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ABSTRACT

Masked video autoencoder approaches have demonstrated their potential by signif-
icantly outperforming previous self-supervised learning methods in video repre-
sentation learning. However, they require an excessive amount of computations
and memory while predicting uninformative tokens/frames due to random masking
strategies, requiring excessive computing power for training. (e.g., over 16 nodes
with 128 NVIDIA A100 GPUs (Feichtenhofer et al., 2022)). To resolve this issue,
we exploit the unequal information density among the patches in videos and propose
Efficient Masked Video AutoEncoder by Removing REdundant Spatiotemporal
Tokens (EVEREST), a new token selection method for video representation learn-
ing that finds tokens containing rich motion features and drops uninformative
ones during both pre-training and fine-tuning. We further present an information-
intensive frame selection strategy that allows the model to focus on informative
and causal frames with minimal redundancy. Our method significantly reduces
computation and memory requirements of Masked video autoencoder, enabling
the pre-training and fine-tuning on a single machine with 8 GPUs while achieving
comparable performance to computation- and memory-heavy baselines on mul-
tiple benchmarks and on the uncurated Ego4D dataset. We hope that our work
contributes to reducing the barrier to further research on video understanding.

1 INTRODUCTION

Massive video data floods the web and media daily with the rapid growth of portable devices equipped
with cameras, such as AR glasses, smartphones, UAVs, and robots. However, direct utilization of
user-generated video data for solving target task problems is nontrivial, as annotating them is
time-consuming and expensive. One potential approach to tackle this problem is to learn generic
representations from unlabeled video streams that can transfer to diverse downstream visual tasks.
Video Representation Learning (VRL) (Fernando et al., 2017; Piergiovanni et al., 2020; Qian et al.,
2021; Pan et al., 2021) methods allow learning spatial and temporal features from input video frames
in a self-supervised manner without any human annotations. A caveat to such pre-training for video
tasks is that, unlike image-based tasks with static information of objects in instances, video-based
tasks involve temporal causality; that is, successive frames are strongly correlated in their semantics.

Recently, Masked Video Autoencoder (MVA) (Tong et al., 2022; Feichtenhofer et al., 2022), which
learns to reconstruct randomly masked spatiotemporal regions in video clips, has shown impressive
performance on various video-based problems. Yet, critical challenges remain in efficiently exploiting
the spatiotemporal information in real-world videos: (1) Tokens (a pair of two temporally successive
patches in the same space) in videos are not equally valuable to reconstruct, as the amount of their
information not only depends on spatial importance but also on temporal redundancy. (2) Learning
representations from videos is infeasible without a huge computing budget. MVA approaches (Fe-
ichtenhofer et al., 2022; Wang et al., 2023b;c) that reconstruct the whole video require excessively
large amounts of computations, making it impractical without access to a substantial GPU cluster.
For example, VideoMAE (Tong et al., 2022) takes about 27 hours to pre-train for 800 epochs with
ViT-B using 64 NVIDIA V100 (32GB) GPUs, and ST-MAE (Feichtenhofer et al., 2022) takes about
35.8 hours to pre-train for 800 epochs with ViT-L using 128 NVIDIA A100 (80GB) GPUs.
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Figure 1: Efficiency of our EVEREST against VideoMAE on K400 dataset. (a) GFLOPs for pre-training
and fine-tuning. The bubble size is proportional to the GFLOPs of the model. (b) Memory consumption using
one node equipped with 8× A100 (80GB). VideoMAE with ViT-B and -L fails to deploy the model due to
out-of-memory if the batch sizes are 512 or larger. For a ViT-L backbone with a batch size of 256, our method
achieves about 4× less memory consumption than VideoMAE. Please see Tables 1 and 3 for detailed results.

To overcome such limited feasibility of video representation learning, we propose an Efficient
Masked Video AutoEncoder which removes REdundant Spatiotemporal Tokens (EVEREST), that is
a highly efficient training algorithm with token selection for alleviating the extremely high resource
requirements for VRL. Unlike prior methods (Tong et al., 2022; Feichtenhofer et al., 2022; Wang
et al., 2023a) reconstructing all patches, we aim to select a subset of informative visual tokens to
learn based on the distance disparity across temporally adjacent tokens in the embedding space.
Our redundancy-robust token selection approach successfully detects meaningful changes in the
state/object of incoming videos in an online manner, discarding less meaningful tokens containing
redundant information or meaningless backgrounds, without resorting to dense motion features from
the incoming video, such as HOG or optical flows (Sun et al., 2023; Wang et al., 2023c).

This allows us to significantly reduce computational cost and memory usage while maintaining the
quality of a representation model by back-propagating to only a few selected tokens that retain rich
spatiotemporal information with minimal redundancy. As shown in Figues 1, our EVEREST saves
computation costs by 26 ∼ 45% in pre-training and 44 ∼ 48% in fine-tuning across varying ViT
scales while achieving competitive performance against strong VideoMAE baselines. We also achieve
an impressive amount of memory reduction with all ViT backbones, which becomes more effective
with larger models. For example, on a ViT-Large with a batch size of 256, our method achieves
about 4× smaller memory consumption than VideoMAE and enables single-node training with
larger batch sizes using a large backbone, whereas existing VRL methods require immense memory
occupancy and fail to train in the same setup as they go out-of-memory.

In addition, most current VRL (Arnab et al., 2021; Bertasius et al., 2021; Feichtenhofer et al., 2022;
Tong et al., 2022) methods uniformly load frames at regular time intervals from each mini-batch
clip. However, this strategy does not consider a temporal imbalance in information and noise that
matters to real-world uncurated videos. Our EVEREST further performs information-intensive frame
selection, which is carried out online through probabilistic sampling proportional to the ratio of
redundancy-robust tokens in each frame and does not need any additional computational or parametric
learning steps. Consequently, we can capture abundant spatiotemporal knowledge from highly sparse
yet informative spatiotemporal regions in videos.

We extensively validate our proposed method on multiple benchmark datasets, including UCF101,
HMDB51, K400, Something-Something V2, and Ego4D, and our EVEREST shows remarkable
efficiency in terms of memory occupancy, computational cost, and training time compared to strong
counterparts, achieving competitive performance.

Our contributions are as follows:

• We propose redundancy-robust token selection, an efficient VRL method that promptly selects
the most informative tokens based on the states’ change and discards the redundant ones in an
online manner, to avoid wasteful training on uninformative spatiotemporal regions of videos.

• We further propose information-intensive frame selection, a strategy to select informative video
frames from incoming videos, which allows the model to efficiently learn robust and diverse
temporal representations in real-world uncurated videos.
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• Our EVEREST has great potential to lower the barrier for video-related research that requires
enormous computing power and cost, as it shows comparable performance to existing methods
while significantly reducing the amount of computations, memory usage, and training time.

