
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HARNESSING OPTIMIZATION DYNAMICS FOR
CURVATURE-INFORMED MODEL MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging is an effective strategy for composing capabilities in large language
models without the need for costly joint retraining. We study this process in the
supervised fine-tuning (SFT) stage, consolidating multiple checkpoints special-
ized for distinct capabilities (e.g., math, coding, and precise instruction following)
into a single model. First, we introduce Optimization Trajectory Aware (OTA)
Merging, a curvature-aware method for mitigating task interference that uses op-
timizer second-moment statistics as a diagonal curvature proxy to first prune the
task vector with our Fast Fisher Grafting (FFG) technique and then reweight the
pruned vector. When merging diverse, capability-based checkpoints, OTA im-
proves the merged model’s performance over strong baseline methods, as evaluated
on unseen capability-based benchmarks. Second, we conduct a comprehensive,
theoretically-inspired empirical analysis to explain the effectiveness of OTA. Our
analysis surprisingly reveals that FFG implicitly induces a layer- and role-wise
aware pruning mechanism that is capable of maintaining fine-tuning performance
at much more aggressive pruning ratios compared to magnitude pruning and that
exhibits interpretable task localization properties. Third, an extensive comparison
of our curvature proxy across capability checkpoints shows that experts converge
to a basin with substantial curvature similarity, offering a novel lens on why simple
linear merging can be effective in practice. This result further strengthens our
ablation study, showing that FFG is critical for merging performance. Finally, we
develop a memory-light variant of OTA that efficiently compresses the second mo-
ments, mitigating the additional storage requirements of our method and improving
scalability. We make all code, training and evaluation scripts, visualization arti-
facts, and capability-specific SFT checkpoints accessible through an anonymized
repository at https://github.com/anon123ota-dotcom/ota-ffg.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success as generalist foundations for
diverse tasks, with fine-tuning on specialized data yielding expert models that excel in targeted do-
mains Brown et al. (2020). However, deploying an ever-growing suite of specialized experts incurs pro-
hibitive operational and computational costs, motivating research into model merging—consolidating
multiple expert capabilities into a single multitask model without retraining costs or ensembling
latency.

Despite empirical successes ranging from weight averaging to curvature-aware methods like Fisher
Merging (Matena & Raffel, 2022b), the fundamental question remains: why does model merging
work? The prevailing hypothesis—that fine-tuned models co-inhabit a single, wide, flat loss basin
enabling linear model connectivity (Frankle et al., 2020)—fails at non-trivial scales and for models
trained on disparate tasks with distinct optimization trajectories. Yet simple linear averaging remains
competitive against sophisticated methods at scale (Yadav et al., 2024), revealing a critical gap in our
understanding of loss landscape curvature and limiting theoretical guidance for merging strategies.

We present a novel empirically-grounded perspective on SFT fine-tuned LLM curvature. Our central
insight: second-moment estimates (exp_avg_sq) from adaptive optimizers like Adam Kingma &
Ba (2014) serve as powerful, readily available proxies for the Fisher information matrix diagonal and
loss landscape curvature. We operationalize this through the Optimization Trajectory Aware (OTA)

1

https://github.com/anon123ota-dotcom/ota-ffg

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

merging framework, employing a two-stage process. First, Fast Fisher Grafting (FFG) leverages
optimizer states to identify and revert noisy parameter updates, restoring non-essential changes to
base model values—a principled grafting approach Panigrahi et al. (2023). Figure 1 (left) reveals that
task-specific knowledge exhibits high localization and structured sparsity. Second, OTA aggregates
denoised experts via curvature-aware merging using the same optimizer states as preconditioners.
Our results (Figure 1, right) demonstrate consistent outperformance of established baselines across
diverse capabilities, with FFG’s saliency-aware denoising driving the most significant gains. To
mitigate heavy data curation stages for post-training and ensure experimental reliability, we fully
replicated the SFT stage of Tulu3 Lambert et al. (2024), an open-source post-training pipeline built
on Llama 3 models.

Our extensive experiments reveal FFG’s distinct localization patterns compared to magnitude pruning:
aggressive structured column/row sparsity in early and late query/key layers, and specialized
attention heads in late-layer output projections. To address storage requirements for second-moment
matrices (comparable to model size), we propose rank-one AdaFactor-style compression Shazeer
& Stern (2018), demonstrating maintained performance on merging benchmarks. Low stable rank
across transformer layers validates this compression. Finally, we provide compelling empirical
evidence for a new merging theory: capability-based SFT checkpoints develop shared curvature
geometry explaining linear averaging success, with models trained on identical data but different
learning rate schedules exhibiting nearly identical curvature structures.

(a) Task localization via FFG

Math

Code

CommonsenseInstruction

Forgetting

20
40

60
80

Sc
or

e
(%

)

Methods
OTA-Merging (Ours)
OTA-Merging (rank-1)
Fisher Merging
Linear Averaging
TIES-Merging
DARE
Best Individual Expert

(b) Merging performance comparison

Figure 1: Left: FFG reveals that task-specific knowledge is highly localized. This heatmap shows
the FGG mask regions for three expert models (math, code, instructions) in the token embedding
layer, demonstrating clear, low-rank structured sparsity induced by FFG at 40% global density.
Right: A capability-based comparison shows that our full OTA method, which combines FFG-based
denoising with curvature-aware aggregation, is the top-performing merging technique. The dashed
line represents the performance ceiling of the best individual expert for each capability.

2 RELATED WORK

Weight-Space Model Merging and Composition. A rapidly growing literature studies how to
combine separately fine-tuned models directly in weight space. Early work showed that simple
weight averaging often improves accuracy and robustness when fine-tuned solutions lie in a shared
basin (Wortsman et al., 2022). Matena & Raffel (2022a) formalize merging as approximate posterior
combination via Fisher-weighted averaging, where (diagonal) Fisher information acts as parameter-
wise preconditioner. Task arithmetic composes behaviors by adding/subtracting task vectors (Ilharco
et al., 2022); its theory and practice were strengthened by Ortiz-Jimenez et al. (2023), who advocate
editing in the model’s tangent space. Permutation alignment methods such as Git Re-Basin expose
linear connectivity by matching hidden units before interpolation (Ainsworth et al., 2023). To curb
interference, TIES-Merging trims small edits and resolves sign conflicts (Yadav et al., 2023). More
recently, Tam et al. (2024) cast merging as solving a linear system in a task-parameter subspace
(MaTS), while Huang et al. (2024) propose a tuning-free, high-performance recipe (EMR) that
works across modalities. Practitioner tooling such as MERGEKIT has standardized many of these
strategies for LLMs (Goddard et al., 2024b). Our approach complements these directions with a
curvature-aware, two-stage pipeline: (i) FFG selects/denoises per-parameter edits using the second

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

moments combined with Optimal Brain Surgeon methodology Hassibi & Stork (1992a) , and (ii)
curvature-preconditioned aggregation reweights surviving edits during merging.

Curvature Proxies from Optimization Dynamics. Our work repurposes the readily available
second-moment statistics from adaptive optimizers as a proxy for the diagonal Fisher information.
Recent work by Li et al. (2025) compellingly validates this core idea, introducing the "Squisher" and
demonstrating its effectiveness as a "for free" replacement for a calculated Fisher across a broad set of
applications, including model pruning, continual learning, and a form of Fisher-merging. While our
work shares this foundational insight, it diverges significantly in its methodology, application focus,
and conceptual contributions. We detailed this, alongside additional related works, in Appendix B.

3 THE OTA-MERGING FRAMEWORK

We propose OTA Merging, a unified framework designed to merge fine-tuned experts by addressing
parameter interference and curvature misalignment in a principled, storage-efficient manner. Our
approach is built on a key insight: the second-moment estimates tracked by adaptive optimizers like
Adam Kingma & Ba (2014) can serve as a computationally cheap yet effective proxy for the local
curvature of the loss landscape. By leveraging this curvature information, OTA-Merging executes a
three-stage process: (1) it identifies and isolates the critical parameters for each task using a novel
pruning strategy, FFG; (2) it aggregates these task-specific subnetworks using a curvature-aware
weighting scheme; and (3) it employs a compression technique to store the required second moment
information with minimal memory overhead.

Adam’s Second Moment as a Proxy for the Empirical Fisher. Preconditioning-based optimizers,
such as Adam Kingma & Ba (2014) and AdaGrad Duchi et al. (2011), scale gradients by a precondi-
tioner matrix that approximates the Fisher Information Matrix (FIM). For a model with parameters
w, the update at step k is given by wk+1 = wk − ηP−1

k mk, where η is the learning rate, mk is the
first momentum of the gradients, and Pk = Diag(vk) is a diagonal preconditioner derived from the
second moment, vk.

The second moment, vk, is typically an exponential moving average (EMA) of element-wise squared
gradients: vk = β2vk−1 + (1 − β2)(∇LBk

(wk))
⊙2, where Bk is the mini-batch at step k. This

formulation means that Pk accumulates information about the diagonal of the empirical FIM over the
optimization trajectory. A comprehensive study on the connection between the empirical FIM and the
Hessian is provided by Martens (2020). Moreover, Morwani et al. (2024) studies the connection of
the outer product of mini-batch gradients to the empirical FIM, and Li et al. (2025) further validates
the effectiveness of second moments as a Fisher proxy. By leveraging these works, the connection
between the second moment and the Hessian can be formalized with detailed theoretical justification,
and proofs are deferred to Appendix D for completeness.

