Under review as a conference paper at ICLR 2026

HARNESSING OPTIMIZATION DYNAMICS FOR
CURVATURE-INFORMED MODEL MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging is an effective strategy for composing capabilities in large language
models without the need for costly joint retraining. We study this process in the
supervised fine-tuning (SFT) stage, consolidating multiple checkpoints special-
ized for distinct capabilities (e.g., math, coding, and precise instruction following)
into a single model. First, we introduce Optimization Trajectory Aware (OTA)
Merging, a curvature-aware method for mitigating task interference that uses op-
timizer second-moment statistics as a diagonal curvature proxy to first prune the
task vector with our Fast Fisher Grafting (FFG) technique and then reweight the
pruned vector. When merging diverse, capability-based checkpoints, OTA im-
proves the merged model’s performance over strong baseline methods, as evaluated
on unseen capability-based benchmarks. Second, we conduct a comprehensive,
theoretically-inspired empirical analysis to explain the effectiveness of OTA. Our
analysis surprisingly reveals that FFG implicitly induces a layer- and role-wise
aware pruning mechanism that is capable of maintaining fine-tuning performance
at much more aggressive pruning ratios compared to magnitude pruning and that
exhibits interpretable task localization properties. Third, an extensive comparison
of our curvature proxy across capability checkpoints shows that experts converge
to a basin with substantial curvature similarity, offering a novel lens on why simple
linear merging can be effective in practice. This result further strengthens our
ablation study, showing that FFG is critical for merging performance. Finally, we
develop a memory-light variant of OTA that efficiently compresses the second mo-
ments, mitigating the additional storage requirements of our method and improving
scalability. We make all code, training and evaluation scripts, visualization arti-
facts, and capability-specific SFT checkpoints accessible through an anonymized
repository athttps://github.com/anonl23ota-dotcom/ota-ffgl

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success as generalist foundations for
diverse tasks, with fine-tuning on specialized data yielding expert models that excel in targeted do-
mains Brown et al.[(2020). However, deploying an ever-growing suite of specialized experts incurs pro-
hibitive operational and computational costs, motivating research into model merging—consolidating
multiple expert capabilities into a single multitask model without retraining costs or ensembling
latency.

Despite empirical successes ranging from weight averaging to curvature-aware methods like Fisher
Merging (Matena & Raffel, 2022b), the fundamental question remains: why does model merging
work? The prevailing hypothesis—that fine-tuned models co-inhabit a single, wide, flat loss basin
enabling linear model connectivity (Frankle et al., | 2020)—fails at non-trivial scales and for models
trained on disparate tasks with distinct optimization trajectories. Yet simple linear averaging remains
competitive against sophisticated methods at scale (Yadav et al., 2024), revealing a critical gap in our
understanding of loss landscape curvature and limiting theoretical guidance for merging strategies.

We present a novel empirically-grounded perspective on SFT fine-tuned LLM curvature. Our central
insight: second-moment estimates (exp_avg_sq) from adaptive optimizers like Adam |[Kingma &
Ba|(2014)) serve as powerful, readily available proxies for the Fisher information matrix diagonal and
loss landscape curvature. We operationalize this through the Optimization Trajectory Aware (OTA)

https://github.com/anon123ota-dotcom/ota-ffg

Under review as a conference paper at ICLR 2026

merging framework, employing a two-stage process. First, Fast Fisher Grafting (FFG) leverages
optimizer states to identify and revert noisy parameter updates, restoring non-essential changes to
base model values—a principled grafting approach [Panigrahi et al| (2023). Figure [T (left) reveals that
task-specific knowledge exhibits high localization and structured sparsity. Second, OTA aggregates
denoised experts via curvature-aware merging using the same optimizer states as preconditioners.
Our results (Figure[I] right) demonstrate consistent outperformance of established baselines across
diverse capabilities, with FFG’s saliency-aware denoising driving the most significant gains. To
mitigate heavy data curation stages for post-training and ensure experimental reliability, we fully
replicated the SFT stage of Tulu3 |Lambert et al.|(2024)), an open-source post-training pipeline built
on Llama 3 models.

Our extensive experiments reveal FFG’s distinct localization patterns compared to magnitude pruning:
aggressive structured column/row sparsity in early and late query/key layers, and specialized
attention heads in late-layer output projections. To address storage requirements for second-moment
matrices (comparable to model size), we propose rank-one AdaFactor-style compression [Shazeer
& Stern| (2018), demonstrating maintained performance on merging benchmarks. Low stable rank
across transformer layers validates this compression. Finally, we provide compelling empirical
evidence for a new merging theory: capability-based SFT checkpoints develop shared curvature
geometry explaining linear averaging success, with models trained on identical data but different
learning rate schedules exhibiting nearly identical curvature structures.

_Math

model.embed_tokens.weight Forgetting

S 5 i code Only (6.27%) B o
math Only (2.09%)

if Only (5.02%)
(code)+(math) (1.14%)

Methods
—e— OTA-Merging (Ours)
~--- OTA-Merging (rank-1)
—=— Fisher Merging

_\ Code

Linear Averaging
TIES-Merging

Score (%)

N - DARE
(math)+(if) (0.70%) ~--- Best Individual Expert
(code)+(if) (1.23%) \
All Three (0.86%) N\ =
Pruned in All (82.70%) '
Instruction o Commonsense
(a) Task localization via FFG (b) Merging performance comparison

Figure 1: Left: FFG reveals that task-specific knowledge is highly localized. This heatmap shows
the FGG mask regions for three expert models (math, code, instructions) in the token embedding
layer, demonstrating clear, low-rank structured sparsity induced by FFG at 40% global density.
Right: A capability-based comparison shows that our full OTA method, which combines FFG-based
denoising with curvature-aware aggregation, is the top-performing merging technique. The dashed
line represents the performance ceiling of the best individual expert for each capability.

2 RELATED WORK

Weight-Space Model Merging and Composition. A rapidly growing literature studies how to
combine separately fine-tuned models directly in weight space. Early work showed that simple
weight averaging often improves accuracy and robustness when fine-tuned solutions lie in a shared
basin (Wortsman et al.| 2022). Matena & Raffel (2022a)) formalize merging as approximate posterior
combination via Fisher-weighted averaging, where (diagonal) Fisher information acts as parameter-
wise preconditioner. Task arithmetic composes behaviors by adding/subtracting task vectors (Ilharco
et al.| [2022); its theory and practice were strengthened by |Ortiz-Jimenez et al.| (2023)), who advocate
editing in the model’s tangent space. Permutation alignment methods such as Git Re-Basin expose
linear connectivity by matching hidden units before interpolation (Ainsworth et al., 2023)). To curb
interference, TIES-Merging trims small edits and resolves sign conflicts (Yadav et al., 2023). More
recently, [Tam et al.| (2024) cast merging as solving a linear system in a task-parameter subspace
(MaTS), while [Huang et al.| (2024) propose a tuning-free, high-performance recipe (EMR) that
works across modalities. Practitioner tooling such as MERGEKIT has standardized many of these
strategies for LLMs (Goddard et al., [2024b)). Our approach complements these directions with a
curvature-aware, two-stage pipeline: (i) FFG selects/denoises per-parameter edits using the second

Under review as a conference paper at ICLR 2026

moments combined with Optimal Brain Surgeon methodology Hassibi & Stork! (1992a)) , and (ii)
curvature-preconditioned aggregation reweights surviving edits during merging.

Curvature Proxies from Optimization Dynamics. Our work repurposes the readily available
second-moment statistics from adaptive optimizers as a proxy for the diagonal Fisher information.
Recent work by |Li et al.| (2025) compellingly validates this core idea, introducing the "Squisher" and
demonstrating its effectiveness as a "for free" replacement for a calculated Fisher across a broad set of
applications, including model pruning, continual learning, and a form of Fisher-merging. While our
work shares this foundational insight, it diverges significantly in its methodology, application focus,
and conceptual contributions. We detailed this, alongside additional related works, in Appendix [B]

3 THE OTA-MERGING FRAMEWORK

We propose OTA Merging, a unified framework designed to merge fine-tuned experts by addressing
parameter interference and curvature misalignment in a principled, storage-efficient manner. Our
approach is built on a key insight: the second-moment estimates tracked by adaptive optimizers like
Adam Kingma & Ba|(2014) can serve as a computationally cheap yet effective proxy for the local
curvature of the loss landscape. By leveraging this curvature information, OTA-Merging executes a
three-stage process: (1) it identifies and isolates the critical parameters for each task using a novel
pruning strategy, FFG; (2) it aggregates these task-specific subnetworks using a curvature-aware
weighting scheme; and (3) it employs a compression technique to store the required second moment
information with minimal memory overhead.

Adam’s Second Moment as a Proxy for the Empirical Fisher. Preconditioning-based optimizers,
such as Adam Kingma & Ba|(2014) and AdaGrad |Duchi et al.|(2011), scale gradients by a precondi-
tioner matrix that approximates the Fisher Information Matrix (FIM). For a model with parameters
w, the update at step £ is given by wi1 = Wy, — nP,;lmk, where 7 is the learning rate, my, is the
first momentum of the gradients, and P, = Diag(vy,) is a diagonal preconditioner derived from the
second moment, V.

The second moment, vy, is typically an exponential moving average (EMA) of element-wise squared
gradients: vi, = Bovi_1 + (1 — $2)(VLp, (Wr))®?%, where By, is the mini-batch at step k. This
formulation means that P, accumulates information about the diagonal of the empirical FIM over the
optimization trajectory. A comprehensive study on the connection between the empirical FIM and the
Hessian is provided by Martens|(2020). Moreover, Morwani et al.| (2024) studies the connection of
the outer product of mini-batch gradients to the empirical FIM, and Li et al.|(2025) further validates
the effectiveness of second moments as a Fisher proxy. By leveraging these works, the connection
between the second moment and the Hessian can be formalized with detailed theoretical justification,
and proofs are deferred to Appendix [D|for completeness.

Component 1: Parameter Selection with FFG. To mitigate destructive interference when merging,
we first identify a subnetwork within each expert that maintains the fine-tuning performance of
the full model. Inspired by Optimal Brain Damage [LeCun et al| (1989), we score the saliency
of each parameter’s change from its pre-trained state wy. The saliency of a parameter change
Aw; ; = w} ; — wo,; for task 7 is defined by its contribution to the loss, approximated by a second-

order Taylor expansion: s, ; = %H“-(Awm-)?

Calculating the Hessian H is infeasible for large models. However, the second-moment estimate
v from the Adam optimizer serves as an effective, training-free proxy for the diagonal of the FIM,
which in turn approximates the Hessian. This insight leads to our FFG saliency score, defined as
S = (Awm)2 - v, ;. For each expert 7, we compute this score for every parameter in its task vector
Aw., = w} — wy. We then generate a binary mask m, by preserving only the top-k parameters with
the highest saliency scores, where k is set by a sparsity ratio p. Instead of pruning parameters to zero,
we graft by reverting the non-selected parameters back to their w values. The resulting pruned task
vector is thus Aw, = m, o Aw,.

Component 2: Curvature-Aware Aggregation. After identifying the essential subnetwork for each
expert, we must aggregate them in a manner that respects the curvature of the loss landscape. Inspired
by preconditioned model merging methods such as Fisher Merging Matena & Raffel| (2022a) (see
Appendix [C|for additional background), we achieve this by solving for a merged parameter vector that
is at minimal distance from each of the pruned task vectors, where distance is measured in a space

Under review as a conference paper at ICLR 2026

warped by the curvature. Let P = Diag(y/VE + ¢€) be the diagonal preconditioning matrix

7,Adam ; X .
derived from Adam’s second-moment estimates for expert 7. The merged model is the solution to

the following optimization problem: Wereed = Wo + argminy, 23:1 |[Aw — Aw’||3. \uy” This
objective has a closed-form solution, yielding a pre-conditioned average of the pruned task vectors:

T L,
Wg’g\ged =Wwo + <Z P:,Adam> (Z P:,Adam(mT o AW;)) : (1)
T=1

T=1

a
A

This unified equation elegantly demonstrates how OTA first determines what to merge via the FFG

mask m. and then decides how to merge using the compressed, curvature-aware preconditioner f’i,
forming a complete and scalable framework.

Component 3: Memory-Efficient Preconditioner Compression. A practical challenge is that
storing the full second-moment tensor v, for each expert doubles the storage cost. To overcome
this, we adopt a compression strategy inspired by AdaFactor Shazeer & Stern|(2018)). For any large
weight matrix, instead of storing the full v, we only store the moving averages of its row-wise and
column-wise sums. We can then reconstruct a non-negative, rank-1 approximation of the second-
moment tensor, v, from these compressed statistics at runtime. This low-rank approximation is
then used to form a compressed preconditioner, 151 = Diag(v/V, + €), which replaces its full-rank
counterpart in both the FFG saliency calculation (Section[3) and the OTA aggregation formula (Eq. [I)).
For additional background on AdaFactor, see Appendix [C| Moreover, we would like to highlight that
approaches such as SVD would not be effective here, as we are factorizing a non-negative matrix.

