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CTRL: Cooperative Traffic Tolling via Reinforcement Learning

Yiheng Wang
yhwang0828@sjtu.edu.cn
Shanghai Jiao Tong University
Shanghai, China

ABSTRACT

People have been working long to tackle the traffic congestion
problem. Among the different measures, traffic tolling has been
recognized as an effective way to mitigate citywide congestion.
However, traditional tolling methods can not deal with the dynamic
traffic flow in cities. Meanwhile, thanks to the development of
traffic sensing technology, how to set appropriate dynamic tolling
according to real-time traffic observations has attracted research
attention in recent years.

In this paper, we put the dynamic tolling problem in a reinforce-
ment learning setting and try to tackle the three key challenges
of complex state representation, pricing action credit assignment,
and route price relative competition. We propose a soft actor-critic
method with (1) a route-level state attention, (2) an interpretable and
provable reward design, and (3) a competition-aware Q attention.
Extensive experiments on real datasets have shown the superior
performance of our proposed method. In addition, interesting anal-
ysis on pricing actions and vehicle routes have demonstrated why
the proposed method can outperform baselines.

CCS CONCEPTS

« Information systems — Data mining; Spatial-temporal systems.
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1 INTRODUCTION

Traffic congestion has become a serious problem for many cities due
to the rapid urbanization and corresponding explosive increase in
vehicle registration numbers. This has correspondingly caused long
commuting times, reduced quality of life, increased energy con-
sumption, and urban ecological degradation [31]. Therefore, various

“Guanjie Zheng is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °22, October 17-21, 2022, Atlanta, GA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10...$15.00
https://doi.org/10.1145/3511808.3557112

Hexi Jin
sjtujinhexi@sjtu.edu.cn
Shanghai Jiao Tong University
Shanghai, China

3545

Guanjie Zheng’
gjzheng@sjtu.edu.cn
Shanghai Jiao Tong University
Shanghai, China

measures have been investigated to tackle traffic congestion, includ-
ing intelligent traffic signal control [10, 26], road restrictions [15],
and so on. Compared with other measures that usually only cover
local regions, traffic tolling [2] is expected to provide city-level
impact on the traffic pattern.

Traffic tolling aims to assign a price to each road (or route)
according to its congestion condition. Thus, drivers are motivated
to choose a more economical route (usually a less-congested route).
In this way, vehicles are distributed among different routes and
congestion is alleviated.

Current tolling methods can be classified into two categories:
static tolling and dynamic tolling. Static tolling [28, 32] sets tolls
merely based on historical data, which fails to adapt well to the
changing traffic volume. In terms of dynamic tolling, many works
start developing a pricing strategy according to the real-time traf-
fic conditions. Previous dynamic pricing methods usually set tolls
based on observations on roads, e.g., delay increase [22] and social
welfare measures [30]. However, these methods are based on unre-
alistic assumptions which are difficult to satisfy and the parameters
in these methods need to be tuned repeatedly under different road-
net and traffic flow. Recently, reinforcement learning methods are
becoming popular [5, 11, 17-20]. These methods can directly opti-
mize towards the objective via a pre-defined reward function [2].
Hence, they can adapt to different roadnet and traffic flows via a
learning process.

However, applying reinforcement learning to develop a reason-
able dynamic tolling strategy faces several key challenges.

o State representation. How to accurately represent the road
congestion conditions is still an open question, given the com-
plex road network connection and traffic flow interaction. (1)
Previous RL approaches to traffic tolling [19, 20] often simply
take the number of vehicles on a road as the state. This alone
cannot accurately reflect the congestion because the number of
vehicles and the degree of congestion are not directly related (if
a lot of vehicles proceed smoothly, this should not be a problem
concerning congestion). (2) The distribution of vehicles on their
routes matters. As shown in Fig. 1 (a), when other conditions
are the same (e.g., road length, congested road number, vehicle
volume) while the traffic flow distribution is different, Route 1
is more likely to cause congestion diffusion than Route 3 (more
vehicles gather in certain consecutive roads in Route 1). Due to
the connectivity of the roadnet, these interactions among roads
and their upstream or downstream should be captured.