Component 1: Parameter Selection with FFG. To mitigate destructive interference when merging,
we first identify a subnetwork within each expert that maintains the fine-tuning performance of
the full model. Inspired by Optimal Brain Damage LeCun et al. (1989), we score the saliency
of each parameter’s change from its pre-trained state w0. The saliency of a parameter change
∆wτ,i = w∗

τ,i − w0,i for task τ is defined by its contribution to the loss, approximated by a second-
order Taylor expansion: sτ,i = 1

2Hii(∆wτ,i)
2.

Calculating the Hessian H is infeasible for large models. However, the second-moment estimate
vτ from the Adam optimizer serves as an effective, training-free proxy for the diagonal of the FIM,
which in turn approximates the Hessian. This insight leads to our FFG saliency score, defined as
sτ,i = (∆wτ,i)

2 · vτ,i. For each expert τ , we compute this score for every parameter in its task vector
∆wτ = w∗

τ −w0. We then generate a binary mask mτ by preserving only the top-k parameters with
the highest saliency scores, where k is set by a sparsity ratio ρ. Instead of pruning parameters to zero,
we graft by reverting the non-selected parameters back to their w0 values. The resulting pruned task
vector is thus ∆w′

τ = mτ ◦∆wτ .

Component 2: Curvature-Aware Aggregation. After identifying the essential subnetwork for each
expert, we must aggregate them in a manner that respects the curvature of the loss landscape. Inspired
by preconditioned model merging methods such as Fisher Merging Matena & Raffel (2022a) (see
Appendix C for additional background), we achieve this by solving for a merged parameter vector that
is at minimal distance from each of the pruned task vectors, where distance is measured in a space

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

warped by the curvature. Let P∗
τ,Adam = Diag(

√
v∗
τ + ϵ) be the diagonal preconditioning matrix

derived from Adam’s second-moment estimates for expert τ . The merged model is the solution to
the following optimization problem: wmerged = w0 + argmin∆w

∑T
τ=1 ∥∆w −∆w′

τ∥2P∗
τ,Adam

. This
objective has a closed-form solution, yielding a pre-conditioned average of the pruned task vectors:

wOTA
merged = w0 +

(
T∑

τ=1

P∗
τ,Adam

)−1(T∑
τ=1

P∗
τ,Adam(mτ ◦∆w′

τ)

)
. (1)

This unified equation elegantly demonstrates how OTA first determines what to merge via the FFG
mask mτ and then decides how to merge using the compressed, curvature-aware preconditioner P̂∗

τ ,
forming a complete and scalable framework.

Component 3: Memory-Efficient Preconditioner Compression. A practical challenge is that
storing the full second-moment tensor vτ for each expert doubles the storage cost. To overcome
this, we adopt a compression strategy inspired by AdaFactor Shazeer & Stern (2018). For any large
weight matrix, instead of storing the full vτ , we only store the moving averages of its row-wise and
column-wise sums. We can then reconstruct a non-negative, rank-1 approximation of the second-
moment tensor, v̂τ , from these compressed statistics at runtime. This low-rank approximation is
then used to form a compressed preconditioner, P̂∗

τ = Diag(
√
v̂τ + ϵ), which replaces its full-rank

counterpart in both the FFG saliency calculation (Section 3) and the OTA aggregation formula (Eq. 1).
For additional background on AdaFactor, see Appendix C. Moreover, we would like to highlight that
approaches such as SVD would not be effective here, as we are factorizing a non-negative matrix.

4 EXPERIMENTS

We evaluate OTA-FFG across diverse benchmarks, studying how FFG localizes task-critical pa-
rameters and how OTA aggregates them. We compare against strong baselines and magnitude
pruning across sparsity levels, and analyze mask structure and curvature to explain observed gains
and compression benefits. Moreover, we analyze second-moment curvature of SFT models, finding
highly similar curvature across capabilities and near-identical curvature under different schedulers,
motivating why simple linear averaging works.

4.1 EXPERIMENTAL SETUP

Models, Tasks, and Training. Our experiments use meta-llama/Meta-Llama-3.1-8B
as the base model. To create a realistic merging scenario, we fine-tune five SFT mod-
els on distinct, capability-aligned subsets of the allenai/tulu-3-sft-mixture dataset
Lambert et al. (2024). These capabilities include mathematics (using Tülu 3 Persona
MATH, OpenMathInstruct 2, and NuminaMath-TIR), coding (using Tülu 3 Persona
Python and Evol CodeAlpaca), general instruction following (using WildChat (GPT-4
subset), OpenAssistant, and No Robots), knowledge recall (using FLAN v2, SciRIFF,
and TableGPT), and precise instruction following (using Tülu 3 Persona IF). This setup
creates a well-posed aggregation problem where each expert localizes a complementary skill.

All models are fine-tuned using full-parameter SFT via the LLaMA-Factory library Zheng et al.
(2024). Crucially for our method, we use the AdamW optimizer and save the complete optimizer
state, including the exponential moving average of squared gradients (exp_avg_sq), which serves
as our preconditioning tensor and curvature proxy.

Methods Under Comparison. We evaluate our proposed method and its ablations against a suite
of strong baselines implemented in MergeKit Goddard et al. (2024a). We evaluate OTA-FFG
(ours), OTA without FFG, FFG-TA (FFG + linear averaging), and baselines—Linear, TIES, DARE,
Breadcrumbs, Fisher—using MergeKit implementations.

Evaluation Suite. We evaluate all merged models on a diverse set of benchmarks using the Tülu-3
evaluation suite via the OLMES toolkit Lambert et al. (2024), ensuring a rigorous and reproducible
assessment. The suite includes: HumanEval(+) Chen et al. (2021); Liu et al. (2024) for coding,
GSM8K Cobbe et al. (2021) and MATH Hendrycks et al. (2021) for mathematical reasoning,
IFEval Zhou et al. (2023) for instruction following, BBH (CoT) Suzgun et al. (2022) for general

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

reasoning, DROP Dua et al. (2019) for reading comprehension, and PopQA Mallen et al. (2023)
for knowledge recall. Moreover, to further strengthen the reliability of our experimental setup, each
capability-based SFT checkpoint is evaluated on the entire evaluation suite, and as expected we
observe that each SFT model indeed excels at the unseen evaluation benchmark corresponding to its
capability. The evaluation results are provided in Table 4 in Appendix E.4.

4.2 MAIN RESULTS: MERGING PERFORMANCE

OTA with FFG Achieves State-of-the-Art Merging Performance. The main results in Table 1
confirm our core hypothesis. We compared the performance of several methods for merging the five
SFT checkpoints discussed previously. The table shows the performance of each merging method
(rows) on a specific capability (columns). A capability’s performance is measured by averaging the
scores from the benchmarks assigned to it in our evaluation suite. Specifically: Math performance
is the average of the GSM8K and MATH benchmarks; Code is the average of HumanEval and
HumanEval+; Commonsense is the average of BBH and Drop; Instruction-Following is measured by
IFEval; and Forgetting is measured by PopQA. Our full method, OTA, achieves the highest average
score (0.582) across all merging techniques, outperforming strong baselines like TIES (0.565). The
ablation studies clearly show that the most significant gains come from FFG’s saliency-based task
vector sparsification. The FFG-TA (Selection Only) ablation, which simply averages FFG-pruned task
vectors, already achieves a strong 0.560 average. This is substantially better than OTA (Aggregation
Only) (0.536), which uses our curvature preconditioning on unpruned task vectors. This result
strongly supports our thesis that the primary obstacle in merging non-IID experts is parameter
interference, which FFG effectively mitigates by acting as a denoiser. The poor performance of
DARE (0.417) further reinforces that naive, random pruning is detrimental; a saliency-aware method
is essential. Moreover, for all methods under comparison, the sparsity ratio is tuned on a per-expert
basis, whether using FFG, magnitude or random pruning on task vectors. We observed that tuning a
fixed sparsity ratio for all experts made the performance of both OTA and TIES no better than that of
linear merging. Moreover, we evaluated the Tulu3-SFT, which can be seen as a multi-task SFT model
trained on aggregated data of all capability-based SFT checkpoints. We observed that there is still
a considerable but not significant gap between capability-based SFT merging and multi-task SFT
training, strengthening the effectiveness of model merging in post-training and showing room for
further improvement of merging methods.

Table 1: Performance comparison of merging methods. The best-performing merge method in each
column is highlighted. The "Average" score is the unweighted mean across the five capability metrics.

