

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING THE NOISE SHIFT FOR DENOISING GEN- ERATIVE MODELS VIA NOISE AWARENESS GUIDANCE

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing denoising generative models rely on solving discretized reverse-time SDEs or ODEs. In this paper, we identify a long-overlooked yet pervasive issue in this family of models: a misalignment between the pre-defined noise level and the actual noise level encoded in intermediate states during sampling. We refer to this misalignment as *noise shift*. Through empirical analysis, we demonstrate that noise shift is widespread in modern diffusion models and exhibits a systematic bias, leading to sub-optimal generation due to both out-of-distribution generalization and inaccurate denoising updates. To address this problem, we propose *Noise Awareness Guidance* (NAG), a simple yet effective correction method that explicitly steers sampling trajectories to remain consistent with the pre-defined noise schedule. We further introduce a classifier-free variant of NAG, which jointly trains a noise-conditional and a noise-unconditional model via noise-condition dropout, thereby eliminating the need for external classifiers. Extensive experiments, including ImageNet generation and various supervised fine-tuning tasks, show that NAG consistently mitigates noise shift and substantially improves the generation quality of mainstream diffusion models. Code will be released upon acceptance.

1 INTRODUCTION

Denoising-based generative models, such as diffusion models (Ho et al., 2020; Peebles & Xie, 2023) and flow-based models (Lipman et al., 2023), have demonstrated remarkable scalability and achieved state-of-the-art results across a wide range of visual generation tasks, including image synthesis (Ho et al., 2020), video generation (Ho et al., 2022), and cross-modal generation (Saharia et al., 2022; Rombach et al., 2022). The core principle of these models is to progressively recover a target sample from pure noise. At each iteration, a neural network processes an intermediate state, which consists of both signal and noise mixed in pre-defined proportions, and updates it to the next state according to the network output and pre-defined coefficients.

During iterative sampling, the model is repeatedly applied and inevitably accumulates errors from multiple sources, including imperfect network approximation, discretization in numerical integration, and other stochastic factors. Recent studies have primarily focused on the discretization aspect, aiming to accelerate generation by reducing the number of denoising steps (Geng et al., 2025; Song et al., 2023; Lu et al., 2022), or on designing more effective diffusion architectures to increase model capacity (Peebles & Xie, 2023; Ma et al., 2024; Karras et al., 2022). Nevertheless, accumulated errors in such a complex system are unavoidable. A key manifestation of these errors is that the noise level inherently encoded in intermediate states may deviate from the pre-defined schedule. This misalignment, long overlooked by the community, is both widespread and rooted in the collective effect of diverse error sources. We refer to this phenomenon as *noise shift*, which often leads to a fundamental mismatch between training and inference in denoising networks.

In this work, we demonstrate that the noise shift manifests as a systematic drift toward larger noise levels t' . We conduct an empirical analysis on recent advanced diffusion models (Ma et al., 2024) for ImageNet generation. As illustrated in Figure 1, the noise shift issue is widespread and can be directly observed using an external posterior noise-level estimator g_ϕ . This observable noise shift δ indicates a clear mismatch: the actual noise encoded in intermediate states is not consistent with the pre-defined noise levels, exhibiting a systematic tendency toward larger noise levels $t' = t + \delta$. To quantify noise shift, we compare the posterior estimation $g_\phi(t \mid \hat{x})$ of intermediate states during

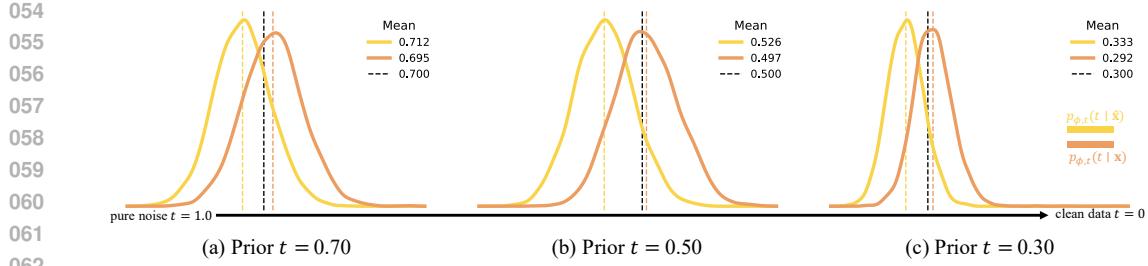


Figure 1: **Empirical observation of noise shift.** Denoising generative models suffer from a training–inference misalignment, where the posterior estimation during sampling tends to lean toward larger noise levels. The yellow curves indicate the estimated probability density of the posterior $p_{\phi,t}(t | \hat{x})$ for sampled intermediate states \hat{x} , while the orange curves indicate the posterior $p_{\phi,t}(t | x)$ for intermediate states x stochastically interpolated from training data $x_0 \sim p_{\text{data}}(x_0)$ on ImageNet. The (a), (b), and (c) show comparisons between posterior estimates obtained at inference and training, for prior noise levels $t = 0.7, 0.5$, and 0.3 , respectively. All density functions are estimated via kernel density estimation with 5,000 samples.

sampling with the posterior estimation $g_{\phi}(t | x_t)$ of intermediate states from the forward process in training, along with the reference of the corresponding pre-defined prior t .

This misalignment can lead to sub-optimal results in two ways: 1) noise shift introduces out-of-distribution generalization issues, since the trained model is applied to a shifted intermediate state $s_{\theta}(x_{t+\delta}, t)$ rather than the intended $s_{\theta}(x_t, t)$. 2) noise shift causes sub-optimal denoising operations, as the next state is computed using inaccurate pre-defined coefficients.