Credit assignment. The interwoven road network makes it
difficult to tell which price is responsible for a resulting traffic
efficiency change. This is because the results of multiple route
choices are mixed. Here, we take the metric throughput (TP) as an
example, since it is frequently used in traffic tolling studies [18—
20]. It remains challenging to answer to what extent each pricing
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Figure 1: An example demonstration of the dynamic traffic tolling problem setting and three major challenges.

and routing action contribute to the final throughput number.
As shown in Fig. 1 (b), when assigning credit to local roads, road
3 in the blue route may get a low reward because its congested
upstream road are doing the wrong thing: congested road 2 with
low throughput is charging a low price and empty road 1 is
charging too much. On the contrary, road 2 in the green route
may get a high reward due to its neighbor having set a correct
price and support high throughput, even though road 2 itself is
doing a poor job. Moreover, when trying to assign a global metric
to each route, throughput over time is hard to be assigned in such
a multi-agent system [4, 24], since the traffic flow from roads
to roads overtime, and the decomposition relationship between
route traffic and road traffic vary over time.

Relative competition. When facing route choices, drivers will
choose the route at a relatively low price. Hence, it is crucial to
learn the price of competing routes in a nutshell, rather than
separately. For instance, as shown in Fig. 1 (c), these two sets
of route pricing will result in the same choice of route 2. How-
ever, which one is more feasible? Two realistic issues need to
be considered. (1) The relative price comparison among routes
should be sharp, so that drivers will choose the route designed
by the algorithm with no hesitation. (2) The total price of a route
should stick to a reasonable range and prices among different OD
pairs should remain feasible. Otherwise, people on different trips
may complain. In contrast, most of the previous studies set the
absolute price for each road or route independently and therefore
lead to the failure to learn the optimal strategy.

To address these challenges, we propose a novel route-based
method for dynamic tolling named Cooperative traffic Tolling via
Reinforcement Learning (CTRL). To appropriately represent the
congestion level of each route, we propose a state-based attention
mechanism that can aggregate the observations from roads consid-
ering the traffic distribution. To address the challenge of pricing
credit assignment, we derive a proper reward function that can be
decomposed from the global objective to road level measurements.
This guarantees that optimizing the reward values is equivalent to
optimizing the global objective. As for the modeling of relationships
between a group of routes, we re-designed the Q-network of the RL
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algorithm with a competition-aware Q-attention mechanism. Ex-
tensive experiments are conducted on the real-world road network
of three cities. The results show that our approach can significantly
outperform the state-of-the-art methods on each metric.

In summary, the contributions can be summarized as follows.

We propose a novel method of dynamic tolling that solves the
complex state representation, pricing credit assignment and route
price relative competition challenge.

The reward function is derived from the decomposition of the
global objective and hence can guarantee performance.

We conduct extensive experiments on a widely used microscopic
traffic simulator. This is an essential step before applying it to
the real world, compared with previous mathematical model sim-
ulations. Experimental results on real-world datasets show that
this design has practical value for road congestion improvement.

2 RELATED WORK

Road pricing is a measure designed to reduce delays and congestion
by charging drivers on roads. Compared to traffic light control, road
pricing may intervene earlier in the event of potential congestion
and influence drivers’ route choices in advance. The development
of road tolling models can be divided into three categories.

Static tolling Most of the static road pricing model is based on
the analysis of historical road system data. Yang and Zhang adopt a
genetic algorithm to search for optimal toll locations and simulate
an annealing method to determine toll levels. [28]. Joksimovic et
al. model the pricing problem as a bi-level optimization. They use
a heuristic search algorithm to find the optimal toll pattern [12].
Zhou et al. propose a trial-and-error congestion pricing scheme
applying the two-level iteration [32]. These methods are usually
based on mathematical models with ideal assumptions, and since
they assume fixed traffic flow, they cannot fully utilize the charging
mechanism to control the flow of traffic in real-time.

Initial dynamic tolling Then, researchers start to design dy-
namic tolling models. Zhang et al. [30] consider road pricing as a
multi-player game, and they propose a pricing model among multi-
ple regions by using Stackelberg and Nash games. But it actually
ignores the mechanism of congestion by applying regional pricing
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and a lot of assumptions are made. Bui et al. design a novel mecha-
nism User-Centric Dynamic Pricing (UCDP) and they calculate tolls
based on marginal cost and tailor paths to heterogeneous users’
preferences according to the current traffic condition [3].

Sharon proposes A-tolling [22] that computes tolls proportional
to the difference between observed and free-flow travel times. Al-
though these tolls are based on real-time traffic flows, the methods
both assume the parameters for each road to be the same and still do
not consider the impact of other roads between networks. Moreover,
the models of these methods usually lack generalization and are
not fully applicable to different road networks, requiring additional
tuning work.