Model Math Code Commonsense Instruction Forgetting Average

DARE 0.335 0.619 0.450 0.470 0.212 0.417
Breadcrumbs 0.453 0.722 0.547 0.529 0.260 0.502
Fisher 0.446 0.686 0.657 0.597 0.318 0.541
Linear 0.459 0.718 0.650 0.612 0.318 0.551
TIES 0.475 0.748 0.654 0.629 0.318 0.565
OTA (w Linear) 0.458 0.771 0.650 0.601 0.318 0.560
OTA (wo FFG) 0.458 0.660 0.654 0.590 0.318 0.536
OTA (rank1) 0.494 0.787 0.646 0.614 0.315 0.571
OTA 0.504 0.783 0.645 0.664 0.315 0.582

Tulu3-SFT 0.528 0.835 0.650 0.715 0.295 0.605

4.3 DEEP DIVE: ANALYSIS OF THE FFG STAGE

FFG Consistently Outperforms Magnitude Pruning. To validate the FFG mask selection mecha-
nism, we compare it directly against magnitude pruning across a range of density ratios (see Figure 7
in Appendix F). We apply FFG and magnitude pruning on task vectors of math, code, and precise-if
SFT models, and evaluate each expert on its corresponding benchmark. FFG consistently matches or
outperforms magnitude pruning, with the largest gains observed in high-sparsity regimes (1–10%
density). For instance, on IFEval, FFG yields a +0.10 to +0.16 absolute improvement at 1–5% density.
On the Code benchmark (HumanEval), FFG at 20% density (0.834) even surpasses the dense SFT
model (0.788), suggesting that FFG has a regularizing effect by removing noisy, low-saliency updates

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and thereby improving generalization. A similar pattern is observed for the math SFT model on the
MATH benchmark, where at 40% density FFG achieves 32.52%, compared to the full math SFT
performance of 31.6%. The ability of FFG to compress task vectors to much higher sparsity levels
while still maintaining, or even improving, fine-tuning performance further motivates an analysis
of its underlying subnetwork selection mechanism. Hence, in the subsequent section, we provide a
comprehensive empirical study to better understand this mechanism.

4.3.1 ANALYZING THE UNDERLYING MECHANISM OF FFG

To investigate the distinct mechanisms of magnitude pruning and FFG, we applied a global density
ratio of 40% to generate sub-network masks for SFT models trained on math, code, and precise-if
tasks—a budget at which both methods maintain fine-tuning performance. We analyzed the resulting
layer-wise and role-wise density patterns (across weight type, and layer depth) induced by global
density.

Figure 2 plots the density distributions for the math SFT model, revealing a U-shaped sparsity pattern
across transformer layers for both methods, with aggressive pruning in early and late layers while
middle layers remain dense. Query and key projections share similar sparsity patterns within each
method, as do up- and down-projection weights. FFG exhibits dramatically wider sparsity ranges than
magnitude pruning: in the math SFT model, FFG sparsity spans 99% (first layer’s query projection)
to 18% (fifth layer’s value projection), while magnitude pruning ranges from 72% (first layer’s value
projection) to 45% (layer 15 query weight).

The methods exhibit opposing density rankings across weight types. Magnitude pruning preserves
query and key projections (lower sparsity) while aggressively pruning value and output projections
(higher sparsity). Surprisingly, FFG inverts this pattern: it aggressively prunes query and key
weights—particularly in initial and late layers (99% sparsity for first-layer query/key weights versus
70% for magnitude pruning)—while densifying value and output projections in middle layers (18%
sparsity for layer 5 value projection versus 58% for magnitude pruning). This same reversal occurs
for down- and up-projections, with FFG showing more extreme U-shaped patterns.

The aggressive query/key sparsification achieved by FFG motivated further structural analysis.
Computing row-wise and column-wise densities for the mathematical SFT model revealed that FFG
induces highly structured sparsity: over 85% of query matrix rows (output features) in the four layers
exhibiting the highest sparsity are entirely zeroed (see Figure 12 in Appendix F). Magnitude pruning
lacks this structure (see Figure 13 in Appendix F), suggesting that low-rank sparsity is an implicit
property of FFG.

(a) Magnitude Pruning (Math Expert) (b) FFG Pruning (Math Expert)

Figure 2: Layer-wise density distribution at a global 40% task vector pruning density for the
Math SFT expert. FFG (right) exhibits strong, emergent role-aware pruning, aggressively sparsifying
query/key weights while preserving value/output/FFN weights. Magnitude pruning (left) is far more
uniform and less structured.

FFG shows an implicit layer-wise and role-wise grafting mechanism Overall, our analysis of
the density distribution patterns reveals novel insights into the task localization of FFG across
weight types and layer depths and strongly supports its implicit layer-wise density allocation. FFG
aggressively sparsifies the early and late query/key layers, even at a moderate global density ratio (e.g.,
40%), and imposes a low-rank structure on their task vectors. On the other hand, it allocates most of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the global density to the value and projection weight types in the middle layers (approximately twice
the density allocated to these weight types compared to magnitude pruning). This implicit density
allocation mechanism aligns well with our understanding of SFT training paradigms, where the query
and key layers of task vectors were shown to be extremely low-rank, as presented in the seminal work
LoRA (Hu et al., 2022) and further studied theoretically in Tarzanagh et al. (2023).

4.4 SFT TASK LOCALIZATION THROUGH FFG LENS

Inspired by FFG’s layer-wise and role-wise grafting, we analyze SFT task localization by comparing
FFG masks/sub-networks across math, code, and precise-if models within each layer and weight type
(Figure 3). With FFG density fixed at 40% across experts, visualizations show mask localization
where colors indicate element status: dark for pruned from all three tasks, white for selected by all,
and other colors for partial overlap. Weights are downsampled (e.g., 4096 × 4096 to 256 × 256)
via uniform subsampling with adaptive stride. We visualize layers 1, 15, and 30 as representative
examples; however, we discuss only patterns that are consistent across all layer depths within each
weight type. For completeness and to establish the credibility of our claims, we provide heatmap
visualizations across all layer depths and weight types, which are accessible through the provided
anonymous GitHub repository.

Figure 3 legends show computed mask overlap between SFT models. In all heatmaps (excluding
embedding and LM heads), columns represent single input feature weights to all outputs, while rows
represent all weights to single outputs. Thus, dense/sparse colored rows indicate output features
densely/sparsely utilizing inputs, while dense colored columns show heavily updated input features
during SFT and dark columns represent unused inputs.

SFT Use a Shared, Extremely Sparse Subset of Embeddings’ Features Across Tasks. As shown
in Section 4.3, FFG introduces the most sparsity in the first two and last two layers of the transformer.
The mask visualizations for these layers are predominantly dark, with strong row- and column-wise
patterns, which supports the low-rank structure of the FFG mask in these areas. Most interestingly,
the query and key weights in the first layer show extremely high overlap in pruned regions across the
three tasks (e.g., a 97.8% shared pruned region). We observed that all three masks select an extremely
sparse and nearly identical set of input features (a column-wise mask pattern) for the query and key
matrices of the first layer, with almost no dense output features. This strongly suggests that SFT
updates only a very sparse subset of embedding features. This observation is reasonable, as we expect
the early layers to be focused on general language understanding, an ability largely acquired during
pre-training.

Task-Specific Dominance in Attention vs. FFN Layers. The Math SFT model dominates query
and key attention layers across all depths with often twice the parameter density of Precise-IF SFT.
Code SFT similarly exceeds Precise-IF in these layers, though less dramatically. This pattern peaks
in middle layers. Conversely, Precise-IF and Code SFT dominate FFN layers (up, down, gate
projections)—clearly in layers 1-2, absent until layer 22, then aggressively from layers 23-31. In
these later layers, Precise-IF significantly exceeds both Code and Math SFTs’ density, with Code
slightly denser than Math. Value and output projections follow the ranking Math > Code > Precise-IF
(slight differences). This aligns with expectations: attention layers are critical for mathematical
reasoning’s complex token patterns, while instruction-following relies more on FFN layers’ feature
extraction capabilities.

Formation of Specialized and General-Purpose Attention Heads in Layers 17-31. The value and
output projections reveal another interesting property. From layers 1 to 16, we observed maximum
dense mask overlap across the expert models compared to other weight types, and the heatmaps
appear mostly random with no clear visual pattern. However, from layers 17 to 31, two distinct
regions emerge within the masks. The first region maintains high overlap across the experts, while
the second region contains almost no overlap. This phenomenon is illustrated for the value and output
projections of layer 30 in Figure 3. It is worth noting that this two-region behavior also appears
to some extent in layers 1 and 2 before vanishing until it re-emerges at layer 17. Since a set of
subsequent columns in the output projection represents the aggregated feature set from a specific
attention head, the non-overlapping regions in layers 17-31 provide strong evidence for the formation
of task-specialized heads alongside more general-purpose heads. This claim is further supported by

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the patterns in the query and key layers for this same range (17-31), where two distinct regions also
exist: one with almost no overlap and another with extremely high overlap.

Figure 3: 3-way FFG comparison for attention components across layers 1, 15, and 30 (top to
bottom). Columns show Wq,Wk,Wv,Wo. RGB channels represent Code (red), Math (green), and
Instruction-Following (blue).

4.5 ANALYSIS OF CURVATURE AND RANK STRUCTURE

Second Moments Have Low Stable Rank, Justifying Compression. A core assumption of our
AdaFactor-style compression is that the second-moment tensors, vτ , are inherently low-rank, allowing
for efficient compression. We validate this by computing the stable rank of the vτ matrices for the
Math and Code experts (see Figure 17 in Appendix G). Across all layers and for both SFT models, the
stable rank is surprisingly low (below 1.3), confirming that the second-moment matrices are highly
compressible and that a rank-1 approximation can capture a significant fraction of their energy. This
provides a solid empirical justification for our memory-efficient variant of OTA, which aggressively
reduces the required storage for second-moment matrices (from 29.9 GB to 12.6 MB for Llama 3.1
8b under fp32 precision) with a minor drop in model merging performance (from 0.582 to 0.571
average score), as detailed in Table 1.

Visualizing Shared Curvature Geometry. In this section, we leverage the connection between the
second moment and diagonal curvature to study how curvature differs across SFT models. We use the
same subsampling strategy for the heatmaps that was used to visualize task localization, but we apply
it to the second-moment matrices instead of the grafting masks. The curvature heatmap comparisons
across experts for each layer depth and weight type provide an empirical visualization suite to study
our central conjecture: that SFT models fine-tuned from the same base converge to basins with highly
similar curvature geometry.

