators converge slowly. More precisely, for a
fast convergence rate of τ̂MRIV(x), it is sufficient if either: (1) rτ (n) decreases fast and δ is small;
(2) rτ (n) decreases fast and α and β are small; or (3) all α, β, and δ are small.

We derive now the corresponding rate for the Wald estimator.

Theorem 5 (Wald oracle upper bound). Given estimators µ̂Y
i (x) and µ̂A

i (x). Let δ̂A(x) = µ̂A
1 (x)−

µ̂A
0 (x) satisfy Assumption 4. Then, under Assumption 6 the oracle risk of the Wald estimator τ̂W (x)

is bounded by

E
[
(τ̂W(x)− τ(x))2

]
≲

(α+ β) log(p)

n
(34)

Proof. Follows immediately from the proof of Theorem 3, i.e., from Eq.(30) by applying Ass- 6.

If α = β = δ, we obtain the rates

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲
γ log(p)

n
+
α2 log2(p)

n2
and E

[
(τ̂W(x)− τ(x))2

]
≲
α log(p)

n
,

(35)

which means that τ̂MRIV(x) outperforms τ̂W(x) for γ < α, i.e., if the oracle CATE is more sparse
than its components.
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D MATHEMATICAL DETAILS REGARDING ASSUMPTION 3

In this section, we briefly state the formal definitions of the convergence ratesin Assumption 3. We
follow Stone (1980). Let θ be a parameter and T (θ) some target functional that we want to estimate.

Definition 1. A sequence of estimators T̂n(θ) of a functional T (θ) converges with rate rT (n) if

lim
c→0

lim inf
n∈N

sup
θ∈Θ

Pθ(T̂n(θ)− T (θ)| > crθ(n)) = 0. (36)

Definition 2. A rate rT (n) is called an upper bound to the rate of convergence if for all estimators
T̂n(θ) it holds for all c > 0 that

lim inf
n∈N

sup
θ∈Θ

Pθ(|T̂n(θ)− T (θ)|| > crθ(n)) > 0. (37)

and
lim
c→0

lim inf
n∈N

sup
θ∈Θ

Pθ(T̂n(θ)− T (θ)| > crθ(n)) = 1. (38)

rT (n) is called optimal if it is both achievable and an upper bound.

Stone (1980) showed that for a nonparametric regression problem with an η-smooth regression
function, the optimal rate of convergence is n−

2η
2η+p , where p is the dimension of the covariate space.
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E SIMULATED DATA

In the following, we describe how we simulate synthetic data for the experiments in Sec. 5.1 from
the main paper. As mentioned therein, we simulate the CATE components from Gaussian processes
using the prior induced by the Matern kernel (Rasmussen & Williams, 2008)

Kℓ,ν(xi, xj) =
1

Γ(ν)2ν−1

(√
2ν

ℓ
∥xi − xj∥2

)ν

Kν

(√
2ν

ℓ
∥xi − xj∥2

)
, (39)

where Γ(·) is the Gamma function and Kν(·) is the modified Bessel function of second kind. Here, ℓ
is the length scale of the kernel and ν controls the smoothness of the sampled functions.

We set ℓ = 1 and sample functions δY ∼ GP(0,Kℓ,γ), µY
0 ∼ GP(0,Kℓ,α), f1 ∼ GP(0,Kℓ,β),

f0 ∼ GP(0,Kℓ,β) and g ∼ GP(0,Kℓ,β). Then, we define µY
1 = δY + µY

0 , µA
1 = 0.3 · σ ◦ f1 + 0.7,

µA
0 = 0.3 · σ ◦ f0, δA = µA

1 − µA
0 , µY

0 = c0δA, and π = σ ◦ g. Finally, we set the oracle CATE to

τ =
µY
1 − µY

0

µA
1 − µA

0

=
δY
δA
. (40)

Note that we can create a setup where the CATE τ is smoother than its components by using a small
α/β ratio. An example is shown in Fig. 6.
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Figure 6: Gaussian process simulation for α = 1.5 and β = 50.