Reinforcement learning for dynamic tolling Recent stud-
ies on road pricing have verified the advantage of Reinforcement
learning (RL) in the function approximation of high-dimensional
input environment [13, 25]. The tolling problem is formulated as a
Markov Decision Problem (MDP) with a continuous and bounded
action space. Mirzaei [17] improves A-tolling [22] by applying RL
method to set distinctive parameters for each road, so as to in-
centivize self-interested agents to coordinate. Chen [5] develops a
Policy Gradient method, PG-f, to allocate road tolls by RL. How-
ever, these methods do not consider the dynamic combination of
roads in different routes when setting a price for a specific road.
Later, Qiu [20] proposes DPG-f via Multi-Agent Deep Reinforce-
ment Learning with Edge-Based Graph Convolutional Network
(MARL-eGCN), which improves the performance of PG-f by em-
ploying deep neural networks and speeds up target value update
by employing temporal difference. They also employ GCN to ex-
tract the spatial correlation within the roadnet. Unfortunately, the
methods above still use domain knowledge such as manually de-
signing an agent-wise reward function which do not resolve the
credit assignment problem in a multi-agent environment.

3 PRELIMINARIES

We first introduce the notations, concepts, and the problem formu-
lation.

3.1 Notations and Concepts

To begin with, we introduce some necessary concepts in our prob-
lem.

e Roadnet: The roadnet is represented by a graph G = (V, E, X),
where vertices V are roads (each road contains three lanes: straight,
left, and right), edges E are intersections representing the con-
nection between roads, X are features of roads in the roadnet,
as shown in Fig. 2. Note that vehicles in different lanes are sepa-
rately considered in the model. However, to avoid unnecessary
confusion, we will only use the term “road” rather than “lane”
in the following sections. Thus, the feature of each route can be
obtained by applying the route adjacency matrix on the graph.
Traffic flow: The traffic in the system is composed of multiple
traffic flows. Each traffic flow is defined as the group of vehicles
sharing the same origin-destination (OD) pairs. Vehicles depart
the origin and head for the destination at a specified time. They
can change their routes according to traffic conditions.

Tolling: Each road will be assigned a price a. Drivers can obtain
the total price of a route by adding up the prices of the roads and
making route choices correspondingly.
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Table 1: Notations and descriptions

Notation Descriptions
G Road Network Graph
V,E Vertex set (roads) and edge set (intersections) of G
X Feature of roads in G
i Road id
a Tolling price
omax Max speed of all vehicles
dgiobal Global delay
D OD pair
N Number of all vehicles on the roadnet
N; Number of vehicles on the road i
d;fj Delay of vehicle j on the road i at time step n
dar Delay of the road i at time step n
ti@ Free flow travel time of vehicle j on the road i
! Average travel time of the road i from time stepn —1ton
n Traveling distance of vehicle j on the road i
Lj from time stepn—1ton
Adjacency Route
matrix feature
(T _
i [ g K
LG s
o { [ ! . i .
| COERY
Origin Road Sii fied Road \\“ dnet Graph / —

Figure 2: A graph representation of the traffic system.

¢ Route choice model: Each vehicle can choose its route with the
lowest total cost among all the alternative routes. We assume that
vehicles do not turn around and all the drivers are homogeneous.
The route cost is calculated as Z?;Irl a;, where M, is the number
of roads in the route r and g; is the price of the ith road in the
route.

3.2 Problem Definition

The tolling problem can be formulated as a Markov Decision Process
(MDP). The objective is to learn a policy to set a price for each route,
which could optimize the average travel time and throughput of
the network. The problem can be formally defined as follows:

PROBLEM 1. Given a city roadnet represented by G = (V,E, D, X)
in which V is the set of roads, E is the set of intersections connecting
roads, D is the set of traffic origin-destination (OD) pairs, and X is
the feature of each road. For every OD, there exist several alternative
routes. Vehicles choose one route with the lowest price after entering the
roadnet. The goal is to derive a joint action a for all roads interfering
vehicles’ route choices, to minimize the average travel time for all
vehicles.

4 METHOD

In this section, we propose a reinforcement learning model to tackle
this tolling problem, which is built upon the famous Soft Actor-
Critic algorithm. This method is named Cooperative traffic Tolling
via Reinforcement Learning (CTRL), in which traffic observations
cooperate to generate the solution. The state, reward and effective-
ness of action in previous road-level methods are greatly influenced
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by the surrounding road, and the individual road can hardly achieve
an impact on the driver’s route choice. Considering that the price
comparison from the driver perspective happens at the route-level,
we conduct a derivation in converting the optimization objective
into route-level objective. Then, to extract the dynamic and com-
plex spatial interactions among the roads within each route, we
propose a novel state representation attention to aggregate the state
features into route level. Further, to capture the relative competing
relationship between the routes of each origin-destination (OD)
pair, we design a Q-attention network to comprehensively consider
the values for all candidate routes.