To address this issue, we propose *Noise Awareness Guidance* (NAG), a novel guidance correction approach designed to mitigate the noise shift phenomenon. The key idea of NAG is to enable denoising models to recognize the inherent noise level of a given intermediate state during sampling and to generate a guidance signal that steers shifted samples back toward the accurate pre-defined noise level. However, as discussed in prior works (Ho & Salimans, 2021; Dhariwal & Nichol, 2021), gradient-based guidance signals that rely on external classifiers suffer from several drawbacks, including vulnerability to adversarial-like gradient manipulation, complex training pipelines, and the need for additional costly training on noisy inputs. Inspired by the success of classifier-free guidance (CFG) (Ho & Salimans, 2021), we further propose a classifier-free variant of NAG. Instead of relying on the gradient of a separately trained noise estimator, classifier-free NAG combines the score estimates of a noise-conditional diffusion model with those of a jointly trained noise-unconditional model. This approach removes the dependency on external classifiers by applying noise-condition dropout during training.

Empirically, we show that NAG substantially alleviates the noise shift issue, consistently leading to significant improvements in the generation quality of mainstream denoising-based generative models. Our comprehensive evaluations are conducted across two widely used base models: DiT (Peebles & Xie, 2023) for diffusion models and SiT (Ma et al., 2024) for flow-based models. To demonstrate both the effectiveness and generality of NAG, our evaluations cover two mainstream use cases of modern denoising generative models: 1) We show that NAG can be directly incorporated into DiT and SiT to improve ImageNet conditional generation, highlighting that foundation model development can benefit from our approach. 2) We conduct supervised fine-tuning experiments on small downstream datasets, verifying the effectiveness of NAG in supervised fine-tuning scenarios.

Overall, our contributions can be summarized as follows:

- We identify the noise shift issue, which is widespread in existing denoising generative models but has long been overlooked. Through empirical analysis with an external noise estimator on ImageNet generation tasks, we reveal the severity of this issue.
- We propose a novel and concise approach, *Noise Awareness Guidance* (NAG), to mitigate the noise shift issue. We further introduce its classifier-free variant, which can be more easily incorporated into mainstream denoising generative models.

108 • We conduct comprehensive experiments validating the effectiveness and generality of NAG,
 109 providing strong evidence that it mitigates the noise shift issue and leads to significant
 110 improvements in both ImageNet generation and supervised fine-tuning tasks.

112 **2 PRELIMINARY**

114 We begin by reviewing denoising generative models under the unified framework of *stochastic*
 115 *interpolants* (Albergo et al., 2023). Throughout this section, we adopt the notation of Ma et al. (2024).
 116 Both diffusion and flow-based models can be understood as stochastic processes that gradually
 117 transform a noise sample from simple prior distributions, typically a standard Gaussian $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$,
 118 into a data sample from the complex target distribution $\mathbf{x}_0 \sim p_{\text{data}}(\mathbf{x}_0)$.

120 **Forward process.** Let $\mathbf{x}_0 \sim p_{\text{data}}(\mathbf{x}_0)$ be a sample from the data distribution. We define a
 121 continuous-time stochastic interpolant over $t \in [0, T]$:

$$122 \quad \mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon, \quad \alpha_0 = \sigma_T = 1, \quad \alpha_T = \sigma_0 = 0, \quad (1)$$

123 where α_t is monotonically decreasing and σ_t is monotonically increasing (Lipman et al., 2023; Ma
 124 et al., 2024). This formulation interpolates smoothly between the clean data ($t = 0$) and pure noise
 125 ($t = T$).

127 **Probability flow ODE.** Given the forward process, the dynamics of \mathbf{x}_t can be equivalently described
 128 by a *probability flow ordinary differential equation* (PF ODE):

$$129 \quad \dot{\mathbf{x}}_t = \mathbf{v}(\mathbf{x}_t, t), \quad (2)$$

130 where the velocity field is given by

$$131 \quad \mathbf{v}(\mathbf{x}, t) = \mathbb{E}[\dot{\mathbf{x}}_t \mid \mathbf{x}_t = \mathbf{x}] = \dot{\alpha}_t \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t = \mathbf{x}] + \dot{\sigma}_t \mathbb{E}[\epsilon \mid \mathbf{x}_t = \mathbf{x}]. \quad (3)$$

133 In practice, the velocity is parameterized by a neural network $\mathbf{v}_\theta(\mathbf{x}, t)$, trained with the objective

$$134 \quad \mathcal{L}_\mathbf{v}(\theta) := \mathbb{E}_{\mathbf{x}_0, \epsilon, t} \left[\left\| \mathbf{v}_\theta(\mathbf{x}_t, t) - \dot{\alpha}_t \mathbf{x}_0 - \dot{\sigma}_t \epsilon \right\|^2 \right]. \quad (4)$$

136 Since the ODE solution at time t matches the marginal distribution $p_t(\mathbf{x})$ of \mathbf{x}_t , samples can be
 137 generated by integrating Equation 2 backward from $\mathbf{x}_T = \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ using standard ODE solvers.