In the following, we describe how we generate data the (X,Z,A, Y ) using the CATE components
µY
i (x), µ

A
i (x), and π(x). We begin by sampling n observed confounder X ∼ N (0, 1), unobserved

confounders U ∼ N
(
0, 0.22

)
, and instruments Z ∼ Bernoulli(π(X)). Then, we obtain treatments

via
A = Z 1{U + ϵA > α1(X)}+ (1− Z)1{U + ϵA > α0(X)} (41)

with indicator function 1, noise ϵA ∼ N
(
0, 0.12

)
, and αi(X) = Φ−1

(
1− µA

i (X)
)√

0.12 + 0.22,
where Φ−1 denotes the quantile function of the standard normal distribution. Finally, we generate the
outcomes via

Y = A

(
(µA

1 (X)− 1)µY
0 (X)− µA

0 (X)µY
1 (X) + µY

1 (X)

δA(X)

)
(42)

+ (1−A)

(
µA
1 (X)µY

0 (X)− µA
0 (X)µY

1 (X)

δA(X)

)
+ αUU + ϵY , (43)

where ϵY ∼ N
(
0, 0.32

)
is noise and αU > 0 is a parameter indicating the level of unobserved

confounding. This choice of A and Y in Eq. (41) and Eq. (42), respectively, implies that τ(x) is
indeed the CATE, i. e., it holds that τ(x) = E[Y (1)− Y (0) | X = x].
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Lemma 3. Let (X,Z,A, Y ) be sampled from the the previously described procedure. Then, it holds
that

µA
i (x) = E[A | Z = i,X = x] and µY

i (x) = E[Y | Z = i,X = x]. (44)

Proof. The first claim follows from

E[A | Z = i,X = x] = P (U + ϵA > αi(x)) = 1− Φ(Φ−1(1− µA
i (x))) = µA

i (x), (45)

because U + ϵA ∼ N (0,
√
0.12 + 0.22). The second claim follows from

E[Y | Z = i,X = x] = µA
i (x)

(
(µA

1 (x)− 1)µY
0 (x)− µA

0 (x)µ
Y
1 (x) + µY

1 (x)

δA(x)

)
(46)

+ (1− µA
i (x))

(
µA
1 (x)µ

Y
0 (x)− µA

0 (x)µ
Y
1 (x)

δA(x)

)
(47)

=
µY
i (x)δA(x)

δA(x)
= µY

i (x). (48)
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F OREGON HEALTH INSURANCE EXPERIMENT

The so-called Oregon health insurance experiment3 (OHIE) (Finkelstein et al., 2012) was an important
RCT with non-compliance. It was intentionally conducted as large-scale effort among public health
to assess the effect of health insurance on several outcomes such as health or economic status. In
2008, a lottery draw offered low-income, uninsured adults in Oregon participation in a Medicaid
program, providing health insurance. Individuals whose names were drawn could decide to sign up
for the program.

In our analysis, the lottery assignment is the instrument Z, the decision to sign up for the Medicaid
program is the treatment A, and an overall health score is the outcome Y . The outcome was obtained
after a period of 12 months during in-person interviews. We use the following covariates X: age,
gender, language, the number of emergency visits before the experiment, and the number of people
the individual signed up with. The latter is used to control for peer effects, and it is important to
include this variable in our analysis as it is the only variable influencing the propensity score (see
below). We extract ∼ 10,000 observations from the OHIE data and plot the histograms of all variables
in Fig. 7. We can clearly observe the presence of non-compliance within the data, because the
ratio of treated / untreated individuals is much lower than the corresponding ratio for the treatment
assignment.
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Figure 7: Histograms of each variable in our sample from OHIE.

The data collection in the OHIE was done follows: After excluding individuals below the age
of 19, above the age of 64, and individuals with residence outside of Oregon, 74,922 individuals
were considered for the lottery. Among those, 29,834 were selected randomly and were offered
participation in the program. However, the probability of selection depended on the number of
household members on the waiting list: for instance, an individual who signed up with another person
was twice as likely to be selected. From the 74,922 individuals, 57,528 signed up alone, 17,236
signed up with another person, and 158 signed up with two more people on the waiting list. Thus,
the probability of being selected conditional on the number of household members on the waiting
list follows the multivariate version of Wallenius’ noncentral hypergeometric distribution (Chesson,
1976).

Propensity score: We computed the propensity score as follows. To account for the Wallenius’
noncentral hypergeometric distribution, we use the R package BiasedUrn to calculate the propensity
score π(x) = P(Z = 1 | X = x). We obtained

π(x) =


0.345, if individual x signed up alone,
0.571, if individual x signed up with one more person,
0.719, if individual x signed up with two more people.