We will first introduce the RL setting and the reward design in
Section 4.2. Then we demonstrate how we aggregate the road-level
state observations into route-level via Route-Level State Attention
in Section 4.3. Further, the route competition-aware attention mech-
anism is shown in Section 4.4. In the end, we introduce how the
proposed attention mechanisms are incorporated into the network
design and the training details in Section 4.5.

4.1 Tolling in Reinforcement Learning Setting

In order to solve the dynamic tolling problem, we formulate the
problem in the RL setting as follows. Since the observation is usually
obtained at road-level while the pricing is carried out at the route
level, we will discuss how to formulate the agent from road view
to route view.

Road view From the view of roads, we define the following
measurements to describe the congestion level and the effect of
pricing actions.

e Observation. The key observation of a road is the delay index
Q7 for the current road at time n. This is defined as the following
equation:

0
ar =7 - 2. )
Sh(nijz —nij1)
At S Al 2
! Ji @
Here, free flow time /1.<0> = U,ﬂﬁx is the time to pass the road i

with the maximum speed 0™%*, and L; is the length of road i. /11’.1
is the actually measured average travel time at time step n on
road i, where the vehicles used for calculation are restricted to
those that have left the road, as shown in Eq. (2), J; is the number
of vehicles that have left road i, n; j » and n; j 1 is the time step
that vehicle j leaves and enters the road i respectively. Note that
{ is a constant scaling factor which is set to be 0.8 according to
literature. Tuning this coefficient will only change the scale of
the features and hence will not affect the result.

Action. The action for each road is defined as the toll price for
this road. For the sake of fairness, we define the range of price
for each road as a value in [0, 10]. This way, the total price of
routes can be bounded in a feasible range.

Reward. The reward for each road is defined as the cumulative
distance traveled by vehicles on the road i from time step n —1 to
n. You can obtain the average speed for each road via calculating
R}/ 8t, where 0t is the time step gap between time n — 1 and n.
Since 8t is a constant, we omit it to make the following derivation
host:

3548

Yiheng Wang, Hexi Jin, and Guanjie Zheng

Ni
= DRI, 3)

j=1

LEMMA 1. For a traffic system represented by G(V, E), minimizing
the delay index for all the vehicles in the whole system is equivalent
to minimizing the delay index for each road individually. Note that
the global delay index is defined as below, N denotes the total vehicle
number, T denotes the whole tme scope, and d; is the total delay of

vehicle j: N N T
dyehicles = Z dj = Z Z d;l

j=1 j=1n=1

4

Proor. For each time step n, we can calculate the global delay
by summing up the delay for each road as follows. Here, V is the
set of roads, Nl.” means the set of vehicles that are on the road i
during time step n, tl" is the travel time of vehicle j on the road i
from step n, At is the interval between steps, which is a constant
value, and RZ ; represents the distance that vehicle j proceeds on
road i during time step n:

v v N
ropat = D48 = D D d
i=1 i=1 j=1
v ONE (5)
:ZZ;( —t<0>) Af — Z;Z{Umax
e =5

Thus, the global delay for the whole time scope T can be obtained

as follows:
T V
globa = Z Z d

n=1i=1
o ©)

i

~

T V
M= 2 0,

n=1 n=1i=1 j=
Note that, the first term adds up to a constant T - At. Then, for the
second term, by swapping the order of the summation operator
and representing it using the vehicle view, we have the following

equation holds:

R,J
1

T v NI N TV
PIDIPNAEDIPIPN 2 @
n=1i=1 j=1 Jj=1n=1i=1

where Vj" is number of roads that vehicle j travels through from
time step n-1 to n. After that, by substituting Eq. (7) into Eq. (6), we
have

A
n
dglobal =T -At- pmax Z Z Ri,j
j=1n=1i=1 (8)
N T R" N T
J
= - L = Y = dupire
j=1n=1 j=1n=1

Hence, we know that minimizing the delay index for all the vehicles
in the whole system is equivalent to minimizing the delay index
for each road individually. O

For simplicity, from now on, we use the reward function as the
cumulative distance R;’.

Route view From the view of routes, we define the following
elements.
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Figure 3: State attention mechanism.

State. The state s of a route r at time n is an aggregation of
observations of roads it covers. We define it as:

sy = Agg(d), ©)

where df! is a concatenation of the observations of the roads i € r.
The aggregation function Agg can be average function or state
attention mentioned in Section 4.3.

