
Learned Over-Parametrized Gradient Descent
Method for Non-Negative Least Squares Problem

Akash Sen
Department of Mathematics
Indian Institute of Technology

Hyderabad, India
ma22resch11003@iith.ac.in

C. S. Sastry
Department of Mathematics
Indian Institute of Technology

Hyderabad, India
csastry@math.iith.ac.in

Abstract—The non-negative least squares (NNLS) problem
finds a non-negative approximate solution to a linear sys-
tem. Some well-studied iterative algorithms (such as projection
gradient method) find the stated non-negative approximation.
Notwithstanding this, a recent technique (known as algorithm
unrolling) has emerged as a popular alternative, which maps an
iterative algorithm into a deep unrolled network. In literature,
the deep unrolled networks have attained importance due to their
superiority in performance and interpretability as compared to
their classical counterparts. In this work, we propose a frame-
work based on the learned deep networks, (called learned over-
parametrized gradient descent or LOGD, for brevity, method) for
solving the NNLS problem in a data-driven setup. Numerically we
show the promising results of the LOGD network and employ it in
image denoising task. Our simulation results demonstrate that the
proposed LOGD method performs better than the existing data-
driven network and its classical (non-data driven) counterpart.

Index Terms—Deep unrolling, Non-negative least squares,
Inverse problem, Image denoising.

I. INTRODUCTION

The non-negative least squares (NNLS) problem has rel-
evance to numerous real-world and scientific applications
including image processing [1], mining of text data [2],
enhancement of speech data [3], spectral decomposition [4]
[5], to name but a few. The NNLS problem deals with
reconstructing a non-negative target vector that minimizes the
discrepancies (in a norm sense) between the estimated values
and the observed data. Mathematically the NNLS problem is
stated as an optimization problem:

min
s∈Rn

∥F s− x∥22 subject to s ≥ 0, (1)

where F ∈ Rm×n is the forward transform, x ∈ Rm

possesses observed measurements in vector form, and s ∈ Rn

is the target vector to be reconstructed. In general, NNLS
lacks closed form solution, which is in general not unique
due to the non-negativity constraint. However, a variety of
iterative methods are proposed to solve (1). Some of the
popular methods include the interior point method [6], the
active set based method [7] and the projected gradient descent
method (PGDM) [8] etc. In a large scale setting, nevertheless,
execution of these approaches tends to slow down primarily

The first author gratefully acknowledges the PMRF (Id: 2003328) being
received by him.

due to the need of inverting linear systems at each step. In
PGDM, picking an optimal step-size is important in practice.

Deep unrolling [9] (or learned deep networks) is a recently
developed strategy that has attracted attention of researchers
due to its approximation potential over its known iterative
counterparts. Neural networks are in general black-box in
nature, whereas learned networks [10] are obtained from the
iterative algorithms, resulting in an interpretable structure. In
the literature, the potential of the learned networks has been
realized in several applications such as sparse signal recovery
[11], dictionary learning [12], image/signal denoising [13], etc.

The authors of [14] have developed an over-parametrized
iterative solver for the NNLS problem. Recently, the authors
of [10] have proposed an unrolled proximal gradient descent
method (UPGDM) for this problem in a data-driven setup.
Now driven by the potential of learned deep networks, we
present a learned version of the algorithm proposed in [14].
We discuss its approximation capabilities and show that the
method outperforms the UPGDM and its classical counterpart
in the denoising application.

We use the following notations throughout the paper. For
a positive integer n, the n-dimensional real space is de-
noted by Rn. We use the lower-case letters and bold lower-
case letters respectively for scalars and vectors, and capital
letters for matrices. The ℓ2 and ℓ1 norms of a vector x
are denoted respectively by ∥x∥2 and ∥x∥1. The number
of non-zero components of a vector x is denoted by the
symbol ∥.∥0. The symbol “o” is utilized as the composition
between two functions. A vector whose all entries are zero is
denoted as 0. The Hadamard product between two vectors
u = (u1, . . . , un)

⊤ and v = (v1, . . . , vn)
⊤ is defined as

u⊙ v = (u1 · v1, . . . , un · vn)⊤ .
We organize the paper as follows. In section II, we re-

visit the recent iterative algorithms that are applicable to the
NNLS problem. While providing a brief account of learned
algorithms, we present our learned over-parametrized gradient
descent (LOGD) method in section III. In the last two sections,
we provide the simulation results and concluding remarks.