(49)

3Data available here: https://www.nber.org/programs-projects/projects-and-centers/oregon-health-insurance-
experiment
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During the training of both MRIV and DRIV, we use the calculated values from Eq. (49) for the
propensity score.
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G DETAILS FOR BASELINE METHODS

In this section, we give a brief overview on the baselines which we used in our experiments. We
implemented: (1) CATE methods for unconfoundedness: TARNet (Shalit et al., 2017) and TARNet
combined with the DR-learner (Kennedy, 2022); (2) general IV methods, i.e., IV methods developed
for IV settings with multiple or continuous instruments and treatments: 2SLS (Wright, 1928), kernel
IV (KIV) (Singh et al., 2019), DFIV (Xu et al., 2021a), DeepIV (Hartford et al., 2017), DeepGMM
(Bennett et al., 2019), DMLIV (Syrgkanis et al., 2019), and DMLIV combined with DRIV (as
described in (Syrgkanis et al., 2019)); (3) the (plug-in) Wald estimator using linear models and
Bayesian additive regression trees (BART) (Chipman et al., 2010). Of note, the DR-learner assumes
unconfoundedness, which is why we only combine it TARNet in our experiments. In the following,
we provide details regarding methods and implementation.

G.1 CATE METHODS FOR UNCONFOUNDEDNESS

Many CATE methods assume unconfoundedness, i.e., that all confounders are observed in the data.
Formally, the unconfoundedness assumption can be expressed in the potential outcomes framework
as

Y (1), Y (0) ⊥⊥ A | X. (50)
Under unconfoundedness, the CATE is identified as

τ(x) = µ1(x)− µ0(x) with µi(x) = E[Y | A = i,X = x]. (51)
Methods that assume unconfoundedness proceed by estimating µi(x) = E[Y | A = i,X = x] from
Eq. (51). However, if unobserved confounders U exist, it follows that

τ(x) = E[Y | A = 1, X = x, U ]− E[Y | A = 0, X = x, U ] ̸= µ1(x)− µ0(x), (52)
which means that estimators that assume unconfoundedness are generally biased. Nevertheless, we
include two baselines that assume unconfoundedness into our experiments: TARNet (Shalit et al.,
2017) and the DR-learner (Kennedy, 2022).

TARNet (Shalit et al., 2017): TARNet (Shalit et al., 2017) is a neural network that estimates the
CATE components µi(x) from Eq. 51 by learning a shared representation Φ(x) and two potential
outcome heads hi(Φ(x)). We train TARNet by minimizing the loss

L(θ) =
n∑

i=1

L (hai
(Φ(xi, θΦ), θhi

), yi) , (53)

where θ = (θh1
, θh0

, θΦ) denotes the model parameters and L denotes squared loss if Y is continuous
or binary cross entropy loss if Y is binary.

Note regarding balanced representations: In (Shalit et al., 2017), the authors propose to add an
additional regularization term inspired from domain adaptation literature, which forces TARNet to
learn a balanced representation Φ(x), i.e., that minimizes the distance the treatment and control group
in the feature space. They showed that this approach leads to minimization of a generalization bound
on the CATE estimation error if the representation is invertible.

In our experiments, we refrained from learning balanced representations because minimizing the
regularized loss from (Shalit et al., 2017) does not necessarily result in an invertible representation and
thus may even harm the estimation performance. For a detailed discussion, we refer to (Curth & van
der Schaar, 2021). Furthermore, by leaving out the regularization, we ensure comparability between
the different baselines. If balanced representations are desired, the balanced representation approach
could also be extended to MRIV-Net, as we also build MRIV-Net on learning shared representations.

DR-learner (Kennedy, 2022): The DR-learner (Kennedy, 2022) is a meta learner that takes arbitrary
estimators of the CATE componenets µi and the propensity score π(x) = P(A = 1 | X = x) as
input and performs a pseudo-outcome regression by using the pseudo outcome

ŶMR =

(
A

π̂(X)
− 1−A

1− π̂(X)

)
Y +

(
1− A

π̂(X)

)
µ̂1(X)−

(
1− 1−A

1− π̂(X)

)
µ̂0(X). (54)

In our experiments, we use TARNet as base method to provide initial estimators µ̂i(X). We further
learn propensity score estimates π̂(X) by adding a seperate representation to TARNet as done in
(Shalit et al., 2017).
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G.2 GENERAL IV METHODS

2SLS (Wright, 1928): 2SLS (Wright, 1928) is a linear two-stage approach. First, the treatments A
are regressed on the instruments Z and fitted values Â are obtained. In the second stage, the outcome
Y is regressed on Â. We implement 2SLS using the scikit-learn package.