Action. The action a}} for each route r at time n is the toll price
for this route in CTRL bounded in [0, 10]. For the method of
tolling on roads, the action is the sum of all roads’ prices. Since
the number of roads in optional routes is comparable, the prices
of the routes are also bounded.

Reward. The reward for each route is the average reward of all
roads it covers.

We adopt the structure of SAC agent to model our agent [8].
The policy aims to maximize the expected sum of reward over the
state-action trajectory distribution of (a,|s,). The objective with
expected entropy over trajectory p,(sp) is defined as:

T
J() = ) B(span)-pe 7 (snan) +aH (x (- sp)],  (10)

n=1

where « is the temperature parameter that determines the weight of
entropy term against the reward. This term can effectively control
the stochasticity of policy [8].

A tractable policy 74 (an | sn) is considered with the parameter
¢. The policy network aims to minimize the loss function with the
following form:

J2($) = By | Bay oy [@ 108 (an | 50)) = Qo (sman)]|

where D is the data sample, py is a tractable policy. ()

It will compute two Q-values and choose the minimum one to
stabilize training [8]. The Q-network is modeled as a soft Q-function
(Qg (sn,ap)) whose parameter is 6. It is trained to minimize the
soft Bellman residual:

J0(0) = Bs,a,-n| 5 (0 (sman) = (r (sm20)

. (12
+YEspi1~p [Vé (Sn+1)]) ) ],
where
Vg (sn) = Ea,r [Qg (sn.an) — alogz (an | sn)] . (13)
And it can be optimized with stochastic gradients [8]:
VoJo(0) = V9Qq (sn.an) (Qe (sn.an) =1 (sn,an) )

~y (Qg (sns1.ans1) — alog(ry (anss | sns1))) ).
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Figure 4: Network architecture of CTRL.

4.2 Route-level State Attention

The state representation should be able to accurately reflect the
current road conditions and realize the cooperation of them.

As mentioned earlier, a route of an OD pair consists of multiple
roads, and the traffic flows in the upstream and downstream roads
will interact with each other. Thus, different traffic distributions may
reflect different congestion conditions. Capturing the relationship
between such upstream and downstream roads is also an important
component of the state representation.

We utilize the attention module for the roads of a route to model
the relationship between road sequences and use the output of
attention as the state of a route, as shown in Fig. 3. For each route
state s, of route r, state attention calculates s, as follows:

1Y (W20 (WEOo)T
Sp=— Z softmax(——————
My = \/d_k
where O, = FC ([d;]), d; is a concatenation of the observations of
the roads covered by the route r. M, is the number of roads covered
in route r and di is a hyperparameter that controls the projection

YWY Op),  (15)

dimension. WSQ, WX and WY are learned linear transformations.

4.3 Competition-aware Q-Attention

The attention mechanism has shown excellent performance in mak-
ing the model learn to focus on a specific part of the input sequence.
In our environment, the prediction of the route score (i.e., Q-value)
for each action by a Q-network depends not only on the state and
action of a route itself but also on the states and actions of its com-
peting routes. We design an attention-based Q-network to derive
the relative Q-values of the routes in a competitive relationship
based on their states and actions.

The attention mechanism is designed to calculate the value of
state and action for each routes given a pair of ODs, measuring
how good the corresponding pricing actions are for a pair of ODs:

hy = FC (ReLU (FC ([sr, ar]))), (16)
(W2h)(WKm)T
Vdy
where h = [hy, hy, h3], f WJ( and WqV are learned linear trans-
formations. dg is a hyperparameter that controls the projection

dimension. Q-attention network ensures the fairness of the learning
policy, the prices between routes are distinguishable and relatively

Q(s,a) = softmax( )(quh), (17)
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fair for all routes on the entire road network, i.e., there is no OD

whose routes’ prices are much higher or lower than all other routes.

4.4 Implementation details

In this section we will introduce the structure of critic network and

actor network and how attention works in it as shown in Fig. 4.

In addition, we further show the training pipeline of the proposed
method.

4.4.1  Network Models.

Critic Network The network consists of two Q-networks, which
compute two Q-values and choose the minimum one to stabilize
training, each of which is shown in the down right of Fig. 4. The
input to the Q-network is the concatenations of state and action
for different routes of an OD pair. Firstly, the input pairs are passed
through a hidden layer composed of two linear layers respectively
to obtain h; as in Eq. (16). We derive the Q-value representation
of the OD-level for h from the previously mentioned Q-attention
mechanism as in Eq. (17). We also apply target Q-networks Qrarget
to calculate the target Q-values for the stability of the algorithm.

