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ABSTRACT

Outlier detection in high-dimensional tabular data is an important task in data min-
ing, essential for many downstream tasks and applications. Existing unsupervised
outlier detection algorithms face one or more problems, including inlier assump-
tion (IA), curse of dimensionality (CD), and multiple views (MV). To address
these problems, we introduce Generative Subspace Adversarial Active Learning
(GSAAL), a novel approach that uses a Generative Adversarial Network with mul-
tiple adversaries. These adversaries learn the marginal class probability functions
over different data subspaces, while a single generator in the full space models
the entire distribution of the inlier class. By design, GSAAL addresses MV while
also handling IA and CD, and is the only method to address all three. We pro-
vide a mathematical formulation of MV, theoretical guarantees for the training of
GSAAL, and its scalability analysis. Our extensive experiments demonstrate the
effectiveness and scalability of GSAAL and highlight its superior performance
compared to other popular OD methods, especially in MV scenarios.

1 INTRODUCTION

Outlier detection (OD), a fundamental and widely recognized task in data mining, involves the
identification of anomalous or deviating data points within a dataset. Outliers are typically defined as
low-probability occurrences within a population Wang et al. (2019); Han et al. (2022). In the absence
of access to the true probability distribution of the data points, OD algorithms rely on constructing a
scoring function. Points with higher scores are more likely to be outliers. Existing unsupervised OD
algorithms have one or more of the following problems, in high-dimensional tabular data scenarios.

• The inlier assumption (IA): OD algorithms often make assumptions about what constitutes
an inlier, which can be challenging to verify and validate Liu et al. (2020).

• The curse of dimensionality (CD): As the dimensionality of data increases, the challenge of
identifying outliers intensifies, decreasing the effectiveness of certain OD methods Bellman
(1957)

• Multiple Views (MV): Outliers are often only visible in certain ”views” of the data and are
hidden in the full space of original features Müller et al. (2012)

We now explain these problems one by one.

The inlier assumption poses a challenge to algorithms that assume a standard profile of the inlier
data. For example, angle-based algorithms like ABOD Kriegel et al. (2008) assume that inliers have
other inliers at all angles. Similarly, neighbor-based algorithms like kNN Ramaswamy et al. (2000)
assume that inliers have other neighboring points nearby. These assumptions influence the scoring
as it measures the degree to which a sample deviates from this assumed norm. Consequently, the
performance of these algorithms may degrade if these assumptions do not hold Liu et al. (2020).
This means that a general OD method should not make any inlier assumptions.

The curse of dimensionality Bellman (1957) refers to the decrease in the relative proximity of data
points as the number of dimensions increases. Simply put, with high dimensionality, the distance
between any pair of points becomes similar, regardless of whether none, one, or both of the points
in a pair are outliers. This is particularly problematic for OD methods that rely on distances or on
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Figure 1: Scatterplots of the dataset from example 1.

identifying neighbors to detect outliers, such as density- (e.g., LOF Breunig et al. (2000)), neighbor-
(e.g., kNN Ramaswamy et al. (2000)), and cluster-based (e.g., SVDD (Aggarwal, 2017, Chapter 2)).

Multiple Views refers to the phenomenon that certain complex correlations between features are
only observable in some feature subspaces Müller et al. (2012). As detailed in Aggarwal (2017), this
occurs when the dataset contains additional irrelevant features, making some outliers only detectable
in certain subspaces. In scenarios where multiple subspaces contain different interesting structures,
this problem is exacerbated. It then becomes increasingly difficult to infer whether a point belongs
to a particular distribution based solely on its representation in a single subspace Keller et al. (2013).
This problem can occur regardless of the dimensionality of the dataset if the number of points is
insufficient to capture a complex correlation structure.

The following example illustrates the three problems described above

Example 1 (Effect of MV, IA and CD). Consider the random variables x1,x2 and x3, where x1

and x2 are highly correlated and x3 is Gaussian noise. Figure 1 plots datasets with 20, 100 and
1000 realizations of (x1,x2,x3). It also contains the classification boundaries from both a locality-
based method (green) and a cluster-based method (red) in the subspace. The cluster-based detector
fitted in the full 3D space fails to detect the outlier shown in the figure (red cross) with n = 20 and
100 realizations. However, the outlier is always detected in the 2D subspace, as we can see. Once
we increase the number of samples over n = 1000, the cluster-based method detects the outlier in
the full space (MV). On the contrary, the locality-based method could not detect the outlier in any
tested scenario (MV + IA). If we increase the dimensionality by adding more features consisting of
noise, neither of the considered methods will detect the outlier in the full space (MV + IA + CD).

We are interested in tackling outlier detection whenever a population exhibits MV, like Müller et al.
(2012); Keller et al. (2013); Kriegel et al. (2009) and as showcased in Aggarwal (2017). Particularly,
the goal of this paper is to propose the first outlier detection method that explicitly addresses IA, CD,
and MV simultaneously.

As we will explain in the next section, we build on Generative Adversarial Active Learning
(GAAL) Zhu & Bento (2017), a widely used approach for outlier detection Liu et al. (2020); Guo
et al. (2021); Sinha et al. (2019). It involves training a Generative Adversarial Network (GAN)
to mimic the distribution of outlier data, and it enhances the discriminator’s performance through
active learning Settles (2009), leveraging the GAN’s data generation capability. GAAL methods
avoid IA Liu et al. (2020) and use the multi-layered structure of the GAN to overcome the curse of
dimensionality Poggio et al. (2020). However, they often miss important subspaces, leading to MV.

Challenges. Training multiple GAN-based models in individual subspaces is not trivial. (1) The
joint training of generators and discriminators in GANs requires careful monitoring to determine
the optimal stopping point, a task that becomes daunting for large ensembles. (2) The generation of
difficult-to-detect points in a subspace remains hard Steinbuss & Böhm (2017). (3) While several
authors have proposed multi-adversarial architectures for GANs Durugkar et al. (2016); Choi &
Han (2022), none of them address adversaries tailored to subspaces composed of feature subsets.
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Table 1: Families of OD methods with the limitations they address.

Type IA CD MV

Classical ✗ ✗ ✗
Subspace ✗ ✓ ✓
Generative w/ uniform distribution ✓ ✗ ✗
Generative w/ param. distribution ✗ ✓ ✗
Generative w/ subspace behavior ✗ ✓ ✓
GAAL ✓ ✓ ✗
GSAAL (Our method) ✓ ✓ ✓

Furthermore, these methods may not be suitable for GAAL since they do not have convergence
guarantees for detectors, as we will explain.

Contributions. (1) We propose GSAAL (Generative Subspace Adversarial Active Learning), a
novel GAAL method that uses multiple adversaries to learn the marginal inlier probability functions
in different data subspaces. Each adversary focuses on a single subspace. Simultaneously, GSAAL
trains a single generator in the full space to approximate the entire distribution of the inlier class.
All networks are trained end-to-end, avoiding the ensembling problem. (2) We give the first math-
ematical formulation of the “multiple views” problem and use it to prove the ability of GSAAL to
mitigate the MV problem. (3) We formulate the novel optimization problem for GSAAL and give
convergence guarantees of each discriminator to the marginal distribution of its respective subspace.
We also analyze the worst-case complexity of the method. (4) In extensive experiments we compare
GSAAL with multiple competitors. On 22 popular benchmark datasets for the one-class classifi-
cation task, GSAAL demonstrated SotA-level performance and was orders of magnitude faster in
inference than its best competitors. Furthermore, GSAAL was the only method capable of consis-
tently detecting anomalous data under MV. (5) Our code is publicly available.1

Paper outline: Section 2 reviews related work, Section 3 contains the theoretical results for our
method, Section 4 features our experimental results, and Section 5 concludes and addresses limita-
tions. The Appendix contains proofs of our theoretical derivations, a sensitivity study, IA experi-
ments and an ablaition study.