KIV (Singh et al., 2019): Kernel IV (Singh et al., 2019) generalizes 2SLS to nonlinear settings. KIV
assumes that the data is generated by

Y = f(A) + U, (55)

where U is an additive unobserved confounder and f is some unknown (potentially nonlinear)
structural function. KIV then models the structural function via

f(a) = µtψ(a) and E[ψ(A) | Z = z] = V ϕ(z), (56)

where ψ andϕ are feature maps. Here, kernel ridge regressions instead of linear regressions are used
in both stages to estimate µ and V .

Following (Singh et al., 2019) we use the exponential kernel (Rasmussen & Williams, 2008) and set
the length scale to the median inter-point distance. KIV does not provide a direct way to incorporate
the observed confounders X . Hence, we augment both the instrument and the treatment with X ,
which is consistent with previous work (Bennett et al., 2019; Xu et al., 2021a). We also use two
different samples for each stage as recommended in (Singh et al., 2019).

DFIV (Xu et al., 2021a): DFIV (Xu et al., 2021a) is a similar approach KIV in generalizing 2SLS to
nonlinear setting by assuming Eq. (55) and Eq. (56). However, instead of using kernel methods, DFIV
models the features maps ψθA and ϕθZ as neural networks with parameters θA and θZ , respectively.
DFIV is trained by iteratively updating the parameters θA and θZ . The authors also provide a training
algorithm that incorporates observed confounders X , which we implemented for our experiments.
During training, we used two different datasets for each of the two stages as described in in the paper.

DeepIV (Hartford et al., 2017): DeepIV (Hartford et al., 2017) also assumes additive unobserved
confounding as in Eq. (55), but leverages the identification result (Newey & Powell, 2003)

E[Y | X = x, Z = z] =

∫
h(a, x) dF (a | x, z), (57)

where h(a, x) = f(a, x) + E[U | X = x] is the target counterfactual prediction function. DeepIV
estimates F (a | x, z), i.e., the conditional distribution function of the treatment A given observed
covariates X and instruments Z, by using neural networks. Because we consider only binary
treatments, we simply implement a (tunable) feed-forward neural network with sigmoid activation
function. Then, DeepIV proceeds by learning a second stage neural network to solve the inverse
problem defined by Eq. (57).

DeepGMM (Bennett et al., 2019): DeepGMM (Bennett et al., 2019) adopts neural networks for IV
estimation inspired by the (optimally weighted) Generalized Method of Moments. The DeepGMM
estimator is defined as the solution of the following minimax game:

θ̂ ∈ argmin
θ∈Θ

sup
τ∈T

1

n

n∑
i=1

f(zi, τ)(yi − g(ai, θ))−
1

4n

n∑
i=1

f2(zi, τ)(yi − g(ai, θ̃))
2, (58)

where f(zi, ·) and g(ai, ·) are parameterized by neural networks. As recommended in (Bennett
et al., 2019), we solve this optimization via adversarial training with the Optimistic Adam optimizer
(Daskalakis et al., 2018), where we set the parameter θ̃ to the previous value of θ.

DMLIV (Syrgkanis et al., 2019): DMLIV (Syrgkanis et al., 2019) assumes that the data is generated
via

Y = τ(X)A+ f(X) + U, (59)
where τ is the CATE f some function of the observed covariates. First, DMLIV estimates the
functions q(X) = E[Y | X], h(Z,X) = E[A | Z,X], and p(X) = E[A | X]. Then, the CATE is
learned by minimizing the loss

L(θ) =
∑
i=1

(yi − q̂(xi)− τ̂(xi, θ)(ĥ(zi, xi)− p̂(xi))
2, (60)
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where τ̂(X, ·) is some model for τ(X). In our experiments, we use (tunable) feed-forward neural
networks for all estimators.

DRIV (Syrgkanis et al., 2019): DRIV (Syrgkanis et al., 2019) is a meta learner, originally proposed
in combination with DMLIV. It requires initial estimators for q(X), p(X), π(X) = E[Z | X = x],
and f(X) = E[A · Z | X = x] as well as an initial CATE estimatior τ̂init(X) (e.g., from DMLIV).
The CATE is then estimated by a pseudo regression on the following doubly robust pseudo outcome:

ŶDR = τ̂init(X) +
(Y − q̂(X)− τ̂init(X)(A− p̂(X))Z − π̂(X))

f̂(X)− p̂(X)r̂(X)
. (61)

We implement all regressions using (tunable) feed-forward neural networks.