4 EXPERIMENTS

We evaluate OTA-FFG across diverse benchmarks, studying how FFG localizes task-critical pa-
rameters and how OTA aggregates them. We compare against strong baselines and magnitude
pruning across sparsity levels, and analyze mask structure and curvature to explain observed gains
and compression benefits. Moreover, we analyze second-moment curvature of SFT models, finding
highly similar curvature across capabilities and near-identical curvature under different schedulers,
motivating why simple linear averaging works.

4.1 EXPERIMENTAL SETUP

Models, Tasks, and Training. Our experiments use meta-1llama/Meta-Llama—-3.1-8B
as the base model. To create a realistic merging scenario, we fine-tune five SFT mod-
els on distinct, capability-aligned subsets of the allenai/tulu-3-sft-mixture dataset
Lambert et al.| (2024). These capabilities include mathematics (using Tilu 3 Persona
MATH, OpenMathInstruct 2, and NuminaMath-TIR), coding (using Tilu 3 Persona
Python and Evol CodeAlpaca), general instruction following (using WildChat (GPT-4
subset), OpenAssistant, and No Robots), knowledge recall (using FLAN v2, SciRIFF,
and TableGPT), and precise instruction following (using Tilu 3 Persona IF). This setup
creates a well-posed aggregation problem where each expert localizes a complementary skill.

All models are fine-tuned using full-parameter SFT via the LLaMA-Factory library Zheng et al.
(2024). Crucially for our method, we use the AdamW optimizer and save the complete optimizer
state, including the exponential moving average of squared gradients (exp_avg_sq), which serves
as our preconditioning tensor and curvature proxy.

Methods Under Comparison. We evaluate our proposed method and its ablations against a suite
of strong baselines implemented in MergeKit |Goddard et al.| (2024a)). We evaluate OTA-FFG
(ours), OTA without FFG, FFG-TA (FFG + linear averaging), and baselines—Linear, TIES, DARE,
Breadcrumbs, Fisher—using MergeKit implementations.

Evaluation Suite. We evaluate all merged models on a diverse set of benchmarks using the Tiilu-3
evaluation suite via the OLMES toolkit|Lambert et al.|(2024), ensuring a rigorous and reproducible
assessment. The suite includes: HumanEval(+) Chen et al.| (2021)); |Liu et al.| (2024) for coding,
GSMSK Cobbe et al.| (2021) and MATH |Hendrycks et al.| (2021) for mathematical reasoning,
IFEval |Zhou et al.|(2023)) for instruction following, BBH (CoT) |Suzgun et al.|(2022) for general

Under review as a conference paper at ICLR 2026

reasoning, DROP Dua et al.| (2019) for reading comprehension, and PopQA Mallen et al.| (2023)
for knowledge recall. Moreover, to further strengthen the reliability of our experimental setup, each
capability-based SFT checkpoint is evaluated on the entire evaluation suite, and as expected we
observe that each SFT model indeed excels at the unseen evaluation benchmark corresponding to its
capability. The evaluation results are provided in Tabled]in Appendix[E.4]

4.2 MAIN RESULTS: MERGING PERFORMANCE

OTA with FFG Achieves State-of-the-Art Merging Performance. The main results in Table[T]
confirm our core hypothesis. We compared the performance of several methods for merging the five
SFT checkpoints discussed previously. The table shows the performance of each merging method
(rows) on a specific capability (columns). A capability’s performance is measured by averaging the
scores from the benchmarks assigned to it in our evaluation suite. Specifically: Math performance
is the average of the GSM8K and MATH benchmarks; Code is the average of HumanEval and
HumanEval+; Commonsense is the average of BBH and Drop; Instruction-Following is measured by
IFEval; and Forgetting is measured by PopQA. Our full method, OTA, achieves the highest average
score (0.582) across all merging techniques, outperforming strong baselines like TIES (0.565). The
ablation studies clearly show that the most significant gains come from FFG’s saliency-based task
vector sparsification. The FFG-TA (Selection Only) ablation, which simply averages FFG-pruned task
vectors, already achieves a strong 0.560 average. This is substantially better than OTA (Aggregation
Only) (0.536), which uses our curvature preconditioning on unpruned task vectors. This result
strongly supports our thesis that the primary obstacle in merging non-IID experts is parameter
interference, which FFG effectively mitigates by acting as a denoiser. The poor performance of
DARE (0.417) further reinforces that naive, random pruning is detrimental; a saliency-aware method
is essential. Moreover, for all methods under comparison, the sparsity ratio is tuned on a per-expert
basis, whether using FFG, magnitude or random pruning on task vectors. We observed that tuning a
fixed sparsity ratio for all experts made the performance of both OTA and TIES no better than that of
linear merging. Moreover, we evaluated the Tulu3-SFT, which can be seen as a multi-task SFT model
trained on aggregated data of all capability-based SFT checkpoints. We observed that there is still
a considerable but not significant gap between capability-based SFT merging and multi-task SFT
training, strengthening the effectiveness of model merging in post-training and showing room for
further improvement of merging methods.

Table 1: Performance comparison of merging methods. The best-performing merge method in each
column is highlighted. The "Average" score is the unweighted mean across the five capability metrics.

Model Math Code Commonsense Instruction Forgetting Average
DARE 0.335 0.619 0.450 0.470 0.212 0.417
Breadcrumbs 0.453 0.722 0.547 0.529 0.260 0.502
Fisher 0.446 0.686 0.657 0.597 0.318 0.541
Linear 0.459 0.718 0.650 0.612 0.318 0.551
TIES 0.475 0.748 0.654 0.629 0.318 0.565
OTA (w Linear) 0.458 0.771 0.650 0.601 0.318 0.560
OTA (wo FFG) 0.458 0.660 0.654 0.590 0.318 0.536
OTA (rankl) 0.494 0.787 0.646 0.614 0.315 0.571
OTA 0.504 0.783 0.645 0.664 0.315 0.582
Tulu3-SFT 0.528 0.835 0.650 0.715 0.295 0.605

4.3 DEEP DIVE: ANALYSIS OF THE FFG STAGE

FFG Consistently Outperforms Magnitude Pruning. To validate the FFG mask selection mecha-
nism, we compare it directly against magnitude pruning across a range of density ratios (see Figure
in Appendix[F). We apply FFG and magnitude pruning on task vectors of math, code, and precise-if
SFT models, and evaluate each expert on its corresponding benchmark. FFG consistently matches or
outperforms magnitude pruning, with the largest gains observed in high-sparsity regimes (1-10%
density). For instance, on IFEval, FFG yields a +0.10 to +0.16 absolute improvement at 1-5% density.
On the Code benchmark (HumanEval), FFG at 20% density (0.834) even surpasses the dense SFT
model (0.788), suggesting that FFG has a regularizing effect by removing noisy, low-saliency updates

Under review as a conference paper at ICLR 2026

and thereby improving generalization. A similar pattern is observed for the math SFT model on the
MATH benchmark, where at 40% density FFG achieves 32.52%, compared to the full math SFT
performance of 31.6%. The ability of FFG to compress task vectors to much higher sparsity levels
while still maintaining, or even improving, fine-tuning performance further motivates an analysis
of its underlying subnetwork selection mechanism. Hence, in the subsequent section, we provide a
comprehensive empirical study to better understand this mechanism.

4.3.1 ANALYZING THE UNDERLYING MECHANISM OF FFG

To investigate the distinct mechanisms of magnitude pruning and FFG, we applied a global density
ratio of 40% to generate sub-network masks for SFT models trained on math, code, and precise-if
tasks—a budget at which both methods maintain fine-tuning performance. We analyzed the resulting
layer-wise and role-wise density patterns (across weight type, and layer depth) induced by global
density.

Figure 2] plots the density distributions for the math SFT model, revealing a U-shaped sparsity pattern
across transformer layers for both methods, with aggressive pruning in early and late layers while
middle layers remain dense. Query and key projections share similar sparsity patterns within each
method, as do up- and down-projection weights. FFG exhibits dramatically wider sparsity ranges than
magnitude pruning: in the math SFT model, FFG sparsity spans 99% (first layer’s query projection)
to 18% (fifth layer’s value projection), while magnitude pruning ranges from 72% (first layer’s value
projection) to 45% (layer 15 query weight).

The methods exhibit opposing density rankings across weight types. Magnitude pruning preserves
query and key projections (lower sparsity) while aggressively pruning value and output projections
(higher sparsity). Surprisingly, FFG inverts this pattern: it aggressively prunes query and key
weights—particularly in initial and late layers (99% sparsity for first-layer query/key weights versus
70% for magnitude pruning)—while densifying value and output projections in middle layers (18%
sparsity for layer 5 value projection versus 58% for magnitude pruning). This same reversal occurs
for down- and up-projections, with FFG showing more extreme U-shaped patterns.

The aggressive query/key sparsification achieved by FFG motivated further structural analysis.
Computing row-wise and column-wise densities for the mathematical SFT model revealed that FFG
induces highly structured sparsity: over 85% of query matrix rows (output features) in the four layers
exhibiting the highest sparsity are entirely zeroed (see Figure[I2]in Appendix [F). Magnitude pruning
lacks this structure (see Figure[13]in Appendix [F), suggesting that low-rank sparsity is an implicit
property of FFG.

-
o

Weight Type

fully sparse)
°
3

fully sparse)

A
N AP
NV N iz
1 \ " / N \ gate_proj
4 \ / \/'j // AVITER SN up_proj

Weight Type

o
®
—

—— o_proj

gate_proj »

0.60 - . . up_proj [/
,,,,,,, N . down_proj

N AN ~NT

NN NN \

dense, 1
dense, 1
o)
>

A
\. / N

=2 NS 7 e
° \/\\ SN o’ / dournpre
Boso /\4/ T | A 7 /
<N Van~an « A\ Y

2 A A ./ 202 \ AR N Parrd
$0.45 TR @ ARG, NS S M
3 0 5 10 15 20 25 30 2 o s 10 15 20 25 30
©n Layer Depth n Layer Depth

(a) Magnitude Pruning (Math Expert) (b) FFG Pruning (Math Expert)

Figure 2: Layer-wise density distribution at a global 40% task vector pruning density for the
Math SFT expert. FFG (right) exhibits strong, emergent role-aware pruning, aggressively sparsifying
query/key weights while preserving value/output/FFN weights. Magnitude pruning (left) is far more
uniform and less structured.

FFG shows an implicit layer-wise and role-wise grafting mechanism Overall, our analysis of
the density distribution patterns reveals novel insights into the task localization of FFG across
weight types and layer depths and strongly supports its implicit layer-wise density allocation. FFG
aggressively sparsifies the early and late query/key layers, even at a moderate global density ratio (e.g.,
40%), and imposes a low-rank structure on their task vectors. On the other hand, it allocates most of

Under review as a conference paper at ICLR 2026

the global density to the value and projection weight types in the middle layers (approximately twice
the density allocated to these weight types compared to magnitude pruning). This implicit density
allocation mechanism aligns well with our understanding of SFT training paradigms, where the query
and key layers of task vectors were shown to be extremely low-rank, as presented in the seminal work
LoRA (Hu et al.} 2022) and further studied theoretically in Tarzanagh et al.|(2023).

4.4 SFT TASK LOCALIZATION THROUGH FFG LENS

Inspired by FFG’s layer-wise and role-wise grafting, we analyze SFT task localization by comparing
FFG masks/sub-networks across math, code, and precise-if models within each layer and weight type
(Figure [3). With FFG density fixed at 40% across experts, visualizations show mask localization
where colors indicate element status: dark for pruned from all three tasks, white for selected by all,
and other colors for partial overlap. Weights are downsampled (e.g., 4096 x 4096 to 256 x 256)
via uniform subsampling with adaptive stride. We visualize layers 1, 15, and 30 as representative
examples; however, we discuss only patterns that are consistent across all layer depths within each
weight type. For completeness and to establish the credibility of our claims, we provide heatmap
visualizations across all layer depths and weight types, which are accessible through the provided
anonymous GitHub repository.

Figure [3|legends show computed mask overlap between SFT models. In all heatmaps (excluding
embedding and LM heads), columns represent single input feature weights to all outputs, while rows
represent all weights to single outputs. Thus, dense/sparse colored rows indicate output features
densely/sparsely utilizing inputs, while dense colored columns show heavily updated input features
during SFT and dark columns represent unused inputs.