2 RELATED WORK

Masked video autoencoder Inspired by self-supervised learning with Masked Image Modeling (He
et al., 2022; Xie et al., 2021; Kakogeorgiou et al., 2022), several recent works on video represen-
tation learning (Wang et al., 2022b; Sun et al., 2023; Wang et al., 2023a;c) suggest spatiotemporal
masking strategies given video streams. To capture spatial representation and temporal dynamics for
unsupervised video streams, ST-MAE (Feichtenhofer et al., 2022) and VideoMAE (Tong et al., 2022)
extend a masked image autoencoder to mask partial regions in arriving video clips via random and
space-only random sampling, respectively. They find that spatiotemporal inductive bias in video clips
helps a decoder predict input pixels in masked regions, allowing a higher masking ratio (∼ 90%)
than MIM (∼ 60% (Xie et al., 2021) and ∼ 75% (He et al., 2022)) on image self-supervised learning.
BEVT (Wang et al., 2022b) proposes to train image- and video-level masked autoencoders jointly by
sharing weights of the encoder, formulated with Video Swin (Liu et al., 2022). They resort to random
sampling given spatiotemporal inductive bias, which can be a good approximator with stochasticity
during data-driven training. Nevertheless, selecting random tokens to reconstruct for Masked video
autoencoder is inefficient since embedded tokens in video frames are not equally important, especially
since the informativeness of each token is affected by the adjacent frames.

Input selective training As benchmark training datasets often have massive scales and contain a
lot of redundant or less meaningful instances, various works (Fayyaz et al., 2022; Wu et al., 2019;
Yoon et al., 2022) have discussed sampling important instances from the entire dataset or focusing on
localized information in each frame (Meng et al., 2022; Fayyaz et al., 2022; Kakogeorgiou et al., 2022;
Yin et al., 2022) for efficient image recognition. However, they have no means to capture a temporal
correlation across adjacent frames in video tasks. A few works recently suggest supervised input
selection techniques for video tokens or frames. Wang et al. (2022a) introduce a lightweight scorer
network to select the most informative temporal and spatial token in incoming videos for supervised
video classification tasks. Park et al. (2022) suggest the greedy K-center search that iteratively finds
the most distant patches in the geometrical space from video clips. Gowda et al. (2021) train a single
and global frame selector based on the ground truth for computing the importance score of single
and paired frames. Zhi et al. (2021) performs a frame selection for unsupervised videos, but they
have to extract whole frames from the training video dataset in advance to compute the change of
cumulative distribution in video frames and features, consuming substantial pre-processing time and
storage for saving the extracted frames (it takes two days to extract SSv2 into frames and occupies
433 GB). Similarly, a few recently proposed MVA methods with adaptive token sampling require
extracting dense motion information in advance or learnable parameters. MGM (Fan et al., 2023),
MGMAE (Huang et al., 2023) and MME (Sun et al., 2023) generate motion-guided masking maps to
reconstruct the informative tokens of the given videos, but they require motion vectors and optical
flows, respectively.

However, extracting all video frames and computing their motion information (e.g., HoG or
optical flows) in advance is unrealistic for online frame selection in videos. On the other hand, our
EVEREST can perform rapidly without time- and memory-wasting steps before training.

3 VIDEO REPRESENTATION LEARNING VIA MASKED AUTOENCODERS

3.1 MASKED VIDEO AUTOENCODER

Learning to reconstruct intentionally corrupted data with masking is broadly utilized as means of
representation learning in Natural Language Processing (Devlin et al., 2018; Song et al., 2019; Guu
et al., 2020; Song et al., 2020) and has demonstrated its efficacy and power in broad research problems.
In vision tasks, Masked Image Modeling (MIM) (He et al., 2022; Xie et al., 2021) aims to learn
representations of the input images by solving the regression problem in which a model predicts
RGB pixel values in randomly masked patch regions of images. The model divides an image into
equally sized patches and then randomly chooses them to be masked based on a predetermined ratio.
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Given unmasked patches, the encoder transforms them into feature vectors, and a decoder aims to
reconstruct the original input images by predicting the RGB values of the missing image patches.

While the primary approach to VRL has been contrastive learning, the recent success of MIM
has led to breakthroughs in effectively capturing spatiotemporal information from incoming video
streams, which we call masked video autoencoder (Tong et al., 2022; Feichtenhofer et al., 2022).
Let v ∈ R2τ×C×H×W be a short clip consisting of 2τ successive frames from the entire video. A
self-supervised model f be formulated into an encoder-decoder framework f(·) = D(E(·)) aims
to reconstruct partially masked frames in v, guided by spatial and temporal relationships between
tokens in adjacent frames. The encoder takes tokenized embedding vectors from a pair of successive
frames using a 3D convolutional operation (Gupta et al., 2022; Ma et al., 2022; Piergiovanni et al.,
2022; Qing et al., 2023; Wang et al., 2023b). Let ki be an i-th spatiotemporal embedding vector for a
pair of two frames v[2i : 2i+ 1]. Given v, we reformulate the loss function as follows:

ℓ (v) =

τ−1∑
i=0

∥D (E (mi ⊗ ki;WE) ;WD)− (1−mi)⊗ v[2i : 2i+ 1]∥p ,

where m = G (J, ρ, τ) ∈ {0, 1}τ×J ,

(1)

where G(·) is a masking function depending on a specific policy, for example, random (or agnos-
tic) (Tong et al., 2022) and space-only (or tube) (Feichtenhofer et al., 2022) masking techniques.

J =
⌊
H
s

⌋
·
⌊
W
s

⌋
denotes the number of patches per image and ∥ · ∥p denotes p-norm. WE and

WD are a set of weights in the encoder and decoder, respectively. ⊗ is a dimensionality-preserving
vector-matrix multiplication operation. A mask mi ∈ {0, 1}J is drawn by the binary distribution B
with a probability of ρ without replacement, that is |mi| = [J · ρ]. After self-supervised pre-training
to minimize Equation 1, the encoder transfers the learned representations to various downstream tasks.
Unlike the samples from the image dataset, which are permutation-invariant as they are independent
of each other, consecutive frames from the video stream inherently have a strong correlation and
redundancy. Thus, masked video autoencoder can enjoy spatiotemporal inductive bias from other
adjacent frames in the input clip, achieving good reconstruction quality even with lessened hints
(i.e., a proportion of unmasked tokens). Indeed, MVA allows a much higher masking ratio 1− ρ per
video against MIM methods. This property is advantageous because masked modeling with a higher
masking ratio significantly reduces computations when training the encoder-decoder framework.