2 RELATED WORK

This section is a brief overview of popular unsupervised outlier detection methods for tabular data
related to our approach. We categorize them based on their ability to address the specific limitations
outlined above. Table 1 is a comparative summary.

Classical Methods Conventional outlier detection approaches, such as distance-based strategies
like LOF and KNN, angle-based techniques like ABOD, and cluster-based methods like SVDD,
rely on specific assumptions on the behavior of inlier data. They use a scoring function to measure
deviations from this norm. These methods face the inlier assumption limitation by definition. For
example, local methods that assume isolated outliers fail when several outlying samples fall together.
In addition, many classical methods, which rely on measuring distances, are susceptible to the curse
of dimensionality. Both limitations impair the effectiveness of these methods Liu et al. (2020).

Subspace Methods Subspace-based methods Kriegel et al. (2009) operate in lower-dimensional
subspaces formed by subsets of features. They effectively counteract the curse of dimensionality
by focusing on identifying so-called “subspace outliers” Keller et al. (2012). These outliers, which
are prevalent in high-dimensional datasets with many correlated features, are often elusive to con-
ventional non-subspace methods Liu et al. (2008); Müller et al. (2012). However, existing subspace
methods inherently operate on specific assumptions on the nature of anomalies in each subspace
they explore, and thus face the inlier assumption limitation.

1The link is anonymized for the review

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Generative Methods A common strategy to mitigate the IA and CD limitations is to reframe the
task as a classification task using self-supervision. A prevalent self-supervised technique, particu-
larly for tabular data, is the generation of artificial outliers El-Yaniv & Nisenson (2006); Liu et al.
(2020). This method involves distinguishing between actual training data and artificially generated
data drawn from a predetermined “reference distribution”. Hempstalk et al. (2008) showed that by
approximating the class probability of being a real sample, one approximates the probability func-
tion of being an inlier. One then uses this approximation as a scoring function Liu et al. (2020).
However, it is not easy to find the right reference distribution, and a poor choice can affect OD by
much Hempstalk et al. (2008).

A first approach to this challenge proposed the use of naı̈ve reference distributions by uniformly
generating data in the space. This approach showed promising results in low-dimensional spaces
but failed in high dimensions due to the curse of dimensionality Hempstalk et al. (2008). Other
approaches, such as assuming parametric distributions for inlier data (Aggarwal, 2017, Chapter 2) or
directly generating in susbpaces Désir et al. (2013), can avoid CD when the parametric assumptions
are met. Methods that generate in the subspaces can model the subspace behavior, additionally
tackling the MV limitation. However, these last two approaches do not address the IA limitation, as
they make specific assumptions about the behavior of the inlier data.

Generative Adversarial Active Learning According to Hempstalk et al. (2008), the closer the
reference distribution is to the inlier distribution, the better the final approximation to the inlier
probability function will be. Hence, recent developments in generative methods have focused on
learning the reference distribution in conjunction with the classifier. A key approach is the use
of Generative Adversarial Networks (GANs), where the generator converges to the inlier distribu-
tion Goodfellow et al. (2014). The most common approaches for this are GAAL-based methods Liu
et al. (2020); Guo et al. (2021); Sinha et al. (2019).

GAAL methods differ from other GANs for OD by training the detectors using active learning after
normal convergence of the GAN Schlegl et al. (2017); Donahue et al. (2017). This particular training
regime allows convergence guarantees of the detector Liu et al. (2020), in contrast to other GANs
for OD that rely on a reconstruction-based score Donahue et al. (2017); Schlegl et al. (2017); Akcay
et al. (2019). The convergence guarantees of the detector to the proper density is crucial for outlier
detection in tabular data Liu et al. (2020); Hempstalk et al. (2008); Steinbuss & Böhm (2017).

The architecture of GAAL inherently addresses the curse of dimensionality, as GANs can incorpo-
rate layers designed to manage high-dimensional data Poggio et al. (2020). In practice, GAAL-based
methods outperformed all their competitors in their original work. However, they overlook the be-
havior of the data in subspaces and therefore may be susceptible to MV. Our method, GSAAL, incor-
porates several subspace-focused detectors into GAAL. These detectors approximate the marginal
inlier probability functions of their subspaces. Thus, GSAAL effectively addresses MV while inher-
iting GAAL’s ability to overcome IA and CD limitations.

Deep Outlier Detection Beyond Tabular Data Outlier detection is widely used for non-tabular
data types, especially for unstructured data Xu et al. (2023); Goodge et al. (2021); Schlegl et al.
(2017); Ruff et al. (2018); Perozzi et al. (2014). Deep methods dominate due to the complexity of
such data. Unlike tabular data, where deep methods focus on CD, the architecture for unstructured
data, such as images or natural language, is driven by the complexity of the data. For example,
image processing requires more complex layers, such as convolutional or residual layers, rather than
simple linear layers LeCun et al. (2015).

Most deep methods are rarely applied to tabular data in their original works. However, some of them
still appear as competitors in this domain Schlegl et al. (2017); Ruff et al. (2018). Since our focus is
on outlier detection in tabular data, we primarily compare methods for this domain. Nevertheless, as
an extension of our experiments, we have included the most recent and well-regarded deep outlier
detection methods from other domains. Sections B.2 and B.3 present these additional experiments.
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3 OUR METHOD: GSAAL

We first formalize the notion of data exhibiting multiple views. We then use it to design our out-
lier detection method, GSAAL, and give convergence guarantees. Finally, we derive the runtime
complexity of GSAAL. All the proofs and extra derivations can be found in the technical appendix.

3.1 MULTIPLE VIEWS

Several authors Aggarwal (2017); Müller et al. (2012); Keller et al. (2013); Kriegel et al. (2009);
Liu et al. (2008) have observed that at times the variability of the data can only be explained from
its behavior in some subspaces. Researchers variably call this problem “the subspace problem”
Aggarwal (2017); Kriegel et al. (2009) or “multiple views of the data” Keller et al. (2012); Müller
et al. (2012). Previous research has largely focused on practical scenarios, leaving aside the need for
a formal definition. In response, we propose a unifying definition of “multiple views” that provides
a foundation for developing methods to address this challenge effectively.

The problem “multiple views” of data (MV) arises from two different effects. First, it requires the
ability to understand the behavior of a random vector x by examining lower-dimensional subsets of
its components (x1, . . . ,xd). Second, it stems from the challenge of insufficient data to obtain an
effective scoring function in the full space of x. As Example 1 shows, combining these two effects
obscures the behavior of the data in the full space. Hence, methods not considering subspaces when
building their scoring function may have issues detecting outliers under MV. The next definition
formalizes the first effect.
Definition 1 (myopic distribution). Consider a random vector x : Ω −→ Rd and Diagd×d({0, 1}),
the set of diagonal binary matrices without the identity. If there exists a random matrix u : Ω −→
Diagd×d({0, 1}), such that

px(x) = pux(ux) for almost all x, (1)
we say that the distribution of x is myopic to the views of u. Here, x and ux are realizations of x
and ux, and px and pux are the pdfs of x and ux.