139 **Reverse-time SDE.** Equivalently, the marginals $p_t(\mathbf{x})$ are consistent with the reverse-time *stochastic*
 140 *differential equation* (SDE):

$$141 \quad d\mathbf{x}_t = \mathbf{v}(\mathbf{x}_t, t) dt - \frac{1}{2} w_t \mathbf{s}(\mathbf{x}_t, t) dt + \sqrt{w_t} d\hat{\mathbf{w}}_t, \quad (5)$$

142 where $\hat{\mathbf{w}}_t$ is a reverse-time Wiener process, $w_t > 0$ is a diffusion coefficient, and $\mathbf{s}(\mathbf{x}, t) =$
 143 $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ is the score function. The score can be expressed either as a conditional expectation

$$145 \quad \mathbf{s}(\mathbf{x}, t) = -\sigma_t^{-1} \mathbb{E}[\epsilon \mid \mathbf{x}_t = \mathbf{x}], \quad (6)$$

146 or equivalently in terms of the velocity field:

$$147 \quad \mathbf{s}(\mathbf{x}, t) = -\sigma_t^{-1} \frac{\alpha_t \mathbf{v}(\mathbf{x}, t) - \dot{\alpha}_t \mathbf{x}}{\dot{\alpha}_t \sigma_t - \alpha_t \dot{\sigma}_t}. \quad (7)$$

149 Thus, data can also be generated by solving Equation 5 with the same velocity model $\mathbf{v}_\theta(\mathbf{x}, t)$.

151 **Conditional generation** Let $p_t(\mathbf{x} \mid \mathbf{y})$ is the density that \mathbf{x}_t is conditioned on some variable \mathbf{y} . If
 152 $p_t(\mathbf{y} \mid \mathbf{x})$ is known, we can sample from $p_t(\mathbf{x} \mid \mathbf{y})$ by solving a conditional reverse-time SDE where
 153 the conditional score defined as:

$$154 \quad \mathbf{s}(\mathbf{x}, t \mid \mathbf{y}) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x} \mid \mathbf{y}) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) + \nabla_{\mathbf{x}} \log p_t(\mathbf{y} \mid \mathbf{x}). \quad (8)$$

155 In practice, we can build a separate neural network to model $p_t(\mathbf{y} \mid \mathbf{x})$ on noisy data, following
 156 classifier guidance (Dhariwal & Nichol, 2021; Song et al., 2020). Note that $p_t(\mathbf{y} \mid \mathbf{x}) \propto p_t(\mathbf{x} \mid$
 157 $\mathbf{y}) p_t^{-1}(\mathbf{x})$, we can derive the classifier-free guidance sampling (Ho & Salimans, 2021). Empirically,
 158 classifier-free guidance achieves significant performance.

159 For simplicity, we primarily consider the linear interpolant with $T = 1$, $\alpha_t = 1 - t$, and $\sigma_t = t$,
 160 following Ma et al. (2024). Nevertheless, our analysis extends naturally to other formulations such
 161 as DDPM (Ho et al., 2020), which employ discretized dynamics, alternative schedules (α_t, σ_t) , or
 different model parameterizations.

162 3 NOISE SHIFT ISSUE IN THE DENOISING PROCESS

164 We identify a misalignment between the training distribution $p_t(\mathbf{x})$, obtained from clean data samples
 165 $\mathbf{x}_0 \sim p_{\text{data}}(\mathbf{x}_0)$, and the intermediate distribution $p_t(\hat{\mathbf{x}})$ encountered during the numerical solution
 166 of the SDE or ODE. Conceptually, this misalignment can be diagnosed by comparing the posterior
 167 $p_t(t \mid \mathbf{x})$ inferred from perturbed states with the pre-defined prior $p(t)$.

168 In practice, accumulated errors \mathbf{e} from multiple sources—such as imperfect network approximation,
 169 discretization error, and other modeling inaccuracies—can be viewed as an additional Gaussian
 170 perturbation applied to \mathbf{x}_t , where $\hat{\mathbf{x}}_t = \mathbf{x}_t + \mathbf{e}$, where $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma_e^2 \mathbf{I})$. This perturbation increases
 171 the effective variance from σ_t^2 to $\sigma_t^2 + \sigma_e^2$, making the perturbed state behave as if it were sampled at
 172 a shifted noise level $t' = t + \delta$, where

$$173 \quad 174 \quad \sigma_{t+\delta}^2 = \sigma_t^2 + \sigma_e^2. \quad (9)$$

175 We refer to the discrepancy $\delta = t' - t$ as the *noise shift*.

176 **Statement 1 (Relation between noise shift and additive error).** *Given the forward process defined
 177 in Equation 1, consider an additive error $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma_e^2 \mathbf{I})$. When the error variance σ_e^2 is small, the
 178 shift δ admits a first-order approximation:*

$$180 \quad 181 \quad \delta \approx \frac{\sqrt{\sigma_t^2 + \sigma_e^2} - \sigma_t}{\dot{\sigma}_t}, \quad (10)$$

182 where $\dot{\sigma}_t = d\sigma_t/dt$. (See Appendix A for full derivations.)

184 Intuitively, Statement 1 shows that accumulated errors push the effective variance in $\hat{\mathbf{x}}_t$ toward a
 185 later noise level $t' = t + \delta$, where $\delta > 0$, causing a systematic bias. For example, in the linear
 186 interpolation case $\sigma_t = t$, the shift reduces to $\delta = \sqrt{\sigma_t^2 + \sigma_e^2} - \sigma_t$, illustrating that perturbed states
 187 tend to be interpreted as noisier than intended. Although based on simplified assumptions, this
 188 analysis qualitatively captures the nature of noise shift in practical denoising processes.

189 **Empirical analysis.** To better illustrate the noise shift issue, we conduct empirical simulations on
 190 ImageNet at 256×256 resolution using the pre-trained SiT-XL/2 model, which was trained for 1,400
 191 epochs. Previous studies (Sun et al., 2025; Stahl et al., 2000) suggest that for high-dimensional data
 192 such as images, the posterior $p_t(t \mid \mathbf{x})$ concentrates sharply (similar to a Dirac delta), making the
 193 noise level t encoded in \mathbf{x} reliably estimable. Motivated by this, we train a noise estimator $g_\phi(t \mid \mathbf{x})$
 194 on the ImageNet 256×256 dataset¹.