SFT Use a Shared, Extremely Sparse Subset of Embeddings’ Features Across Tasks. As shown
in Sectionf.3] FFG introduces the most sparsity in the first two and last two layers of the transformer.
The mask visualizations for these layers are predominantly dark, with strong row- and column-wise
patterns, which supports the low-rank structure of the FFG mask in these areas. Most interestingly,
the query and key weights in the first layer show extremely high overlap in pruned regions across the
three tasks (e.g., a 97.8% shared pruned region). We observed that all three masks select an extremely
sparse and nearly identical set of input features (a column-wise mask pattern) for the query and key
matrices of the first layer, with almost no dense output features. This strongly suggests that SFT
updates only a very sparse subset of embedding features. This observation is reasonable, as we expect
the early layers to be focused on general language understanding, an ability largely acquired during
pre-training.

Task-Specific Dominance in Attention vs. FFN Layers. The Math SFT model dominates query
and key attention layers across all depths with often twice the parameter density of Precise-IF SFT.
Code SFT similarly exceeds Precise-IF in these layers, though less dramatically. This pattern peaks
in middle layers. Conversely, Precise-IF and Code SFT dominate FFN layers (up, down, gate
projections)—clearly in layers 1-2, absent until layer 22, then aggressively from layers 23-31. In
these later layers, Precise-IF significantly exceeds both Code and Math SFTs’ density, with Code
slightly denser than Math. Value and output projections follow the ranking Math > Code > Precise-IF
(slight differences). This aligns with expectations: attention layers are critical for mathematical
reasoning’s complex token patterns, while instruction-following relies more on FFN layers’ feature
extraction capabilities.

Formation of Specialized and General-Purpose Attention Heads in Layers 17-31. The value and
output projections reveal another interesting property. From layers 1 to 16, we observed maximum
dense mask overlap across the expert models compared to other weight types, and the heatmaps
appear mostly random with no clear visual pattern. However, from layers 17 to 31, two distinct
regions emerge within the masks. The first region maintains high overlap across the experts, while
the second region contains almost no overlap. This phenomenon is illustrated for the value and output
projections of layer 30 in Figure [3] It is worth noting that this two-region behavior also appears
to some extent in layers 1 and 2 before vanishing until it re-emerges at layer 17. Since a set of
subsequent columns in the output projection represents the aggregated feature set from a specific
attention head, the non-overlapping regions in layers 17-31 provide strong evidence for the formation
of task-specialized heads alongside more general-purpose heads. This claim is further supported by

Under review as a conference paper at ICLR 2026

the patterns in the query and key layers for this same range (17-31), where two distinct regions also
exist: one with almost no overlap and another with extremely high overlap.

Layer 1 - q_proj

Layer 1 - k_proj Layer 1 - v_pr
== code Only (2.56%) i
. math Only (4.21%)
. if Only (2.03%)
(code)+(math) (1.84%)

== code Only (1.46%)
mm= math Only (2.56%)
m—if Only (1.34%

(code)+(math) (1.09%)

m code Only (6.04%)
‘math Only (6.50%)

if Only (6.09%)
(code)+(math) (13.89%)
(math)+(if) (12.29%)
- (code)+(if) (12.59%)
All Three (38.42%)

mm Pruned in All (4.18%)

= code Only (7.19%)
‘math Only (9.64%)

if Only (7.55%)
(code)+(math) (13.41%)
(math)+(if) (12.30%)
m (code)+(if) (11.23%)
All Three (28.76%)

mmm Pruned in All (9.92%)

(math)+(if) (0.82%)
= (code)+(if) (0.68%)

All Three (1.22%)
mm Pruned in All (90.82%)

(math)+(if) (1.16%)
= (code)+(if) (0.99%)

All Three (1.74%)
= Pruned in All (85.47%)

Layer 15 - q_proj Layer 15 - k_proj

Layer 15 - v_proj Layer 15 - 0_proj
= code Only (8.03%) s | - code Only (3.70%)
== math Only (20.00%)
- if Only (6.09%)
(code)+(math) (9.26%)
(math)+(if) (6.72%)
. (code)+(if) (3.86%)
All Three (7.49%)
EEE Pruned in All (38.54%)

m code Only (10.02%)
math Only (20.51%)
m—if Only (7.57%)
(code)+(math) (11.13%)
(math)+(if) (8.37%)
m (code)+(if) (4.68%)
All Three (8.20%)
= Pruned in All (29.52%)

= code Only (5.09%)

= math Only (8.46%)

= if Only (3.79%)
(code)+(math) (16.66%)
(math)+(if) (12.98%)
- (code)+(if) (8.63%)

All Three (40.81%)

mm Pruned in All (3.57%)

B math Only (4.30%)

| if Only (2.26%)

(code)+(math) (15.14%)

(math)+(if) (10.88%)

. (code)+(if) (8.56%)

All Three (53.52%)

W Pruned in All (1.64%) i
i

Layer 30 - q_proj

Layer 30 - k_proj

Layer 30 - v_proj

Layer 30 - 0_proj

== code Only (5.21%)

== math Only (7.73%)

= if Only (5.77%)
(code)+(math) (2.92%)
(math)+(if) (2.98%)

— (code)+(if) (2.09%)
All Three (2.48%)

. Pruned in Al (70.82%)

== code Only (6.68%)

= math Only (9.89%)

m—if Only (7.99%)
(code)+(math) (3.60%)
(math)+(if) (4.14%)

m (code)+(if) (2.78%)
All Three (3.35%)

W Pruned in All (61.58%)

= code Only (10.84%)

{| === math Only (12.51%)

@ wmm if Only (9.83%)
(code)+(math) (8.66%)
(math)+(if) (7.25%)

L (code)+(if) (7.26%)
All Three (8.18%)

i = Pruncd in All (35.48%)

[wmm code Only (10.90%)
= math Only (12.15%)
= if Only (13.71%)
(code)+(math) (10.51%)
(math)+(if) (10.97%)
= (code)+(if) (9.84%)
All Three (12.78%)
= Pruned in All (19.14%)

i

Figure 3: 3-way FFG comparison for attention components across layers 1, 15, and 30 (top to
bottom). Columns show W, Wy, W,,, W,. RGB channels represent Code (red), Math (green), and
Instruction-Following (blue).

4.5 ANALYSIS OF CURVATURE AND RANK STRUCTURE

Second Moments Have Low Stable Rank, Justifying Compression. A core assumption of our
AdaFactor-style compression is that the second-moment tensors, v, are inherently low-rank, allowing
for efficient compression. We validate this by computing the stable rank of the v, matrices for the
Math and Code experts (see Figure[I7]in Appendix[G). Across all layers and for both SFT models, the
stable rank is surprisingly low (below 1.3), confirming that the second-moment matrices are highly
compressible and that a rank-1 approximation can capture a significant fraction of their energy. This
provides a solid empirical justification for our memory-efficient variant of OTA, which aggressively
reduces the required storage for second-moment matrices (from 29.9 GB to 12.6 MB for Llama 3.1
8b under fp32 precision) with a minor drop in model merging performance (from 0.582 to 0.571
average score), as detailed in Table m

Visualizing Shared Curvature Geometry. In this section, we leverage the connection between the
second moment and diagonal curvature to study how curvature differs across SFT models. We use the
same subsampling strategy for the heatmaps that was used to visualize task localization, but we apply
it to the second-moment matrices instead of the grafting masks. The curvature heatmap comparisons
across experts for each layer depth and weight type provide an empirical visualization suite to study
our central conjecture: that SFT models fine-tuned from the same base converge to basins with highly
similar curvature geometry.

In Figure[d] we visualize the log-scaled heatmaps of the square root of the exp_avg_sq tensor for
the attention weights of two distinct SFT checkpoints, Math and Code, alongside the max-to-min ratio
of their diagonal curvatures. We only report patterns that exist consistently across all layers; layer 11
is shown here as a representative example. The complete set of curvature comparison heatmaps is
available in the provided anonymous GitHub repository. We first observe that the diagonal curvature
has a clearly visible row-wise and column-wise structure, matching the observations in the mask
visualization in Section.4} The column-wise band can be interpreted as an input feature curvature
for all weights connected to a given input neuron. Similarly, the row-wise band represents an output
feature curvature for all weights connected to a given output neuron.

How to interpret these heatmaps, and what is the takeaway? We use our input and output
curvature notions to analyze and compare curvature scales across models. We observed very high
overlap in the subsets of input features with largest curvatures across all models, weight types, and
layers—evident in the strong column-wise bands at identical positions for each weight type. Output
features show similar high-curvature overlap. Linear max-min ratio heatmaps (Figure) confirm
this with dark heatmaps across all layers and depths, indicating the max-min ratio remains orders of
magnitude smaller than each heatmap’s curvature range. For instance, layer 11°s projection v-layer

Under review as a conference paper at ICLR 2026

math math math
layers_11_self attn_q_proj_exp_avg_sq layers_11_self attn k proj_exp_avg sq layers 11 self attn v proj exp avg sq

log10(exp_avg_sa)

" log10(exp_avg_sq)

code code
layers_11_self attn_k proj_exp_avg_sq layers 11 self attn v proj exp avg sq

code
layers_11_self attn_q_proj_exp_avy_sq

Lol
log10(exp_avg_sq)
logT0(exp_avg_sq)

Figure 4: Shared curvature geometry in attention layer 11. The top two rows show the Math
and Code SFT models, respectively. The striking consistency in structural patterns validates our
shared curvature hypothesis. The bottom row shows the max-min ratio across all models, highlighting
regions of highest variance (light color) where task specialization is most pronounced.

shows each expert with a curvature max-min ratio around 104, while element-wise max-min ratios
between heatmaps stay below 5 for almost all elements. Our results demonstrate significant curvature
matching across models, revealing similar (though not identical) structure across training checkpoints.

This shared geometry explains linear merging’s strong performance—models are already geometri-
cally aligned, making linear merging implicitly curvature-aware or Fisher-optimal. While the overall
structure is shared, max-min ratio plots reveal subtle but important variations in specific parameter
groups where task-specific fine-tuning most significantly changed the loss landscape’s curvature.
This shared foundation with localized, high-variance differences motivates our two-stage approach:
FFG isolates task-specific parameters before aggregating the shared structure.

To validate these differences are task-specific rather than training artifacts, we compared two Code
specialists trained on identical data but with different schedulers (Cosine vs. WSD). Figure [13]
in Appendix |G| shows virtually indistinguishable curvature patterns, quantitatively confirmed by
max-min ratios an order of magnitude smaller than Code vs. Math comparisons and consistently near
one. This evidence confirms our curvature-based analysis captures meaningful, task-driven geometric
differences, reinforcing OTA-Merging’s theoretical foundation.

5 DISCUSSION

Sparsity tuning for experts. One of our key observations in optimizing pruning-based merging
methods, such as OTA and TIES, is the necessity of tuning the sparsity ratio per expert. As shown in
Figure[7] different capabilities exhibit varying sensitivity to sparsity. Some tasks, like coding, can
maintain or even improve their performance under aggressive sparsity, whereas precise instruction
following requires significantly lower sparsity to preserve performance. Therefore, to practically
tune the sparsity per expert for each pruning-based merging method, we evaluated the corresponding
capability for each SFT checkpoint at five density ratios in {0.05,0.1,0.2,0.4,0.6} and selected
the largest sparsity ratio that maintained near-full checkpoint performance. Consequently, for each
capability, we performed five evaluations per merging method to conduct this tuning.

Cost comparison: Merging vs. Data-Mixing. One of the key goals of this paper is to benchmark
capability-based model merging as an alternative to data-mixing and multi-capability training for
post-training LLMs. Unlike Fisher merging, our proposed OTA method and all other baselines rely
solely on lightweight element-wise matrix operations, avoiding post-hoc forward or backward passes.

Under review as a conference paper at ICLR 2026

Consequently, the computational cost is dominated by training individual expert checkpoints and
the necessary evaluations for sanity checks and sparsity tuning. For instance, training each expert
requires a few days on two A100 GPUs and running the evaluation suite takes a few hours, whereas
the merging process itself takes only minutes on a single A100 GPU.

From this perspective, we can meaningfully compare the compute cost of merging against the data-
mixing approach used for the Tulu3 SFT checkpoint|Lambert et al.|(2024)). A critical hyperparameter
in data-mixing is the weight balance between capability datasets. [Lambert et al.| (2024)) employed
a heuristic approach, allocating a budget of five trial-and-error iterations to tune these weights.
Crucially, each trial required training on the data mix from scratch followed by a full evaluation. In
contrast, while we incur a similar evaluation budget for validating checkpoints and tuning sparsity,
we completely eliminate the costly retraining phases. This demonstrates a significant computational
advantage for model merging, particularly given the iterative nature of finding the optimal data mix.