3.2 CHALLENGES IN MASKED VIDEO AUTOENCODER

MVA methods (Tong et al., 2022; Feichtenhofer et al., 2022; Wang et al., 2023a) basically capture
meaningful representations from pre-training videos via random masking strategies for input tokens.
These techniques are reasonable for curated and distributionally stable video datasets, yet, there
is plenty of room for further development to make the model much more robust and computation-
efficient. Here, we summarize two major limitations in the random sampling-based MVA:

(1) Patchified image tokens from a video clip are not equally important. At each iteration, MVA
methods determine which tokens to mask according to specific random selection strategies (e.g.,
random, time-only, etc.). Yet, the relative amount of information in each token highly depends on
the position of the informative objects and the correlation across patches within adjacent frames,
which renders most of the tokens highly uninformative or redundant. These limitations lead to
consuming massive training budgets in memory occupancy and suffering from slow convergence
speed (e.g., training 3, 200 and 4, 800 epochs when using VideoMAE (Tong et al., 2022) on UCF101
and HMDB51, respectively). To address this information imbalance in visual tokens, several recent
works have suggested sparsification/merging methods. EViT (Liang et al., 2022) is a supervised
training method that fuses tokens by removing uninformative ones from the target task, therefore,
inapplicable to video self-supervised learning. Token merging methods, including ToMe (Bolya et al.,
2023), average multiple correlated/clustered tokens and let them have the same and marginalized
values using average pooling. However, the masked video autoencoder encodes a few unmasked
regions of video frames and aims to reconstruct raw frames. That is, token merging techniques
are inappropriate for the decoding (i.e., reconstructing) phase of masked autoencoder by design.
Furthermore, the encoding phase with token merging may also fail to reconstruct raw frames at a
pixel-level, due to their marginalized token features. This technical design is well-performed in the
action recognition classification problem but deteriorates the performance of the VRL method.
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Figure 2: Overview of our proposed approach. Our redundancy-robust mask generator selects tokens with
a large disparity with the paired ones in the previous time dimension, indicating that they include rich motion
features. Then, the model focuses on learning spatiotemporal representation by reconstructing only sparsified
videos containing abundant spatiotemporal information, which makes the VRL procedure surprisingly efficient.

(2) MVAs draw frames at uniform time intervals from video streams to train on. Real-world
videos may include noisy and highly redundant frame sequences, often uninformative or even
detrimental in representing temporal causal relationships and features of moving objects. However,
the uniform sampling of video frames results in a waste of computational and memory resources
in video understanding. To alleviate this problem, AdaFrame (Wu et al., 2019) trains the memory-
augmented LSTM for gathering informative frames in given videos, leveraging supervised video
labels to evaluate whether observing more frames is expected to produce more accurate predictions.
SCSampler (Korbar et al., 2019) also requires the ground truth to jointly train the clip classifier and
clip-level saliency model to obtain useful clips to the clip classifier. SMART (Gowda et al., 2021)
trains Single-frame Selector and Global Selector for the frame selection, which require the ground
truth for computing the importance score of single and paired frames.

These challenges further exacerbate the problem when applying masked video autoencoder on uncu-
rated first-person view real-world videos, e.g., Ego4D (Grauman et al., 2022), which contains not
only sparse motion information over space and time, but also suffers from a severe spatiotem-
poral redundancy. Therefore, determining which frames and spatiotemporal tokens to recover is
crucial for practical and efficient video representation learning.

4 EFFICIENT MASKED VIDEO AUTOENCODER BY REMOVING
SPATIOTEMPORAL REDUNDANCY

4.1 REDUNDANCY-ROBUST MASK GENERATION FOR HIGHLY EFFICIENT MVA

Valuable spatiotemporal information in video streams mainly comes from active visual changes rather
than from static backgrounds. Thus, we aim to learn self-supervision on videos from only a few
crucial regions containing minimal spatiotemporal redundancy. Let ki be a token embedding of a pair
of adjacent 2ith and (2i+1)th frames from an input video clip v ∈ R2τ×C×H×W , where 0 ≤ i < τ .
ki+1,j indicates the jth token embedding of ki+1 and we measure the importance Ii+1,j of ki+1,j by
computing the distance from the token embedding at the same region in the previous time step, ki,j :

Ii+1,j = S (ki+1,j ,ki,j) , where ki = Conv3d(v[2i : 2i+ 1];w), (2)

where S(·, ·) indicates a distance function, such as Euclidian, negative Cosine Similarity, and negative
Centered Kernel Alignment (Cortes et al., 2012). Throughout this paper, we use the ℓ2 norm for S,
which is simple yet empirically performs well, and we provide a discussion for the choice of the S
in Appendix B. Tokens with a large disparity from tokens in a previous time period are considered
important, indicating that they contain unique knowledge in the video and may have more important
information than other tokens. Given v, the model determines the token embedding vectors with
the highest importance ratio of ρpre based on Equation 2, which we call Redundancy-robust (ReRo)
Masking Generation. We can drastically reduce the computational cost during training by only
propagating these selected embedding vectors k̃ in a minibatch video clip at each iteration.

Next, we randomly sample a few token embeddings k̃′ from k̃ with the ratio of ρpost to forward them
to the encoder. And the corresponding decoder predicts RGB pixels on all embedding vectors k̃i ∈ k̃
based on the encoder outputs. We set a high masking ratio in general, ρpre · ρpost = 0.1, to follow
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Figure 3: Visualization of the proposed information-intensive frame selection on an uncurated dataset,
Ego4D. Unlike prior works that uniformly samples frames similar to each other, we adaptively sample the given
video (24 frames) by probabilistic sampling the frames that have distinct spatiotemporal features (non-blurred
frames).

the settings of our MVA baselines. The objective function of our EVEREST is formulated as follows:

arg min
W,w

N∑
n=1

τ−1∑
i=0

∥∥∥fW((k̃′
i)

n)−mn
i ⊗ vn[2i : 2i+ 1]

∥∥∥
F
,

where mn=G ([J · ρpre], ρpost, τ) ∈ {0, 1}τ×[J·ρpre].

(3)

We omit the positional embedding term for notational simplicity. Whereas earlier MVA works used
a fixed masking ratio per video cues for self-supervised training, our approach allows a dynamic
masking rate for each frame by design, based on the occupancy of essential tokens. As shown
in Figues 7, each video frame contains a different amount of spatiotemporal information, and
our dynamic masking strategy enables the model to focus on learning the valuable representation
in a holistic view from incoming videos. We note that our EVEREST can be generalized well
on both pre-training and fine-tuning phases with a negligible additional computational cost and
training time (Please see Figues 1). We find that removing unimportant tokens is crucial for both
phases, obtaining more meaningful representations and achieving superior performances. (Please see
Table 16). The overall process of our redundancy-robust token selection is illustrated in Figues 2.

We emphasize that our ReRo mask generation is also significantly effective for motion-centric videos,
e.g., Ego4D, since these untrimmed real-world videos also contain a lot of temporally redundant
visual information. For example, in Figues 8, a worker focuses on a grass mower to operate it well,
and a person makes cookie dough, where visual scenes include much meaningless visual information,
like empty space on the table.