196 Empirical comparisons between the estimated posterior distributions $p_{\phi,t}(t \mid \hat{\mathbf{x}})$ are shown in Figure 1.
 197 Consistent with Statement 1, we observe that the estimated posterior distribution $p_{\phi,t}(t \mid \hat{\mathbf{x}})$ (yellow
 198 curve) shifts toward larger values of the pre-defined prior t , demonstrating that the noise shift
 199 phenomenon is widespread in the denoising stage. Additionally, the orange curve shows the posterior
 200 estimation on samples generated from ImageNet through the forward process in Equation 1, serving
 201 as evidence of the accuracy of g_ϕ on ground-truth intermediate states.

202 In particular, intermediate states with mid-level noise exhibit substantial systematic overestimation
 203 by g_ϕ , highlighting a clear misalignment between the training and inference distributions. Further
 204 results at more noise levels t can be found in the Appendix D.

205 **The effect of noise shift δ .** While our empirical analysis is constrained by the accuracy of the noise
 206 estimator, the observed noise shift δ can still be regarded as a sufficient but not necessary condition
 207 for indicating sub-optimal behavior in the denoising stage.

209 This pervasive noise shift affects the entire sampling trajectory in two primary ways: 1) The learned
 210 velocity field $\mathbf{v}_\theta(\mathbf{x}, t)$ suffers from out-of-distribution errors, since the model operates on perturbed
 211 intermediate states with shifted noise levels δ . If the noise-conditioned network $\mathbf{v}_\theta(\mathbf{x}, t)$ satisfies
 212 a Lipschitz condition in \mathbf{x} , the resulting model error can be bounded by $L_{\mathbf{x}} \|\mathbf{e}\|$, where $L_{\mathbf{x}}$ is the
 213 Lipschitz constant. 2) The misalignment in t introduces errors in the SDE coefficients α_t and σ_t
 214 during reverse-time integration. Consequently, the denoising process becomes sub-optimal under the
 215 influence of noise shift.

¹Implementation details of the noise estimator are provided in the Appendix B.2

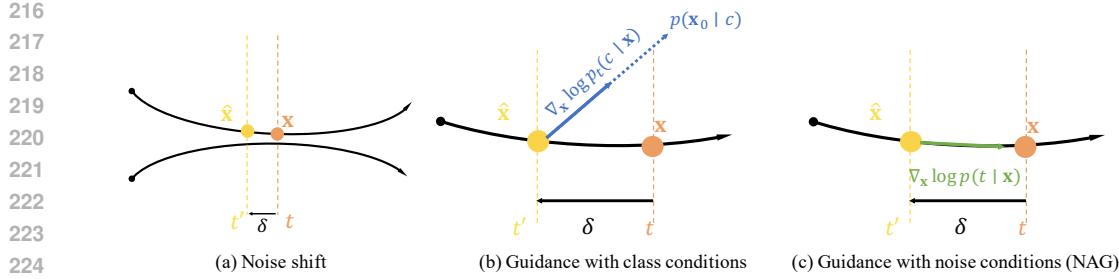


Figure 2: **Conceptual comparison of guidance behaviors based on class information and noise awareness.** (a) A conceptual example of noise shift, where \hat{x}_t is drifted to a larger noise level by δ . (b) Class-conditional guidance pushes the trajectory toward regions aligned with the class condition c . (c) Noise-aware guidance instead pushes \hat{x}_t toward the position better aligned with the intended noise level t from the pre-defined prior. NAG explicitly targets the noise shift issue.

As discussed above, δ can be interpreted as a collection of errors originating from various sources, making it unrealistic to eliminate completely. Notably, reducing δ to zero is not a sufficient condition for generating better images. For instance, if an intermediate sample corresponds to an image that is entirely out of distribution, generation will still fail due to the limited capability of the model. Nevertheless, since the existence of noise shift always induces some degree of misalignment, our qualitative findings provide valuable insights into the design of corrective methods.

4 NOISE AWARENESS GUIDANCE

In this section, we introduce the core concept of *Noise Awareness Guidance* (NAG), which directly addresses the noise shift issue. We interpret the shift δ as the misalignment between the sampled state \hat{x}_t and its intended noise condition t . Inspired by conditional guidance methods (Dhariwal & Nichol, 2021; Song et al., 2020), we propose a mechanism that explicitly steers the sampling trajectory to remain consistent with the pre-defined noise schedule. Our key insight is that by reinforcing the conditioning on t , the posterior $p_t(t | \hat{x})$ along the reverse-time SDE (or ODE) trajectory remains closer to the pre-defined t , thereby mitigating the noise shift δ .

Noise awareness guidance. The noise-conditional score can be written as

$$\mathbf{s}(\mathbf{x} | t) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x} | t) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) + \nabla_{\mathbf{x}} \log p_t(t | \mathbf{x}). \quad (11)$$

Analogous to Equation 8, if $p_t(t | \mathbf{x})$ were available, we could sample from $p_t(\mathbf{x} | t)$ by solving the conditional reverse-time SDE in Equation 11. As discussed in Section 3, the posterior $p_t(t | \mathbf{x})$ can be reliably estimated from a noisy data point \mathbf{x}_t . Intuitively, we can guide the sampling trajectory with $\nabla \log g_{\phi}(t | \mathbf{x})$ as the guidance signal, where g_{ϕ} is the posterior estimator model in Section 3. Since it relies on being aware of the accurate noise level encoded in an intermediate state. We refer to this approach as *Noise Awareness Guidance* (NAG). As the gradient $\nabla \log g_{\phi}(t | \mathbf{x})$ is provided by an external posterior estimator g_{ϕ} , we call this formulation *classifier-based* NAG.