Beyond diagonal approximation of the Fisher matrix. One of the essential components of our
proposed OTA framework is the direct repurposing of Adam’s second moments at the end of training
as an approximation of the empirical Fisher information (or curvature). However, the Adam second
moment captures only the diagonal of the Fisher matrix. Consequently, the effects of off-diagonal
terms on merging and pruning are not addressed in our current framework. While the full Fisher
matrix is computationally intractable for LLMs, Kronecker-factored approximations have been
proposed as effective non-diagonal alternatives. Optimizers such as Shampoo [Gupta et al.| (2018) and
KFAC Martens & Grosse|(2015a)) leverage this concept to improve the empirical Fisher approximation
and the resulting preconditioners. Inspired by the success of these optimizers, we believe extending
our OTA framework to incorporate Kronecker-based approximations is a valuable direction for
future work. Moreover, even within the literature on preconditioned optimization, there is a lack of
theoretical frameworks characterizing the precise benefits of non-diagonal (e.g., Kronecker-based)
versus diagonal approximations. Our work currently shares this limitation. Thus, establishing
the theoretical underpinnings of the trade-offs between diagonal and non-diagonal approximations
remains an important objective for future research.

6 CONCLUSION

We introduced OTA Merging, a scalable and effective framework for consolidating specialized models
by harnessing the rich, yet often discarded, second-moment statistics from the Adam optimizer. We
demonstrated that this optimization history serves as a powerful and computationally efficient proxy
for local loss landscape curvature. Our twofold approach combines FFG, which leverages curvature
information as a principled denoiser to identify and revert noisy parameter updates and isolate
essential knowledge from each expert, with curvature-aware aggregation that merges these denoised
experts while respecting their underlying geometry. This methodology is motivated by our central
discovery that independently fine-tuned models exhibit remarkable geometric consensus, shifting the
primary challenge of merging from alignment to interference mitigation. Furthermore, we showed
that FFG serves as a potent analytical tool, revealing structured, role-aware sparsity patterns that
offer new insights into task localization. By treating the optimization trajectory as a valuable asset,
OTA Merging provides a new, robust paradigm for efficient model composition, paving the way for
future explorations into more complex curvature approximations and their application across different
model composition techniques.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. In International Conference on Learning Representations, 2023.
URLhttps://openreview.net/forum?id=CQOsmMYm1P5T.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251-276,
1998.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877-1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Igor Mordatch,
Tabarak Khan, Craig Baker, Yoon Kim, Christopher Hesse, Christopher Olah, Sandhini Agarwal,
Vitchyr H. Pong, Simon Sidor, William Saunders, Miles Brundage, Ilya Sutskever, Wojciech
Zaremba, John Schulman, and Dario Amodei. Evaluating large language models trained on code,
2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Michael Petrov, Bob McGrew, Jerry Tworek, Douwe Kiela, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, and Dario Amodei. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
2368-2378, 2019.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850-5861, 2020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp- 3259-3269. PMLR, 2020.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in one-
shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 10323-10337. PMLR, 23-29 Jul
2023. URL https://proceedings.mlr.press/v202/frantar23a.htmll

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. In Advances in Neural Infor-
mation Processing Systems, volume 31, 2018. URL https://papers.nips.cc/paper/
8095-1oss—-surfaces—-mode—-connectivity—-and-fast-ensembling-of-dnns.

11

https://openreview.net/forum?id=CQsmMYmlP5T
https://proceedings.mlr.press/v202/frantar23a.html
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns

Under review as a conference paper at ICLR 2026

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir Karpukhin,
Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pp. 477485, 2024a.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir Karpukhin,
Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: Industry Track, pp. 477—485, Miami, Florida, US, 2024b. Association
for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.36. URL https://
aclanthology.org/2024.emnlp-industry.36/.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pp. 1842—-1850. PMLR, 2018.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Op-
timal brain surgeon. In Advances in Neural Information Processing Systems, vol-
ume 5, 1992a. URL https://proceedings.neurips.cc/paper/1992/hash/
303ed4c69846ab36c2904d3ba8573050-Abstract.html.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, volume 5, 1992b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. /CLR, 1(2):3, 2022.

Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. EMR-merging:
Tuning-free high-performance model merging. In Advances in Neural Information Processing
Systems, 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/dda5cac5272a%9bcd4bc73d90bc725efl1-Paper—-Conference.pdfl
NeurIPS 2024 Spotlight.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, volume 2, 1989.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Ad-
vances in Neural Information Processing Systems, volume 2, pp. 598-605. Morgan
Kaufmann, 1990. URL https://proceedings.neurips.cc/paper/1989/hash/
6c9882bbaclc7093bd25041881277658-Abstract.html.

YuXin Li, Felix Dangel, Derek Tam, and Colin Raffel. Fishers for free? approximating the fisher
information matrix by recycling the squared gradient accumulator. In Proceedings of the 42nd
International Conference on Machine Learning (ICML), 2025. PMLR 267.

Jian Liu, Chenan Wang, Yushan Zhang, Yixin Fu, Yuan Jiang, Enyi Shen, and Qing Wang. Is your

code generated by chatgpt really correct? rigorous evaluation of large language models for code
generation, 2024.

12

https://aclanthology.org/2024.emnlp-industry.36/
https://aclanthology.org/2024.emnlp-industry.36/
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/dda5cac5272a9bcd4bc73d90bc725ef1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/dda5cac5272a9bcd4bc73d90bc725ef1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html

Under review as a conference paper at ICLR 2026

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories, 2023.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1-76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 2408-2417,
Lille, France, 07-09 Jul 2015a. PMLR. URL https://proceedings.mlr.press/v37/
martensl5.htmll

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408-2417. PMLR, 2015b.

Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging. In International
Conference on Learning Representations, 2022a. URL https://openreview.net/forum?
1id=LSKlp_aceOC.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703-17716, 2022b.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A new
perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In Advances in Neural Information Processing
Systems, 2023. URL |https://papers.neurips.cc/paper_files/paper/2023/
file/d28077e5ff52034cd35b4aal5320cacea-Paper—-Conference.pdfl

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. In International Conference on Machine Learning, pp. 27011—
27033. PMLR, 2023.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. = Movement pruning: Adaptive
sparsity by fine-tuning. In Advances in Neural Information Processing Systems, vol-
ume 33, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
caelbaabaa’/68aedab993a8adfdfabed—Abstract.html.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
arXiv preprint arXiv:1804.04235, 2018.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for
neural network compression. In Advances in Neural Information Processing Systems, vol-
ume 33, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
dlfflec86b62cd5£3903ff19c3a326b2-Abstract.html.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695,2023. URL https://arxiv.org/
abs/2306.11695.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aseem Rawat, Swayam Singhal, Siddhartha Brahma, Jason Wei, Aakanksha Chowdhery, and
Denny Zhou. Challenging big-bench tasks and whether chain-of-thought can solve them, 2022.

Derek Tam, Mohit Bansal, and Colin Raffel. Merging by matching models in task parameter
subspaces. arXiv preprint arXiv:2312.04339, 2023.

Derek Tam, Mohit Bansal, and Colin Raffel. Merging by matching models in task parameter

subspaces. Transactions on Machine Learning Research, 2024. URL |https://openreview.
net/forum?id=gNGo6ghWFB, Certified and published on OpenReview.

13

https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://openreview.net/forum?id=LSKlp_aceOC
https://openreview.net/forum?id=LSKlp_aceOC
https://papers.neurips.cc/paper_files/paper/2023/file/d28077e5ff52034cd35b4aa15320caea-Paper-Conference.pdf
https://papers.neurips.cc/paper_files/paper/2023/file/d28077e5ff52034cd35b4aa15320caea-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://openreview.net/forum?id=qNGo6ghWFB
https://openreview.net/forum?id=qNGo6ghWFB

Under review as a conference paper at ICLR 2026

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as
support vector machines. arXiv preprint arXiv:2308.16898, 2023.

Nikhil Vyas, Yamini Bansal, and Preetum Nakkiran. Limitations of the ntk for understanding
generalization in deep learning. arXiv preprint arXiv:2206.10012, 2022.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965-23998. PMLR, 2022.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36:7093-7115, 2023.

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal, and
Tsendsuren Munkhdalai. What matters for model merging at scale?, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqgiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372l

Yucheng Zhou, Tao Yu, Zihan Wang, Keerti Banweer, Yuning Mao, Pengcheng Yin, and Hai-Tao
Zheng. Ifeval: A new benchmark for evaluating llms on instruction following, 2023.

14

http://arxiv.org/abs/2403.13372

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used large language models (LLMs) such as GPT-5 and Gemini 2.5 Pro to polish and proofread
our writing by correcting grammatical errors and improving overall sentence clarity.

B ADDITIONAL RELATED WORKS

Pruning and Grafting with Second-Order Signals. Classical pruning measured parameter
saliency via second-order criteria: Optimal Brain Damage (OBD) uses a diagonal Hessian ap-
proximation (LeCun et al.,[1990), and Optimal Brain Surgeon (OBS) leverages full curvature (Hassibi
& Stork, [1992a). Singh & Alistarhl (2020) provide scalable inverse-Fisher approximations. For
LLMs, one-shot/zero-shot methods such as SparseGPT (Frantar & Alistarh,|2023)) and Wanda (Sun
et al., 2023) enable accurate pruning without retraining; movement pruning adapts masks during
fine-tuning (Sanh et al., 2020). In contrast, our objective is not generic compression: FFG computes
a curvature-weighted edit saliency s; = H;; Aw? and grafts by resetting low-saliency coordinates
to base weights. This simultaneously reduces cross-task interference and reveals interpretable task
localization.

Mode Connectivity and Alignment. Mode-connectivity work shows that the independently trained
checkpoints on same data are often connected by low-loss paths (Garipov et al.,2018)). After permuta-
tion alignment, independently trained networks lie in an approximately convex basin, which explains
why linear interpolation/merging can work when models are geometrically aligned (Ainsworth et al.}
2023). Our curvature-aware view complements these results: if diagonal curvature morphology is
shared across specialists, then linear aggregation with curvature reweighting is particularly effective.

Comparison with [Li et al. (2025) While |L1 et al.| (2025) study Fisher pruning applied to the
final model weights (w™*) by setting parameters to zero, FFG instead operates on the task vector
(Aw = w* — wy) to revert low-saliency updates. This mitigates interference between non-1ID
experts—a critical step for our SFT merging setting. This denoising role is the cornerstone of our
OTA-Merging framework and is a key differentiator from other merging methods. Second, we
uniquely employ the second moment proxy as an analytical and interpretability lens. We use it to
propose and provide strong empirical evidence for a shared curvature hypothesis, offering a new
explanation for the effectiveness of model merging. Furthermore, we leverage FFG as a tool for task
localization to understand SFT training regimes, revealing how skills are encoded via structured,
role-aware sparsity patterns in the network, a line of analysis not pursued inLi et al.| (2025).

Finally, to address the significant practical issue of storage, we propose and validate an AdaFactor-
style rank-1 compression of the second-moment tensor. This reduces the storage overhead signifi-
cantly, making our approach highly scalable for large models. In summary, while |Li et al.| (2025)
establish the broad utility of the optimizer-as-Fisher proxy, our work presents a specialized, end-to-
end framework, and benchmarks for the challenging SFT merging problem at a non-trivial scale,
completed with a novel denoising mechanism, new interpretability insights, and a practical, scalable
implementation.

C PRELIMINARIES

This section establishes the notation and foundational concepts that underpin our work. We begin
by formalizing the SFT setup and the associated notation. We then introduce the Fisher Information
Matrix (FIM) as a key tool for understanding the curvature of the loss landscape. Finally, we review
how second-order information, approximated by the FIM, is leveraged in established methods for
model merging and parameter grafting, setting the stage for our proposed contributions.

C.1 SFT SETUP
Notation. We denote matrices with bold capital letters (A), vectors with bold lowercase letters

(v), and scalars with regular lowercase letters (s). A vector-valued function’s j t output is denoted
as f7. The i-th standard basis vector is e;, and an n-dimensional vector of ones is 1,,. For any

15

Under review as a conference paper at ICLR 2026

Positive Semi-Definite (PSD) matrix P € R%*?, we define its induced norm on a vector x € R? as

Ix|lp = VxTPx.

Learning Setup. We consider a supervised fine-tuning (SFT) scenario with T distinct tasks from
the same base model. For each task 7 € {1,...,T}, we have a dataset S, = {(x7],y])}Li*l‘,
with samples drawn from a true data distribution D,.. We begin with a common pre-trained model
architecture, parameterized by wy € RY, which is then fine-tuned for each specific task. The
model, f(-;w), maps an input x € X to a logit vector z € RIV, where | V| is the vocabulary size.