II. NNLS THROUGH ITERATIVE SOLVERS

In this section we present two iterative solvers for solving
the NNLS problem.

A. NNLS via over-parametrization

In this subsection we give a brief overview of the over-
parametrized iterative solver that can solve the NNLS problem.
The authors of [14] have solved the NNLS problem by
executing the gradient descent (GD) on the over-parametrized
loss function

Lover(s) =
1

2
|| F s⊙P − x ||22 (2)

with certain theoretical guarantees. The kth GD update of the
afore-mentioned loss function is

sk+1 = sk − ηk
[
F⊤ (

F s⊙P
k − x

)]
⊙ s⊙P−1

k (3)

with identical initialization and P ≥ 2 , for the learning rate
ηk. Here, s⊙P stands for the Hadamard product of s taken P
times.

B. NNLS via Proximal gradient descent method (PGDM)

In this method, the gradient descent iterates of the objective
function in (1) are mapped onto the non-negative orthant to
ensure the non-negativity of the approximate signal. The kth

iterate of PGDM is given by

sk+1 = ReLU
[
(I − tF⊤F)sk + (tF⊤)x

]
, (4)

where t > 0 is the step size and ReLU is defined as

ReLU(z) =

(
max{z1, 0}, . . . ,max{zn, 0}

)
.

III. LEARNED OVER-PARAMETRIZED GRADIENT DESCENT
(LOGD) METHOD

In this section, we provide a brief overview of learned
algorithms and our proposed learned network that solves the
NNLS problem.

A. Learned Algorithms

The concept of learned algorithms (or algorithm unrolling)
has been introduced in [15]. The authors of this work have
presented the learned iterative soft thresholding algorithm
(LISTA), the unrolled version of the iterative hard thresholding
algorithm (ISTA). LISTA has been shown to outperform ISTA.
The idea behind the learned algorithms is to map each step of
an iterative process of an algorithm into a network layer. Stack-
ing a finite number of such layers gives rise to a learned (or
unrolled) network. This enables the network to learn from the
given data via backpropagation. One key advantage of unrolled
networks lies in their interpretability. Unlike conventional deep
learning architectures, which often function as “black boxes,”
learned networks retain a direct correspondence to iterative
steps of the optimization. Additionally, learned architectures
are typically data efficient.

B. Unrolled proximal gradient descent method (UPGDM)

The unrolled network [10], termed UPGDM, considers the
lth layer of the network as

sk+1 = ReLU(sk − µkW
k
1 sk + µkW

k
2 x), (5)

where W k
1 ≡ HTH , W k

2 ≡ HT , µk ≡ t are the trainable
parameters of the network. The lth layer of the UPGDM
network is shown in Algorithm 1. The overall architecture
possessing several concatenated layers is shown in Algorithm
2.

Algorithm 1 UPGDM layer inference:

1: Input: x ∈ Rm, sk ∈ Rn

2: sk+1 = ReLU
(
sk − µkW

k
1 sk + µkW

k
2 x

)
3: Output: sk+1

Algorithm 2 UPGDM network inference:

1: Input: x ∈ Rn

2: Initialize: s0 = 0 and residual r0 = s
3: for i = 0, 1, 2, . . . L− 1 do
4: si+1 = UPGDMlayer(x, si)
5: end for
6: Output: Estimated non-negative signal ŝ = sL

C. Proposed LOGD

As previously mentioned, our study aims to tackle the
NNLS problem, stated in (1), in the unrolling setup. We
convert each iteration step into a neural network layer by
considering W l

1 ≡ H⊤H , W l
2 ≡ H⊤. The lth layer of the

network is given by

sl+1 = sl − ηl
[
W l

1s
⊙P
l −W l

2x
]
⊙ s⊙P−1

l .