In Figure 4, we visualize the log-scaled heatmaps of the square root of the exp_avg_sq tensor for
the attention weights of two distinct SFT checkpoints, Math and Code, alongside the max-to-min ratio
of their diagonal curvatures. We only report patterns that exist consistently across all layers; layer 11
is shown here as a representative example. The complete set of curvature comparison heatmaps is
available in the provided anonymous GitHub repository. We first observe that the diagonal curvature
has a clearly visible row-wise and column-wise structure, matching the observations in the mask
visualization in Section 4.4. The column-wise band can be interpreted as an input feature curvature
for all weights connected to a given input neuron. Similarly, the row-wise band represents an output
feature curvature for all weights connected to a given output neuron.

How to interpret these heatmaps, and what is the takeaway? We use our input and output
curvature notions to analyze and compare curvature scales across models. We observed very high
overlap in the subsets of input features with largest curvatures across all models, weight types, and
layers—evident in the strong column-wise bands at identical positions for each weight type. Output
features show similar high-curvature overlap. Linear max-min ratio heatmaps (Figure 4) confirm
this with dark heatmaps across all layers and depths, indicating the max-min ratio remains orders of
magnitude smaller than each heatmap’s curvature range. For instance, layer 11’s projection v-layer

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Shared curvature geometry in attention layer 11. The top two rows show the Math
and Code SFT models, respectively. The striking consistency in structural patterns validates our
shared curvature hypothesis. The bottom row shows the max-min ratio across all models, highlighting
regions of highest variance (light color) where task specialization is most pronounced.

shows each expert with a curvature max-min ratio around 104, while element-wise max-min ratios
between heatmaps stay below 5 for almost all elements. Our results demonstrate significant curvature
matching across models, revealing similar (though not identical) structure across training checkpoints.

This shared geometry explains linear merging’s strong performance—models are already geometri-
cally aligned, making linear merging implicitly curvature-aware or Fisher-optimal. While the overall
structure is shared, max-min ratio plots reveal subtle but important variations in specific parameter
groups where task-specific fine-tuning most significantly changed the loss landscape’s curvature.
This shared foundation with localized, high-variance differences motivates our two-stage approach:
FFG isolates task-specific parameters before aggregating the shared structure.

To validate these differences are task-specific rather than training artifacts, we compared two Code
specialists trained on identical data but with different schedulers (Cosine vs. WSD). Figure 15
in Appendix G shows virtually indistinguishable curvature patterns, quantitatively confirmed by
max-min ratios an order of magnitude smaller than Code vs. Math comparisons and consistently near
one. This evidence confirms our curvature-based analysis captures meaningful, task-driven geometric
differences, reinforcing OTA-Merging’s theoretical foundation.

5 DISCUSSION

Sparsity tuning for experts. One of our key observations in optimizing pruning-based merging
methods, such as OTA and TIES, is the necessity of tuning the sparsity ratio per expert. As shown in
Figure 7, different capabilities exhibit varying sensitivity to sparsity. Some tasks, like coding, can
maintain or even improve their performance under aggressive sparsity, whereas precise instruction
following requires significantly lower sparsity to preserve performance. Therefore, to practically
tune the sparsity per expert for each pruning-based merging method, we evaluated the corresponding
capability for each SFT checkpoint at five density ratios in {0.05, 0.1, 0.2, 0.4, 0.6} and selected
the largest sparsity ratio that maintained near-full checkpoint performance. Consequently, for each
capability, we performed five evaluations per merging method to conduct this tuning.

Cost comparison: Merging vs. Data-Mixing. One of the key goals of this paper is to benchmark
capability-based model merging as an alternative to data-mixing and multi-capability training for
post-training LLMs. Unlike Fisher merging, our proposed OTA method and all other baselines rely
solely on lightweight element-wise matrix operations, avoiding post-hoc forward or backward passes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Consequently, the computational cost is dominated by training individual expert checkpoints and
the necessary evaluations for sanity checks and sparsity tuning. For instance, training each expert
requires a few days on two A100 GPUs and running the evaluation suite takes a few hours, whereas
the merging process itself takes only minutes on a single A100 GPU.

From this perspective, we can meaningfully compare the compute cost of merging against the data-
mixing approach used for the Tulu3 SFT checkpoint Lambert et al. (2024). A critical hyperparameter
in data-mixing is the weight balance between capability datasets. Lambert et al. (2024) employed
a heuristic approach, allocating a budget of five trial-and-error iterations to tune these weights.
Crucially, each trial required training on the data mix from scratch followed by a full evaluation. In
contrast, while we incur a similar evaluation budget for validating checkpoints and tuning sparsity,
we completely eliminate the costly retraining phases. This demonstrates a significant computational
advantage for model merging, particularly given the iterative nature of finding the optimal data mix.

Beyond diagonal approximation of the Fisher matrix. One of the essential components of our
proposed OTA framework is the direct repurposing of Adam’s second moments at the end of training
as an approximation of the empirical Fisher information (or curvature). However, the Adam second
moment captures only the diagonal of the Fisher matrix. Consequently, the effects of off-diagonal
terms on merging and pruning are not addressed in our current framework. While the full Fisher
matrix is computationally intractable for LLMs, Kronecker-factored approximations have been
proposed as effective non-diagonal alternatives. Optimizers such as Shampoo Gupta et al. (2018) and
KFAC Martens & Grosse (2015a) leverage this concept to improve the empirical Fisher approximation
and the resulting preconditioners. Inspired by the success of these optimizers, we believe extending
our OTA framework to incorporate Kronecker-based approximations is a valuable direction for
future work. Moreover, even within the literature on preconditioned optimization, there is a lack of
theoretical frameworks characterizing the precise benefits of non-diagonal (e.g., Kronecker-based)
versus diagonal approximations. Our work currently shares this limitation. Thus, establishing
the theoretical underpinnings of the trade-offs between diagonal and non-diagonal approximations
remains an important objective for future research.

6 CONCLUSION

We introduced OTA Merging, a scalable and effective framework for consolidating specialized models
by harnessing the rich, yet often discarded, second-moment statistics from the Adam optimizer. We
demonstrated that this optimization history serves as a powerful and computationally efficient proxy
for local loss landscape curvature. Our twofold approach combines FFG, which leverages curvature
information as a principled denoiser to identify and revert noisy parameter updates and isolate
essential knowledge from each expert, with curvature-aware aggregation that merges these denoised
experts while respecting their underlying geometry. This methodology is motivated by our central
discovery that independently fine-tuned models exhibit remarkable geometric consensus, shifting the
primary challenge of merging from alignment to interference mitigation. Furthermore, we showed
that FFG serves as a potent analytical tool, revealing structured, role-aware sparsity patterns that
offer new insights into task localization. By treating the optimization trajectory as a valuable asset,
OTA Merging provides a new, robust paradigm for efficient model composition, paving the way for
future explorations into more complex curvature approximations and their application across different
model composition techniques.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. In International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=CQsmMYmlP5T.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Igor Mordatch,
Tabarak Khan, Craig Baker, Yoon Kim, Christopher Hesse, Christopher Olah, Sandhini Agarwal,
Vitchyr H. Pong, Simon Sidor, William Saunders, Miles Brundage, Ilya Sutskever, Wojciech
Zaremba, John Schulman, and Dario Amodei. Evaluating large language models trained on code,
2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Michael Petrov, Bob McGrew, Jerry Tworek, Douwe Kiela, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, and Dario Amodei. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
2368–2378, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850–5861, 2020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp. 3259–3269. PMLR, 2020.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in one-
shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 10323–10337. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/frantar23a.html.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. In Advances in Neural Infor-
mation Processing Systems, volume 31, 2018. URL https://papers.nips.cc/paper/
8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.

11

https://openreview.net/forum?id=CQsmMYmlP5T
https://proceedings.mlr.press/v202/frantar23a.html
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir Karpukhin,
Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pp. 477–485, 2024a.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir Karpukhin,
Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pp. 477–485, Miami, Florida, US, 2024b. Association
for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.36. URL https://
aclanthology.org/2024.emnlp-industry.36/.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Op-
timal brain surgeon. In Advances in Neural Information Processing Systems, vol-
ume 5, 1992a. URL https://proceedings.neurips.cc/paper/1992/hash/
303ed4c69846ab36c2904d3ba8573050-Abstract.html.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, volume 5, 1992b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. EMR-merging:
Tuning-free high-performance model merging. In Advances in Neural Information Processing
Systems, 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/dda5cac5272a9bcd4bc73d90bc725ef1-Paper-Conference.pdf.
NeurIPS 2024 Spotlight.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, volume 2, 1989.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Ad-
vances in Neural Information Processing Systems, volume 2, pp. 598–605. Morgan
Kaufmann, 1990. URL https://proceedings.neurips.cc/paper/1989/hash/
6c9882bbac1c7093bd25041881277658-Abstract.html.

YuXin Li, Felix Dangel, Derek Tam, and Colin Raffel. Fishers for free? approximating the fisher
information matrix by recycling the squared gradient accumulator. In Proceedings of the 42nd
International Conference on Machine Learning (ICML), 2025. PMLR 267.

Jian Liu, Chenan Wang, Yushan Zhang, Yixin Fu, Yuan Jiang, Enyi Shen, and Qing Wang. Is your
code generated by chatgpt really correct? rigorous evaluation of large language models for code
generation, 2024.