Classifier-free noise awareness guidance. Despite its effectiveness, classifier-based NAG inherits the drawbacks of classifier guidance (Dhariwal & Nichol, 2021; Song et al., 2020), including the high computational cost of training an external posterior estimator for t , increased pipeline complexity, and the risk of adversarial-like behavior in explicit classifiers. To address these issues, we extend the idea of classifier-free guidance (CFG) (Ho & Salimans, 2021) to NAG.

Noting that $p_t(t | \mathbf{x}) \propto p_t(\mathbf{x} | t) / p_t(\mathbf{x})$, we can utilize a score mixture to approximate the gradient of an implicit noise predictor as

$$\mathbf{s}^{w_{\text{nag}}}(\mathbf{x} | t) = (w_{\text{nag}} + 1) \mathbf{s}(\mathbf{x} | t) - w_{\text{nag}} \mathbf{s}(\mathbf{x}), \quad (12)$$

where w_{nag} is the guidance parameter for NAG. Importantly, modern denoising models already accept the noise level t along with the intermediate state \mathbf{x} , inherently defining the conditional score $\mathbf{s}(\mathbf{x} | t)$. Thus, we only need access to the unconditional score $\mathbf{s}(\mathbf{x})$, without explicitly training a separate noise-level predictor. To implement NAG, we follow the training strategy of CFG: during training, the

270 noise condition t is randomly dropped with a fixed probability, allowing the model to share weights
 271 between conditional and unconditional objectives.
 272

273 **Discussion and relation to CFG.** The mechanism of NAG can be intuitively understood in analogy
 274 to CFG. From the perspective of conditional generation, sampling without NAG corresponds to
 275 relying solely on the conditional score model. By strengthening the conditioning on t , NAG guides
 276 the trajectory toward lower-temperature regions where the model produces higher-confidence samples,
 277 ensuring that each intermediate state remains aligned with its intended noise level.

278 As illustrated in Figure 2, the noise-level conditioning axis introduced by NAG is orthogonal to the
 279 conditional axis of CFG, providing complementary control over the sampling process. It is worth
 280 noting that because the noise shift δ arises from various sources, CFG empirically mitigates it to some
 281 extent, as it biases sampling toward lower-temperature regions where models are more confident.
 282 However, compared to this indirect effect of CFG, NAG directly targets the reduction of δ and thereby
 283 constructs improved sampling trajectories. Figure 4 visualizes the mitigating effect on noise shift by
 284 different methods.

285 5 EXPERIMENTS

286 In this section, we present a comprehensive empirical analysis to demonstrate the effectiveness and
 287 generality of NAG. Our study considers two settings: (1) standard ImageNet generation benchmarks
 288 (Section 5.1) and (2) supervised fine-tuning off-the-shelf models on small, fine-grained datasets
 289 (Section 5.2). These experiments provide evidence of NAG’s compatibility with two widely used
 290 scenarios: large-scale foundation model training and supervised fine-tuning. Section 5.3 presents
 291 more discussion on empirical analysis of noise shift δ .
 292

293 5.1 NAG FOR IMAGENET GENERATION

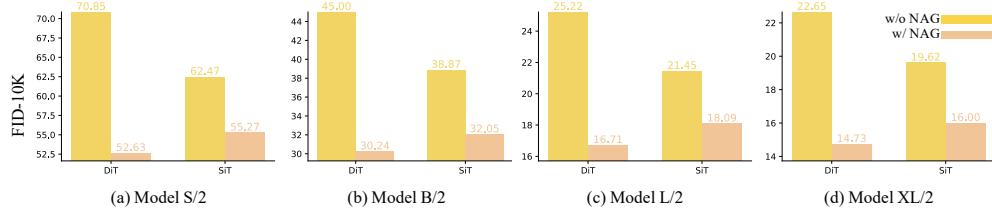
294 **Implementation details.** Our experiments are conducted on two representative variants of denoising
 295 generative models: DiTs (Peebles & Xie, 2023) for diffusion-based models and SiTs (Ma et al.,
 296 2024) for flow-based models. We faithfully follow the experimental setups described in the DiT and
 297 SiT papers, unless otherwise specified. All experiments are performed at a resolution of 256×256
 298 (denoted as ImageNet 256×256), where $32 \times 32 \times 4$ latent vectors are obtained using the pre-trained
 299 Stable Diffusion VAE tokenizer (Rombach et al., 2022). For model configurations, we adopt the
 300 S/2, B/2, L/2, and XL/2 variants introduced in the DiT and SiT papers (Peebles & Xie, 2023; Ma
 301 et al., 2024), all of which process inputs with a patch size of 2. For experiments trained from random
 302 initialization, we train for 80 epochs and apply a 10% dropout probability on the noise conditions.
 303 Due to computational limitations, evaluations on fully converged XL/2 models are instead conducted
 304 by fine-tuning for an additional 10 epochs on off-the-shelf checkpoints pre-trained for 1,400 epochs
 305 with 20% noise dropout. Additional experimental details are provided in Appendix B.
 306