4.2 ON-THE-FLY INFORMATION-INTENSIVE FRAME SELECTION

As discussed in Section 3.2, real-world video streams may contain many redundant frames and
also often include non-useful intermediate clips, such as temporally glancing at uninspiring walls,
grounds, or skies, that interfere with estimating a causality of the user’s or cameraman’s attention.
However, most video-based learning methods follow a simple strategy to sample frames from uniform
time intervals at each iteration. This approach is reasonable for well-curated video benchmark
datasets (Kay et al., 2017; Soomro et al., 2012) containing only information-dense frames with fixed
viewpoints; however, it is unsuitable for uncurated real-world videos, which are more likely to have
redundant and overlapped frames that the masked-video model can easily reconstruct.

Redundancy-Robust token selection

Sampling
Probability

index

𝑖! 𝑖"
𝑖! 𝑖"

Figure 4: Illustration of information-intensive
frame selection. We adaptively select frames based
on the ReRo token frequency, which indicates signifi-
cant spatiotemporal information compared to frames.

To overcome the limitation, we propose to adap-
tively discard uninformative frames in the arrival
video and build causal clips that represent the most
crucial behaviors of the objects. We illustrate
a simple overview of our information-intensive
frame selection in Figues 4 and visualize the sam-
pled results in Figues 3. We first select evenly
spaced [2α·τ ] frames as candidates, α times larger
than the input clip size τ , where α > 1. We count
the number of chosen tokens ci for the 2ith and
(2i+ 1)th frames based on the frequency of our
ReRo tokens, described in Section 4.1. Then, the
model iteratively trains on the input clip by draw-
ing τ frames from [α · τ ] candidates without replacement, with a probability of ci∑

i ci
that the paired
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Table 1: Comparison of fine-tuning Performance on K400. For quick verification, VideoMAE and
EVEREST are pre-trained for 200 epochs. PT and FT mean pre-training and fine-tuning, respectively.
We use an input size of 16× 2242. Memory usage is measured with 256 batch size when pre-training.
† is trained from random initialization. We refer Wightman (2019) for computing ‡.

Method Backbone PT-Data PT-GFLOPs FT-GFLOPs Memory usage (GB) Top-1 Acc

MViT (Fan et al., 2021)† MViT-S ✗ - 32.9 - 76.0
MViT (Fan et al., 2021)† MViT-B ✗ - 70.5 - 78.4
ViViT FE (Arnab et al., 2021) ViT-L IN-21K 119.0‡ 3980.0 N/A 81.7

K-centered (Park et al., 2022) XViT IN-1K 67.4‡ 425.0 N/A 73.1
K-centered (Park et al., 2022) Mformer IN-1K 67.4‡ 369.5 N/A 74.9
K-centered (Park et al., 2022) TSformer IN-1K 67.4‡ 590.0 N/A 78.0

VideoMAE (Tong et al., 2022) ViT-S K400 11.6 57.0 117.4 73.5
VideoMAE (Tong et al., 2022) ViT-B K400 35.5 180.5 486.4 78.4
VideoMAE (Tong et al., 2022) ViT-L K400 83.1 597.2 634.1 82.0

EVEREST (ours) ViT-S K400 6.3 (↓ 45.7%) 29.1 (↓ 48.9%) 59.9 (↓ 49.0%) 75.9
EVEREST (ours) ViT-B K400 21.5 (↓ 39.4%) 98.1 (↓ 45.7%) 91.2 (↓ 81.3%) 79.2
EVEREST (ours) ViT-L K400 60.8 (↓ 26.8%) 330.0 (↓ 44.7%) 164.1(↓ 74.1%) 82.1

Table 2: Performance comparison with strong base-
lines on UCF101, HMDB51, and SSv2 datasets with-
out using the pre-training step on a large-scale dataset.
Several results are drawn from Diba et al. (2021) and
Tong et al. (2022). SR50 indicates SlowOnly-R50.

Method Backbone Extra data T1 Acc (%)
UCF101 HMDB51 SSv2

VCOP (Xu et al., 2019) R(2+1)D UCF101 72.4 30.9 N/A
CoCLR (Han et al., 2020) S3D-G UCF101 81.4 52.1 N/A
Vi2 CLR(Diba et al., 2021) S3D UCF101 82.8 52.9 N/A
CoCLR (Han et al., 2020) S3D-G K400 87.9 54.6 N/A
Vi2 CLR(Diba et al., 2021) S3D K400 89.1 55.7 N/A
RSPNet (Chen et al., 2021) S3D-G K400 93.7 64.7 55.0
ρSwAVρ=2 (Feich. et al., 2021) SR50 K400 87.3 N/A 51.7
ρMoCoρ=2 (Feich. et al., 2021) SR50 K400 91.0 N/A 54.4
ρBYOLρ=2 (Feich. et al., 2021) SR50 K400 92.7 N/A 55.8
VideoMAE (Tong et al., 2022) ViT-B ✗ 91.3 62.6 64.3

EVEREST (Ours) ViT-B ✗ 93.4 68.1 64.6

- 57.1%
- 45.7%

- 44.2%

- 45.7%

- 65.5%
- 45.7%

Figure 5: Performance & GFLOPs Comparison
on UCF101 dataset. (Left) EVEREST outperforms
VideoMAE for both masking ratios (75% and 90%)
even at significantly fewer training epochs. (Right)
Our EVEREST reduces GFLOPs during pre-training
and fine-tuning compared to VideoMAE and ST-MAE.

2ith and (2i+ 1)th frames are drawn. The model trains video clips with a limited length at each
iteration since longer clips require massive computations and memory. Therefore, we remark that
information-intensive frame selection is crucial to better capture causality in the arrival video, as the
model can observe longer video fragments while avoiding redundant frames.

5 EXPERIMENTS

Experimental settings We validate our method on multiple video datasets: UCF101 (Soomro et al.,
2012), HMDB51 (Kuehne et al., 2011), Something-Something v2 (SSv2) (Goyal et al., 2017), Kinetics-
400 (K400) (Kay et al., 2017) and Ego4D (Grauman et al., 2022). We evaluate our information-
intensive frame selection strategy during pre-training on Object State Change Classification (OSCC)1

task from Ego4D, containing raw and uncurated people’s daily life videos. Given 8-second videos,
OSCC classifies whether the object’s state has changed by interacting with a camera wearer. Following
the same training protocols as VideoMAE (Tong et al., 2022), we pre-train our EVEREST over
benchmark datasets without labels and report the fine-tuning performance. For a fair comparison,
we train both VideoMAE and our EVEREST using the same one-node equipped with 8 GPUs. For
K400 and SSv2, although VideoMAE trained all models for 1600 and 2400 epochs, respectively, with
multi-node GPUs (e.g., 64 V100 GPUs), we train both methods with several scaled ViT backbones for
200 epochs due to quick validation of the scalability. Except for K400, we use ViT-B as a backbone
for the other benchmarks. Please see Appendix A for further implementation details.