Comparison between DRIV vs. MRIV: There are two key differences between our paper and (Syrgka-
nis et al., 2019): (i) In contrast to DRIV, we showed that our MRIV is multiply robust. (ii) We derive
a multiple robust convergence rate, while the rate in (Syrgkanis et al., 2019) is not robust with respect
to the nuisance rates.

Ad (i): Both MRIV and DRIV perform a pseudo-outcome regression on the efficient influence
function (EIF) of the ATE. The key difference: DRIV uses the doubly robust parametrization of the
EIF from (Okui et al., 2012), whereas we use the multiply robust parametrization of the EIF from
(Wang & Tchetgen Tchetgen, 2018)4. Hence, our MRIV frameworks extends DRIV in a non-trivial
way to achieve multiple robustness. Thus, our estimator is consistent in the union of three different
model specifications.5

Ad (ii): Here, we compare the convergence rates from DRIV and our MRIV and, thereby, show the
strengths of our MRIV. To this end, let us assume that the pseudo regression function is γ-smooth and
that we use the same second-stage estimator Ên with minimax rate n−

2γ
2γ+p for both DRIV and MRIV.

If the nuisance parameters q(X), p(X), f(X), and π(X) are α-smooth and further are estimated
with minimax rate n

−2α
2α+p , Corollary 4 from (Syrgkanis et al., 2019) states that DRIV converges with

rate
E
[
(τ̂DRIV(x)− τ(x))

2
]
≲ n

−2γ
2γ+p + n

−4α
2α+p .

In contrast, MRIV assumes estimation of the nuisance parameters µY
0 (x) with rate n

−2α
2α+p , µA

0 (x)

and δA(x) with rate n
−2β
2β+p , and π(x) with rate n

−2δ
2δ+p . If the initial estimator τ̂init(x) converges with

rate rτ (n), our Theorem 2 yields the rate

E
[
(τ̂MRIV(x)− τ(x))

2
]
≲ n

−2γ
2γ+p + rτ (n)

(
n

−2β
2β+p + n

−2δ
2δ+p

)
+ n−2(

α
2α+p+

δ
2δ+p ) + n−2(

β
2β+p+

δ
2δ+p ).

If all nuisance parameters converge with the same minimax rate of n
−2α
2α+p , the rates of DRIV and

our MRIV coincide. However, different to DRIV, our rate is additionally multiple robust in spirit of
Theorem 1. This presents a crucial strength of our MRIV over DRIV: For example, if δ is small (slow
convergence of π̂(x)), our MRIV still with fast rate as long as α and β are large (i.e., if the other
nuisance parameters are sufficiently smooth).

G.3 WALD ESTIMATOR

Finally, we consider the Wald estimator (Wald, 1940) for the binary IV setting. More precisely, we
estimate the CATE components µY

i (x) and µA
i (x) seperately and plug them into

τ(x) =
µ̂Y
1 (x)− µ̂Y

0 (x)

µ̂A
1 (x)− µ̂A

0 (x)
. (62)

We consider two versions of the Wald estimator:
4For a detailed discussion on multiple robustness and the importance of the EIF parametrization, we refer to

(Wang & Blei, 2019), Section 4.5.
5On a related note, a similar, important contribution of developing multiply robust method was recently made

for the average treatment effect. Here, the estimator of (Okui et al., 2012) was extended by the estimator of
(Wang & Tchetgen Tchetgen, 2018) to allow for multi robustness. Yet, this different from our work in that it
focuses on the average treatment effect, while we study the conditional average treatment effect in our paper.
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Linear: We use linear regressions to estimate the µY
i (x) and logistic regressions to estimate the

µA
i (x).

BART: We use Bayesian additive regression trees (Chipman et al., 2010) trees to estimate the µY
i (x)

and random forest classifier to estimate the µA
i (x).
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H VISUALIZATION OF PREDICTED CATES

We plot the predicted CATEs for the different baselines and MRIV-Net in Fig. 8 (for n = 3000). As
expected, the linear methods (2SLS and linear Wald) are not flexible enough to provide accurate
CATE estimates. We also observe that the curve of MRIV-Net without MRIV is quite wiggly, i.e., the
estimator has a relatively large variance. This variance is reduced when the full MRIV-Net is applied.
As a result, curve is much smoother. This is reasonable because MRIV does not estimate the CATE
components individually, but estimates the CATE directly via the Stage 2 pseudo-outcome regression.
Overall, this confirms the superiority of our proposed framework.
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Figure 8: Predicted CATEs (blue) and oracle CATE (red) for different baselines.
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I IMPLEMENTATION DETAILS AND HYPERPARAMETER TUNING

Implementation details for deep learning models: To make the performance of the deep learning
models comparable, we implemented all feed-forward neural networks (including MRIV-Net) as
follows: We use two hidden layers with RELU activation functions. We also incorporated a dropout
layer for each hidden layer. We trained all models with the Adam optimizer (Kingma & Ba, 2015)
using 100 epochs. Exceptions are only DFIV and DeepGMM, where we used 200 epochs for training,
accounting for slower convergence of the respective (adversarial) training algorithms. For DeepGMM,
we further used Optimistic Adam (Daskalakis et al., 2018) as in the original paper.