Staking L(> 2) layers together forms a deep LOGD network.
It may be noted that the unrolled network layer does not
involve any activation function. The non-linearlity, however,
is introduced by the multiple application of the Hadamard
product. For input x ∈ Rm, mathematically the LOGD model
can be defined as

Om,L,n =

{
F(x;w) = sL − ηL

[
WL

1 s⊙P
L −WL

2 x
]
⊙ s⊙P−1

L ,

sl+1 = sl − ηl
[
W l

1s
⊙P
l −W l

2x
]
⊙ s⊙P−1

l ,

W l
1 ∈ Rn×n,x ∈ Rm, sl ∈ Rn,W l

2 ∈ Rn×m,∀ l ∈ [L],

w = vec([W 1
1 . . .WL

1][W 1
2 . . .WL

2]) ∈ Rn2+mn

}
,

(6)
where s0 is the initialized vector, and w is the set of
trainable parameters in vector form. If L > 2, then any
F ∈ Om,L,n is known as a deep LOGD network. Given the
data set D = {(xi, si)}Mi=1, our task is to find w∗ such that
F(xi;w

∗) ≈ si ∀ i ∈ {1, 2, . . . ,M}. The weight matrices
W l

1,W
l
2, and ηl are learned from the data. We provide the

lth layer of the network in Algorithm 3 and, by stacking the

layers, L (> 2) times, we form the deep LOGD network.
Algorithm 4 summarizes the LOGD network.

Algorithm 3 lth LOGD Network Layer:

1: Input: x ∈ Rm, sl ∈ Rn

2: sl+1 = sl − ηl
[
W l

1s
⊙P
l −W l

2x
]
⊙ s⊙P−1

l

3: Output: sl+1

Algorithm 4 LOGD network inference:

1: Input: x ∈ Rn

2: Initialize: s0 = 0 and residual r0 = s
3: for i = 0, 1, 2, . . . L− 1 do
4: si+1 = UOGDlayer(x, si)
5: end for
6: Output: Estimated non-negative signal ŝ = sL

IV. SIMULATION RESULTS

In this section we describe our experimental setup and
present an empirical demonstration of our LOGD network.

A. Training data

We have considered a random Gaussian matrix, F , of size
400×1200 with mean and variance being 0 and 1, respectively.
We have generated 1000 samples of non-negative vectors with
0 mean and 1 variance. Then we have created the training data
{xi, si}1000i=1 by considering xi = F si.

B. Training of LOGD network

For the training of F(·,W), we have used the Adam
optimizer [16] to minimize the mean squared error (MSE)
loss function

L(W) =
1

1000

1000∑
i=1

∥F(xi,W)− si∥22. (7)

The number of epochs that we have taken is 100000.

Fig. 1: Training Loss vs Epochs for LOGD.

C. Training loss against the number of Epochs

We now present behavior of the network’s training loss
in terms of the number of epochs. Figure 1 illustrates
that, as the number of epochs increases, the training loss
decreases progressively and approaches zero asymptotically.
This confirms the successful training of the LOGD network.
Further, Figure 2 and its zoomed version in Figure 3 show
the prediction of the input signal and the ground-truth signal.
These figures imply the successful prediction of the target
signal by the LOGD.

Fig. 2: Ground truth signal vs Predicted signal.

Fig. 3: Ground truth signal vs Predicted signal.

V. APPLICATION

In this section, we employ our LOGD model in a denois-
ing application and compare it with the existing UPGDM
model and its classical counterpart. We consider the denoising
application on the MNIST data in the following setup. For
our simulation work, we have collected 300 MNIST images
consisting of ‘3’ and denoted as S+

i = {MNIST(3)}i. Then
we have perturbed them as S̃i = S+

i − n−, where n− is
the positive white Gaussian noise. We have vectorized the

perturbed images, which are denoted as si = vec(S̃i), for
i ∈ {1, . . . , 300}. In our simulations, we have considered
the forward operator, F to be a random Gaussian matrix,
leading to the training data {xi, s

+
i }300i=1, where xi = Hsi

and s+i = vec(S+
i).

The results in Figure 4 show the performances of the UPGD
and LOGD methods, while the ones in Figure 5 also provide
the results obtained via the over-parametrized gradient descent
(OGD) and LOGD methods. From these results, it can be
concluded that the LOGD has potential to become a viable
method for image de-noising. It may be observed that a
comparison in Figure 4 is provided between two data-driven
methods, while in Figure 5 it is between a data-driven strategy
and a non-data driven strategy.