EVEREST is memory and computationally efficient while achieving competitive performance
against VideoMAE and K-centered variants. We extensively compare our proposed method against
strong VRL baselines. Table 1 shows the results of the supervised and self-supervised methods
on K400. Our redundancy-robust token selection, EVEREST, shows comparable performance to
VideoMAE (Tong et al., 2022), while achieving significant computation and memory reduction during

1https://github.com/EGO4D/hands-and-objects/tree/main/state-change-localization-classification
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Figure 6: Accuracy over training time on SSv2. 4
NVIDIA RTX 3090 GPUs are used. We set ρpre to 0.3
and 0.8 for pre-train and fine-tuning, respectively.

Table 3: Memory usage comparison during the pre-
training (one node, A100×8 GPUs) on K400. The
memory gaps grow up when increasing batch size and
model size. Especially, our EVEREST with ViT-L
achieves about 4× better efficiency than VideoMAE
(634.1GB). OOM indicates out-of-memory.

Method Backbone Effective Batch Size
128 256 512 1024

ViT-S 71.9 117.4 233.6 443.6
VideoMAE ViT-B 258.4 486.4 OOM OOM

ViT-L 353.9 634.1 OOM OOM

ViT-S 31.9 59.9 95.6 173.1
Ours ViT-B 60.0 91.2 151.2 273.6

ViT-L 117.3 164.1 258.9 428.4

Table 4: Pre-training time & Memory compari-
son with SoTA MVAs on K400. We measure the
pre-training time for an epoch under a single-node ma-
chine equipped with 8×A6000 (48GB) GPUs. We use
ViT-B and a batch size of 128. Note that MME (Sun
et al., 2023) should pre-compute the optical flow for
the entire video data before pre-training. We exclude
the time and memory of MME for optical flow com-
putations in the table.

Method PT-Time Memory
VideoMAE (Tong et al., 2022) 18m 42s 150.3 GB
MME (Sun et al., 2023) 10m 15s 121.2 GB
MVD (Wang et al., 2023c) 51m 55s 274.9 GB
EVEREST (ours) 8m 18s 66.3 GB

Table 5: EVEREST-Finetuning with other MVAs
on K400. We apply our EVEREST for finetuning
the pre-trained models (ViT-B) by SoTA MVAs. We
measure the memory usage with the same batch size of
128. While SoTA methods use full tokens during fine-
tuning, our EVEREST uses only redundancy-robust
tokens that reduces significant computational cost
and memory usage with comparable accuracy.

PT-Method FT-Method GFLOPs Memory Top-1
VideoMAE Full-token 180.5 362.5 GB 81.5
VideoMAE EVEREST 98.1 178.4 GB 81.6

MME Full-token 180.5 362.5 GB 81.8
MME EVEREST 98.1 178.4 GB 82.0
MVD Full-token 180.5 362.5 GB 83.4
MVD EVEREST 98.1 178.4 GB 82.8

both pre-training and fine-tuning. Specifically, for ViT-S, EVEREST can reduce computational costs
by 45.7% and 48.9%, respectively. It’s also worth noting that EVEREST using ViT-L is more than
4× more memory efficient than VideoMAE (e.g., 164.1 GB vs. 634.1 GB). Meanwhile, Table 2
shows that EVEREST achieves superior fine-tuning performance against recent VRL methods across
UCF101 and HMDB. Specifically, EVEREST outperforms the best baseline, VideoMAE, by 2.1%p ↑
on UCF101 and 3.2%p ↑ on HMDB51. Also, we visualize the convergence plot of EVEREST on
UCF101 in Figues 5 Left. By pre-training at only 800 epochs, our EVEREST surpasses the fine-tuning
accuracy of VideoMAE trained at 3200 epochs. That is, EVEREST reaches on-par performance
with VideoMAE by using only ∼14% of total computational costs. We also against variants of a
strong motion-based token selection method, K-centered patch sampling, with the modified vision
transformer for video learning, including XViT(Bulat et al., 2021), Mformer (Patrick et al., 2021),
and TSformer (Bertasius et al., 2021). Our proposed method also surpasses these motion-based video
understanding methods by significant margins in terms of Top-1 accuracy and GFLOPs.

EVEREST is highly beneficial for model deployment. To validate the efficiency of our EVEREST
in terms of memory usage, we measure the memory consumption over multiple batch sizes and
architecture scales during the pre-training phase on K400. We use one node equipped with 8×A100
(80GB) GPUs and compare EVEREST with VideoMAE. As shown in Table 3, VideoMAE shows
out-of-memory when using a batch size of 512 and 1,024. Regarding that VideoMAE used the
batch size of 1,024 in the original paper (Tong et al., 2022), VideoMAE inevitably has to lower the
batch size to run training in a one-node environment, resulting in increased training time. However,
the proposed redundancy-robust token selection approach allows to drastically reduce the memory
usage, which means that it can be trained using only a one-node environment. We further compare
pre-training and fine-tuning budgets with those of the state-of-the-art MVAs such as MME (Sun et al.,
2023) and MVD (Wang et al., 2023c). In Table 4, when pre-training, EVEREST requires only 44%,
24%, and 55% of memory than VideoMAE, MME and MVD, respectively. Due to the generality of
our EVEREST, we can apply EVEREST to the finetuning phase by prunning redundant tokens. As
shown in Table 5, compared to other methods using full tokens, our EVEREST reducing computation
and memory requirements while acheiving comparable accuracy.

EVEREST is also significantly rapid for pre-training compared to SoTA VMA baselines. To
evaluate the wall-clock time efficiency, we compare pre-training time (PT-Time) with state-of-the-art
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T T T T

(a) fixed and static (b) fixed and dynamic (c) changing and messy
Figure 7: Examples of Redundancy-robust Token selection. We visualize the original video frames (left),
Redundancy-Robust masking (middle), and obtained importance heatmaps (right) on UCF101 ((a) and (b),
ρpre=0.3) and Ego4D ((c), ρpre=0.5). Our ReRo token selection successfully captures both narrow/concentrated
motion information in curated videos (a,b) and distributed/multi-object motion cues in egocentric videos (c).

MVAs by using the same batch size on K400. As shown in Table 4, EVEREST requires only 45%,
16%, and 81% of pre-training time than VideoMAE, MME, and MVD, respectively. Note that we
didn’t reflect the heavy computation burdens of MME for extracting HOG and optical flow of all input
video data before training. Similarly, the whole training time, including both pre-training and fine-
tuning, can be drastically reduced, as shown in Figues 6. We note that along with memory efficiency
in our EVEREST, we can maximally enjoy remarkably accelerated pre-training and fine-tuning
phases given resource-constrained environments than the cases of MVA methods.