These logits parameterize a conditional probability distribution P(y|x;w) via the softmax function:
1 . —aly 1 ‘V\)
ogp(y|x;w) = e, z —log (3, exp(z;)).
The objective for each task 7 is to minimize the empirical cross-entropy loss, which approximates the
true expected risk over the data distribution D :
Ls, (w) = —E(x y)~s, [logp(y[x;w)].

For notational simplicity, we will drop the task subscript 7 when the context is clear.

C.2 THE FISHER INFORMATION MATRIX

A central concept for analyzing the loss landscape is the Fisher Information Matrix (FIM), which
measures the sensitivity of the model’s output distribution to changes in its parameters w. It provides
a powerful approximation of the loss curvature |Amari| (1998)); Martens| (2020) and is equivalent to
the negative Hessian of the log-likelihood, under expectation over model’s predictive distributions,
F(w) = —Ey p(y|z;w)[Va l0g p(y | x; w)]. In practice, several variants of the FIM are used:

True FIM, F(w), is defined over the true data distribution and the model’s predictive distribution,
making it intractable for deep neural networks:

F(w) = Exupx) ymP(ylxaw) [V 10g p(y]x; w) Ve, log p(y|x;w) '] . 2

Expected Empirical FIM, ﬁ‘(w), approximates the true FIM by using a finite dataset S but still
requires an expectation over the model’s predictions:

. 1
F(w)=ﬁ D Eyepyixiw) [V 108 p(y[xi;w) Vi log plyxs;w) 7] . ()
(xi,y:)ES

Observed Empirical FIM, F(w), simplifies this further by replacing the expectation with the
observed ground-truth labels from the dataset. This variant, often called the "empirical Fisher," is
the most commonly used in practice Martens & Grosse| (2015b); [Matena & Raffel (2022b) due to its
computational advantage by avoiding the need for costly sampling from model’s distribution:

_ 1
Flw)= = Z [V log p(yilxi; w) Ve 10gp(yi|xi§w)T] . 4
(x4,y:) €S

C.3 APPLICATIONS OF SECOND-ORDER INFORMATION

The FIM’s ability to capture loss curvature makes it invaluable for a range of model manipulation
techniques, from merging diverse experts to compressing a single model.

Preconditioned Model Merging. The goal of model merging is to combine a set of fine-tuned expert

models, {w?}1_,, into a single, multi-tasked model Wyerged- A generalized approach involves a

weighted average in parameter space Tam et al.| (2023):

T L
Wmerged = (Z CT) (Z C-,—’UJi) s (5
T=1 T=1

where C, are PSD weighting matrices. Different choices for C, yield different merging strategies.
For instance, Fisher-weighted averaging Matena & Raffel| (2022b) uses the empirical FIM of each

16

Under review as a conference paper at ICLR 2026

task as C, leveraging the loss landscape geometry to guide the combination process, and Tam et al.
(2023)) leveraged Kronecker factored approximation of empirical fisher (Martens & Grossel 2015a)
for the choice of C, .

Optimal Brain Damage for Pruning and Grafting. Second-order information is also fundamental
to classic model compression techniques like Optimal Brain Damage (OBD) [LeCun et al.[(1989);
Hassibi & Stork|(1992b). OBD identifies and removes parameters with the smallest impact on the loss
function. This impact, or "saliency," is estimated via a second-order Taylor expansion. For a model at
alocal minimum w*, a small parameter perturbation dw changes the loss by ALs ~ 3 (dw) " H(0w),
where H is the Hessian, approximated by the FIM. To make this tractable, OBD typically uses only
the diagonal of the Hessian. Pruning a parameter w; to zero corresponds to a saliency score of

This framework can be repurposed from pruning to grafting. Instead of nullifying parameters, we
can selectively revert fine-tuned parameters w* back to their pre-trained state w®. The perturbation
becomes dw; = w} — wY, and the saliency of keeping the fine-tuned update is calculated as
S; = %H“(w;k — wy)?. This score quantifies the importance of the change acquired during fine-
tuning, providing a direct link to merging by deciding on a parameter-wise basis whether to retain a
specialized update or revert to the base model.

C.4 EFFICIENTLY ESTIMATING SECOND-ORDER INFORMATION

A major challenge in using second-order methods is the formidable memory cost of storing the full
FIM or Hessian. While generic low-rank approximations like SVD exist, they do not guarantee the
preservation of non-negativity, a defining property of these matrices.

Factored Estimators (AdaFactor). The AdaFactor optimizer|Shazeer & Stern|(2018)) introduces
a memory-efficient factorization that guarantees non-negativity. For a matrix of squared-gradient
Exponential Moving Averages (EMAs) V € R™*™ AdaFactor avoids storing the full mn elements.
Instead, it maintains only the moving averages of its row and column sums: r = V1,, € R™ and
c’ =1V € R A rank-1, non-negative approximation of the full matrix is then reconstructed
as V = rc' /(1] r). This reduces storage from O(mn) to O(m + n) per parameter matrix. The
effectiveness of such low-rank approximations is often justified by the concept of stable rank,
rs(V) = ||[V||%/|[V||3, which measures how well a matrix can be approximated by a low-rank
counterpart. While AdaFactor was designed to save memory during training, we propose leveraging
its factorization after training to create a highly compressed snapshot of the second-moment matrix,
providing nearly storage-free access to valuable curvature information.

D THEORETICAL JUSTIFICATIONS AND PROOFS

This section provides a detailed derivation of the theoretical insights on Adam’s second-moment
accumulator, v, as a principled proxy for the diagonal of the empirical Fisher Information Matrix
(FIM).

Theoretical Justification. The core argument rests on the equivalence between the Hessian of the
loss function (V2L p) and the Observed Empirical FIM (F) near a local minimum w..

1. We first assume the network’s output is locally linear with respect to its parameters near the
end of training (the Late NTK Regime). This allows us to approximate the Hessian with the
Generalized Gauss-Newton (GGN) matrix. While neural network training has been shown
not to be well-approximated by the NTK at initialization, meaning an aggressive kernel
change is necessary for feature learning (Vyas et al., [2022]), the kernel has been shown to
stabilize near the end of training (Fort et al., [2020).

2. We then assume the model is well-calibrated at convergence (Perfect Calibration), meaning
its predictive distribution matches the true data distribution.

Under these assumptions, one can argue that the Hessian is approximately equal to the Observed
Empirical FIM: V2L p(w.) ~ F(w.). Furthermore, the expectation of the outer product of mini-
batch gradients is a scaled version of the FIM: Ep,__p2[VLp, VLE | = |%‘F(w*). We would

17

Under review as a conference paper at ICLR 2026

like to highlight that the equivalence of the Empirical Fisher information with the Hessian under
perfect calibration is a well-known property |/Amari (1998)), and the expectation of the mini-batch
gradient outer product is a corollary of Lemma 8 in Morwani et al.[(2024)).

Thus here, we provide a strong theoretical argument for our method: the Adam second-moment
accumulator, v, on expectation, is a scaled EMA of the diagonal of the FIM. It is therefore a valid and
computationally free proxy for the diagonal curvature of the loss landscape, which we can harness
for both parameter selection and model merging.

D.1 PROOF OF EQUIVALENCE BETWEEN HESSIAN AND EMPIRICAL FIM

Our first result connects the Hessian of the loss function to the Observed Empirical FIM at a fine-tuned
model’s optimal parameters, w... The Hessian for a loss £ (w) over a dataset D is given by:

C
V2Lp(W) =Epyen |JTr(w,x) T V2(y,2)T (W, x) | +E(x Z V.il(y,2)) V4 (w,x) |,

Generalized Gauss-Newton (GGN) term

Second-order term
6)
where z = f(w,x) are the model’s logits, ¢ is the per-sample loss (e.g., negative log-likelihood),
and J is the Jacobian of the network function f with respect to the parameters w. To simplify this
expression, we rely on two standard assumptions.

Assumption 1 (Late NTK Locality). Near an optimal set of parameters w, the second-order term
in Equation (6), which depends on the curvature of the network function f itself, is negligible. This
implies local linearity: f(x;w, + 0) = f(x;w,) + J ;0 for small perturbations 6.

This assumption allows us to approximate the Hessian using only the GGN term:

V2Lp(w.) = B yyon [T5(Way %) TV 2y, [W) f(we, x)] - @)
Assumption 2 (Perfect Calibration at Fine-Tuned Checkpoints). At the optimal parameters W, the
model is perfectly calibrated, meaning its predictive distribution matches the true conditional data
distribution for any given input x: p(y|x; w.) = d(y|x).
With these assumptions, we can now state and prove the main lemma.
Lemma 1. Under late NTK locality (Assumption , the Hessian of the loss V?Lp(w.) can be
decomposed as follows:

VQ‘CD (W*) = IE(x,y)ND [V‘CD (W*v X, y)v‘cD (W*a X, y)T]

Empirical FIM

— Ex~p, {]Ey~Dy|x VLo (W, %, y)] Eyp, , [VLD (W, X, y)]q ®

Expected Gradient Covariance
+ Ex~D, [Jf(w*v X)T (2p — Xa) Jp(ws, X)]

Covariance Mismatch

where 3, = Covyp(.|f(x:w.)) [€y), Xa = Covyup, . [e,], and e, is a one-hot vector representing
label y. Moreover, VLp(W.,X,y) = Vy log p(y|x; w..) is the log-probability gradient at a given
sample (X,y). Dyx and p(-| f(x; W.)) are the true conditional distribution and the model distribution
given input x, respectively. Dy denotes the true marginal distribution.

Remark. The above lemma characterizes the relation between the empirical Fisher and the Hessian
under the late NTK locality assumption. Interestingly, we observe that the approximation errors
consist of the covariance mismatch between the model’s prediction and the true distribution, as well
as the expected gradient covariance term. Under perfect calibration (Assumption [2)), it is well-known
that the Hessian would be equivalent to the empirical FIM |Amari|(1998). While the perfect calibration
assumption is reasonable at the convergence point w,., our proposed Lemma [I]does not depend on

18

Under review as a conference paper at ICLR 2026

perfect calibration and establishes the equivalence relation only under late NTK locality. Moreover,
note that both the expected gradient over labels and the covariance mismatch terms in Equation [§]
would be equal to zero under perfect calibration.

Proof. Given input x, let p(-|x) and d(-|x) denote the probability vectors for the model and the true
distribution. For ease of notation, we refer to these vectors as p and d. We begin by analyzing the
inner term of the GGN in Equation (7)), which is the expected Hessian of the negative log-likelihood
Vii(y,z) = V%logp(y|z), where z = f(x;w.,). For the softmax cross-entropy loss on logits,

log p(y|z) = 2z, — log(zg‘1 e®i), we can write:

Val(y,z) = diag(p) —pp' =%,

9
Vil(y,z) =e, —p ®

Now let F, =]EyNDylx[VZE(y,z)Vzé(y,z)T] = E,a(xl(e; — p)(e, — p)"]. Expanding the
expectation, we have:

F, = diag(d) —dp" —pd" +pp' =diag(d) —dd" + (d —p)(d—p)" (10)
Hence, we can write: V2/(y,z) — F, = (£, — ¥4) — (d — p)(d — p) ". Combining this equation

with the fact that E,.p, [V,l(y,2)] = d — p, and Vy log p(ylx; w) = J (W, x) "V, L(y,2), we
can rewrite the GGN in Equation (7) to arrive at Equation (8). O

D.2 PROOF OF RELATION BETWEEN MINI-BATCH SECOND MOMENT AND FIM

Next, we show how the second moment of mini-batch gradients relates to the Empirical FIM defined
above.

Lemma 2. Let VLp, (W) = ﬁ Y xw)en, VLx,y(W) be the gradient for a mini-batch By, of size

| B| sampled from the data distribution D. Under Assumption the expectation of the outer product
of this mini-batch gradient is a scaled version of the FIM:

1 _
Ep,~pi5l [VﬁBk(W*)VﬁBk(W*)W = EF(W*). (11)

Proof. We decompose the expectation of the outer product:

|B| |B|
1 1
Eg,pisl [VLB,VLE | =E Bl > Vi 3 > ViLy, .,
i=1 j=1

1
= BE ;E [Vﬁxi,yivcl—j,yi}
|B|

1 .)]
- 57 > B yinn [V Lo VLT, 4] + R S E [Vﬁxi,yi vcxj7yj] ,
=t oy

Since the samples in the mini-batch are i.i.d., the expectation of the cross-terms (i # j) decouples:

E |:v£xi7yiv£;(rj,yj:| = Exz‘,yiND[v‘ﬁxwyi]ExjyyjND[V‘ijvyj]T'

At the optimum w, the expected gradient over the true data distribution is zero. This follows from
Assumption 2]and the fact that the expectation of the score function is zero:

E(x,y)ND [vwﬁx,y (W*)] = EX [J;‘F]Eywp(y|x) [VZ Ing(y|Z)]] =0.