Training times: We report the approximate times needed to train the deep learning models on
our simulated data with n = 5000 in Table 5. For training, we used an AMD Ryzen Pro 7 CPU.
Compared to DMLIV and DRIV, the training of MRIV-Net is faster because only a single neural
network is trained.

Table 5: Training times for deep learning models (in seconds).

TARNet TARNet + DR DFIV DeepIV DeepGMM DMLIV DMLIV + DRIV MRIV-Net

∼10.62 ∼28.57 ∼164.98 ∼30.21 ∼17.31 ∼74.98 ∼91.12 ∼32.20

Hyperparameter tuning: We performed hyperparameter tuning for all deep learning models
(including MRIV-Net), KIV, and the BART Wald estimator on all datasets. For all methods except
KIV and DFIV, we split the data into a training set (80%) and a validation set (20%). We then
performed 40 random grid search iterations and chose the set of parameters that minimized the
respective training loss on the validation set. In particular, the tuning procedure was the same for
all baselines, which ensures that the performance gain of MRIV-Net is due to the method itself
and not due to larger flexibility. Exceptions are only KIV and DFIV, for which we implemented
the customized hyperparameter tuning algorithms proposed in (Singh et al., 2019) and (Xu et al.,
2021a) to ensure consistency with prior literature. For the meta learners (DR-learner, DRIV, and
MRIV), we first performed hyperparameter tuning for the base methods and nuisance models, before
tuning the pseudo-outcome regression neural network by using the input from the tuned models. The
tuning ranges for the hyperparameter are shown in Table 6. These include both the hyperparameter
rangers shared across all neural networks and the model-specific hyperparameters. For reproducibility
purposes, we publish the selected hyperparameters in our GitHub project as .yaml files.

Table 6: Hyperparameter tuning ranges.

MODEL HYPERPARAMETER TUNING RANGE

Feed-forward neural networks Hidden layer size(es) p, 5p, 10p, 20p, 30p (simulated data)
(Shared parameter ranges p, 3p, 5p, 8p, 10p (OHIE)
for all deep learning baselines) Learning rate 0.0001, 0.0005, 0.001, 0.005, 0.01

Batch size 64, 128, 256
Dropout probability 0, 0.1, 0.2, 0.3

KIV λ (Ridge penalty first stage) 5, 6, 7, 8, 9, 10, 12
ξ (Ridge penalty second stage) 5, 6, 7, 8, 9, 10, 12

DFIV λ1 (Ridge penalty first stage) 0.0001, 0.001, 0.01, 0.1 (simulated data)
0.01, 0.05, 0.1 (OHIE)

λ2 (Ridge penalty second stage) 0.0001, 0.001, 0.01, 0.1 (simulated data)
0.01, 0.05, 0.1 (OHIE)

DeepGMM λf (learning rate multiplier) 0.5, 1, 1.5, 2, 5
Wald (BART) Number of trees (BART) 20, 30, 40, 50

Number of trees (Random forest classifier) 20, 30, 40, 50
p = network input size

Hyperparameter robustness checks: We also investigate the robustness of MRIV-Net with respect
to hyperparameter choice. To to this, we fix the optimal hyperparameter constellation for our simulated
data for n = 3000 and perturb the hidden layer sizes, learning rate, dropout probability, and batch size.
The results are shown in Fig. 9. We observe that the RMSE only changes marginally when perturbing
the different hyperparameters, indicating that our method is to a certain degree robust against
hyperparameter misspecification. Furthermore, our results indicate that the performance improvement
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of MRIV-Net over the baselines observed in our experiments is not due to hyperparameter tuning,
but to our method itself.
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Figure 9: Robustness checks for different hyperparameters of MRIV-Net.
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J RESULTS FOR SEMI-SYNTHETIC DATA

In the main paper, we evaluated MRIV-Net both on synthetic and real-world data. Here, we provide
additional results by constructing a semi-synthetic dataset on the basis of OHIE. It is common practice
in causal inference literature to use semi-synthetic data for evaluation, because it combines advantages
of both synthetic and real-world data. On the one hand, the real-world data part ensures that the
data distribution is realistic and matches those in practice. On the other hand, the counterfactual
ground-truth is still available, which makes it possible to measure the performance of CATE methods.