12

https://aclanthology.org/2024.emnlp-industry.36/
https://aclanthology.org/2024.emnlp-industry.36/
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/dda5cac5272a9bcd4bc73d90bc725ef1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/dda5cac5272a9bcd4bc73d90bc725ef1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories, 2023.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2408–2417,
Lille, France, 07–09 Jul 2015a. PMLR. URL https://proceedings.mlr.press/v37/
martens15.html.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015b.

Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging. In International
Conference on Learning Representations, 2022a. URL https://openreview.net/forum?
id=LSKlp_aceOC.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–17716, 2022b.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A new
perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In Advances in Neural Information Processing
Systems, 2023. URL https://papers.neurips.cc/paper_files/paper/2023/
file/d28077e5ff52034cd35b4aa15320caea-Paper-Conference.pdf.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. In International Conference on Machine Learning, pp. 27011–
27033. PMLR, 2023.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive
sparsity by fine-tuning. In Advances in Neural Information Processing Systems, vol-
ume 33, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
arXiv preprint arXiv:1804.04235, 2018.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for
neural network compression. In Advances in Neural Information Processing Systems, vol-
ume 33, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023. URL https://arxiv.org/
abs/2306.11695.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aseem Rawat, Swayam Singhal, Siddhartha Brahma, Jason Wei, Aakanksha Chowdhery, and
Denny Zhou. Challenging big-bench tasks and whether chain-of-thought can solve them, 2022.

Derek Tam, Mohit Bansal, and Colin Raffel. Merging by matching models in task parameter
subspaces. arXiv preprint arXiv:2312.04339, 2023.

Derek Tam, Mohit Bansal, and Colin Raffel. Merging by matching models in task parameter
subspaces. Transactions on Machine Learning Research, 2024. URL https://openreview.
net/forum?id=qNGo6ghWFB. Certified and published on OpenReview.

13

https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://openreview.net/forum?id=LSKlp_aceOC
https://openreview.net/forum?id=LSKlp_aceOC
https://papers.neurips.cc/paper_files/paper/2023/file/d28077e5ff52034cd35b4aa15320caea-Paper-Conference.pdf
https://papers.neurips.cc/paper_files/paper/2023/file/d28077e5ff52034cd35b4aa15320caea-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://openreview.net/forum?id=qNGo6ghWFB
https://openreview.net/forum?id=qNGo6ghWFB

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as
support vector machines. arXiv preprint arXiv:2308.16898, 2023.

Nikhil Vyas, Yamini Bansal, and Preetum Nakkiran. Limitations of the ntk for understanding
generalization in deep learning. arXiv preprint arXiv:2206.10012, 2022.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36:7093–7115, 2023.

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal, and
Tsendsuren Munkhdalai. What matters for model merging at scale?, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Yucheng Zhou, Tao Yu, Zihan Wang, Keerti Banweer, Yuning Mao, Pengcheng Yin, and Hai-Tao
Zheng. Ifeval: A new benchmark for evaluating llms on instruction following, 2023.

14

http://arxiv.org/abs/2403.13372

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used large language models (LLMs) such as GPT-5 and Gemini 2.5 Pro to polish and proofread
our writing by correcting grammatical errors and improving overall sentence clarity.

B ADDITIONAL RELATED WORKS

Pruning and Grafting with Second-Order Signals. Classical pruning measured parameter
saliency via second-order criteria: Optimal Brain Damage (OBD) uses a diagonal Hessian ap-
proximation (LeCun et al., 1990), and Optimal Brain Surgeon (OBS) leverages full curvature (Hassibi
& Stork, 1992a). Singh & Alistarh (2020) provide scalable inverse-Fisher approximations. For
LLMs, one-shot/zero-shot methods such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun
et al., 2023) enable accurate pruning without retraining; movement pruning adapts masks during
fine-tuning (Sanh et al., 2020). In contrast, our objective is not generic compression: FFG computes
a curvature-weighted edit saliency si = Hii ∆w2

i and grafts by resetting low-saliency coordinates
to base weights. This simultaneously reduces cross-task interference and reveals interpretable task
localization.

Mode Connectivity and Alignment. Mode-connectivity work shows that the independently trained
checkpoints on same data are often connected by low-loss paths (Garipov et al., 2018). After permuta-
tion alignment, independently trained networks lie in an approximately convex basin, which explains
why linear interpolation/merging can work when models are geometrically aligned (Ainsworth et al.,
2023). Our curvature-aware view complements these results: if diagonal curvature morphology is
shared across specialists, then linear aggregation with curvature reweighting is particularly effective.

Comparison with Li et al. (2025) While Li et al. (2025) study Fisher pruning applied to the
final model weights (w∗) by setting parameters to zero, FFG instead operates on the task vector
(∆w = w∗ − w0) to revert low-saliency updates. This mitigates interference between non-IID
experts—a critical step for our SFT merging setting. This denoising role is the cornerstone of our
OTA-Merging framework and is a key differentiator from other merging methods. Second, we
uniquely employ the second moment proxy as an analytical and interpretability lens. We use it to
propose and provide strong empirical evidence for a shared curvature hypothesis, offering a new
explanation for the effectiveness of model merging. Furthermore, we leverage FFG as a tool for task
localization to understand SFT training regimes, revealing how skills are encoded via structured,
role-aware sparsity patterns in the network, a line of analysis not pursued in Li et al. (2025).

Finally, to address the significant practical issue of storage, we propose and validate an AdaFactor-
style rank-1 compression of the second-moment tensor. This reduces the storage overhead signifi-
cantly, making our approach highly scalable for large models. In summary, while Li et al. (2025)
establish the broad utility of the optimizer-as-Fisher proxy, our work presents a specialized, end-to-
end framework, and benchmarks for the challenging SFT merging problem at a non-trivial scale,
completed with a novel denoising mechanism, new interpretability insights, and a practical, scalable
implementation.

C PRELIMINARIES

This section establishes the notation and foundational concepts that underpin our work. We begin
by formalizing the SFT setup and the associated notation. We then introduce the Fisher Information
Matrix (FIM) as a key tool for understanding the curvature of the loss landscape. Finally, we review
how second-order information, approximated by the FIM, is leveraged in established methods for
model merging and parameter grafting, setting the stage for our proposed contributions.

C.1 SFT SETUP

Notation. We denote matrices with bold capital letters (A), vectors with bold lowercase letters
(v), and scalars with regular lowercase letters (s). A vector-valued function’s jth output is denoted
as f j . The i-th standard basis vector is ei, and an n-dimensional vector of ones is 1n. For any

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Positive Semi-Definite (PSD) matrix P ∈ Rd×d, we define its induced norm on a vector x ∈ Rd as
∥x∥P =

√
x⊤Px.

Learning Setup. We consider a supervised fine-tuning (SFT) scenario with T distinct tasks from
the same base model. For each task τ ∈ {1, . . . , T}, we have a dataset Sτ = {(xτ

i , y
τ
i)}

|Sτ |
i=1 ,

with samples drawn from a true data distribution Dτ . We begin with a common pre-trained model
architecture, parameterized by w0 ∈ Rd, which is then fine-tuned for each specific task. The
model, f(·;w), maps an input x ∈ X to a logit vector z ∈ R|V |, where |V | is the vocabulary size.
These logits parameterize a conditional probability distribution P (y|x;w) via the softmax function:
log p(y|x;w) = e⊤y z− log

(∑|V |
j=1 exp(zj)

)
.

The objective for each task τ is to minimize the empirical cross-entropy loss, which approximates the
true expected risk over the data distribution Dτ :

LSτ
(w) = −E(x,y)∼Sτ

[log p(y|x;w)] .

For notational simplicity, we will drop the task subscript τ when the context is clear.

C.2 THE FISHER INFORMATION MATRIX

A central concept for analyzing the loss landscape is the Fisher Information Matrix (FIM), which
measures the sensitivity of the model’s output distribution to changes in its parameters w. It provides
a powerful approximation of the loss curvature Amari (1998); Martens (2020) and is equivalent to
the negative Hessian of the log-likelihood, under expectation over model’s predictive distributions,
F(w) = −Ey∼P (y|x;w)[∇2

w log p(y | x;w)]. In practice, several variants of the FIM are used:

True FIM, F(w), is defined over the true data distribution and the model’s predictive distribution,
making it intractable for deep neural networks:

F(w) = Ex∼D(x),y∼P (y|x;w)

[
∇w log p(y|x;w)∇w log p(y|x;w)⊤

]
. (2)

Expected Empirical FIM, F̂(w), approximates the true FIM by using a finite dataset S but still
requires an expectation over the model’s predictions:

F̂(w) =
1

|S|
∑

(xi,yi)∈S

Ey∼P (y|xi;w)

[
∇w log p(y|xi;w)∇w log p(y|xi;w)⊤

]
. (3)

Observed Empirical FIM, F̄(w), simplifies this further by replacing the expectation with the
observed ground-truth labels from the dataset. This variant, often called the "empirical Fisher," is
the most commonly used in practice Martens & Grosse (2015b); Matena & Raffel (2022b) due to its
computational advantage by avoiding the need for costly sampling from model’s distribution:

F̄(w) =
1

|S|
∑

(xi,yi)∈S

[
∇w log p(yi|xi;w)∇w log p(yi|xi;w)⊤

]
. (4)

C.3 APPLICATIONS OF SECOND-ORDER INFORMATION

The FIM’s ability to capture loss curvature makes it invaluable for a range of model manipulation
techniques, from merging diverse experts to compressing a single model.