307 **Evaluation.** For experiments with DiT, we follow the default setup using 250 DDPM sampling
 308 steps (Peebles & Xie, 2023). For SiT, consistent with its original setup, we always adopt the
 309 SDE–Euler–Maruyama sampler with 250 sampling steps (Ma et al., 2024). For experiments across
 310 different architectures of DiTs and SiTs, we report the Fréchet Inception Distance (FID) (Heusel
 311 et al., 2017) computed with 10,000 samples. For converged results, to enable direct comparison with
 312 the original papers, we report FID, precision (Prec.), and recall (Rec.) (Kynkänniemi et al., 2019)
 313 computed with 50,000 samples by default.
 314

315 **Comparison.** Figure 3 presents the results of training DiTs and SiTs from scratch across various
 316 architectures. The results show that NAG consistently brings substantial improvements over the
 317 baselines. An interesting observation is that DiTs benefit more from NAG than SiTs when trained for
 318 80 epochs. This may arise from the different training schedules: the DDPM-style setup used in DiTs
 319 could lead to better training of the noise-unconditional branch, thereby providing a more accurate
 320 guidance direction for NAG. Notably, for extensively pre-trained models, it is sufficient to fine-tune
 321 only the noise-unconditional branch at a small fraction of the original cost (e.g., 10% additional
 322 epochs, approximately 0.7% of the full 1,400-epoch pre-training cost) to enable the model to apply
 323 NAG. Remarkably, using NAG alone allows the model to achieve generation quality close to that of

324
 325 **Table 1: Converged comparsions on ImageNet 256×256 with DiT-XL/2 and SiT-XL/2.** We
 326 fine-tune off-the-shelf DiT-XL/2 and SiT-XL/2 checkpoints for an additional 10 epochs to support
 327 NAG sampling, with and without classifier-free guidance (CFG), following the setup in the original
 328 papers (Peebles & Xie, 2023; Ma et al., 2024). All metrics are reported on 50k generated images.
 329

330 Model	331 Training 332 Epoches	333 Generation w/o CFG			334 Generation w/ CFG		
		335 FID	336 Prec.	337 Rec.	338 FID	339 Prec.	340 Rec.
341 DiT-XL/2 (Peebles & Xie, 2023) 342 +NAG (ours)	343 1400 344 10+(1400*)	345 9.62	346 0.67	347 0.67	348 2.27	349 0.83	350 0.57
351 SiT-XL/2 (Ma et al., 2024) 352 +NAG (ours)	353 1400 354 10+(1400*)	355 8.61	356 0.68	357 0.67	358 2.06	359 0.82	360 0.59



361 **Figure 3: FID comparison of vanilla DiTs and SiTs** on ImageNet 256×256 after 80 epochs of
 362 training. Classifier-free guidance (CFG) is not used. All metrics are computed with 10K samples.
 363

364 a CFG-guided model. Moreover, when combined with CFG, NAG continues to provide additional
 365 improvements, demonstrating that its mechanism is complementary and orthogonal to CFG.
 366

367 5.2 NAG FOR SUPERVISED FINE-TUNING

368 **Implementation Details.** Supervised fine-tuning of an off-the-shelf pre-trained checkpoint to a
 369 new domain is a fundamental task in generative modeling. To further demonstrate the general
 370 effectiveness of NAG, we conduct supervised fine-tuning evaluations following the setups in Zhong
 371 et al. (2025; 2024). Specifically, we evaluate NAG on fine-tuning DiT-XL/2² across seven well-
 372 established fine-grained downstream datasets: Food101 (Bossard et al., 2014), SUN397 (Xiao et al.,
 373 2010), DF20-Mini (Picek et al., 2022), Caltech101 (Griffin et al., 2007), CUB-200-2011 (Wah et al.,
 374 2011), ArtBench-10 (Liao et al., 2022), and Stanford Cars (Krause et al., 2013). We fine-tune for
 375 24,000 steps with a batch size of 32 at 256×256 resolution for each task. The compared baselines
 376 include vanilla generation, generation with classifier-free guidance (CFG), and Domain Guidance
 377 (DoG) (Zhong et al., 2025). Notably, DoG is a guidance method specifically designed for fine-tuning
 378 scenarios. To demonstrate both the fundamental effect and generality of NAG, we directly apply it
 379 on top of these baselines without any modifications, except for introducing noise-dropout training
 380 to support the noise-unconditional branch. Detailed implementation information is provided in
 381 Appendix B.
 382

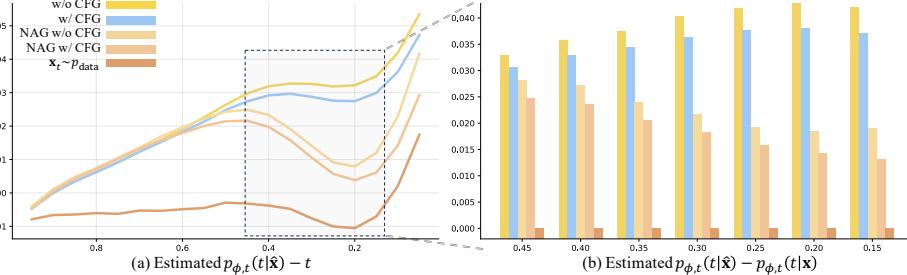
383 **Evaluations.** Following the setup in (Zhong et al., 2025), all results are generated with 50 DDPM
 384 sampling steps. and the FIDs are computed with 10,000 samples.
 385

386 **Results.** The FID comparisons across various fine-tuning tasks are summarized in Table 2. The
 387 results indicate that NAG is highly general and exhibits strong compatibility across different baselines,
 388 benchmarks, and guidance approaches. Consistent with the ImageNet results, NAG alone achieves
 389 performance comparable to sampling with CFG. Furthermore, Table 2 shows that both CFG-guided
 390 sampling and DoG-guided sampling can be substantially improved by NAG. This broad compatibility
 391 highlights that the noise shift issue is indeed widespread in denoising-based generation, and that NAG,
 392 by directly addressing this issue, can consistently improve generation quality across various baselines.
 393 Notably, Domain Guidance (DoG) (Zhong et al., 2025), a CFG variant specifically designed for
 394 supervised fine-tuning, also benefits from NAG, with significant improvements observed in Table 2.
 395