We construct our semi-synthetic data as follows: First, we extract the covariates X ∈ R5 and instru-
ments Z ∈ {0, 1} of our OHIE dataset from Sec. F. Then, we construct the treatment components
µA
i (x) via

µA
1 (X) = 0.3 · σ(X1) + 0.7 and µA

0 (X) = 0.3 · σ(X1), (63)
where X1 is the (standardized) age and σ(·) is the sigmoid function. The outcome components are
constructed via

µY
1 (X) = 0.5X2

1 +

5∑
i=2

X2
i and µY

0 (X) = −0.5X2
1 +

5∑
i=2

X2
i . (64)

We then sample treatments A and outcomes Y as in Eq. (41) and Eq. (42). Lemma 3 ensures that
µY
i (X) = E[Y | Z = i,X] and µA

i (X) = E[A | Z = i,X].

Given the above, the oracle CATE becomes

τ(X) =
X2

1

0.7
. (65)

Note that τ(X) is sparse in the sense that it only depends on age, while the outcome components
depend on all five covariates. Following our theoretical analysis in Sec. C, MRIV-Net should thus
outperform methods that aim at estimating the components directly. This is confirmed in Table 7,
where we show the results for all baselines and MRIV-Net on the semi-synthetic data. Indeed, we
observe that MRIV-Net outperforms all other baselines, confirming both the superiority of our method
as well as our theoretical results under sparsity assumptions from Sec. C.

Table 7: Results for semi-synthetic data.
Method n = 3000 n = 5000 n = 8000

(1) STANDARD ITE
TARNet (Shalit et al., 2017) 1.66± 0.11 1.58± 0.07 1.57± 0.11
TARNet + DR (Shalit et al., 2017; Kennedy, 2022) 1.31± 0.28 1.22± 0.37 1.12± 0.15

(2) GENERAL IV
2SLS (Wooldridge, 2013) 1.34± 0.06 1.31± 0.03 1.32± 0.02
KIV (Singh et al., 2019) 1.97± 0.10 1.92± 0.05 1.93± 0.05
DFIV (Xu et al., 2021a) 1.67± 0.44 1.63± 0.47 1.45± 0.17
DeepIV (Hartford et al., 2017) 1.24± 0.26 0.99± 0.22 0.84± 0.19
DeepGMM (Bennett et al., 2019) 1.39± 0.03 1.37± 0.16 1.18± 0.16
DMLIV (Syrgkanis et al., 2019) 2.12± 0.10 2.09± 0.09 2.02± 0.11
DMLIV + DRIV (Syrgkanis et al., 2019) 1.22± 0.10 1.18± 0.19 1.00± 0.08

(3) WALD ESTIMATOR (WALD, 1940)
Linear 1.42± 0.24 1.28± 0.07 1.32± 0.07
BART 1.48± 0.24 1.29± 0.04 1.06± 0.13

MRIV-Net (network only) 1.11± 0.15 0.84± 0.14 0.95± 0.21
MRIV-Net (ours) 0.71 ± 0.24 0.75 ± 0.18 0.78 ± 0.26

Reported: RMSE (mean ± standard deviation). Lower = better (best in bold)

31



Published as a conference paper at ICLR 2023

K RESULTS FOR CROSS-FITTING

Here, we repeat our experiments from the main paper but now make use of cross-fitting. Recall that,
in Theorem 2, we assume that the nuisance parameter estimation and the pseudo-outcome regression
are performed on three independent samples. We now address this through cross-fitting. To this end,
our aim is to show that our proposed MRIV framework is again superior.

For MRIV, we proceeded as follows: We split the sample D into three equally sized samples D1, D2,
and D3. We then trained τ̂init(x), µ̂Y

0 (x), and µ̂A
0 (x) on D1, δ̂A(x) and π̂(x) on D2, and performed

the pseudo-outcome regression on D3. Then, we repeated the same training procedure two times, but
performed the pseudo-outcome regression on D2 and D1. Finally, we averaged the resulting three
CATE estimators. For DRIV, we implemented the cross-fitting procedure described in (Syrgkanis
et al., 2019). For the DR-learner, we followed (Kennedy, 2022).