We update the critic by minimizing the TD-loss .L(¢):

1 N 2
L) =5 (Q5(5:2) = Qg (5.9 .

!Xt
sa

Obrarger (53) = B> +¥ (0, (5. 4) — alog m (1))
where &’ ~ 7 (+|s’), g is the current policy, s’ is next state. Rp is

the rewards of OD D:

k M,
Rp= > >R
r=1i=1
k M. N; (19)
- Z Rij
r=1i=1 j=1

according to the definition of Eq. (3), where k is the number of
alternative routes under an OD pair and here k is 3 in our setting.
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Target Q-networks is updated with:

Prarget < TPtarget + (1 —17) §. (20)
Actor Network The actor network takes the state of the OD pair
as input and outputs the action distributions and log probabilities
of actions for the routes of the OD pair respectively, which can be
expressed as a ~ 7y (als). The structure of actor network is shown
in the top right of Fig. 4.
Then the actor network is trained by minimizing the loss:
L£(0) = alog m(ls) - Qp(s.8).a~ mg (als) . (21)
The actor network gives the action distribution of each route
respectively. In the training phase the action is decided by a non-
deterministic policy which we sample in the output normal distri-
bution. In the testing phase, the action is set as the mean of the
distribution.

4.4.2 Training Pipelines. As shown in Fig. 5, during the online
training, CTRL will interact with the traffic environment in real
time and update in the following way:

(1) State representation: In each time step, the observations
of each road are extracted from current traffic condition, and each
observation is fed into our Route-level State Attention network to
generate the route state input of CTRL.

(2) Update: CTRL will make decisions for each agent and provide
the current appropriate prices for the driver to choose the route
accordingly. The driver will calculate the driving cost of each route
and choose the route with the lowest cost.

(3) Push: The agent’s decision and subsequent environment’s
latest feedback will be consolidated into a quadruple
(sgi, agi, rgi, s;’;ifl) and stored in memory as experience samples.

(4) Replay samples, Update model: Every 10 episodes, CTRL
will use the experience samples stored in the memory to update
the whole network.

(5) Repeat step (1)-(4) until the model converges.
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Table 2: Overall performance comparison on three real world datasets. Different methods are compared in three measurements,
Throughput, ATT (average travel time), and Rewards. Throughput (T) and Rewards () are the higher the better, while ATT (|) is

the lower the better.

City Hangzhou ‘ ‘ Manhattan ‘ ‘ Porto
Measurement ‘ Throughput ATT(s) Rewards ‘ ‘ Throughput ATT(s) Rewards ‘ ‘ Throughput ATT(s) Rewards
No-change 1874 1235.14  1464.93 2324 1337.36  2483.97 3849 734.64  4118.63
Random 2406 787.97 1593.72 2683 1156.71  3230.16 4044 631.11  4653.22
Formula 2420 785.50 1094.06 2736 1130.41  3379.64 4051 628.14  4690.09
A-tolling 2956 902.02 2040.71 2860 1173.40  3715.68 4262 558.92  4905.89
Indi-SAC 2436 895.13 1537.90 2636 1176.50  3143.71 4088 643.55  4884.86
Multi-SAC 2437 935.69 1576.42 2713 1141.11  3339.04 4066 626.25  4833.06
MARL-eGCN 2461 1010.26  1112.30 2708 1143.12  3325.97 4069 642.69  4905.94
CTRL | 3053 686.38 2760.51 || 2926 908.43 3780.46 || 4262 493.68 5337.63

Table 3: Parameters of our method

Steps 6
Decay for exploration € 0.99
Target smoothing coefficient 7 | 0.125
Action interval 1800
Target model update interval 120
Batch size 32
Memory size 2000
Episode 500

5 EXPERIMENT

In the experiment, we aim to answer the following research ques-

tions.
e RQ1: How does CTRL perform on different datasets com-

pared with baselines?

RQ2: How does the state attention module help to improve

the performance?

RQ3: Does the Q-Attention module contribute to a fair price?

RQ4: Why can CTRL admit more vehicles than baselines?

5.1 Experimental Settings

5.1.1 Simulation environment. Our experiment uses CityFlow! traf-
fic simulator, which is a widely-used multi-agent reinforcement
learning environment for large-scale urban traffic scenarios [29].
The simulator takes the road network file and the traffic file as
input, and admits vehicles into the simulation system according
to the traffic file. Each vehicle will depart its origin and head for
its destination at a specific time, via a predefined route (as in the
traffic file). Meanwhile, users can access traffic observations (e.g.,
vehicles on a specific road, the speed of vehicles) from the simulator
via Python APIs. In turn, users can also set a new route for each
vehicle. To avoid chaos, each vehicle can only reroute once.