Preconditioned Model Merging. The goal of model merging is to combine a set of fine-tuned expert
models, {w∗

τ}Tτ=1, into a single, multi-tasked model wmerged. A generalized approach involves a
weighted average in parameter space Tam et al. (2023):

wmerged =

(
T∑

τ=1

Cτ

)−1(T∑
τ=1

Cτw
∗
τ

)
, (5)

where Cτ are PSD weighting matrices. Different choices for Cτ yield different merging strategies.
For instance, Fisher-weighted averaging Matena & Raffel (2022b) uses the empirical FIM of each

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

task as Cτ , leveraging the loss landscape geometry to guide the combination process, and Tam et al.
(2023) leveraged Kronecker factored approximation of empirical fisher (Martens & Grosse, 2015a)
for the choice of Cτ .

Optimal Brain Damage for Pruning and Grafting. Second-order information is also fundamental
to classic model compression techniques like Optimal Brain Damage (OBD) LeCun et al. (1989);
Hassibi & Stork (1992b). OBD identifies and removes parameters with the smallest impact on the loss
function. This impact, or "saliency," is estimated via a second-order Taylor expansion. For a model at
a local minimum w∗, a small parameter perturbation δw changes the loss by ∆LS ≈ 1

2 (δw)⊤H(δw),
where H is the Hessian, approximated by the FIM. To make this tractable, OBD typically uses only
the diagonal of the Hessian. Pruning a parameter w∗

i to zero corresponds to a saliency score of
si =

1
2Hii(w

∗
i)

2.

This framework can be repurposed from pruning to grafting. Instead of nullifying parameters, we
can selectively revert fine-tuned parameters w∗ back to their pre-trained state w0. The perturbation
becomes δwi = w∗

i − w0
i , and the saliency of keeping the fine-tuned update is calculated as

si =
1
2Hii(w

∗
i − w0

i)
2. This score quantifies the importance of the change acquired during fine-

tuning, providing a direct link to merging by deciding on a parameter-wise basis whether to retain a
specialized update or revert to the base model.

C.4 EFFICIENTLY ESTIMATING SECOND-ORDER INFORMATION

A major challenge in using second-order methods is the formidable memory cost of storing the full
FIM or Hessian. While generic low-rank approximations like SVD exist, they do not guarantee the
preservation of non-negativity, a defining property of these matrices.

Factored Estimators (AdaFactor). The AdaFactor optimizer Shazeer & Stern (2018) introduces
a memory-efficient factorization that guarantees non-negativity. For a matrix of squared-gradient
Exponential Moving Averages (EMAs) V ∈ Rm×n, AdaFactor avoids storing the full mn elements.
Instead, it maintains only the moving averages of its row and column sums: r = V1n ∈ Rm and
c⊤ = 1⊤

mV ∈ R1×n. A rank-1, non-negative approximation of the full matrix is then reconstructed
as V̂ = rc⊤/(1⊤

mr). This reduces storage from O(mn) to O(m + n) per parameter matrix. The
effectiveness of such low-rank approximations is often justified by the concept of stable rank,
rs(V) = ∥V∥2F /∥V∥22, which measures how well a matrix can be approximated by a low-rank
counterpart. While AdaFactor was designed to save memory during training, we propose leveraging
its factorization after training to create a highly compressed snapshot of the second-moment matrix,
providing nearly storage-free access to valuable curvature information.

D THEORETICAL JUSTIFICATIONS AND PROOFS

This section provides a detailed derivation of the theoretical insights on Adam’s second-moment
accumulator, v, as a principled proxy for the diagonal of the empirical Fisher Information Matrix
(FIM).

Theoretical Justification. The core argument rests on the equivalence between the Hessian of the
loss function (∇2LD) and the Observed Empirical FIM (F̄) near a local minimum w∗.

1. We first assume the network’s output is locally linear with respect to its parameters near the
end of training (the Late NTK Regime). This allows us to approximate the Hessian with the
Generalized Gauss-Newton (GGN) matrix. While neural network training has been shown
not to be well-approximated by the NTK at initialization, meaning an aggressive kernel
change is necessary for feature learning (Vyas et al., 2022), the kernel has been shown to
stabilize near the end of training (Fort et al., 2020).

2. We then assume the model is well-calibrated at convergence (Perfect Calibration), meaning
its predictive distribution matches the true data distribution.

Under these assumptions, one can argue that the Hessian is approximately equal to the Observed
Empirical FIM: ∇2LD(w∗) ≈ F̄(w∗). Furthermore, the expectation of the outer product of mini-
batch gradients is a scaled version of the FIM: EBk∼D|B| [∇LBk

∇L⊤
Bk

] = 1
|B| F̄(w∗). We would

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

like to highlight that the equivalence of the Empirical Fisher information with the Hessian under
perfect calibration is a well-known property Amari (1998), and the expectation of the mini-batch
gradient outer product is a corollary of Lemma 8 in Morwani et al. (2024).

Thus here, we provide a strong theoretical argument for our method: the Adam second-moment
accumulator, v, on expectation, is a scaled EMA of the diagonal of the FIM. It is therefore a valid and
computationally free proxy for the diagonal curvature of the loss landscape, which we can harness
for both parameter selection and model merging.

D.1 PROOF OF EQUIVALENCE BETWEEN HESSIAN AND EMPIRICAL FIM

Our first result connects the Hessian of the loss function to the Observed Empirical FIM at a fine-tuned
model’s optimal parameters, w∗. The Hessian for a loss LD(w) over a dataset D is given by:

∇2LD(w) = E(x,y)∼D

Jf (w,x)⊤∇2
zℓ(y, z)Jf (w,x)︸ ︷︷ ︸

Generalized Gauss-Newton (GGN) term

+E(x,y)∼D


C∑

j=1

(∇zj ℓ(y, z))∇2
wf j(w,x)︸ ︷︷ ︸

Second-order term

 ,

(6)
where z = f(w,x) are the model’s logits, ℓ is the per-sample loss (e.g., negative log-likelihood),
and Jf is the Jacobian of the network function f with respect to the parameters w. To simplify this
expression, we rely on two standard assumptions.
Assumption 1 (Late NTK Locality). Near an optimal set of parameters w∗, the second-order term
in Equation (6), which depends on the curvature of the network function f itself, is negligible. This
implies local linearity: f(x;w∗ + δ) ≈ f(x;w∗) + Jfδ for small perturbations δ.

This assumption allows us to approximate the Hessian using only the GGN term:

∇2LD(w∗) ≈ E(x,y)∼D

[
Jf (w∗,x)

⊤∇2
zℓ(y, f(x;w∗))Jf (w∗,x)

]
. (7)

Assumption 2 (Perfect Calibration at Fine-Tuned Checkpoints). At the optimal parameters w∗, the
model is perfectly calibrated, meaning its predictive distribution matches the true conditional data
distribution for any given input x: p(y|x;w∗) = d(y|x).

With these assumptions, we can now state and prove the main lemma.
Lemma 1. Under late NTK locality (Assumption 1), the Hessian of the loss ∇2LD(w∗) can be
decomposed as follows:

∇2LD(w∗) = E(x,y)∼D

[
∇LD(w∗,x, y)∇LD(w∗,x, y)

⊤]︸ ︷︷ ︸
Empirical FIM

− Ex∼Dx

[
Ey∼Dy|x [∇LD(w∗,x, y)]Ey∼Dy|x [∇LD(w∗,x, y)]

⊤
]

︸ ︷︷ ︸
Expected Gradient Covariance

+ Ex∼Dx

[
Jf (w∗,x)

⊤ (Σp −Σd)Jf (w∗,x)
]︸ ︷︷ ︸

Covariance Mismatch

(8)

where Σp = Covy∼p(·|f(x;w∗))[ey], Σd = Covy∼Dy|x [ey], and ey is a one-hot vector representing
label y. Moreover, ∇LD(w∗,x, y) = ∇w log p(y|x;w∗) is the log-probability gradient at a given
sample (x, y). Dy|x and p(·|f(x;w∗)) are the true conditional distribution and the model distribution
given input x, respectively. Dx denotes the true marginal distribution.

Remark. The above lemma characterizes the relation between the empirical Fisher and the Hessian
under the late NTK locality assumption. Interestingly, we observe that the approximation errors
consist of the covariance mismatch between the model’s prediction and the true distribution, as well
as the expected gradient covariance term. Under perfect calibration (Assumption 2), it is well-known
that the Hessian would be equivalent to the empirical FIM Amari (1998). While the perfect calibration
assumption is reasonable at the convergence point w∗, our proposed Lemma 1 does not depend on

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

perfect calibration and establishes the equivalence relation only under late NTK locality. Moreover,
note that both the expected gradient over labels and the covariance mismatch terms in Equation 8
would be equal to zero under perfect calibration.