It is clear that, under MV, using pux to build a scoring function instead of px mitigates the effects.
This comes as the subspaces selected by u are smaller in dimensionality. Hence it should take fewer
samples to approximate the pdf of ux. The difficulty is that it is not yet clear how to approximate
pux. The following proposition elaborates on a way to do so. It states that by averaging a collection
of marginal distributions of x in the subspaces given by realizations of u, one can approximate the
distribution of pux.
Proposition 1. Let x and u be as before with px myopic to the views of u. Consider a set of
independent realizations of u: {ui}ki=1. Then 1

k

∑
i puix(uix) is an unbiased statistic for pux(ux).

MV appears when there is a lack of data, and its distribution is myopic. To improve OD under MV,
one can exploit the myopicity to model x in the subspaces, where less data is sufficient. Proposition 1
gives us a way to do so, by approximating pux. In this way, under myopicity, this also approximates
px, avoiding MV. Our method, GSAAL, exploits these derivations, as we explain next.

3.2 GSAAL

GAAL methods tackle IA by being agnostic to outlier definition and mitigate CD through the use of
multilayer neural networks Liu et al. (2020); Li et al. (2017); Poggio et al. (2020). GAAL methods
have two steps:

1. Training of the GAN. Train the GAN consisting of one generator G and one detector D
using the usual min-max optimization problem as in Goodfellow et al. (2014).

2. Training of the detector through active learning. After convergence, G is fixed, and D
continues to train. This last step is an active learning procedure with Zhu & Bento (2017).
Following Hempstalk et al. (2008), D(x) now approximates the pdf of the training data px.

After Step 2, the detector converges to px. However, our goal is to approximate px by exploiting
a supposed myopicity of the distribution. We extend GAAL methods to also address MV in what
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follows. The following theorem adapts the objective function of the GAN to the subspace case and
gives guarantees that the detectors converge to the marginal pdfs used in Proposition 1:

Theorem 1. Consider x and u as in the previous definition, with x a realization of x and {ui}i a
set of realizations of u. Consider a generator G : z ∈ Z 7−→ G(z) ∈ Rd and {Di}, i = 1, . . . , k, a
set of detectors such as Di : uix ∈ Si ⊂ Rd 7−→ Di(uix) ∈ [0, 1]. Z is an arbitrary noise space
where G randomly samples from. Consider the following optimization problem

min
G

max
Di, ∀i

∑
i

V (G,Di) =

min
G

max
Di, ∀i

∑
i

Euix logDi(uix) + Ez log (1−Di (uiG(z))) ,
(2)

where each addend V (G,Di) is the binary cross entropy in each subspace. Under these conditions,
the following holds:

i) Each detector in optimum isD∗
i (uix) =

1
2 ,∀x. Thus, in optimum V (G,Di) = − log(4),∀i.

ii) Each individual Di converges to D∗
i (uix) = puix(uix) after trained in Step 2 of a GAAL

method.
iii) D∗(x) = 1

k

∑k
i=1D∗

i (uix) approximates pux(ux). If px is myopic, D∗(x) also approxi-
mates px(x).

Using Theorem 1 we can extend the GAAL methods to the subspace case:

1. Training the GAN. Train a GAN with one generator G and multiple detectors {Di} with
Equation (2) as the objective function. The training of each detector stops when the loss
reaches its value with the optimum in Statement (i).

2. Training of the k detectors by active learning. Train each Di as in Step 2 of a regular
GAAL method using G. By statement (ii) of the Theorem, each Di will approximate puix.
By (iii), D(x) = 1

k

∑k
i=1Di(uix) will approximate px under the myopicity of the data.

We call this generalization of GAAL Generative Subspace Adversarial Active Learning (GSAAL).
The appendix contains the pseudo-code for GSAAL.

3.3 COMPLEXITY

In this section, we focus on studying the theoretical complexity of GSAAL. We study both its us-
ability for training and, more importantly, for inference.

Theorem 2. Consider our GSAAL method with generator G and detectors {Di}ki=1, each with four
fully connected hidden layers,

√
n nodes in the detectors and d in the generator. Let D be the

training data for GSAAL, with n data points and d features. Then the following holds:

i) Time complexity of training is O(ED · n · (k · n + d2)). ED is an unknown complexity
variable depicting the unique epochs to convergence for the network in dataset D.

ii) Time complexity of single sample inference is in O(k · n), with k the number of detectors.

The linear inference times make GSAAL particularly appealing in situations where the model can
be trained once for each dataset, like one-class classification. We build on this particular strength in
the following section.

4 EXPERIMENTS

This section presents experiments with GSAAL. We will outline the experimental setting, and exam-
ine the handling of “multiple views” in GSAAL and other OD methods. We then evaluate GSAAL’s
performance against various OD methods and investigate its scalability. The appendix includes a
study of sensitivity to the number of detectors, IA experiments, an ablation study and OD methods
in the non-tabular domain. tested on real data sets. It also includes system specifications.
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Table 2: Real-world datasets and Competitors

(a) Real-world datasets converted to tabular if needed

Dataset Category Dataset Category

20news Text MNIST Image
Annthyroid Health MVTec Text
Arrhythmia Cardiology Optdigits Image
Cardiot.. Cardiology Satellite Astronomy
CIFAR10 Image Satimage-2 Astronomy
F-MNIST Image SpamBase Document
Fault Industrial Speech Linguistics
InternetAds Image SVHN Image
Ionosphere Weather Waveform Elect. Eng.
Landsat Astronomy WPBC Oncology
Letter Image Hepatitis Health

(b) Competitors

Type Competitors

Classical kNN, LOF
ABOD, OCSVM w/ rbf

Subspace IForest, SOD
Gen., uniform dist. NA (see the text)
Gen., parametric dist. GMM
Gen., subspace behavior NA (see the text)
GAAL MO-GAAL

Non-tabular AnoGAN, DIF
LUNAR, DeepSVDD

4.1 EXPERIMENTAL SETTING

This section has three parts: First, we describe the real and synthetic data for the outlier detection
experiments. Then, we describe the configuration of GSAAL. Finally, we present our competitors.

4.1.1 DATASETS

Real. We selected 22 real-world tabular datasets for our experiments from Han et al. (2022), mak-
ing it the largest real-world collection of dataset from our non-benchmark related work. The selec-
tion criteria included datasets with less than 10,000 data points, more than 10 outliers, and more than
15 features, focusing on high-dimensional data while keeping the runtime (of competing OD meth-
ods) tractable. Table 2a contains the summary of the datasets. For datasets with multiple versions,
we chose the first in alphanumeric order. Details about each dataset are available in the original
source Han et al. (2022).

Synthetic. We constructed synthetic datasets, each containing two correlated features, x1 and x2,
along with 58 independent features xj , j = 3, . . . , 60 consisting of Gaussian noise. This approach
simulates datasets that exhibit the MV property by adding irrelevant features into a pair of highly
correlated variables. We detail the methodology and all used datasets in the technical appendix.