5.1.2  Parameter setting. The parameter settings for our traffic en-
vironment and experiment are shown in Table 3. Action interval
defines the interval between tolling price changes, which is the
time of a time step in seconds.

ICityFlow project code can be found at https://cityflow-project.github.io
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5.1.3 Route selection. Each OD pair in the roadnet has three dif-
ferent alternative routes, i.e., the shortest total distance, the fewest
traffic lights and the fewest estimated vehicles. The drivers choose
the route from the three candidates with the minimal total price
when entering the road network and do not change the route or
destination during the travel.

5.2 Dataset

Roadnet We consider three real traffic networks to validate our
methods, including Hangzhou dataset of a 4x4 network (16 intersec-
tions in total), Manhattan road network of a 3x16 (48 intersections
in total) and city-scale Porto roadnet work of 200 roads (70 inter-
sections in total). The former two roadnets are taken from the web
page? and are wildly used in literature [26, 27], Porto roadnet data
is simplified from OpenStreetMap (OSM) data>.

Traffic flow The traffic flow is obtained from real public city
data. Concretely, the traffic flow for Hangzhou and Manhattan is
downloaded from the previously mentioned website. These datasets
are converted from real traffic camera data and taxi data. The traffic
flow for Porto is converted from the taxi dataset used by previous
data competition 4 hosted by ECML-PKDD. The traffic flow of each
road network contains many OD pairs (Hangzhou has 403 ODs,
Manhattan has 818 ODs, and Porto has 817 ODs) and we manually
increase the congestion on long-distance routes to observe more
obvious effects. Then we choose the relatively congested OD pairs
to focus on and control. It is expected that through controlling
vehicles on traveling in these OD pairs, all the vehicles inside the
system will be influenced.

5.3 Methods for Comparison

e No change: No tolls are set, and vehicles follow original routes.
e Random: Vehicles choose routes randomly among alternatives.
e Formula: The toll of each road p follows the function

0 x <5,
min(10, %x - %) x > 5.

2Roadnet data is provided at https://traffic-signal-control.github.io
30SM is provided at https://www.openstreetmap.org/map=13/41.1603/-8.6385
“Data available at https://www.kaggle.com/datasets/crailtap/taxi-trajectory
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Here, x is the number of vehicles on each road. We conduct exper-
iments with various values of x and achieve the best performance
when x is 5.

A-tolling [22] is a dynamic tolling model. Each road’s toll fol-
lows the function

Mm=1-0" gt - 1% (22)

where T is the free-flow travel time, T""! is the average travel
time at time step n, C and f are tuning parameters. C is a decay.
Indi-SAC [7]: This method adopts the soft actor-critic frame-
work and utilizes the same state, action and rewards with our
method. Each road agent uses an independent SAC model.
Share-SAC: All road agents share one SAC model. The state,
action and rewards are the same as our method.
MARL-eGCN [20]: This method applies actor-critic framework
to set tolls. We regard our roadnet as one zone in the method. It
takes bounded action according to the state denoting the number
of vehicles, and defines the rewards as the number of vehicles
arriving at destinations.

5.4 Evaluation Metrics

o Throughput: The throughput calculates the number of vehicles
that have arrived at the destination during the entire time period.
Average Travel Time (ATT): For each vehicle, travel time mea-
sures the time between it entering and leaving the roadnet. ATT
is the average travel time of all vehicles that have arrived at their
destinations.

Rewards: Global rewards over time, which is the sum of the global

rewards of all time steps in Eq. 6.

5.5 Overall Performance (RQ1)

We conduct experiments on three real-world datasets, Hangzhou,
Manhattan and Porto. The overall results are shown in Table 2. It is
easy to observe that the proposed method CTRL outperforms other
methods on three datasets (except that on Porto dataset, A-tolling
method achieves very similar throughput as CTRL).

Generally, as expected, compared to the No-change method with-
out tolling, traffic tolling is proven to be effective for traffic conges-
tion. In addition, the dynamic tolling group of methods outperform
the traditional Formula or Random method.

Among all the methods, A-tolling yields quite competing re-
sults in terms of throughput, while CTRL beat A-tolling with large
margin on the other two measurements, ATT and Rewards. For
the other methods, CTRL outperforms with large margin on all
measurements.