Proof. Given input x, let p(·|x) and d(·|x) denote the probability vectors for the model and the true
distribution. For ease of notation, we refer to these vectors as p and d. We begin by analyzing the
inner term of the GGN in Equation (7), which is the expected Hessian of the negative log-likelihood
∇2

zℓ(y, z) = ∇2 log p(y|z), where z = f(x;w∗). For the softmax cross-entropy loss on logits,
log p(y|z) = zy − log(

∑|V |
i=1 e

zi), we can write:

∇2
zℓ(y, z) = diag(p)− pp⊤ = Σp

∇zℓ(y, z) = ey − p
(9)

Now let F̄z = Ey∼Dy|x [∇zℓ(y, z)∇zℓ(y, z)
⊤] = Ey∼d(·|x)[(ey − p)(ey − p)⊤]. Expanding the

expectation, we have:

F̄z = diag(d)− dp⊤ − pd⊤ + pp⊤ = diag(d)− dd⊤ + (d− p)(d− p)⊤ (10)

Hence, we can write: ∇2
zℓ(y, z)− F̄z = (Σp −Σd)− (d− p)(d− p)⊤. Combining this equation

with the fact that Ey∼Dy|x [∇zℓ(y, z)] = d− p, and ∇w log p(y|x;w) = Jf (w,x)⊤∇zℓ(y, z), we
can rewrite the GGN in Equation (7) to arrive at Equation (8).

D.2 PROOF OF RELATION BETWEEN MINI-BATCH SECOND MOMENT AND FIM

Next, we show how the second moment of mini-batch gradients relates to the Empirical FIM defined
above.

Lemma 2. Let ∇LBk
(w) = 1

|B|
∑

(x,y)∈Bk
∇Lx,y(w) be the gradient for a mini-batch Bk of size

|B| sampled from the data distribution D. Under Assumption 2, the expectation of the outer product
of this mini-batch gradient is a scaled version of the FIM:

EBk∼D|B|
[
∇LBk

(w∗)∇LBk
(w∗)

⊤] = 1

|B|
F̄(w∗). (11)

Proof. We decompose the expectation of the outer product:

EBk∼D|B|
[
∇LBk

∇L⊤
Bk

]
= E


 1

|B|

|B|∑
i=1

∇Lxi,yi

 1

|B|

|B|∑
j=1

∇Lxj ,yj

⊤


=
1

|B|2
∑
i,j

E
[
∇Lxi,yi

∇L⊤
xj ,yj

]

=
1

|B|2

|B|∑
i=1

Exi,yi∼D[∇Lxi,yi
∇L⊤

xi,yi
] +

1

|B|2
∑
i̸=j

E
[
∇Lxi,yi

∇L⊤
xj ,yj

]
.

Since the samples in the mini-batch are i.i.d., the expectation of the cross-terms (i ̸= j) decouples:

E
[
∇Lxi,yi

∇L⊤
xj ,yj

]
= Exi,yi∼D[∇Lxi,yi

]Exj ,yj∼D[∇Lxj ,yj
]⊤.

At the optimum w∗, the expected gradient over the true data distribution is zero. This follows from
Assumption 2 and the fact that the expectation of the score function is zero:

E(x,y)∼D [∇wLx,y(w∗)] = Ex

[
J⊤
f Ey∼p(y|x)[∇z log p(y|z)]

]
= 0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Therefore, all the cross-terms (i ̸= j) in the decomposition vanish. We are left with only the diagonal
terms of the sum:

EBk∼D|B|
[
∇LBk

∇L⊤
Bk

]
=

1

|B|2

|B|∑
i=1

E
[
∇Lxi,yi

∇L⊤
xi,yi

]
=

|B|
|B|2

E(x,y)∼D

[
∇Lx,y(w∗)∇Lx,y(w∗)

⊤]
=

1

|B|
F̄(w∗).

This completes the proof, showing that the second moment of the mini-batch gradient is, on expecta-
tion, a scaled version of the full Empirical FIM.

E ADDITIONAL INFORMATION ON TRAINING SFT MODELS

E.1 GRADIENT, AND LOSS VISUALIZATIONS

Figure 5 shows the training gradient norm trajectories ∥∇L∥ for each of our five specialist
LLMs. Tasks like knowledge_recall and coding exhibit high gradient norms, whereas
math_reasoning and precise_if remain much lower.

0 500 1000 1500 2000 2500
Global Step

0

5

10

15

20

25

30

Gr
ad

ie
nt

 N
or

m

coding
knowledge_recall
precise_if
math_reasoning
general

Figure 5: Gradient norm trajectories over global training steps for each fine-tuned SFT models

Moreover, we visualize the optimization trajectories of each SFT model on distinct tasks as indicated
in Figure 6.

E.2 EXPERIMENTS DETAILS FOR TRAINING SFT CHECKPOINTS

The models were trained from the Meta-Llama-3.1-8B base model using full-parameter Super-
vised Fine-Tuning (SFT) and AdamW optimizer. The second-moment statistics (exp_avg_sq) of
the optimizer were checkpointed and later used as curvature proxies in OTA-Merging.

We leveraged full post-training stack provided by LLaMA-Factory Zheng et al. (2024). This unified
infrastructure handled supervised fine-tuning (SFT), tokenizer alignment, and checkpoint conversion.

Our configuration closely followed the hyperparameter recipe from the Tülu-3 Lambert et al. (2024),
with slight task-specific adjustments. Fine-tuning was performed on two NVIDIA A100 GPUs
(80GB) per task. We used gradient accumulation of 32 and a micro-batch size of 2 per device,
yielding an effective global batch size of 128. All models were trained with a learning rate of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500
Global Step

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

Training Loss Curves for Each Fine-Tuned Specialist
Task

Coding
Knowledge Recall
Precise IF
Math Reasoning
General

Figure 6: Training loss trajectories across global steps for each SFT model

5× 10−6, except for Precise Instruction Following (IF), which used 1× 10−5 to encourage faster
convergence.

Table 2: Fine-tuning hyperparameters used for training specialist models.

Hyperparameter Value Notes
Base Model LLaMA 3.1–8B
Micro Batch Size 2 Per GPU
Gradient Accumulation 32
Effective Batch Size 128 Across GPUs
Max Token Length 4096
Learning Rate 5× 10−6 1× 10−5 for Precise IF
Learning Rate Schedule Linear
Warmup Ratio 0.03
Epochs 1
Post-training Stack LLaMA-Factory Full stack used Zheng et al. (2024)

E.3 TRAINING DATASET CURATION

Our SFT models were fine-tuned on curated subsets of the allenai/tulu-3-sft-mixture
dataset, retrieved from the Hugging Face datasets library. This dataset aggregates instruction-
following conversations from a wide range of sources, and we mapped these sources to specific
capability categories for training the OTA-Merging specialists.

Each training example consists of a structured conversation in the messages field—a list of
dictionaries that capture the dialogue turns between roles: system, user, and assistant. This
structure enables role-specific formatting for instruction tuning.

Task Categories and Source Mapping. The data sources used for fine-tuning were grouped into
the following categories:

• General Instruction: wildchat, oasst1_converted, no_robots, etc.
• Knowledge Recall: flan_v2, sciriff, table_gpt
• Mathematical Reasoning: persona_math, numinamath, open_math

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Coding: codealpaca, persona_code

• Precise Instruction Following (Precise IF): persona_ifdata

Dataset Statistics. The number of examples in each category used for fine-tuning is summarized
below:

Table 3: Number of examples per task category in tulu-3-sft-mixture.

Category Examples Percentage
Mathematical Reasoning 334,252 39.70%
Coding 142,275 16.89%
General Instruction 116,871 13.89%
Knowledge Recall 104,982 12.46%
Precise Instruction Following 29,980 3.56%

Total 728,360 100.00%

Message Formatting. Each messages list was rendered into a flattened training string using a
standardized Jinja2 template consistent with LLaMA-Factory’s post-training stack. This template
inserts role-specific delimiters and appends <eos_token> after assistant responses.

For example, the following JSON input:

[
{"role": "system", "content": "System prompt."},
{"role": "user", "content": "User question."},
{"role": "assistant", "content": "Assistant answer."}

]

is rendered as:

<|system|>
System prompt.
<|user|>
User question.
<|assistant|>
Assistant answer.<eos_token>

This formatting ensures consistency across training samples and compatibility with instruction-tuned
decoding patterns adopted from Tulu Lambert et al. (2024).

E.4 SFT CHECKPOINTS EVALUATIONS

SFT Models Localize Distinct Capabilities. First, we establish a baseline by analyzing the perfor-
mance of individual SFT models (Table 4). As expected, each expert excels on benchmarks aligned
with its training data: the Math specialist outperforms all others on MATH (0.316), and the Coding
specialist dominates HumanEval (0.788). Conversely, the near-zero scores of non-coding specialists
on HumanEval underscore the non-IID nature of the training data and highlight the core challenge
of merging: combining these complementary but isolated skills without destructive interference.
Moreover, the SFT experts appear to either outperform or closely match the performance of the
Tulu-3 SFT checkpoint (the multi-task SFT tuned model), with the exception of coding capability.
For coding, the Tulu models have considerably higher performance on HumanEval and HumanEval+
compared to the SFT coding model. This suggests that this task benefits the most from multi-task
learning, as code-only filtered subset of the Tulu SFT mixture was unable to retain the performance
of the multi-instructed models.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 4: Performance of individual SFT experts and the multi-task Tulu-3-8B SFT model on their
respective benchmarks. Best performance per row is shown in bold. Scores are reported in [0, 1].