4.1.2 NETWORK SETTINGS

Structure. Unless stated otherwise, GSAAL uses the following network architecture. It consists
of four fully connected layers with ReLu activation functions used in the generator and the detectors.
Each layer in k = 2

√
d detectors has

√
n nodes, where n and d are the number of data points and

features in the training set, respectively. This configuration ensures linear inference time. The
generator has d nodes in each layer, a standard in GAAL approaches, which ensures polynomial
training times. We assumed u to be distributed uniformly across all subspaces. Therefore, we
obtained each subspace for the detectors by drawing uniformly from the set of all subspaces.

Training. Like other GAAL methods Liu et al. (2020); Zhu & Bento (2017), we train the generator
G together with all the detectors Di until the loss of G stabilizes. Then we train each detector Di

until convergence with G fixed. To automate this process, we introduce an early stopping criterion:
Training stops when a detector’s loss approaches the theoretical optimum (− log(4)), see statement
(ii) of Theorem 1. For consistency across experiments, training parameters remain fixed unless
otherwise noted. Specifically, the learning rates of the detectors and the generator are 0.01 and
0.001, respectively. We use minibatch gradient descent Goodfellow et al. (2016) optimization, with
a batch size of 500.

7
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Figure 2: GSAAL finds classification boundaries for datasets banana and star under MV.

4.1.3 COMPETITORS

We selected popular and accessible methods from each category, as summarized in Table 2b, guided
by related work. We excluded generative methods with uniform distributions because they prove
ineffective for large datasets Hempstalk et al. (2008). We could not include a generative method
with subspace behavior due to operational issues with the most relevant method in this class, Désir
et al. (2013), caused by its outdated repository. As we focus on outlier detection for tabular data, we
have placed the deep models that focus on other data types in section B to avoid clutter. They did not
perform better than our direct competitors. We used the recommended parameters for all methods,
as usual in OD Han et al. (2022).

All of out experiments are coded in Python. We used the pyod Zhao et al. (2019) library to access
all competitors except MO-GAAL. We used MO-GAAL from its original source and implemented
our method GSAAL using keras Chollet et al. (2015).

4.2 EFFECT OF MULTIPLE VIEWS ON OUTLIER DETECTION

To demonstrate the effectiveness of GSAAL under MV, we use synthetic datasets. We do this to be
able to know which subspaces are interesting, allowing us to visualize the effect. The datasets used
are 60-dimensional datasets, where only the first two features, x1 and x2, are not gaussian noise.

Visualizing the outlier scoring function in a 60-dimensional space is challenging, so we project it
into the x1-x2 subspace. A method adept at handling MV should be able to concstruct a proper
boundary in x1-x2 while observing the whole dataset. For this experiment, we first generate a
synthetic dataset Dsynth as described in section 4.1.1 and train a OD model. Using this model, we
compute the scores for the points (x1, x2, 0, . . . , 0) and visualize the level curves on the x1-x2 plane.

Figure 2 shows results for all competitors in two of our synthetic datasets, which are detailed in the
Appendix. It shows the level curves and decision boundaries (dashed lines) of the methods. Notably,
our model effectively detects correlations in the right subspace. To quantify this, we generated out-
liers in the subspace of interest. We tested the one-class classification performance of each method
in 10 different MV datasets. On average, GSAAL managed to obtain 0.70 AUC, while the second-
best performer (IForest) did not surpass a random classifier —0.49 AUC. All results and further
details can be found in section B.2 in the appendix. Particularly, Figure 7 in the appendix contains
all the boundaries, and Figure 9 the boxplot of the AUCs for all methods.

4.3 ONE-CLASS CLASSIFICATION

This section evaluates GSAAL on a one-class classification task Seliya et al. (2021). First, we study
the effectiveness of GSAAL on real data. Then, we investigate its scalability in practical scenarios.
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Table 3: Results of the Conover-Iman test for pairwise comparisons of the rankings.

Method ABOD GSAAL GMM IForest KNN LOF MO GAAL OCSVM SOD
ABOD = ++ ++ ++ ++ ++

GSAAL = ++ ++ + ++ ++ ++
GMM – – – – = ++ – – – – ++ ++
IForest – – – – – – = – – ++ ++
KNN ++ ++ = ++ ++
LOF – ++ = ++ + ++

MO GAAL – – – – – – – – – – = ++
OCSVM – – – – – – – = ++

SOD – – – – – – – – – – – – – – – – =

(a) (b)

Figure 3: Plots of different performance metrics for scalability

4.3.1 REAL-WORLD PERFORMANCE

We perform the outlier detection experiments on real datasets. Specifically, we take on the task of
one-class classification, where the goal is to detect outliers by training only on a collection of inliers
Han et al. (2022). To evaluate the performance of OD methods, we use AUC as it is robust to test
data imbalance, a common issue in OD tasks . The procedure is as follows:

1. Split the dataset D into a training set Dtrain containing 80% of the inliers from D, and a test
set Dtest containing the remaining inliers and all outliers.

2. Train an outlier detection model with Dtrain and evaluate its performance on Dtest.

To save space, we moved the detailed AUC results to the appendix; showing that GSAAL obtained
the lowest median rank —see Figure 10 in the appendix. Although other subspace methods tend
to perform better with irrelevant attributes Liu et al. (2008); Kriegel et al. (2009), they did not
outperform classical OD methods on average in our experiments. Notably, ABOD, the second-best
method in our experiments, performed poorly in the MV tests (Section 4.2).

For statistical comparisons, we use the Conover-Iman post hoc test for pairwise comparisons be-
tween multiple populations Conover & Iman (1979). It is superior to the Nemenyi test due to its
improved type I error boundings Conover (1999). Conover-Iman test requires a preliminary pos-
itive result from a multiple population comparison test, for which we employ the Kruskal-Wallis
test Kruskal (1952).

Table 3 shows the test results. In each cell, ‘+’ indicates that the method in the row has a signifi-
cantly lower median rank than the method in the column, while ‘−’ indicates a significantly higher
median rank. One symbol indicates p-values ≤ 0.15 and two symbols indicate p-values ≤ 0.05.
A blank indicates no significant difference. The table shows that GSAAL is superior to most of
its competitors. Our method does not significantly outperform the classical methods ABOD and
kNN. However, these methods struggle to detect structures in subspaces, showing their inadequacy
in dealing with the MV limitation, see Section 4.2.

Overall, the results support GSAAL’s superiority in outlier detection tasks involving multiple views.
Additionally, they establish our method as the leading GAAL option for One-class classification
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4.3.2 SCALABILITY

In section 3.3, we derived that the inference time of GSAAL scales linearly with the number of train-
ing points if the number of detectors k is fixed, while it does not depend on the number of features
d. This is in contrast to other methods, in particular LOF, KNN, and ABOD, which have quadratic
runtimes in d Breunig et al. (2000); Kriegel et al. (2008). We now validate this experimentally. The
procedure is as follows:

1. Generate datasets Dtrain and Dtest consisting of random points. |Dtest| = 106.
2. Train an OD method using Dtrain and record the inference time over Dtest.

Following the result of the sensitivity study in our appendix, we fixed k = 30. Figure 3a plots
the inference time of a single data point as a function of the number of features when |Dtrain| =
500. Figure 3b plots the inference time as a function of the number of points in Dtrain, for a fixed
number of 100 features. Both figures confirm our complexity derivations and show that GSAAL is
particularly well-suited for large datasets.