19

Under review as a conference paper at ICLR 2026

Therefore, all the cross-terms (i # j) in the decomposition vanish. We are left with only the diagonal
terms of the sum:
T
T T
EBkND‘B‘ [v‘chV‘CBk] = W ;E [Vﬁxhyivﬁ]

XiYi

B
= |B||2E(x,y)~D [Vﬁx,y(w*)v£x7y(w*)—r]

= %F(W*)

This completes the proof, showing that the second moment of the mini-batch gradient is, on expecta-
tion, a scaled version of the full Empirical FIM. O

E ADDITIONAL INFORMATION ON TRAINING SFT MODELS

E.1 GRADIENT, AND LOSS VISUALIZATIONS

Figure [5| shows the training gradient norm trajectories ||VL|| for each of our five specialist
LLMs. Tasks like knowledge_recall and coding exhibit high gradient norms, whereas
math_reasoningand precise_if remain much lower.

30
—e— coding
—a— knowledge_recall
25} —o— precise_if
math_reasoning
general
£ 201
—
(o)
=2
€ 15¢
Q2
©
o
(D 10 B
T M ddean
< ‘MM
M et g
(o) i i i i i
0 500 1000 1500 2000 2500

Global Step

Figure 5: Gradient norm trajectories over global training steps for each fine-tuned SFT models

Moreover, we visualize the optimization trajectories of each SFT model on distinct tasks as indicated
in Figure[6]

E.2 EXPERIMENTS DETAILS FOR TRAINING SFT CHECKPOINTS

The models were trained from the Met a-Llama-3.1-8B base model using full-parameter Super-
vised Fine-Tuning (SFT) and AdamW optimizer. The second-moment statistics (exp_avg_sq) of
the optimizer were checkpointed and later used as curvature proxies in OTA-Merging.

We leveraged full post-training stack provided by LLaMA-Factory [Zheng et al.|(2024)). This unified
infrastructure handled supervised fine-tuning (SFT), tokenizer alignment, and checkpoint conversion.

Our configuration closely followed the hyperparameter recipe from the Tiilu-3 [Lambert et al.| (2024)),
with slight task-specific adjustments. Fine-tuning was performed on two NVIDIA A100 GPUs
(80GB) per task. We used gradient accumulation of 32 and a micro-batch size of 2 per device,
yielding an effective global batch size of 128. All models were trained with a learning rate of

20

Under review as a conference paper at ICLR 2026

Training Loss Curves for Each Fine-Tuned Specialist

2.001
Task
—— Coding
Knowledge Recall
L75¢ —— Precise IF
—— Math Reasoning
General
1.501
@ 1.25¢
o
o
o
£
c L
I 1.00
=
0.75}
0.50
0.25
0 500 1000 1500 2000 2500

Global Step

Figure 6: Training loss trajectories across global steps for each SFT model

5 x 1076, except for Precise Instruction Following (IF), which used 1 x 10~ to encourage faster

convergence.

Table 2: Fine-tuning hyperparameters used for training specialist models.

Hyperparameter Value Notes

Base Model LLaMA 3.1-8B

Micro Batch Size 2 Per GPU
Gradient Accumulation 32

Effective Batch Size 128 Across GPUs
Max Token Length 4096

Learning Rate 5x 1076 1 x 107 for Precise IF
Learning Rate Schedule Linear

Warmup Ratio 0.03

Epochs 1

Post-training Stack LLaMA-Factory Full stack used Zheng et al.[(2024)

E.3 TRAINING DATASET CURATION

Our SFT models were fine-tuned on curated subsets of the allenai/tulu-3-sft-mixture
dataset, retrieved from the Hugging Face datasets library. This dataset aggregates instruction-
following conversations from a wide range of sources, and we mapped these sources to specific

capability categories for training the OTA-Merging specialists.

Each training example consists of a structured conversation in the messages field—a list of
dictionaries that capture the dialogue turns between roles: system, user, and assistant. This

structure enables role-specific formatting for instruction tuning.

Task Categories and Source Mapping. The data sources used for fine-tuning were grouped into

the following categories:

¢ General Instruction: wildchat, oasstl_converted, no_robots, etc.
* Knowledge Recall: f1lan_v2, sciriff, table_gpt
¢ Mathematical Reasoning: persona_math, numinamath, open_math

21

Under review as a conference paper at ICLR 2026

* Coding: codealpaca, persona_code

* Precise Instruction Following (Precise IF): persona_ifdata

Dataset Statistics. The number of examples in each category used for fine-tuning is summarized
below:

Table 3: Number of examples per task category in tulu-3-sft-mixture.

Category Examples Percentage
Mathematical Reasoning 334,252 39.70%
Coding 142,275 16.89%
General Instruction 116,871 13.89%
Knowledge Recall 104,982 12.46%
Precise Instruction Following 29,980 3.56%
Total 728,360 100.00%

Message Formatting. Each messages list was rendered into a flattened training string using a
standardized Jinja2 template consistent with LLaMA-Factory’s post-training stack. This template
inserts role-specific delimiters and appends <eos_token> after assistant responses.

For example, the following JSON input:

[

{"role": "system", "content": "System prompt."},
{"role": "user", "content": "User question."},
{"role": "assistant", "content": "Assistant answer."}

]

is rendered as:

<|system|>

System prompt.

<|user|>

User question.

<|lassistant|>

Assistant answer.<eos_token>

This formatting ensures consistency across training samples and compatibility with instruction-tuned
decoding patterns adopted from Tulu Lambert et al.|(2024).

E.4 SFT CHECKPOINTS EVALUATIONS

SFT Models Localize Distinct Capabilities. First, we establish a baseline by analyzing the perfor-
mance of individual SFT models (Tabled). As expected, each expert excels on benchmarks aligned
with its training data: the Math specialist outperforms all others on MATH (0.316), and the Coding
specialist dominates HumanEval (0.788). Conversely, the near-zero scores of non-coding specialists
on HumanEval underscore the non-1ID nature of the training data and highlight the core challenge
of merging: combining these complementary but isolated skills without destructive interference.
Moreover, the SFT experts appear to either outperform or closely match the performance of the
Tulu-3 SFT checkpoint (the multi-task SFT tuned model), with the exception of coding capability.
For coding, the Tulu models have considerably higher performance on HumanEval and HumanEval+
compared to the SFT coding model. This suggests that this task benefits the most from multi-task
learning, as code-only filtered subset of the Tulu SFT mixture was unable to retain the performance
of the multi-instructed models.

22

Under review as a conference paper at ICLR 2026

Table 4: Performance of individual SFT experts and the multi-task Tulu-3-8B SFT model on their
respective benchmarks. Best performance per row is shown in bold. Scores are reported in [0, 1].

Benchmark Specialists Tulu-3 SFT
General Knowledge Math Precise I[F Coding
BBH-CoT 0.671 0.634 0.650 0.628 0.635 0.688
HumanEval 0.000 0.000 0.700 0.688 0.788 0.866
HumanEval+ 0.000 0.000 0.659 0.632 0.744 0.805
DROP 0.571 0.629 0.583 0.586 0.552 0.616
GSMSK 0.575 0.589 0.757 0.594 0.561 0.767
IFEval 0.516 0.538 0.257 0.717 0.425 0.715
MATH 0.170 0.171 0316 0.199 0.181 0.290
POPQA 0.317 0.301 0.296 0.307 0.301 0.295

F COMPLEMENTARY FFG ANALYSIS

Code (HumanEval)

Instruction Following (IFEval)

0.854 —e— Magnitude 0751 o Magnitude N
FFG FFG B
5 0.70
0.80 B
~e £ 0.65
S a
=
075 & 0.60
a o
S =
& 704 5055
k]
S 0.50
0.65 1 ©
0.45
1% 5% 10% 20% 40% 60% 90% 1% 5% 10% 20% 40% 60% 90%
Density Density
Math (GSM8K) Math (MATH)
—e— Magnitude 0.34 1 —*— Magnitude
FFG . FFG
0.75 0.321 ~ -
< 0.301
£ 0.70
= % 0.281
k9] 9 0.26
€ 0.651 [
w 0.24+4
0.224
0.60 1
0.20 1
1% 52%1 16% 26% 46% 66% 96% 1% 5% 16% Zd% 46% 66% 96%
Density Density

Figure 7: FFG vs. magnitude pruning across varying density ratios. FFG consistently outperforms,
especially at lower densities (1-10%), highlighting its superior ability to identify salient parameters.

23

Under review as a conference paper at ICLR 2026

o

wn

2

g Weight Type
&0.675 —— q_proj

> —— Kk_proj
50650 v_proj

I —+— o_proj

A X

. 0.625 —— gate_proj
£ 0.600 up_proj
5 N
o

Il 0.575

S

5 0.550

2

o 0.525

>

2

7 0.500

4

©

o 0 5 10 15 20
n Layer Depth

fully sparse)
5

=dense, 1=
o ° o
= > Y

Sparsity Ratio (0
o
N

(a) Magnitude Pruning (Code Expert)

NS

et

1 25 30

0 15 20
Layer Depth

(b) FFG Pruning (Code Expert)

Weight Type
—— q_proj
—=— k_proj
—— v_proj
—e— o_proj
—— gate_proj
—— up_proj

down_proj

Figure 8: Layer-wise density distribution at a global 40 % task vector pruning density for the
Code SFT expert. FFG (right) exhibits strong, emergent role-aware pruning, aggressively sparsifying
query/key weights while preserving value/output/FFN weights. Magnitude pruning (left) is far more

uniform and less structured.

Layer 1 - q_proj Layer 1 - k_proj
¢ AT code Only (13.72%) s R
math Only (13.23%)
if Only (12.34%)
(code)+(math) (11.76%)
(math)+(if) (9.53%)
(code)+(if) (9.85%)
All Three (9.56%)
Pruned in All (20.01%)

code Only (13.76%)
‘math Only (13.77%)

if Only (11.32%)
(code)+(math) (13.05%)
(math)+(if) (9.88%)
(code)+(if) (9.83%)

All Three (10.52%)
Pruned in All (17.88%)

code Only (12.27%)
math Only (14.78%)

if Only (9.52%)
(code)+(math) (15.63%)
(math)+(if) (11.22%)
(code)+(if) (9.39%)

All Three (13.25%)
Pruned in Al (13.95%)

code Only (12.09%)
‘math Only (14.43%)

if Only (9.93%)
(code)+(math) (15.15%)
(math)+(if) (11.48%)
(code)+(if) (9.69%)

All Three (13.52%)
Pruned in All (13.70%)

code Only (13.21%)
math Only (13.59%)

if Only (10.93%)
(code)+(math) (13.55%)
(math)+(if) (10.28%)
(code)+(if) (9.98%)

All Three (11.59%)
Pruned in All (16.87%)

code Only (12.32%)
‘math Only (13.90%)

if Only (11.28%)
(code)+(math) (13.85%)
(math)+(if) (11.40%)
(code)+(if) (10.17%)

All Three (12.43%)
Pruned in All (14.65%)

Figure 9: 3-way magnitude-based comparison for attention components across layers 1,

Layer 1 - v_proj

code Only (13.30%)
math Only (12.61%)

if Only (12.62%)
(code)+(math) (10.75%)
(math)+(if) (9.02%)
(code)+(if) (9.53%)

All Three (9.07%)
Pruned in All (23.11%)

Layer 2 - v_proj
code Only (13.76%)
math Only (13.42%)
if Only (10.65%)
(code)+(math) (12.28%)
(math)+(if) (9.07%)
(code)+(if) (9.22%)
All Three (9.90%)
Pruned in All (21.70%)
Layer 15 - v_proj
code Only (12.55%) 5% S
math Only (15.02%))
if Only (8.47%)
(code)+(math) (15.81%)
(math)+(if) (10.33%)
(code)+(if) (8.73%)
All Three (13.13%)
Pruned in All (15.97%)

Layer 18 - v_proj
code Only (12.16%)
‘math Only (14.89%)

if Only (8.82%)
(code)+(math) (15.19%)
(math)+(if) (10.60%)
(code)+(if) (8.81%)

All Three (13.11%)
Pruned in All (16.42%)

Layer 29 - v_proj
code Only (13.16%) bR e FAR
‘math Only (13.74%) Y 3
if Only (10.06%)
(code)+(math) (13.86%)
(math)+(if) (9.96%)
(code)+(if) (9.72%)

All Three (12.05%)
Pruned in All (17.44%)

code Only (12.46%)
math Only (14.07%)

if Only (10.16%)
(code)+(math) (14.39%)
(math)+(if) (10.93%)
(code)+(if) (9.71%)

All Three (12.79%)
Pruned in All (15.48%)

and 30. Columns show W, W, W, and W,,.