Benchmark Specialists Tulu-3 SFT

General Knowledge Math Precise IF Coding

BBH-CoT 0.671 0.634 0.650 0.628 0.635 0.688
HumanEval 0.000 0.000 0.700 0.688 0.788 0.866
HumanEval+ 0.000 0.000 0.659 0.632 0.744 0.805
DROP 0.571 0.629 0.583 0.586 0.552 0.616
GSM8K 0.575 0.589 0.757 0.594 0.561 0.767
IFEval 0.516 0.538 0.257 0.717 0.425 0.715
MATH 0.170 0.171 0.316 0.199 0.181 0.290
POPQA 0.317 0.301 0.296 0.307 0.301 0.295

F COMPLEMENTARY FFG ANALYSIS

1% 5% 10% 20% 40% 60% 90%
Density

0.65

0.70

0.75

0.80

0.85

pa
ss

@
10

Code (HumanEval)
Magnitude
FFG

1% 5% 10% 20% 40% 60% 90%
Density

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Co
ns

tra
in

t S
at

isf
ac

tio
n

Instruction Following (IFEval)
Magnitude
FFG

1% 5% 10% 20% 40% 60% 90%
Density

0.60

0.65

0.70

0.75

Ex
ac

t M
at

ch

Math (GSM8K)
Magnitude
FFG

1% 5% 10% 20% 40% 60% 90%
Density

0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

Fl
ex

 E
M

Math (MATH)
Magnitude
FFG

Figure 7: FFG vs. magnitude pruning across varying density ratios. FFG consistently outperforms,
especially at lower densities (1-10%), highlighting its superior ability to identify salient parameters.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) Magnitude Pruning (Code Expert) (b) FFG Pruning (Code Expert)

Figure 8: Layer-wise density distribution at a global 40% task vector pruning density for the
Code SFT expert. FFG (right) exhibits strong, emergent role-aware pruning, aggressively sparsifying
query/key weights while preserving value/output/FFN weights. Magnitude pruning (left) is far more
uniform and less structured.

Figure 9: 3-way magnitude-based comparison for attention components across layers 1, 2, 15, 18, 29,
and 30. Columns show Wq , Wk, Wv , and Wo.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 10: 3-way magnitude-based comparison for FFN components across layers 1, 2, 15, 18, 29,
and 30. Columns show Wgate, Wup, and Wdown.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 11: 3-way FFG comparison for FFN components across layers 1, 2, 15, 18, 29, and 30.
Columns show Wgate, Wup, and Wdown.

F.1 VISUALIZING STRUCTURED SPARSITY MASKS

What the histograms show. For a weight matrix W ∈ Rdout×din with binary mask M ∈
{0, 1}dout×din , we summarize mask structure via the row-wise and column-wise sparsities

ρrow
i = 1− 1

din

din∑
j=1

Mij , ρcol
j = 1− 1

dout

dout∑
i=1

Mij ,

i.e., the fraction of zeros in each row/column (sparsity = 1− density). Each panel in Figs. 12 and 13
plots the histogram of {ρrow

i }dout
i=1 (top) and {ρcol

j }din
j=1 (bottom) for the self-attention q-projection of

a single layer. A spike near 1.0 indicates rows/columns that are almost entirely pruned. All masks
shown correspond to a global 40% density budget.

Key finding: FFG induces structured channel sparsity at the network edges. Under a single
global density budget, FFG reallocates nonzeros across depth and weight types. In the q-projection,
early (layers 0–1) and late (layers 29–30) blocks display pronounced structure: their histograms
concentrate near ρ ≃ 1.0, revealing many rows/columns that are nearly all zeros (Fig. 12). A similar
pattern is observed for the k-projection (not shown), indicating that FFG often eliminates entire
input/output channels in these attention blocks rather than scattering zeros uniformly.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Contrast with magnitude pruning. For the same global budget, magnitude pruning yields weaker
row/column structure: its histograms are centered around moderate sparsities with limited mass
near 1.0 (Fig. 13). Thus, FFG is not merely more sparse; it is selectively sparse at the level of entire
channels.

0

500

1000

1500

2000

Nu
m

be
r o

f R
ow

s

Row-wise Sparsity (Avg: 98.78%)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.000

1000

2000

3000

Nu
m

be
r o

f C
ol

um
ns

Column-wise Sparsity (Avg: 98.78%)
0

200

400

600

800

Nu
m

be
r o

f R
ow

s

Row-wise Sparsity (Avg: 95.54%)

0.4 0.5 0.6 0.7 0.8 0.9 1.00

1000

2000

Nu
m

be
r o

f C
ol

um
ns

Column-wise Sparsity (Avg: 95.54%)

0

1000

2000

Nu
m

be
r o

f R
ow

s

Row-wise Sparsity (Avg: 91.68%)

0.2 0.4 0.6 0.8 1.00

250

500

750

1000

Nu
m

be
r o

f C
ol

um
ns

Column-wise Sparsity (Avg: 91.68%)
0

250

500

750

1000

Nu
m

be
r o

f R
ow

s

Row-wise Sparsity (Avg: 87.30%)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

500

1000

Nu
m

be
r o

f C
ol

um
ns

Column-wise Sparsity (Avg: 87.30%)

Figure 12: FFG masks exhibit structured sparsity in the self-attention q-projection. Row-wise
(top) and column-wise (bottom) sparsity histograms for layers 0, 1, 29, and 30 (left-to-right, top-to-
bottom). Note the concentration near ρ ≈ 1.0, indicating that many rows/columns are almost entirely
pruned.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0

100

200
Nu

m
be

r o
f R

ow
s

Row-wise Sparsity (Avg: 71.42%)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

100

200

300

400

Nu
m

be
r o

f C
ol

um
ns

Column-wise Sparsity (Avg: 71.42%)
0

100

200

300

Nu
m

be
r o

f R
ow

s

Row-wise Sparsity (Avg: 55.92%)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

100

200

300

400

Nu
m

be
r o

f C
ol

um
ns

Column-wise Sparsity (Avg: 55.92%)

0

100

200

300

400

Nu
m

be
r o

f R
ow

s

Row-wise Sparsity (Avg: 50.99%)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

100

200

300

Nu
m

be
r o

f C
ol

um
ns

Column-wise Sparsity (Avg: 50.99%)
0

100

200

300

Nu
m

be
r o

f R
ow

s

Row-wise Sparsity (Avg: 48.42%)

0.3 0.4 0.5 0.6 0.7 0.80

100

200

Nu
m

be
r o

f C
ol

um
ns

Column-wise Sparsity (Avg: 48.42%)

Figure 13: Magnitude pruning produces weaker row/column structure. Histograms for the same
layers and weight type as Fig. 12 show mass centered at moderate sparsities and far less concentration
near 1.0.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

G COMPLEMENTARY CURVATURE, AND RANK ANALYSIS

Figure 14: Shared curvature geometry in FFN layers across specialist models. Log-scaled
heatmaps of the square root of the second-moment Adam statistics for layer 11 feed-forward network
projection weights. Rows represent: Math specialist, Code specialist, Precise IF specialist, and
Max-Min ratio across all models (top to bottom). Columns show Wgate, Wup, and Wdown (left
to right). The structural similarity persists even in FFN layers, reinforcing our finding that shared
geometry is a model-wide phenomenon. The bottom row quantifies the variance across models, with
darker regions indicating higher consensus in curvature patterns.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 15: Control Experiment: Shared curvature in attention layer 11 for two Code models.
The top row shows a Code model trained with a Cosine LR schedule, and the second row shows a
Code model trained on the same data with a WSD schedule. The structural similarity is nearly perfect.
The bottom row shows the max-min ratio is consistently close to 1 (dark color), indicating minimal
geometric deviation.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Figure 16: Control Experiment: Shared curvature geometry in FFN layers for two Code models.
Log-scaled heatmaps of the square root of the second-moment Adam statistics for layer 11 feed-
forward network projection weights. Rows represent: Code specialist (Cosine LR), Code specialist
(WSD LR), and Max-Min ratio across the two models (top to bottom). The near-perfect structural
similarity and low max-min ratio provide a strong control for our main hypothesis.

0 5 10 15 20 25 30
Layer Index

1.00

1.05

1.10

1.15

1.20

1.25

1.30

St
ab

le
 R

an
k

down_proj
gate_proj

k_proj
o_proj

q_proj
up_proj

v_proj

(a) Math Expert

0 5 10 15 20 25 30
Layer Index

1.00

1.05

1.10

1.15

1.20

St
ab

le
 R

an
k

down_proj
gate_proj

k_proj
o_proj

q_proj
up_proj

v_proj

(b) Code Expert

Figure 17: Stable rank analysis of the second-moment matrices (vτ). The consistently low stable
rank across all layers validates our use of AdaFactor for compression.

31

	Introduction
	Related Work
	The OTA-Merging Framework
	Experiments
	Experimental Setup
	Main Results: Merging Performance
	Deep Dive: Analysis of the FFG Stage
	Analyzing the Underlying Mechanism of FFG

	SFT Task Localization through FFG lens
	Analysis of Curvature and Rank Structure

	Discussion
	Conclusion
	LLM Usage
	Additional Related Works
	Preliminaries
	SFT Setup
	The Fisher Information Matrix
	Applications of Second-Order Information
	Efficiently Estimating Second-Order Information

	Theoretical Justifications and Proofs
	Proof of Equivalence between Hessian and Empirical FIM
	Proof of Relation between Mini-Batch Second Moment and FIM

	Additional Information on Training SFT Models
	Gradient, and Loss Visualizations
	Experiments Details for Training SFT Checkpoints
	Training Dataset Curation
	SFT Checkpoints Evaluations

	Complementary FFG Analysis
	Visualizing Structured Sparsity Masks

	Complementary Curvature, and Rank Analysis