EVEREST has a potential for estimating motion information. We provide masked input examples
with their importance heatmaps through our proposed redundancy-robust masking in Figues 7. Our
masking strategy enables the model to capture the most informative tokens containing static and
dynamic moving of objects (e.g., doing wall push up (Figues 7 (a)) and playing ping pong (Figues 7
(b)). Furthermore, our masking strategy captures informative objects even with the rapid change of
the view in the first-person videos, as it masks out objects which are crucial for understanding the
camera wearers’ attention (Figues 7 (c)), while not attending to backgrounds such as walls and floors.

Method Modality Accuracy (%)

Egocentric VLP (Lin et al., 2022) V+T 73.9

SViT (Escobar et al., 2022) V 69.8
TarHeels (Islam & Bertasius, 2022) V 70.8
EVEREST (Ours) V 76.2 (+5.4%p)

Table 6: Comparison with public SoTA methods for
OSCC on Ego4D val set. We set our frame selection ra-
tio α = 1.5. Pre-trained data modalities from the OSCC
dataset ‘V’ and ‘T’ refers to visual and text, respectively.

EVEREST adaptively finds information-
dense frames from egocentric videos.
Real-world videos include many redundant
scenes over a long time, the VRL model
may waste time and computations by learn-
ing on meaningless frames, which also can
lead to poor local optima due to bias and
catastrophic forgetting. To overcome the
limitation, we adopt the rate of redundancy-
robust sampling α to focus on the frames
with larger motions across frames as illus-
trated in Figues 3. By constructing the given videos to have fluent motion information, our model
focuses more on learning the core part of the video. We set the default α to 1.5 and report the effect
of α in Appendix C.We quantitatively compare our method to recent SoTA methods using OSCC
task on Ego4D in Table 6. We pre-train OSCC without labels and fine-tune it to classify whether the
object’s state has changed. With only visual information, we outperform the previous SoTA method
Egocentric VLP (Lin et al., 2022), which uses visual and text information, by 2.3%p ↑.

6 CONCLUSION

From the insight that not all video tokens are equally informative, we propose a simple yet efficient
parameter-free token and frame selection method for masked video autoencoder. We adaptively
select the crucial redundancy-robust tokens based on significant spatiotemporal changes in state
and only train them, drastically reducing memory allocation and computational cost. In addition,
we propose a frame selection technique to construct input video data by sampling frames with a
probability proportional to the degree of their occupancy of adaptively obtained tokens. This is
useful for video representation learning with uncurated videos containing a number of redundant
frames. The experimental results show that our method is significantly more efficient in computations,
memory, and training time than the baselines. We believe our method could help democritizing (Seger
et al., 2023) video-related research requiring immense computation budgets.
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Appendix
Organization The supplementary file is organized as follows: Firstly, we explain the implementa-
tion details according to tasks in Appendix A and perform the distance function ablation study for
redundancy-robust masking during pre-training in Appendix B. We provide additional experimen-
tal results for our EVEREST in Appendix C. Next, we visualize more examples from EVEREST
in Appendix D. Finally, we provide a discussion on broader impacts and limitations of our work
in Appendix E.

A IMPLEMENTATION DETAILS

Table 7: Pre-training settings for K400, SSv2, UCF101, HMDB51 and OSCC.

K400 SSv2 UCF101 HDMB51 OSCC

optimizer AdamW
optimizer momentum β1, β2 = 0.9, 0.95 Chen et al. (2020)

base learning rate 1.5e-4(S,L), 3e-4(B) 1.5e-4 1e-3 1e-3 1e-3
weight decay 0.05

learning rate schedule Cosine decay Loshchilov & Hutter (2016)
flip augmentation yes no yes yes yes

augmentation MultiScaleCrop

batch size 1024(S,B), 512(L) 256 192 192 256
warmup epochs 40 40 40 40 20

ρpre 0.3 0.3 0.3 0.3 0.5
sampling stride 4 2 4 2 4

total epochs 200 200 3200 4800 400

Table 8: Fine-tuning settings for K400, SSv2, UCF101, HMDB51 and OSCC.

K400 SSv2 UCF101 HDMB51 OSCC

optimizer AdamW
optimizer momentum β1, β2 = 0.9, 0.999

weight decay 0.05
learning rate schedule Cosine decay

warmup epochs 5
laer-wise lr decay 0.75 Bao et al. (2021)
flip augmentation yes no yes yes yes

RandAug (9, 0.5) Cubuk et al. (2020)
label smoothing 0.1 Szegedy et al. (2016)

drop path 0.1

base learning rate 5e-4(S), 1e-3(B), 2e-3(L) 5e-4 1e-3 1e-3 1e-4
batch size 384(S,B), 128(L) 48 128 128 32

ρpre 0.6 0.8 0.6 0.6 -
sampling stride 4 - 4 2 10

total epochs 75(S), 35(B,L) 50 100 50 30
multi-view 2×3 2×3 5×3 10×3 2×3

We validate our EVEREST on five video datasets: K400 (Kay et al., 2017), SSv2 (Goyal et al.,
2017), UCF101 (Soomro et al., 2012), HMDB51 (Kuehne et al., 2011), and Ego4D (Grauman
et al., 2022). We provide the hyperparameter setup for pre-training and fine-tuning in Table 7 and
Table 8, respectively. During fine-tuning, we follow segment-based sampling (Wang et al., 2018) on
SSv2. As we mentioned in Section 4.1 of the main paper, we adopt the same masking ratio with
VideoMAE (Tong et al., 2022) and ST-MAE (Feichtenhofer et al., 2022) for masking input video, but
we only reconstruct (ρpre × 100)% of input video tokens during pre-training. And in fine-tuning, our
model only takes (ρpre × 100)% of input video tokens. We follow the linear learning rate scheduling
of Tong et al. (2022) and Feichtenhofer et al. (2022), lr = base_learning_rate× batch_size/256.
Overall implementation of our method is built upon VideoMAE2(Tong et al., 2022).

2https://github.com/MCG-NJU/VideoMAE
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Video Action Recognition We extensively evaluated our method on multiple benchmark datasets
for the video action recognition task, including K400, SSv2, UCF101, and HMDB51. For inference,
we adapt common multi-view testing with T clips × three crops. That is, the model takes T temporal
clips with three spatial crops to cover the overall length and space of the video. Then, we measure
the average performance of all views.

Object State Change Classification (OSCC) The OSCC dataset is the subset of the Ego4d dataset,
consisting of 41.1k/21.2k train/val 8-second videos. Note that, as the Ego4D dataset shows the
characteristic of having motion cues that are distributed and containing multi objects in Figues 7 (c)
of the main paper, we adopt ρpre = 0.5. We train 400 and 30 epochs with a fixed sampling ratio of 4
and 10 in the pre-training and fine-tuning phases, respectively. We use α = 1.5 only in pre-training.