5 LIMITATIONS & CONCLUSIONS

5.1 LIMITATIONS AND FUTURE WORK

In section 4 we randomly selected subspaces for training the detectors in GSAAL, i.e. we took a
uniform distribution of u. This was already sufficient to demonstrate the highly competitive per-
formance of our method. In practice, this assumption seemed to perform well for our experiments.
However, GSAAL can work with any subspace search strategy to obtain the distribution of u, for
example, the methods exploiting multiple views Keller et al. (2013; 2012). We have not included
them in this paper due to the lack of an official implementation. In the future, we plan to benchmark
various subspace search methods in GSAAL.

Next, GSAAL is limited to tabular data, since the “multiple views” problem has only been observed
for this data type. The mathematical formulation of MV in section 3 does not exclude unstructured
data. The difficulty lies in identifying good search strategies for u for non-tabular data, which
remains an open question Gupta et al. (2017). However, depending on the type of unstructured data,
extending GSAAL to work with it is not immediate. Therefore, building a method that exploits the
theoretical derivations of GSAAL for structured data is future work.

5.2 CONCLUSIONS

Unsupervised outlier detection (OD) methods rely on a scoring function to distinguish inliers from
outliers, since the true probability function that generated the dataset is usually unavailable in prac-
tice. However, they face one or more of the following problems — Inlier Assumption (IA), Curse
of Dimensionality (CD), or Multiple Views (MV). In this article, we have proposed the first mathe-
matical formulation of MV, which allows for a better understanding of how to solve this occurrence.
Using this formulation, we developed GSAAL, which is the first OD approach that solves MV, CD,
and IA. In short, GSAAL is a generative adversarial network with a generator and multiple detectors
fitted in the subspaces to find outliers not visible in the full space. In our experiments on 27 different
datasets, we demonstrated the usefulness of GSAAL, in particular, its ability to deal with MV and
its superior performance on OD tasks with real datasets. In addition, we have shown that GSAAL
can scale up to deal with high-dimensional data, which is not the case for our most competent com-
petitors. These results confirm GSAAL’s ability to deal with data exhibiting MV and its usability in
any practical scenario involving large datasets.
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A THEORETICAL APPENDIX

In this appendix, we will include all the proofs of the included theorems and propositions. Addition-
ally, we also extend all non-experimental sections with relevant information for the experimental
appendix.

A.1 PREVIOUS REMARKS

Before starting to prove our main results, it is important to add a remark about our notation in
this article. Whenever we denote ux, we mean the operation resulting in the following vector:
u(ω)x(ω). Thus, ux is a random vector following its distribution pux. However, it is important to
remark that ux, and therefore, also uix, does not state the usual matrix-vector multiplication. What
we mean by ux is the operation U ×M x, where U stands for the range-complete version of u and
×M the usual matrix multiplication. This means that whenever we write ux we are considering
the projection of x into the subspace of the features selected in u. This means that uix is the
random vector composed of the features selected by ui, and therefore, puix(uix) denotes subsequent
marginal pdf of x. We do not state this in the main text as it functionally does not change anything
of our derivations, and simply works as a notation. The only important remarks stemming from this
fact are the following:

1. px(uix) = px(πui
(x)), where πui

denotes the projection of a point x into the subspace of
ui. Therefore, we can write px(uix) = puix(uix).

2. The operator as stated before is not distributive. This is trivial, as given u a random matrix
as in definition 1, (1d − u)x is defined properly, as 1d − u ∈ Diag({0, 1}). However,
x− ux denotes the vector subtraction between two vectors with different dimensionality.

Additionally, ux should be understood and treated functionally as a different random vector, y. In
this sense, Definition 1 simply states that there has to exist a special random vector y that we can
prove that has the same distribution as x.

While not important to understand the following proofs and the derivations from the main text,
understanding this is crucial for anyone seeking to work with these definitions.

A.2 PROOFS

We will reformulate all of the statements for completion before introducing each proof.

Proposition 2. Let x and u be as before with px myopic to the views of u. Consider a set of
independent realizations of u: {ui}ki=1, a realization of x, x, and a realization of ux, ux. Then
1
k

∑
i puix(uix) is a statistic for pux(ux).

Proof. Consider x and u as in the statement. Recall the law of total probabilities:

pux(ux) = Eu

(
pux|u=u′(ux|u′)

)
.

By taking the definition of u and the myopicity, it is trivial that:

pux|u=u′(ux|u′) = pu′x(u
′x)

for u′ such that pu(u′) ̸= 0.

Then, by definition of marginal probability and expectation, we have that:

pux(ux) =

N∑
i=1

pu(ui)puix(uix),

as u is discrete with finite set of occurrences of size N . Thus, we can approximate∑N
i=1 pu(ui)puix(uix)) by 1

k

∑
i puix with ui independent samples of u.

By the proof of Proposition 2, one can derive that
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Theorem 3. Consider x and u as in the previous definition, with x a realization of x and {ui}i a
set of realizations of u. Consider a generator G : z ∈ Z 7−→ G(z) ∈ Rd and {Di}, i = 1, . . . , k, a
set of detectors such as Di : uix ∈ Si ⊂ Rd 7−→ Di(uix) ∈ [0, 1]. Z is an arbitrary noise space
where G randomly samples from. Consider the following objective function

min
G

max
Di, ∀i

∑
i

V (G,Di) =

min
G

max
Di, ∀i

∑
i

Euix logDi(uix) + Ez log (1−Di (uiG(z)))
(3)

Under these conditions, the following holds:

i) Each detector’s loss in optimum is V (G,D∗
i ) =

1
2 .

ii) Each individual Di converges to D∗
i (uix) = puix(uix) after trained in Step 2 of a GAAL

method.

iii) D∗(x) = 1
k

∑k
i=1D∗

i (uix) approximates pux(ux). If px is myopic, D∗(x) also approxi-
mates px(x).

Proof. This proof will follow mainly the results in Goodfellow et al. (2014), adapted for our case.
We will first derivative two general results that we are going to use to immediately prove (i), (ii)
and (iii). First, consider the objective function∑

i

V (G,Di) =
∑
i

Euix∼puix
log(Di(uix))+

Ez∼pz(1− log(Di(uiG(z)))),

where z is the random vector used by G to sample from the noise space Z. We will write Ex,Ez and
Euix instead of Ex∼px ,Ez∼pz and Euix∼puix

as an abuse of notation.

The problem is, then, to optimize:

min
G

max
Di, ∀i

∑
i

V (G,Di). (4)

Fixing G and maximizing for all Di, each detector individually maximizes V (G,Di). Let us try to
obtain the optimal of each Di with a fixed G. First, we write:

V (G,Di) =

∫
uix

puix(uix) logDi(uix)duix+∫
z

pz(z) log(1−Di(uiG(z)))dz.

As G uses z to sample from its sample distribution pG(x), we can rewrite the second addent, like in
Goodfellow et al. (2014), as:

V (G,Di) =

∫
uix

puix(uix) logDi(uix)duix+∫
uix

pG(uix) log(1−Di(uix))duix.