396 2²<https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt>

378 Table 2: **FID Comparisons on fine-tuning tasks** with pre-trained DiT-XL-2-256x256.

379 Dataset Method	380 Food	381 SUN	382 Caltech	383 CUB Bird	384 Stanford Car	385 DF-20M	386 ArtBench	387 Average FID
Fine-tuning (w/o CFG + NAG (ours))	16.04 11.18	21.41 14.95	31.34 24.32	9.81 5.68	11.29 5.92	17.92 14.79	22.76 19.22	18.65 13.72
Fine-tuning (with CFG + NAG (ours))	10.93 5.78	14.13 8.81	23.84 21.87	5.37 3.52	6.32 3.91	15.29 12.55	19.94 15.69	13.69 10.31
Fine-tuning (with DoG) + NAG (ours)	9.25 6.45	11.69 8.24	23.05 21.88	3.52 3.41	4.38 4.21	12.22 11.38	16.76 14.80	11.55 10.05



388 Figure 4: **Comparisons of the estimated posterior $p_\phi(t | \mathbf{x})$** on ImageNet 256 × 256 with a
389 converged SiT/XL-2 model. (a) Noise shift across the entire sampling process, computed as the
390 difference between the estimated posterior $p_\phi(t | \hat{\mathbf{x}})$ and the pre-defined prior t . The visualization
391 shows that noise shift δ becomes increasingly severe as sampling progresses. (b) Noise shift measured
392 between the estimated $p_\phi(t | \hat{\mathbf{x}})$ and $p_\phi(t | \mathbf{x})$, where \mathbf{x} is generated from real data. This comparison
393 reflects the training–inference misalignment while accounting for the inherent inaccuracy of g_ϕ .
394

404 5.3 EMPIRICAL OBSERVATIONS OF NOISE SHIFT WITH NAG

405 We present a detailed empirical analysis based on the estimator g_ϕ , as an expansion beyond Section 3.

406 As the sampling process progresses, the noise shift can be divided into two stages. In the first stage,
407 the shift increases steadily until it reaches a threshold (e.g., when the signal-to-noise ratio is around 1).
408 In the second stage, the shift plateaus, remaining relatively stable as the actual noise level decreases
409 from 0.5 to 0. When intermediate states approach the data distribution at very low noise levels, the
410 estimated noise shift relative to the pre-defined prior t tends to be overestimated. This occurs because
411 g_ϕ applied to intermediate states \mathbf{x} generated from real data suffers from larger estimation errors due
412 to its limited capability in this regime. This overestimate can be viewed in Figure 4(a) and released
413 by mean normalization in Figure 4(b).

414 As shown in Figure 4, NAG primarily influences the sampling process when the signal-to-noise ratio
415 is larger than 1 (roughly $t \approx 0.5$), effectively reducing the noise shift in this range. In contrast, its
416 effect is less pronounced in the early denoising stage, where the signal-to-noise ratio is low. Figure 5
417 further illustrates that NAG shifts the density of intermediate states toward the posterior $p_{\phi,t}(t | \mathbf{x})$
418 estimated from real data, and hence closer to the pre-defined prior t .

419 Classifier-free guidance (CFG) (Ho & Salimans, 2021) is known to steer the sampling trajectory
420 toward low-temperature regions associated with the target class, thereby producing higher-quality
421 samples within high-confidence regions. This can be interpreted as a reduction of model fitting errors.
422 Since noise shift δ reflects the accumulation of errors from multiple sources, CFG also reduces noise
423 shift to some extent (as observed in Figure 1(a–b)). However, its effect remains indirect and limited,
424 as CFG primarily mitigates errors along the class-conditional dimension. In contrast, Figures 4
425 and 5(c–d) demonstrate that NAG can be directly applied on top of CFG-guided models, substantially
426 reducing the remaining noise shift.

427 It is important to clarify that eliminating the estimated noise shift δ is not a sufficient condition for
428 achieving optimal generation, since potential pitfalls may lie in the imperfect accuracy of the noise
429 estimator or in other complex factors. Nevertheless, the presence of a distinguishable noise shift
430 during sampling is a sufficient condition for sub-optimal generation. This observation motivates us to
431 address the noise shift issue directly.

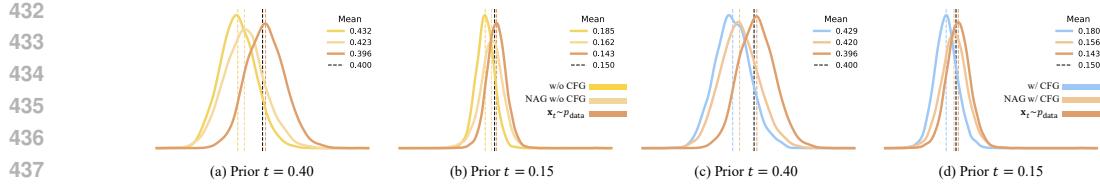


Figure 5: **Empirical observations of NAG mitigating the noise shift δ .** (a–b) Effects of NAG without interference from CFG. (c–d) Compatibility of NAG under CFG, showing that NAG addresses the noise shift directly, rather than relying on the indirect effects of CFG.