24

Layer 1 - o_proj
code Only (13.78%) e o
math Only (12.38%)

if Only (15.15%)
(code)+(math) (10.06%)
(math)+(if) (9.71%)
(code)+(if) (10.82%)

All Three (8.16%)
Pruned in Al (19.93%)

code Only (13.56%)
‘math Only (13.42%)

if Only (15.03%)
(code)+(math) (9.84%)
(math)+(if) (9.96%)
(code)+(if) (10.06%)
All Three (7.41%)
Pruned in All (20.70%)

code Only (14.46%)
‘math Only (15.84%)

if Only (11.56%)
(code)+(math) (12.30%)
(math)+(if) (8.79%)
(code)+(if) (8.02%)

All Three (7.21%)
Pruned in All (21.82%)

code Only (14.13%)
‘math Only (15.36%)

if Only (12.45%)
(code)+(math) (11.62%)
(math)+(if) (9.16%)
(code)+(if) (8.33%)

All Three (7.22%)
Pruned in All (21.73%)

code Only (14.02%)
‘math Only (13.15%)

if Only (12.57%)
(code)+(math) (11.89%)
(math)+(if) (9.29%)
(code)+(if) (9.96%)

All Three (9.46%)
Pruned in All (19.66%)

Layer 30 - o_proj

code Only (13.96%)
‘math Only (14.25%)

if Only (11.41%)
(code)+(math) (12.32%)
(math)+(if) (9.08%)
(code)+(if) (8.87%)

All Three (9.18%)
Pruned in All (20.94%)

2,

code Only (13.46%)
‘math Only (13.31%)

if Only (14.25%)
(code)+(math) (10.89%)
(math)+(if) (10.39%)
(code)+(if) (10.54%)

All Three (8.72%)
Pruned in All (18.43%)

code Only (13.33%)
‘math Only (13.92%)

if Only (13.67%)
(code)+(math) (11.32%)
(math)+(if) (10.61%)
(code)+(if) (10.15%)

All Three (8.83%)
Pruned in All (18.17%)

code Only (13.52%)
‘math Only (15.35%)

if Only (11.67%)
(code)+(math) (12.89%)
(math)+(if) (9.90%)
(code)+(if) (8.70%)

All Three (8.84%)
Pruned in All (19.13%)

code Only (13.22%)
‘math Only (14.44%)

if Only (12.45%)
(code)+(math) (12.45%)
(math)+(if) (10.46%)
(code)+(if) (9.57%)

All Three (9.51%)
Pruned in All (17.89%)

code Only (14.05%)
‘math Only (13.09%)

if Only (13.21%)
(code)+(math) (11.55%)
(math)+(if) (9.35%)
(code)+(if) (10.20%)

All Three (9.10%)
Pruned in All (19.44%)

code Only (13.55%)
‘math Only (14.07%)

if Only (12.04%)
(code)+(math) (12.11%)
(math)+(if) (9.48%)
(code)+(if) (9.17%)

All Three (9.31%)
Pruned in All (20.28%)

15, 18, 29,

Under review as a conference paper at ICLR 2026

Layer 1 - gate_proj

Layer 18 - gate_proj

Layer 30 - gate_proj

code Only (13.72%)
math Only (12.29%)

if Only (13.00%)
(code)+(math) (12.04%)
(math)+(if) (10.27%)
(code)+(if) (11.39%)

All Three (10.81%)
Pruned in All (16.48%)

code Only (13.63%)
math Only (12.26%)

if Only (12.87%)
(code)+(math) (12.17%)
(math)+(if) (10.32%)
(code)+(if) (11.43%)

All Three (11.03%)
Pruned in All (16.29%)

code Only (12.17%)
math Only (14.46%)

if Only (10.28%)
(code)+(math) (15.17%)
(math)+(if) (11.59%)
(code)+(if) (9.80%)

All Three (13.13%)
Pruned in All (13.39%)

m code Only (12.27%)

math Only (14.21%)

if Only (10.59%)
(code)+(math) (14.74%)
(math)+(if) (11.52%)
(code)+(if) (10.00%)
All Three (12.98%)
Pruned in All (13.69%)

code Only (12.71%)
math Only (13.76%)

if Only (11.40%)
(code)+(math) (13.75%)
(math)+(if) (11.06%)
(code)+(if) (10.31%)

All Three (12.06%)
Pruned in All (14.95%)

code Only (12.86%)
math Only (13.85%)

if Only (11.60%)
(code)+(math) (13.39%)
(math)+(if) (10.83%)
(code)+(if) (10.15%)

All Three (11.52%)
Pruned in All (15.79%)

Layer 2 - up_proj

Layer 29 - up_proj

Layer 30 - up_pr

code Only (13.75%)
math Only (12.28%)

if Only (13.41%)
(code)+(math) (11.70%)
(math)+(if) (10.25%)
(code)+(if) (11.41%)

All Three (10.37%)
Pruned in All (16.83%)

code Only (13.60%)
math Only (12.42%)

if Only (13.34%)
(code)+(math) (11.80%)
(math)+(if) (10.35%)
(code)+(if) (11.31%)

All Three (10.43%)
Pruned in All (16.75%)

code Only (12.80%)
math Only (14.73%)

if Only (11.26%)
(code)+(math) (13.98%)
(math)+(if) (11.00%)
(code)+(if) (9.56%)

All Three (11.10%)
Pruned in All (15.57%)

code Only (12.87%)
math Only (14.39%)

if Only (11.74%)
(code)+(math) (13.50%)
(math)+(if) (11.01%)
(code)+(if) (9.87%)

All Three (10.94%)
Pruned in All (15.68%)

code Only (13.00%)
math Only (13.77%)

if Only (12.57%)
(code)+(math) (12.54%)
(math)+(if) (10.74%)
(code)+(if) (10.20%)

All Three (10.52%)
Pruned in All (16.64%)

code Only (13.12%)
math Only (13.79%)

if Only (13.04%)
(code)+(math) (11.93%)
(math)+(if) (10.42%)
(code)+(if) (9.96%)

All Three (9.78%)
Pruned in All (17.96%)

Layer 1 - down_proj

Layer 2 - down_proj

Layer 15 - down_proj

Layer 18 - dows T0j

Layer 29 - down_proj

Layer 30 - down_proj

code Only (13.59%)
math Only (12.43%)

if Only (13.31%)
(code)+(math) (11.91%)
(math)+(if) (10.46%)
(code)+(if) (11.40%)

All Three (10.60%)
Pruned in All (16.30%)

code Only (13.51%)
math Only (12.60%)

if Only (13.15%)
(code)+(math) (12.09%)
(math)+(if) (10.54%)
(code)+(if) (11.29%)

All Three (10.70%)

BN Pruned in All (16.11%)

code Only (13.09%)
math Only (14.77%)

if Only (11.58%)
(code)+(math) (13.50%)
(math)+(if) (10.61%)
(code)+(if) (9.43%)

All Three (10.35%)
Pruned in All (16.67%)

code Only (13.05%)
math Only (14.30%)

if Only (12.02%)
(code)+(math) (13.13%)
(math)+(if) (10.77%)
(code)+(if) (9.86%)

All Three (10.49%)
Pruned in All (16.38%)

code Only (13.24%)
math Only (13.39%)

if Only (13.04%)
(code)+(math) (11.53%)
(math)+(if) (9.95%)
(code)+(if) (9.84%)

All Three (9.41%)
Pruned in All (19.60%)

code Only (13.34%)
math Only (12.91%)

if Only (13.80%)
(code)+(math) (10.14%)
(math)+(if) (9.03%)
(code)+(if) (9.27%)

All Three (7.98%)
Pruned in All (23.53%)

Figure 10: 3-way magnitude-based comparison for FFN components across layers 1, 2, 15, 18, 29,
and 30. Columns show Wyate, Wayp, and Waown.

25

Under review as a conference paper at ICLR 2026

Layer 1 - gate_proj

% s mmm code Only (13.37%)

BN math Only (9.50%)

EEE if Only (20.29%)
(code)+(math) (5.68%)
(math)+(if) (6.71%)

= (code)+(if) (9.35%)
All Three (4.77%)

§ EEE Pruned in All (30.33%)

Layer 2 - gate_pr

% i { Wmm code Only (13.85%)

BN math Only (9.84%)

5 =W if Only (19.51%)

(code)+(math) (6.66%)

st (math)+(if) (7.47%)
B (code)+(if) (10.75%)

All Three (5.59%)

§ EEM Pruned in All (26.34%)

Layer 15 - gate_proj

code Only (9.95%)
math Only (13.71%)

if Only (12.09%)
(code)+(math) (11.27%)
(math)+(if) (8.88%)
(code)+(if) (6.61%)

All Three (10.25%)
Pruned in All (27.24%)

Layer 18 - gate_proj

B code Only (12.41%)
BN math Only (13.03%)
. if Only (14.00%)
(code)+(math) (9.08%)
(math)+(if) (7.85%)
B (code)+(if) (7.37%)
All Three (6.93%)
I Pruned in All (29.33%)

Layer 29 - gate_proj

B code Only (10.26%)

BN math Only (6.91%)

i W if Only (19.39%)
(code)+(math) (2.72%)
(math)+(if) (3.07%)

BN (code)+(if) (4.62%)
All Three (1.68%)

EE Pruned in All (51.35%)
Layer 30 - gate_proj
SRR § code Only (9.87%)

math Only (7.62%)

if Only (19.31%)

(code)+(math) (3.46%)

(math)+(if) (3.71%)

(code)+(if) (4.94%)

All Three (2.42%)

Pruned in All (48.67%)

Layer 1 - up_proj

Layer 2 - up_proj

Layer 15 - up_proj
i %

Layer 29 - u

Emm code Only (14.98%)

BN math Only (9.27%)

I if Only (16.53%)
(code)+(math) (8.47%)
(math)+(if) (8.17%)

m (code)+(if) (13.23%)
All Three (8.69%)

B Pruned in All (20.67%)

. code Only (14.36%)

mmm math Only (10.35%)

mmm if Only (13.80%)
(code)+(math) (10.79%)
(math)+(if) (9.72%)

B (code)+(if) (13.35%)
All Three (11.34%)

W Pruned in All (16.28%)

= code Only (8.15%)

BN math Only (11.58%)

= if Only (8.10%)
(code)+(math) (15.93%)
(math)+(if) (15.33%)

B (code)+(if) (10.46%)
All Three (23.51%)

EEm Pruned in All (6.94%)

. code Only (10.24%)
math Only (11.77%)

if Only (10.41%)
(code)+(math) (14.25%)
(math)+(if) (13.47%)
(code)+(if) (11.78%)

All Three (18.23%)
Pruned in All (9.86%)

Emm code Only (10.81%)
BN math Only (8.05%)
I if Only (22.32%)
(code)+(math) (4.47%)
(math)+(if) (6.02%)
B (code)+(if) (7.78%)
All Three (4.81%)

I Pruned in All (35.74%)

Emm code Only (10.32%)
math Only (8.30%)
mm if Only (20.76%)
(code)+(math) (5.41%)
(math)+(if) (6.49%)
BN (code)+(if) (7.94%)
All Three (6.85%)

I Pruned in All (33.92%)

Layer 1 - down_proj

W code Only (13.71%)

BN math Only (8.67%)

I if Only (15.11%)
(code)+(math) (10.20%)
(math)+(if) (10.09%)

B (code)+(if) (16.18%)
All Three (12.72%)

EEm Pruned in All (13.31%)

Layer 2 - down_proj

i W code Only (12.86%)

BN math Only (9.28%)

= if Only (13.52%)
(code)+(math) (11.30%)
(math)+(if) (10.91%)

B (code)+(if) (14.83%)
All Three (14.69%)

EEm Pruned in All (12.62%)

Layer 15 - down_proj
[= code Only (6.93%)
BN math Only (9.46%)

mE if Only (7.33%)
(code)+(math) (15.73%)
(math)+(if) (16.03%)
B (code)+(if) (11.35%)

All Three (28.40%)

EEE Pruned in All (4.78%)

code Only (9.31%)
math Only (10.19%)

if Only (10.36%)
(code)+(math) (14.09%)
(math)+(if) (14.25%)
(code)+(if) (13.10%)

All Three (20.96%)
Pruned in All (7.73%)

code Only (11.15%)
math Only (8.49%)

if Only (22.25%)
(code)+(math) (4.97%)
(math)+(if) (6.76%)
(code)+(if) (8.67%)

All Three (5.45%)
Pruned in All (32.26%)

code Only (10.84%)
math Only (8.56%)

if Only (20.85%)
(code)+(math) (6.04%)
(math)+(if) (7.44%)
(code)+(if) (9.24%)

All Three (8.02%)
Pruned in All (29.02%)

Figure 11: 3-way FFG comparison for FFN components across layers 1, 2, 15, 18, 29, and 30.
Columns show Wyate, Wap, and Waown-

F.1

VISUALIZING STRUCTURED SPARSITY MASKS

What the histograms show. For a weight matrix W & R%uXdn with binary mask M €
{0, 1}douxdin e summarize mask structure via the row-wise and column-wise sparsities

TOW

P =

1—- —
dll'l

di

5

1
Mija
. =

pgol - 1=

dout
E M;;,

d
out i=1

i.e., the fraction of zeros in each row/column (sparsity = 1 — density). Each panel in Figs. [[2]and [I3]
plots the histogram of {p™"}% (top) and { pj»"]};l‘;l (bottom) for the self-attention g-projection of

i =1
a single layer. A spike near 1.0 indicates rows/columns that are almost entirely pruned. All masks

shown correspond to a global 40% density budget.