Aggregating both integrals, we have a function of the type f(t) = a log(t) + b log(1 − t), with
a, b ∈ R − {0}. We know that f(t) obtains its optimum in t = a

a+b . As f(t) ∈ R+, V (G,Di)
obtains its optimum for a given G in:

D∗
i (uix) =

puix(uix)

puix(uix) + pG(uix)
. (5)
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Let us now consider the following function

C(G) =
∑
i

max
Di, ∀i

V (G,Di)

=
∑
i

Euix log
puix(uix)

puix(uix) + pG(uix)
+

Euix∼pG log
pG(uix)

puix(uix) + pG(uix)
.

(6)

This is known in Game Theory as the cost function of player “G” in the null-sum game defined
by the minmax optimization problem. Goodfellow et al. (2014) refers to it as the virtual training
criterion of the GAN. The adversarial game defined by (4) reaches an equilibrium (and thus, the
minmax problem an optimum) whenever C(G) is minimized. We will study the value of G in such
equilibrium and use it, together with (5), to prove the statements.

Rewriting C(G) it is clear that:

C(G) =
∑
i

KL

(
puix(uix)∥

puix(uix) + pG(uix)

2

)
+KL

(
pG(uix)∥

puix(uix) + pG(uix)

2

)
.

This expression corresponds to that of a sum of multiple binary cross entropies between a population
coming from puix and from pG projected by ui. Therefore, as we know, we can rewrite:

C(G) =
∑
i

2JSD(puix(uix)∥pG(uix)),

with JSD the Jensen-Shannon divergence. Since JSD(s∥r) ∈ [0, log(2)), it is clear that C(G)
obtains its minimum only whenever

pG(uix) = puix(uix),∀∀x2; (7)

and for all i ∈ {1, . . . , k}.
Knowing G and Di in the optimum for all i, we can prove the statements above:

(i) As pG(uix) = puix(uix) for almost all x, in the optimum of (4), it is immediate that:

Di(uix) =
1

2
,

i.e., the detectors cannot differentiate between the real training data and the synthetic data of the
generator. If one employs the numerically stable version of each V (G,Di) (equivalent to the numer-
ically stable version of the binary cross entropy Chollet et al. (2015)), it is trivial to see that

V stable(G,Di) = log(2).

(ii) After optimizing (4), training each Di individually with G fixed, is the equivalent of building
a two-class classifier distinguishing between the artificial class generated by pG(uix) = puix(uix)
and the real data coming from puix(uix). By Hempstalk et al. (2008), the resulting two-class clas-
sifier would be such as:

Di(uix) = puix(uix).

(iii) By proposition 2 and statement (ii), 1
k

∑
i D

∗
i (uix) is an estimator for pux(ux). By myopic-

ity, it is also of px(x).

Theorem 4. Giving our GSAAL method with generator G and detectors {Di}ki=1, each with four
fully connected hidden layers,

√
n nodes in the detectors and d in the generator, we obtain that:

2For almost all x
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i) The training time complexity is bounded with O(ED · n · (k · n + d2)), for a dataset D
with n training samples and d features. ED is an unknown complexity variable depicting
the unique epochs to convergence for the network in dataset D.

ii) The single sample inference time complexity is bounded with O(k · n), with k the number
of detectors used.

Proof. An evaluation of a neural network is composed of two steps, the backpropagation, and the
fowardpass steps. While training the network requires both, inference requires only a fowardpass.
Therefore, we will first prove (ii) and will build upon it to prove (i).

(ii). GSAAL consists of a generator and k detectors. Single point inference consists of a single
fowardpass of all the detectors. We will first prove the general complexity of a fowardpass of a
general fully connected 4 layer network and will use it to derive all the other complexities. Let us
consider three weight matrices Wji, Whj and Wlh each between two layers, with j, i, h and l being
the number of nodes in each. Therefore, Wji denotes a matrix with j rows and i columns, and so
on. Now, let us consider xi1 the datapoint after passing the input layer. Lastly, without any loss of
generality, consider f to be the activation function for all layers. This way, the forward pass of a
single detector can be written as:

cl1 = f (Wlhf (Whjf (Wjixi1))) .

We will study the complexity in the first layer and use it to derive the complexity of the others.
Aj1 = Wjixi1 is a simple matrix-vector multiplication that we know to beO(j · i) atmost. Then, as
f is an activation function, f(Aj1) is equivalent to writing fj1⊙Aj1, with⊙ being the element-wise
multiplication. Thus, f (Wjixi1) is:

O(j · i+ j) = O(j · (i+ 1)) = O(j · i).
Doing this for all layers, we obtain:

O(l · h+ k · j + j · i). (8)
As all layers have

√
n nodes,

O(3n) = O(n).
As we have k detectors, the complexity for a fowardpass of all detectors, and thus, for a single
sample inference of GSAAL is:

O(k · n).

(i). A backpropagation step has the same complexity as an inference step on all training samples.
As we have n training samples, this then becomes

O(k · n2)

for the detectors. As the training consists of multiple epochs, we will write
O(ED · k · n2),

with ED being the number of epochs needed for convergence for the training data set D. As the
training consists of both backpropagation and fowardpass steps on all training samples, the total
training time complexity for all detectors is:

O(ED · k · n2 + k · n2) = O(ED · k · n2).

As we also need to consider the generator, we will use equation 8 to derive both steps on the gener-
ator. As the generator is also a fully connected 4-layer network, with all layers having d nodes, the
complexity for a single fowardpass is:

O(d2).
As during training one generates n samples during each fowardpass:

O(n · d2).
Now, on each backpropagation pass the network calculates the backpropagation error for each gen-
erated sample, thus,

O(n · d2)
is also the time complexity for the backpropagation step of the generator. Considering all ED

epochs and both backpropagation and fowardpass steps of the generator and all the detectors, the
time complexity of GSAAL’s training is:

O(ED · k · n2 + ED · n · d2) = O(ED · n · (k · n+ d2))
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Figure 4: Difference in statistical distance between two populations.

A.3 MULTIPLE VIEWS (EXTENSION)

In this section we extend the derivations in section 3.1 by providing an example of a myopic distri-
bution:
Example 2 (Myopic distribution). Consider a x like in example 1. Here, it is clear that x1,x2⊥x3.
Consider, then, u such that:

u : {1} −→ {diag(1, 1, 0)}.
To test whether px is myopic, we employed a simple test utilizing a statistical distance (MMD

with the identity kernel) between px and pux. This way, if ˆMMD(px∥pux) = 0, it would be clear
that the equality holds. As a control measure, we also calculated the same distance for a different
population x′, where x3 = x2

1. We have plotted the results in image 4, where Population 1 refers to
x and Population 2 to x′. As we can see, we do obtain a positive result in the test of myopicity for x
and a negative one for x′.

A.4 GSAAL (EXTENSION)

We now extend the results from section 3.2 by providing the pseudocode for the training of our
method. It is important to consider that, while theorem 3 formulates the optimization problem in
terms of the neural networks G and {Di}i, in practice this will not be the case. Instead, we will
consider the optimization in terms of their weights, ΘG and ΘDi

. Therefore, in practice, the con-
vergence into an equilibrium will be limited by the capacity of the networks themselves Goodfellow
et al. (2016). We considered the optimization to follow minibatch-stochastic gradient descent Good-
fellow et al. (2016). To consider any other minibatch-gradient method it will suffice to perform the
necessary transformations to the gradients.