B COMPARING FUNCTIONS FOR COMPUTING TOKEN EMBEDDING DISTANCE

Table 9: Fine-tuning results on HMDB51 mea-
sured by varying the distance function in pre-
training.

Distance Function accuracy(%)

negative cosine 33.53
negative CKA 34.58

L1 42.22
L2 42.81

We analyze the effect of adopting different distance func-
tions: L1 and L2 distance, negative cosine similarity,
and negative CKA (Cortes et al., 2012). We train ViT-B
on HMDB51 for 200 and 50 epochs, respectively, only
varying the distance function in pre-training as shown
in Table 9. As shown, L1 and L2 outperform the al-
ternatives. Therefore, we default to the L2 distance
to measure the disparity between token embeddings in
temporally adjacent frames.

C ADDITIONAL EXPERIMENTAL RESULTS

Table 10: Fine-tuning performance of EVEREST on K400 using the VideoMAE pre-trained model. We
adopt our redundancy-robust token selection method for fine-tuning K400. We use the pre-trained weights by
VideoMAE for 1600 epochs and Vanilla indicates a standard fine-tuning of the video action recognition task
leveraging all visual tokens.

Pre-training Fine-tuning Backbone GFLOPs Accuracy (%)

VideoMAE

Vanilla ViT-S 57.0 79.0
+EVEREST (ours) ViT-S 29.1 (↓ 48.9%) 78.8
Vanilla ViT-B 180.5 81.5
+EVEREST (ours) ViT-B 98.1 (↓ 45.7%) 81.6
Vanilla ViT-L 597.2 85.2
+EVEREST (ours) ViT-L 330.0 (↓ 44.7%) 84.8

EVEREST fine-tuning using the pre-trained VideoMAE on K400. We also show the transfer-
ability of our redundancy-robust token selection by fine-tuning a pre-trained model with a different
method, VideoMAE, on the K400 dataset. We borrow the pre-trained weights in the official repos-
itory3. Table 10 shows the results with different ViT backbones. Even using publicly available
pre-trained models from VideoMAE, our EVEREST show competitive fine-tuning performance com-
pared to the baseline while significantly reducing the computational cost. These results demonstrate
that EVEREST can seamlessly adopt an otherwise pre-trained backbone.

Table 11: Fine-tuning performance on UCF101 measured by a varying number of frames.

Method # of frames GFLOPs Accuracy (%)
pre-training fine-tuning pre-training fine-tuning

VideoMAE 16 16 35.48 180.5 90.80
EVEREST (Ours) 16 16 19.81 98.1 93.39
EVEREST (Ours) 24 24 30.65 159.4 94.42

3https://github.com/MCG-NJU/VideoMAE/blob/main/MODEL_ZOO.md
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Increasing frame lengths from reduced memory of our EVEREST As shown in Figues 1 in the
main paper, our EVEREST drastically saves the computational cost in pre-training and fine-tuning.
In Table 11, we analyze to compensate for the reduced memory occupancy by increasing the number
of input frames from 16 to 24 in pre-training and fine-tuning to observe the results in case of having
similar computational costs with VideoMAE. We achieve 94.42% accuracy on UCF101 while still
having relatively lower GFLOPs than VideoMAE.

Table 12: Ablation study of
on-the-fly information-intensive
frame selection of EVEREST.

α Acc. (%)
- 73.17

1.3 73.54
1.5 73.85
1.8 73.79
2.0 73.80

Table 13: Transferability comparison between VideoMAE and EVER-
EST on K400 and SSv2 to UCF101 and HMDB51 with ViT-S and ViT-B.

Method backbone Pre-train Top1 Acc.(%)
Dataset UCF101 HMDB51

VideoMAE ViT-S K400 84.2 54.2
EVEREST ViT-S K400 89.2 (↑ 5.0%) 61.4 (↑ 7.2%)

VideoMAE ViT-B SSv2 88.7 60.9
EVEREST ViT-B SSv2 92.2 (↑ 3.5%) 64.6 (↑ 3.7%)

The ratio of information-intensive frame selection We conduct an ablation study for the rate
of information-intensive frame sampling α. We pre-train our model 100 epochs on the OSCC
task by varying α from not using (-) to 2.0. Interestingly, as shown in Table 12, the performance
with α outperforms baselines (-). And we default α = 1.5 for experiments, which shows the best
performance than others.

Transferability of our EVEREST We also measure the fine-tuning performance on UCF101 and
HMDB51 using larger pre-training datasets in Table 13. We perform fine-tuning experiments with 200
epochs of pre-trained models from K400 and SSv2 in Table 1 and Table 2. Impressively, our method
gains a substantial performance enhancement over all experiments compared with VideoMAE.

Table 14: The impact of the number of Conv3d layers for capturing Redundancy-Robust Token Selection.

# of consecutive Conv3d layer1 layer2 layer3 # of Memory GFLOPs Fine-tuning
embedding layers kernel size kernel size kernel size params. (M) usage (GB) accuracy (%)

1 2×16× 16 N/A N/A 94.2 / 86.3 9.2 / 17.6 19.8 / 98.1 68.1
2 2× 4× 4 1× 4× 4 N/A 102.5 / 94.6 11.9 / 17.5 34.6 / 112.9 66.7
3 2× 4× 4 1× 2× 2 1× 2× 2 97.8 / 89.9 11.3 / 17.5 38.3 / 116.6 66.8

The design of the embedding layer We perform an ablation study of our proposed EVEREST
regarding the embedding layer design. In our default setting, we use a single Conv3d layer. And we
adopt deeper neural networks for spatiotemporal embedding in this experiment. Note that we adjust
the kernel size of each layer to maintain the output dimension. As shown in Table 14, stacking more
layers for input embedding achieves lower performance than the default setting (i.e., # of consecutive
Conv3D embedding layer = 1) on the HMDB51 dataset. Even they require substantial additional
training costs in terms of the number of parameters, GFLOPs, and memory usage in most cases of
pre-training and fine-tuning.

Table 15: The impact of informative-token selection.
It shows better performances both in pre-training and
fine-tuning when the model prioritizes selection with the
most far-distance (descending) embedded tokens rather
than near-distance (ascending) tokens.

Method ReRo Masking Fine-tuning
Pre-train Fine-tune accuracy (%)

EVEREST

ascending ascending 60.93
ascending descending 73.49
descending ascending 75.60
descending descending 91.56

The importance of selecting tokens contain-
ing rich motion information We select to
learn temporally changing tokens based on the
distance between token embeddings in adjacent
frames, thereby, the tokens farther away from
adjacent frames contain less redundant informa-
tion. As shown in Table 15, when we reversely
select near-distance tokens in pre-training and
fine-tuning, it severely decreases the accuracy,
and the performance is the worst if the model se-
lects tokens via reverse strategies in both phases.
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Table 16: The ratio of our ReRo Masking at pre-training (Left) and fine-tuning (Right) on UCF101. We
highlight the default redundancy-robust masking rate (ρpre) as red texts. We basically pre-train our model 800
epochs, but also report the results with 3,200 pre-training epochs following VideoMAE, denoted by †. ∗ and ∗∗

denotes the results with 75% and 90% masking, respectively.