Key finding: FFG induces structured channel sparsity at the network edges. Under a single
global density budget, FFG reallocates nonzeros across depth and weight types. In the g-projection,
early (layers 0—1) and late (layers 29-30) blocks display pronounced structure: their histograms
concentrate near p ~ 1.0, revealing many rows/columns that are nearly all zeros (Fig.[I2). A similar
pattern is observed for the k-projection (not shown), indicating that FFG often eliminates entire
input/output channels in these attention blocks rather than scattering zeros uniformly.

26

Under review as a conference paper at ICLR 2026

Contrast with magnitude pruning. For the same global budget, magnitude pruning yields weaker
row/column structure: its histograms are centered around moderate sparsities with limited mass
near 1.0 (Fig.[T3). Thus, FFG is not merely more sparse; it is selectively sparse at the level of entire
channels.

Row-wise Sparsity (Avg: 98.78%) 800 Row-wise Sparsity (Avg: 95.54%)
£ 2000 £
& 2600
% 1500 <
81000 g 400
€ € 200
S 500 S
=2 =2

. e . -
" Column-wise Sparsity (Avg: 98.78%) " Column-wise Sparsity (Avg: 95.54%)
€ 3000 M g I
g 52000
(e} (e}
© 2000 ©
o o
81000 g 1000
£ £ /
=3 ? =3
= 0 = 0 S S S -
065 070 075 0.80 0.85 0.90 0095 1.00 04 05 06 07 08 09 10

Row-wise Sparsity (Avg: 91.68%) 1000 Row-wise Sparsity (Avg: 87.30%)
ézooo § 750
e > 500
91000 2
: R E 250
=2 =2

0 - o ;

" Column-wise Sparsity (Avg: 91.68%) " Column-wise Sparsity (Avg: 87.30%)
g 1000 g
E 31000
8 750 S
bS] bS]
o 500 5 500
£ 250 | £
=] =]
= — =

o

0.2 0.4 0.6 0.8 1.0 002 03 04 05 06 07 08 09 10

Figure 12: FFG masks exhibit structured sparsity in the self-attention ¢-projection. Row-wise
(top) and column-wise (bottom) sparsity histograms for layers 0, 1, 29, and 30 (left-to-right, top-to-
bottom). Note the concentration near p ~ 1.0, indicating that many rows/columns are almost entirely
pruned.

27

Under review as a conference paper at ICLR 2026

Row-wise Sparsity (Avg: 71.42%)

N
o
o

Number of Rows
=
o
o

Column-wise Sparsity (Avg: 71.42%)

Number of Columns
= N w sy
o o o o
o o o o
)
]

o

0.6 0.7 0.8 0.9 1.0

S
w
)
£~y
o
wv

Row-wise Sparsity (Avg: 50.99%)

N
o
o

N W
o o
o o

Number of Rows
)
o

o

Column-wise Sparsity (Avg: 50.99%)

w
o
o

Number of Columns
= N
(=3 o
o o

<23
N

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Number of Rows

N W B
o o o
o o o

Number of Columns
=
o
o

o

Number of Rows
- N w
o o o
o o o

o

200

100

Number of Columns

Row-wise Sparsity (Avg: 55.92%)

Column-wise Sparsity (Avg: 55.92%)

)
M(=
03 04 05

0.6 0.7 0.8 0.9 1.0

Row-wise Sparsity (Avg: 48.42%)

_d

Column-wise Sparsity (Avg: 48.42%)

0.3 0.4 0.5 0.6 0.7 0.8

Figure 13: Magnitude pruning produces weaker row/column structure. Histograms for the same
layers and weight type as Fig. [I2]show mass centered at moderate sparsities and far less concentration

near 1.0.

28

Under review as a conference paper at ICLR 2026

G COMPLEMENTARY CURVATURE, AND RANK ANALYSIS

math
layers_11_mlp_gate_proj_exp_avg_sq layers_11_mlp_ “p prOJ SXD-avy_Sq layers 11 mlp down | proj_exp_avg sq
-7.0
-75 =
=) o -75 &
2 2 z
-8.0 o -8.0 @ o
s
%I £ e %I
-85 o -85 £ o
8 8 85 3
-9.0 5 1=
S —90 2 _o0 2
= 2 =
-95 8 2]
-10.0
-10.0 -10.0
code code . code
layers_11_mlp_gate_proj_exp_avg_sq layers 11,_mlp up_proj exp.avg sq layers 11_mlp down_proj exp avg sq
-7.0 e i o
-6.5
=75 -7.0
. =) -
5| -80 % -75 §
-8.0 > I o
5, 8, -80 3
-85 g -85 gl :l
8 g -85 &
-9.0 -90 S 2
= = -9.0 ©
-95 2 2 3
-9.5 55
-10.0 }
-10.0 -10.0
precise-if precise»if{ precise-if
layers_11 mlp _gate_proj_exp_avg_sq layers_11_mlp_up_proj_exp_avg_sq layers_11_mlp_down_proj_exp_avg_sq
-7.5
-8.0 ~ = —
Gl a 75 &
| |
-85 o g -8.0 o
3 -85 5
-9.0 g & -85 g
3 -90 & 3
—95 3 S -9.0 3
b= 95 © E]
-10.02 < -95 8
-10.0
105 -10.0
-10.5 i

Heatmap of Max-Min Weight Ratio Heatmap of Max-Min Weight Ratio . Heat“l‘?l’ "lf N{jax Min Weight Ratio
layers_11_mlp_gate_proj_exp_avg_sq layers_11_mlp_up_proj_exp_avg_sq ayers_11_mlp_down_proj_exp_avg_sq

0 0 0
40
60 100
35
40
80
20 30
100
00 . 60 . 25
150 } : 20
40
15
200
20 10
zso zso zso 5

50 100 150 20 50 100 150 20 100 150
Dimension 1 Dimension 1 Dimension 1

Dimension 0
Dimension 0
Dimension 0

Figure 14: Shared curvature geometry in FFN layers across specialist models. Log-scaled
heatmaps of the square root of the second-moment Adam statistics for layer 11 feed-forward network
projection weights. Rows represent: Math specialist, Code specialist, Precise IF specialist, and
Max-Min ratio across all models (top to bottom). Columns show Wygie, Woyp, and Waeyn (left
to right). The structural similarity persists even in FEN layers, reinforcing our finding that shared
geometry is a model-wide phenomenon. The bottom row quantifies the variance across models, with
darker regions indicating higher consensus in curvature patterns.

29

Under review as a conference paper at ICLR 2026

code code code
layers_11_self attn_q_proj_exp_avg_sq layers_11_self attn_k_proj_exp_avg_sq layers_11_self_: atln VJFOJ exp_avg_sq layers 11 self attn o proj exp avg sq
-7
=7
B -8 & E- B
o ¢ ¢ o
L8 " -5 g
g £ g £
3 =1 g =
—10= -102 -83 g
g g E g
=11 11
code:
layers_11_self attn_q_proj_exp_avg_sq layers_11_self : attn k . proj_exp_avg_sq layers_11_self attn VJFOJ eXp_avg_sq
M -7.0
7 -75
8 ’-?-;" 6 ’.i.;" E -8.0 ?,-:‘
g g o
3 o & -78, -85 E
-9 gl gl gl gl
=1 =1 =1 s
= -10= -8 95 2
-10
g E’ 3’ H
-1007
-11
—105

Heatmap of Max-Min Weight Ratio
, Jayers 11_self attn v_proj exp_avg_sq

16
15
14
13
12

Dimension 1

Heatmap of Max-Min Weight Ratio
layers_11_self attn_o_proj_exp_avg_sq

'.i

Dimension 1

Heatmap of Max-Min Weight Ratio
, layers 11_self attn_a_proj exp_avg sq

.
» 1.8

Dimension 1

Heatmap of Max-Min Weight Ratio
 layers 11 self attn_k proj exp_avg_sa

19
= 18
17
16
15
14
13
12

Dimension 1

Figure 15: Control Experiment: Shared curvature in attention layer 11 for two Code models.
The top row shows a Code model trained with a Cosine LR schedule, and the second row shows a
Code model trained on the same data with a WSD schedule. The structural similarity is nearly perfect.
The bottom row shows the max-min ratio is consistently close to 1 (dark color), indicating minimal
geometric deviation.

30

Under review as a conference paper at ICLR 2026

code
layers_11_mlp_gate_proj_exp_avg_sq

code
layers_11_mlp_up_proj_exp_avg_sq

code
layers_11_mlp_down_proj_exp_avg_sq

-7.0 -
-7.0 ’
-75 -7.0
=505 -
- = -
g _80 % -75 3
-8.0 o o
> o >
H " -80 3
85 o -85 g o
3] W
3 @, -85 &
=90 S -9.0 S S
= =d -9.0 o
—95 2 < <
-95 %
-10.0
-10.0 -10.0
code2 code2 . code2
layers_11_mlp_gate_proj_exp_avg_sq layers_11_mlp_up_proj_exp_avg_sq layers 11 mlp _down proj exp_avg sq
-7.0 e N [} —6.5
-7
-75 -7.0
~TE =
g -80 @ =75
-8.0 o o o
:I o5 S -8.0 zl
-85 o -85 gl o
)
3 B -85 3
-90 3 —9.0 S S
= = 90 >
_o5 = 2 k]
: -95 %
-10.0
-10.0 -10.0

Heatmap of Max-Min Weight Ratio
layers_11_mlp_gate_proj_exp_avg_sq

0
14
250

100 150

Dimension 0

Dimension 1

Heatmap of Max-Min Welght Ratio
layers_11_mlp_up_proj_exp_avg_sq

Dimension 0

100 150 20
Dimension 1

o
zso. i .

Heatmap of Max-Min Welght Ratio
layers 11_mlp_down_proj_exp_avg_sq

100 150 20
Dimension 1

Figure 16: Control Experiment: Shared curvature geometry in FFN layers for two Code models.
Log-scaled heatmaps of the square root of the second-moment Adam statistics for layer 11 feed-
forward network projection weights. Rows represent: Code specialist (Cosine LR), Code specialist
(WSD LR), and Max-Min ratio across the two models (top to bottom). The near-perfect structural
similarity and low max-min ratio provide a strong control for our main hypothesis.

—@— down_proj —A— k_proj \{ q_proj V_proj —@— down_proj —A— k_proj V q_proj v_proj
—— gate_proj 7’7 0_proj up_proj —— gate_proj 7‘7 0_proj up_proj
1.30
125 1.20
~ ~ n
< 1.20 s]
-4 -4
@115 . o /
o | FSERTY
S110 | 8 |
0 /] A
| 1.05 <
1.05 | I /A\ N /
| LB / X
100] SO N L B A S 100 O LR NP N AP
0 5 15 2 25 30 [B 15 20 25 30
Layer Index Layer Index
(a) Math Expert (b) Code Expert

Figure 17: Stable rank analysis of the second-moment matrices (v,). The consistently low stable
rank across all layers validates our use of AdaFactor for compression.

31

	Introduction
	Related Work
	The OTA-Merging Framework
	Experiments
	Experimental Setup
	Main Results: Merging Performance
	Deep Dive: Analysis of the FFG Stage
	Analyzing the Underlying Mechanism of FFG

	SFT Task Localization through FFG lens
	Analysis of Curvature and Rank Structure

	Discussion
	Conclusion
	LLM Usage
	Additional Related Works
	Preliminaries
	SFT Setup
	The Fisher Information Matrix
	Applications of Second-Order Information
	Efficiently Estimating Second-Order Information

	Theoretical Justifications and Proofs
	Proof of Equivalence between Hessian and Empirical FIM
	Proof of Relation between Mini-Batch Second Moment and FIM

	Additional Information on Training SFT Models
	Gradient, and Loss Visualizations
	Experiments Details for Training SFT Checkpoints
	Training Dataset Curation
	SFT Checkpoints Evaluations

	Complementary FFG Analysis
	Visualizing Structured Sparsity Masks

	Complementary Curvature, and Rank Analysis