(a) (b)

(c) (d)

Fig. 4: Comparison of the recovery of the original MNIST
image “3” using the learned methods from the noisy image.
Where (a) is the original ground truth image, (b) is the noisey
image, and (c) and (b) are the recovered images from the
UPGD and LOGD methods, respectively.

VI. CONCLUSIONS

In this work, we proposed a learned deep network model,
named LOGD model, to address the NNLS problem in a data-
driven setup. Further we employed our model in a denoising
application and showed its superiority over its classical coun-
terpart and an existing unrolled model, known as UPGDM.
Our future effort will establish the convergence guarantees of
this solver along with relevance to other inverse problems.

REFERENCES

[1] V. Monga and M. K. Mihçak, “Robust and secure image hashing via
non-negative matrix factorizations.” IEEE Trans. Inf. Forensics Secur.,
vol. 2, no. 3-1, pp. 376–390, 2007.

[2] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons, “Text mining
using non-negative matrix factorizations,” in Proceedings of the 2004
SIAM international conference on data mining. SIAM, 2004, pp. 452–
456.

[3] P. C. Loizou, “Speech enhancement based on perceptually motivated
bayesian estimators of the magnitude spectrum,” IEEE Transactions on
Speech and Audio Processing, vol. 13, no. 5, pp. 857–869, 2005.

(a) (b)

(c) (d)

Fig. 5: Comparison of the recovery of the original MNIST
image “3” using the proposed learned method and its iterative
counterpart, from the noisy image. Where (a) is the original
ground truth image, (b) is the noisey image, and (c) and (b)
are the recovered images from the OGD and LOGD methods,
respectively.

[4] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factor-
ization with the itakura-saito divergence: With application to music
analysis,” Neural computation, vol. 21, no. 3, pp. 793–830, 2009.

[5] P. Sajda, S. Du, T. R. Brown, R. Stoyanova, D. C. Shungu, X. Mao,
and L. C. Parra, “Nonnegative matrix factorization for rapid recovery
of constituent spectra in magnetic resonance chemical shift imaging of
the brain,” IEEE transactions on medical imaging, vol. 23, no. 12, pp.
1453–1465, 2004.

[6] S. Bellavia, M. Macconi, and B. Morini, “An interior point newton-
like method for non-negative least-squares problems with degenerate
solution,” Numerical Linear Algebra with Applications, vol. 13, no. 10,
pp. 825–846, 2006.

[7] C. L. Lawson and R. Hanson, “Linear least squares with linear inequality
constraints,” Solving least squares problems, pp. 158–173, 1974.

[8] R. A. Polyak, “Projected gradient method for non-negative least square,”
Contemp Math, vol. 636, pp. 167–179, 2015.

[9] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021.

[10] A. Sen, P. Pradhan, R. Randhi, and C. S. Sastry, “Unrolled proximal
gradient descent method for non-negative least squares problem,” in
ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2024, pp. 7625–7629.

[11] S. Wu, A. Dimakis, S. Sanghavi, F. Yu, D. Holtmann-Rice, D. Storcheus,
A. Rostamizadeh, and S. Kumar, “Learning a compressed sensing
measurement matrix via gradient unrolling,” in International Conference
on Machine Learning. PMLR, 2019, pp. 6828–6839.

[12] B. Tolooshams, A. Song, S. Temereanca, and D. Ba, “Convolutional dic-
tionary learning based auto-encoders for natural exponential-family dis-
tributions,” in International Conference on Machine Learning. PMLR,
2020, pp. 9493–9503.

[13] Y. Li, M. Tofighi, J. Geng, V. Monga, and Y. C. Eldar, “Efficient and
interpretable deep blind image deblurring via algorithm unrolling,” IEEE
Transactions on Computational Imaging, vol. 6, pp. 666–681, 2020.

[14] H.-H. Chou, J. Maly, and C. M. Verdun, “Non-negative least squares
via overparametrization,” arXiv preprint arXiv:2207.08437, 2022.

[15] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning, ser. ICML’10. Madison,
WI, USA: Omnipress, 2010, p. 399–406.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