5.6 Performance Gain with State Attention

(RQ2)

To verify the effect of the proposed state attention mechanism in
Section 4.3, we perform the ablation study comparing CTRL and
CTRL without state attention. We choose the largest map (Porto)
for the experiment. As shown in Fig. 6, CTRL achieves better per-
formance in throughput and average travel time, compared with
the version removing state-attention (using average to aggregate
the state instead). The reason is that the state attention module can
learn the appropriate weight on road states according to real-time
traffic.
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Figure 6: Effect of adding state-attention. Without the state-
attention module (green), the total throughput of the road
network is sharply reduced (a) and the average travel time
of vehicles is significantly increased (b).

5.7 Tolling Fairness Induced by Q-Attention
(RQ3)

To demonstrate the impact of the Q-Attention mechanism proposed
in Section 4.4, we compare the prices given by CTRL and CTRL
without Q-Attention at all time steps in Fig. 8. We find that the
prices of the alternative routes under the same OD pair given by
CTRL are clearly differentiated and not extremely high or low.
However, without Q-Attention, the given prices (figure below) are
too extreme and not fully distinguishable between certain route
candidates of an OD pair (e.g., 1-0, 1-1). In practical applications,
we expect prices to be relatively fair yet sufficiently distinguishable
between routes, rather than too high or low.

CTRL

30

28
H 6
£
1
Eo 4
=4S
2
-
z
0-0 0-1 02 1-0 1-1 1-2 2-0 2-1 2-2 3-0 3-1 3-2 0
Route
CTRL without Q Attention 10
-
2
8
g8
= 6
E=
1
Eo 4
=4S
°
2

0-0 0-1 02 1-0 1-1 1-2 2-0 2-1 22 3-0 3-1 3-2
Route

Figure 8: Comparison of the price distribution of CTRL and
CTRL without Q-attention. The x-axis is "OD_id-route_id",
the y-axis is time, and the values of heat map represent the
corresponding price. CTRL is shown above.

5.8 Case Study (RQ4)

We show the performance of CTRL and baseline methods in terms of
the number of vehicles and average speed on each route to illustrate
why our method can admit more vehicles as shown in Table 2 in
Porto. Note that, due to the space limitations, we only compare
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CTRL with the other methods eGCN, Indi-SAC and A-tolling, which
perform better among the baselines in Table 2.

Fig. 7 illustrates how CTRL assigns an OD’s vehicles to different
routes to accommodate more vehicles. We can observe that CTRL
can adapt the route choice according to the change in background
flow while other methods fail to do that. Although the route admits
more vehicles, the route’s travel efficiency, i.e., average vehicle
speed shown in Fig. 9 is not affected.
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Figure 9: The average speed of vehicles on three routes at
two time steps corresponds to Fig. 7. The average speed (max-
imum speed is 16.7m/s) on the routes in CTRL is comparable
to other methods, showing that there is no congestion on
Route 2 caused by CTRL, which does make the best use of
the capacity of the routes.

Further, we compare the total number of vehicles on different
routes as in Fig. 10. CTRL has made great use of route 2 and finally
achieves a much higher throughput than other methods.

Moreover, from the global view, we compare the total number
of vehicles on this OD pair (all three different routes) in this sce-
nario. We can observe that, among different time steps, CTRL can
admit more vehicles than the baselines and hence support higher
transportation efficiency.

6 CONCLUSION

In this paper, we formulate the dynamic tolling problem as a rein-
forcement learning problem and propose a method named CTRL

90

20

0 0

120 150 180 30 60 90 150 180 30 60 90 120 150 180

Time (minute

Figure 7: The routes of an OD over time steps in Porto. The poi(nts i1)1 different colors represent the number of vehicles on
different routes over time. Each figure corresponds to a method, and the final figure is background flow that does not change
route. As expected, the less background flow there is on the route, the more controlled flow chooses that route. Compared to
baseline methods, CTRL makes greater use of capacity of the routes, as shown in Route 2.
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Figure 10: The number of vehicles on three routes of an OD
in one time step. As expected, CTRL exploits the difference
between route capacities at any time step to ensure a higher
total number of vehicles of an OD, as shown in Fig. 11.
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Figure 11: The number of vehicles in an OD pair over time
step. CTRL admits more vehicles in almost all time steps,
and cumulatively, compared with other baseline methods.

to solve the problem. We innovate an interpretable reward design
and an RL model with route-level state attention and competition-
aware Q-attention to tackle the challenges in state representation
and credit assignment. Compared with previous methods, CTRL
can effectively maximize the throughput and minimize the average
travel time on various datasets.
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