The results are in Table 8. Importantly, the results confirm the effectiveness of our proposed MRIV.
Overall, we find that our proposed MRIV outperforms DRIV for the vast majority of base methods
when performing cross-fitting. Furthermore, MRIV-Net is highly competitive even when comparing
it with the cross-fitted estimators. This shows that our heuristic to learn separate representations
instead of performing sample splits works in practice. In sum, the results confirm empirically that our
MRIV is superior.

Table 8: Results for base methods with different meta-learners (i.e., DRIV, and our MRIV) using
cross-fitting and results for MRIV-Net without cross-fitting.

n = 3000 n = 5000 n = 8000
hhhhhhhhhhhhhhBase methods

Meta-learners
DRIV MRIV (ours) DRIV MRIV (ours) DRIV MRIV (ours)

(1) STANDARD ITE
TARNet (Shalit et al., 2017) 0.30 ± 0.02 0.36± 0.16 0.18± 0.06 0.16 ± 0.03 0.21± 0.08 0.13 ± 0.04
TARNet + DR-learner (Shalit et al., 2017; Kennedy, 2022) 0.85± 0.11 0.66± 0.08 0.67± 0.12

(2) GENERAL IV
2SLS (Wooldridge, 2013) 0.42± 0.11 0.33 ± 0.09 0.20 ± 0.07 0.23± 0.11 0.24± 0.10 0.14 ± 0.02
KIV (Singh et al., 2019) 0.47± 0.18 0.45 ± 0.15 0.20± 0.06 0.19 ± 0.08 0.22± 0.04 0.15 ± 0.03
DFIV (Xu et al., 2021a) 0.35± 0.05 0.28 ± 0.09 0.22± 0.10 0.18 ± 0.08 0.24± 0.12 0.16 ± 0.04
DeepIV (Hartford et al., 2017) 0.38 ± 0.09 0.44± 0.16 0.20± 0.07 0.19 ± 0.07 0.20± 0.08 0.12 ± 0.02
DeepGMM (Bennett et al., 2019) 0.42 ± 0.09 0.42 ± 0.16 0.19 ± 0.04 0.19 ± 0.07 0.22± 0.06 0.13 ± 0.02
DMLIV (Syrgkanis et al., 2019) 0.44 ± 0.09 0.46± 0.16 0.21± 0.04 0.19 ± 0.07 0.21± 0.05 0.14 ± 0.02

(3) WALD ESTIMATOR (WALD, 1940)
Linear 0.47± 0.23 0.36 ± 0.12 0.24± 0.05 0.20 ± 0.08 0.22± 0.05 0.15 ± 0.02
BART 0.43± 0.12 0.39 ± 0.12 0.14± 0.05 0.13 ± 0.05 0.23± 0.08 0.15 ± 0.02

MRIV-Net\w network only (ours) 0.35± 0.12 0.26 ± 0.11 0.19± 0.13 0.15 ± 0.03 0.18± 0.08 0.13 ± 0.03

Reported: RMSE (mean ± standard deviation). Lower = better (best in bold)
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L FURTHER EXPERIMENTAL RESULTS ON REAL-WORLD DATA

In Section 5.2, we estimated the ITE on the OHIE data and visualized the treatment heterogeneity
with respect to age and gender. In this section, we provide additional results and also visualize the
heterogeneity with respect to age as well as additional covariates. These are: (1) the number of
emergency visits a patient has in its history before signing up for the lottery and (2) the language
spoken by the patient (English or other). We fixed the gender to “female”.

For (1), we plot the estimated ITE for three different age groups over the number of emergency visits.
The results are shown in Fig. 10.
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Figure 10: Estimated treatment effects for different age and number of emergency visits.

We observe that all methods tend to estimate a larger effect for individuals who had more emergency
visits in their patient history. However, the IV methods (in particular our MRIV-Net) estimate a much
larger effect for patients with many visits. In contrast to the other methods, MRIV-Net also estimates
larger effects for older than for younger patients. The results provided by MRIV-Net seem intuitive,
as older patients with a history of emergency visits should be exposed to higher health-related risks,
thus benefiting from health insurance. The fact that TARNet consistently estimates small (and even
negative) effects could be an indicator of bias due to unobserved confounding.

For (2), we plot the estimated ITE for three different age groups over the spoken language. The
results are shown in Fig. 11.
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Figure 11: Estimated treatment effects for different age and language

For patients of age 50, our MRIV-Net estimates a higher effect for the English-speaking patients.
Interestingly, for older patients, the estimated effect increases also for non-English speaking patients.
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