The pseudocode is located in Algorithm 1. As it is the training for the method, it takes both the
parameters for the method and the training. In this case, epochs refers to the total number of epochs
we will train in total, while stop epoch marks the epoch where we start step 2 of the GAAL training.
Lines 1-3 initialize both the detectors in their subspaces and the generator with random weight
matrices ΘDi and ΘG . Lines 4-13 correspond to the normal GAN training loop across multiple
epochs, referred to as step 1 of a GAAL method, if epoch < stop epoch. Here we proceed with
training each detector and the generator using their gradients. Lines 8-10 update each detector by
ascending its stochastic gradient, while line 11 updates the generator by descending its stochastic
gradient. After the normal GAN training, we start the active learning loop Liu et al. (2020) once
epoch ≥ stop epoch. The only difference with the regular GAN training is that G remains fixed,
i.e., we do not descend using its gradient. This allows us to additionally train the detectors and, in
case of equilibrium of step 1, converge to the desired marginal distributions as derived in theorem 3.

B EXPERIMENTAL APPENDIX

In this section, we will include a supplementary experiment testing the IA condition for completion,
the sensibility experiments, and an ablation study. Additionally, we extended both main experimen-
tal studies featured in the main text. All of the code for the extra experiments, as well as for all
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Algorithm 1 GSAAL training

Require: Data set D, Number of Discriminators κ, u, epochs, stop epoch
1: Initialize Generator G {#d is the dimensionality of D}
2: {ui}κi=1 ← DRAWFROMu(κ)
3: Initialize Discriminators {Di}κi=1 with unique subspaces {ui}κi=1
4: for epoch ∈ {1, ..., epochs} do
5: for batch ∈ {1, ..., batches} do
6: noise← Random noise z(1), ..., z(m) from Z
7: data← Draw current batch x(1), ..., x(m)

8: for j ∈ {1...k} do
9: Update Dj by ascending the stochastic gradient: ∇ΘDj

1
m

∑m
i=1 log(Dj(ujx

(i))) +

log(1−Dj(ujG(z(i))))
10: end for
11: if epoch < stop epoch then
12: Update G by descending the stochastic gradient: ∇ΘG

1
k

∑k
j=1

1
m

∑m
i=1 log(1 −

Dj(G(z(i))))
13: end if
14: end for
15: end for

Table 4: Different outliers generated for the experiments.

Outlier Type Assumption Description Outlier Description M

Local Assumes that all inliers are
located close to other inliers

As a result, outliers are
far away from inliers LOF

Angle Assumes that all inliers
have other inliers in all angles from their position

As a result, outliers are
not surrounded by other points ABOD

Cluster Assumes that all inliers
form large clusters of data

As a result, outliers are
gathered in small clusters Fn,µ+εi

experiments in the main text, can be found in our remote repository3. Our experiments used a RTX
3090 GPU and an AMD EPYC 7443p CPU running Python in Ubuntu 22.04.3 LTS. Deep neural
network methods were trained on the GPU and inferred on the CPU; shallow methods used only the
CPU.

B.1 EFFECTS OF INLIER ASSUMPTIONS ON OUTLIER DETECTION

GAAL methodologies are capable of dealing with the inlier assumption by learning the correct
inlier distribution px without any assumption Liu et al. (2020). While this should also extend to
our methodology, we will study experimentally whether this condition holds in practice. To do so,
as one cannot identify beforehand whether a method is going to fail due to IA, we will generate
synthetic datasets. This will allow us to generate outliers that we know to follow from a specific IA,
ensuring that failure comes from the anomalies themselves. We will include all of the code in the
code repository. To generate the synthetic datasets we follow:

1. Generate D, a population of 2000 inliers following some distribution F in R20.

2. Select an outlier detection method M with some assumption about the normality of the
data and fit it using D. We will call such M as the reference model for the generation.

3. Generate 400 outliers by sampling on R20 uniformly and keeping only those points o such
that M(o) = 1 (i.e., they are detected as outliers). We will write OD to refer to such a
collection of points.

4. Repeat step 3 10 times, to obtain OD
1 , . . . , OD

10.

3https://anonymous.4open.science/r/GSAAL-8D6E
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(a) (b) (c)

Figure 5: 2D-example of the different types of anomalies we generate using the method summarized
in table 4.

Figure 6: AUCs of the different methods in the IA experiments. From left to right: Local (blue),
Angle (orange) and Cluster (green).

5. Sample out 20% of the points in D. The remainder 80% will be stored in Dtrain, and the
other 20% in Dtest

1 , . . . , Dtest
10 together with each OD

i .

These steps were repeated 4 times with different F , to create 4 different training sets and 40 different
testing sets, corresponding to a total of 40 different datasets employed per model M selected in step
2. As we used 3 different reference models, we have a total of 120 different datasets employed in
this experiment alone. In particular, the models used for this are collected in table 4. The table
contains the name of the outlier type, the description of the IA taken to generate them, and a brief
description of how the outliers should look. Column M contains the method employed to generate
each, these being LOF , ABOD, and the same inlier distribution as D, but with multiple shifted
means µi and with a significantly lower amount of points n. A visualization of how these outliers
would look with 2 features is located in figure 5. To study how different methods behave when
detecting these outliers, we have performed the same experiments as in section 4.3, but with these
synthetic datasets. Figure 6 gathers all the AUCs of a method in 3 boxplots, one for each outlier
type in each training set. Additionally, we grouped all based on the IA and assigned a similar color
for all of them. We have done this for the classical OD methods LOF, ABOD, and kNN, besides
our method GSAAL. We cropped the image below 0.45 in the y axis as we are not interested in
results below a random classifier. As we can see, classical methods seem to correctly detect outliers
for an outlier type that verifies its IA. However, whenever we introduce outliers behaving outside
of their IA, the performance hit is significant. Notoriously, it appears that none of them had trouble
detecting the Local and Angle outlier type. regardless of their IA. This can be easily explained by
those outliers types being similar, as we can see in figure 5. On the other hand, GSAAL manages to
have a significant detection rate regardless of the outlier type.

B.2 EFFECTS OF MULTIPLE VIEWS ON OUTLIER DETECTION (EXTENSION)

In this section, we will include a brief description of the generation process for the datasets used in
section 4.2. We will also perform the same experiment as in section 4.2 for all methods showcased
in the main text and additional datasets. The datasets were generated by the following formulas:

• Banana. Given θ ∈ [0, π] we have x = sin(θ) + U(0, 0.1) and y = sin(θ)3 + U(0, 0.1).
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• Spiral. Given θ ∈ [0, 4π] and r ∈ (0, 1), we have x = r cos(θ) + U(0, 0.1) and y =
r sin(θ).

• Star. Given θ ∈ [0, 2π] and r ∈ {r ∈ R|r = sin(5θ); r ≥ 0, 1, 0.4} , we have x =
r cos(θ) + U(0, 0.1) and y = r sin(θ) + U(0, 0.1).

• Circle. Given θ ∈ [0, 2π], we have x = cos(θ) + U(0, 0.1) and y = sin(θ) + U(0, 0.1).

• L. Given x1 = N(0, 0.1), x2 = U(0, 5), y1 = U(−5, 0), and y2 = N(0, 0.1); we have
x = concat(x1, x2) and y = concat(y1, y2).