Method ρpre top-1 GFLOPs
MAE - - 46.10

VideoMAE† - 91.25∗ 57.50
- 90.80∗∗ 35.48

Ours

0.5 90.91 23.43
0.4 91.51 21.54
0.3 91.56 19.81
0.2 90.80 18.22

Ours† 0.3 93.39 19.81

Method ρpre top-1 GFLOPs
MAE - - 180.6

VideoMAE† - 91.25 180.5

Ours

1.0 89.71 180.5
0.8 90.17 137.5
0.7 91.25 117.3
0.6 91.56 98.1
0.5 91.48 79.8

Ours† 0.6 93.39 98.1

Table 17: Masking strategy comparison. To compare with EVEREST, we conduct experiments adopting
a frame-wise masking strategy with 400 and 100 pre-training epochs and 100 and 10 fine-tuning epochs on
UCF101 and OSCC, respectively. For a fair comparison, the frame-wise masking strategy adopts the same ρpre
of EVEREST.

PT-Making FT-Masking Top-1
UCF101 OSCC

Frame-wise - 68.5 69.8
Frame-wise Frame-wise 72.4 69.2
EVEREST EVEREST 89.7 73.9

Ablation study on redundancy-robust token selection One of our major contributions is the
significantly enhanced computational efficiency during VRL, as we process a few latent vectors
in the decoder to reconstruct only the motion-activated tokens in the given videos according to
the redundancy-robust masking ratio ρpre (Please see Section 4.1). We set ρpre to 0.3 so that
our EVEREST reconstructs the 30% of the essential spatiotemporal regions focusing on objects’
movements and behaviors, from a sparsified video clip, which reduces 65.5% of GFLOPs at the
pre-training phase (Please see Figues 5 Right and Table 16 Left). Additionally, as reported in Table 16
Right, our approach can reduce the computational overhead at the fine-tuning phase, which is
practically useful when transferring the learned representation learning model to downstream video
tasks. Next, We emphasize that redundancy-robust masking is applicable not only in the pre-training
phase, but also in performing video-based downstream tasks. We process only 60% of tokens
(ρpre = 0.6) of the given video during fine-tuning. Surprisingly, our redundancy-robust masking
for the downstream tasks gains increased performance than our variant without masking on the
fine-tuning tasks (ρpre = 1.0) using only about 55% of GFLOPs, as shown in Table 16 Right. The
results support our hypothesis that video data often contain redundant information and our selective
video learning using the proposed masking strategy successfully captures essential space-time regions
in video inputs, allowing us to focus more on learning spatiotemporally meaningful features. The
fine-tuning masking ratio is higher than the ratio at the pre-training stage, showing that the model
uses more information to fully exploit the task-relevant cues from the given videos than pre-training,
which aims to obtain general information.

D VISUALIZATION OF REDUNDANCY-ROBUST MASKING AND SAMPLING

As shown in Figues 7 of the main paper, our masking method successfully captures the most
informative space of each frame in various conditions. In Figues 8, we visualize masking strategies of
other strong baselines, ST-MAE (Feichtenhofer et al., 2022) and VideoMAE (Tong et al., 2022). While
these two methods sample masked tokens based on random probability without taking into account
semantic motion information, our proposed method successfully captures temporally significant
localized regions in the video. We further visualize our masking results in Figues 9 for deeper
understanding. The upper sample is similar in Figues 7 (b) but changes the ρpre from 0.5 to 0.15.
The masked result shows that our masking strategy could be better and save more computational
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costs if the view is fixed and the moving object is few. The bottom sample show that our masking
strategy wrongly captured the blue line of each frame as informative tokens when ρpre is relatively
large(=0.5). However, when ρpre is relatively small(=0.25, 0.15), it ignores the blue line of each
frame and concentrates more on moving objects in the given video. In Figues 10, We show selected
frames via our adaptive frame sampling. Our method uses redundancy-robust token selection to draw
frames to learn in an online manner based on the proportion that contains important tokens containing
fluent motion information or significant change of temporal states. This strategy allows the model to
take diverse frames from given videos while discarding redundant or low-information frames.

E BROADER IMPACTS AND LIMITATIONS

Our work has a positive broader societal impact leading to environment-friendly AI research by
drastically reducing energy and carbon costs in the training and inference phases. Current methods
in the video understanding field consume tremendous monetary and environmental costs, and we
believe our work contributes to overcoming this limited feasibility of video-based research fields by
enabling single-node training with larger batch sizes using a large backbone, whereas existing VRL
methods require immense memory occupancy and suffer from deploying models in the same setup
due to out-of-memory. We also aim to enhance the accessibility of those cutting-edge video models
by employing practical resources on a single node and pursuing eco-friendly AI research.

On the other hand, while our EVEREST achieves impressive performance improvements along with
drastic memory, computation, and training time reduction over multiple benchmark datasets/tasks
with different backbone sizes, the improvement in model accuracy for the action recognition task on
the K400 dataset becomes relatively small for huge backbones such as ViT-L. We speculate that this
is due to their better ability of them to encode spatiotemporal representations into higher-dimensional
latent spaces. In addition, our method focuses on capturing short-term motion changes in videos by
measuring the temporal disparity between adjacent frames. Although we validated the effectiveness
of our method on egocentric videos focusing on temporal semantics or causal interactions, the effect
of our method on tasks of long-term episodic memory or the cameraman’s intention/interactions
under a long horizon view was not thoroughly analyzed in this study. We leave it to future research to
analyze and address these limitations.
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Figure 8: Examples of masking strategies. We visualize the masking strategy of ST-MAE (Feichtenhofer
et al., 2022) (random), VideoMAE (Tong et al., 2022) (space-only), VideoMAE V2 (Wang et al., 2023a) (running
cell (Qing et al., 2023)), and our EVEREST on Ego4D dataset. From the top, each row indicates the original
frames, MAE masking, VideoMAE masking, VideoMAE V2 masking, and our proposed method, respectively.
We set ρpre to 0.5.
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Figure 9: More examples of Redundancy-robust token selection. We show the original video frames in the
first row, Redundancy-robust masking results in the second, third, and fourth row by varying the ρpre to 0.5,
0.25, and 0.15, respectively, and obtained importance heatmaps in the last row on UCF101 (Soomro et al., 2012)
dataset.
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Figure 10: Examples of on-the-fly information-intensive frame sampling based on our EVEREST. Among
24 frames in the given video clip, our EVEREST adaptively selects frames containing rich motion information
based on temporal correlation. Non-blurred frames are sampled through our method and used in the pre-training
phase.
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