We considered N(0, 0.1) to denote a random normal realization with µ = 0 and σ2 = 0.1, and
U(a, b) to denote a uniform realization in the [a, b] interval.

Figure 7 contains all images from the MV experiment. We employed the default parameters for all
methods in this experiments. We did that as those were the employed parameters in our real world
experiments. Additonally, the choice of parameter did not impact the outcome of the experiment
much. Our remote repository includes extra images for every competitor with multiple parameters
for comparison. We do not have any new insight beyond the ones exposed in the main article. Note
that we have included all methods but SOD. The reason was that SOD failed to execute for datasets
Star, Spiral, and Circle.

Additionally, we added competitors from outside of our related work that will later be used in sec-
tion B.3. In particular, we employed LUNAR, DIF and DeepSVDD with default parameters. We
included extra images in our remote repository with multiple parameters for the deep competitors
as well. The method AnoGAN was not included due to it failing in datasets Star, Spiral and Circle.
Their results can be seen in Figure 8. As it also happened our main competitors, some of the extra
competitors were capable of detecting the data structure in very sparse occasions. However they re-
mained incapable to properly describe a boundary consistently. The only method that was sensible
enough in all datasets was GSAAL.

In order to quantify this, we tested the ability of all methods to perform one-class classification in
each dataset. As outliers, we used white noise in the x1 − x2 subspace. Additionally, we created
two extra datasets greatly different from the rest, X and wave:

• X. Given x1 = x2 = U(−1, 1) and y1 = x1 + U(0, 0.1), y2 = x2 + U(0, 0.1); we have
x = concat(x1, x2) and y = concat(y1, y2)..

• Wave. Given θ ∈ [0, 4π], we have x = θ and y = sin(x) + U(0, 0.1).

We will also use them as outleirs, for a total of 15 different datasets. We also generated extra inliers
in each test set. We gathered the AUC results in Figure 9. As we can see, all other methods struggel
to come ahead of the random classifier, marked with a dashed line. The only method well above that
is GSAAL.

B.3 ONE-CLASS CLASSIFICATION (EXTENSION)

As we noted in Section 4, we obtained our benchmark datasets from Han et al. (2022), a benchmark
study for One-class classification methods in tabular data. Some of the datasets featured in the study,
and also in our experiments, were obtained from embedding image or text data using a pre-trained
NN (ResNet He et al. (2015) and BERT Devlin et al. (2019), respectively). We shunt the inter-
ested reader into Han et al. (2022) for additional information. Additionally, we found discrepancies
between the versions of the datasets in the study of Campos et al. (2016) and Han et al. (2022).
We utilized the version of those datasets featured in Campos et al. (2016) for our experiments due
to popularity. This affected the datasets Arrhythmia, Annthyroid, Cardiotocography, InternetAds,
Ionosphere, SpamBase, Waveform, WPBC and Hepatitis. Figure 10 summarizes the ranks from the
one-class experiments in section 4.3. Table 5 summarizes the AUC results from our experiments. As
mentioned in section 2, we also included extra methods outside of our related work. Particularly, we
added deep versions tailored to image data of previously included methods —DeepSVDD Ruff et al.
(2018) and Deep Isolation Forest Xu et al. (2023) (DIF)— and others that extend some types of out-
lier detectors into image and text data —LUNAR Goodge et al. (2021), as an extension of Locality-
based classical methods, and AnoGAN Schlegl et al. (2017), as an extension of Generative methods.
For their parameters, we employed the recommended ones for LUNAR and DIF, and trained the
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Figure 7: Projected classification boundaries for the datasets in section 4.2 and the extra datasets.
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Figure 8: Projected classification boundaries of the methods outside of our related work.

Figure 9: AUC results in the MV datasets.
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Figure 10: Boxplots of the ranks used for the Conover-Iman experiment in section 4.3.

(a) (b)

Figure 11: Performance of the detector with different values of k.

models the same way that the authors did in their articles. As for DeepSVDD and AnoGAN, as they
do not have any recommended way of training nor hyperparameters, we performed a grid search for
their training parameters and kept the best result. We used all of their official implementations4. All
deep methods (including MO-GAAL and GSAAL) were trained multiple times with the same train
set and their results were averaged to account for initialization.

Additionally, we gathered all extra deep methods and performed the same statistical analysis as in
section 4.3. We also included MO GAAL besides GSAAL for completion. SO GAAL, the single
generator version of MO GAAL was not included, even if popular in the related literature. The
reason is that authors in Liu et al. (2020) showed that MO GAAL constantly outperforms SO GAAL
in the outlier detection task. Results are included in table 6, gathered after a positive Kruskal-Wallis
test. As we can see, GSAAL outperform almost all competitors except LUNAR (the most recent
method). However, LUNAR is incapable to detect change in the subspaces as GSAAL does, see
section B.2. Therefore, regardless of considering the tabular related work, or the more generalist
deep methods, GSAAL still can outperform most competitors in the field. Additionally, for those
that GSAAL performs similar to, we showed that we are more sensible to changes in subspaces.
This fact makes GSAAL the preferred option for One-class classification under MV.

B.4 PARAMETER SENSIBILITY

We now explore the effect of the number of detectors in GSAAL, k, by repeating the previous
experiments with varying k. Figure 11a plots the median AUC for different k values, showing a
stabilization at larger k. Next, Figure 11b compares the results with a fixed k = 30 and the default
value k = 2

√
d used in the previous experiments; there is no large difference in either the AUC or

the ranks. We also found that the results in Table 3 remain almost the same if one sets k = 30. So
we recommend fixing k = 30, which makes GSAAL very suitable for high-dimensional data.

4LUNAR and DIF have official implementations by their authors in pyod Zhao et al. (2019).
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Table 6: Results of the Conover-Iman test for all the Deep methods.

Method AnoGAN DIF DeepSVDD GSAAL LUNAR MO GAAL
AnoGAN = – – – – – – – – – –
DIF ++ = – – – – –
DeepSVDD ++ + = – – ++
GSAAL ++ ++ + = ++
LUNAR ++ ++ + = ++
MO GAAL ++ – – – – – – =

Table 7: Summary of the included components in the ablation study.

Name Subspace Multiple Di

GSAAL✗✗ ✗ ✗
GSAAL✓✗ ✓ ✗
GSAAL✗✓ ✗ ✓
GSAAL ✓ ✓

B.5 ABLATION STUDY

Lastly, we also performed an ablation study for GSAAL. We identify two critical components in
our method, the subspace nature of our detectors, and the multiple detectors used. Table 7 con-
tains a summary of the included features in each considered configuration. We will compare the
performance of all the different configurations of GSAAL.

We will employ, once again, the Conover-Iman test to compare the performance of all configuration
in a statistically sound way. Table 8 contains the results of the ablation experiment. As expected,
our fully configured method significantly outperformed all of the others. This further confirms that
the performance increase over our competitors comes directly from tackling the MV problem.

Table 8: Results of the Connover-Iman test for the ablation study.

GSAAL✗✗ GSAAL✓✗ GSAAL✗✓ GSAAL
GSAAL✗✗ = ++ – – – –
GSAAL✓✗ – – = – – – –
GSAAL✗✓ ++ ++ = – –
GSAAL ++ ++ ++ =
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