5.4 ABLATION ANALYSIS

In this section, we provide extensive ablation analysis on several factors, including w_{nag} , the number of sampling steps, and model sizes. The main analysis results are shown in Figure 6.

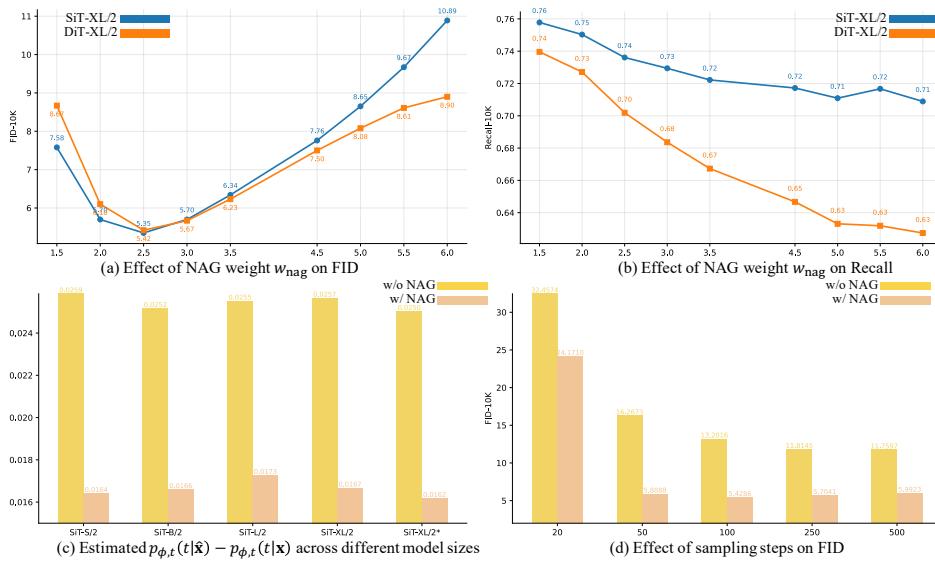


Figure 6: **Sensitivity analysis of Noise Awareness Guidance (NAG).**

NAG weight w_{nag} . We conduct analysis on how w_{nag} influences the sampling results with NAG, as shown in Figure 6(a–b). As a guidance-based technique, NAG shows a similar effect to CFG; namely, with increasing w_{nag} , the diversity will be sacrificed, which can be seen as a form of temperature controlling in denoising generation, even though NAG does not incorporate any class information.

Can better fitness of the denoising model reduce noise shift? An intuitive question is that, since model prediction errors contribute to part of the noise shift, can we mitigate the noise shift by building stronger networks, such as increasing model size or training for many more iterations? Unfortunately, Figure 6(c) shows that the empirical noise shift always falls within a relatively stable range and cannot be significantly reduced by increasing the fitness of the model. Note that SiT-XL/2* is widely believed to be a convergent model with 1400 epochs of training on ImageNet256, yet it still suffers from the noise shift issue. As shown in Figure 3, NAG can consistently improve generation quality across various model sizes.

Sampling steps. Although NAG does not directly optimize the sampling steps, Figure 6(d) still shows that we can effectively save sampling steps after applying NAG. Notably, although NAG introduces a double forward pass to compute the guidance signal, we can use only around one-fifth of the sampling steps (50 steps compared to 250 steps) to achieve comparable sampling results.

486 **6 RELATED WORK**

487
 488 **Denoising generative models.** Denoising generative models, including diffusion models and flow-
 489 based models (Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020; Lipman et al., 2023), generate
 490 high quality samples from pure noise through an iterative denoising process. Recent progress in this
 491 field has primarily focused on noise schedules (Nichol & Dhariwal, 2021; Karras et al., 2022), training
 492 objectives (Salimans & Ho, 2021), and model architectures (Peebles & Xie, 2023; Ma et al., 2024),
 493 which aim to reduce approximation errors caused by limited model capacity. Another important
 494 direction is the development of faster denoising methods with fewer iterative steps, such as high
 495 order solvers (Bao et al., 2022; Lu et al., 2022) and improved interval modeling (Frans et al., 2025;
 496 Geng et al., 2025; Song et al., 2023). These works primarily address numerical errors introduced by
 497 discretized integration. In contrast, most prior studies have focused on eliminating specific sources of
 498 error. In this paper, we instead highlight a pervasive issue, namely noise shift, and demonstrate how
 499 addressing it alleviates the persistent sub optimality in the generation process.

500
 501
 502 **Training–inference misalignment.** Training–inference misalignment is a fundamental challenge
 503 that has accompanied the development of generative modeling. Modern generative models suffer
 504 from this issue severely, particularly due to their multistep sampling nature. In autoregressive models,
 505 each token is generated conditioned on previous model predictions, and accumulated errors propagate
 506 throughout the sampling chain, a well-known problem referred to as *exposure bias* (Bengio et al.,
 507 2015; Ranzato et al., 2015; Schmidt, 2019; Zhang et al., 2025). Recent works have investigated
 508 analogous misalignment phenomena in diffusion models (Ning et al., 2023a;b). Specifically, Ning et al.
 509 (2023b) aims to reduce generalization error under misalignment by improving the model’s Lipschitz
 510 continuity, while Li et al. (2023) manipulates the sampling schedule to mitigate the mismatch. Ning
 511 et al. (2023a) further proposes a training-free epsilon scaling method that rescales the removed noise
 512 at intermediate states. Compared to these works, our formulation of *noise shift* provides an empirical
 513 and objective perspective for quantifying the misalignment, and it naturally motivates the design of
 514 NAG as a direct method to mitigate this issue. The most related work, Abuduweili et al. (2025), also
 515 adopts a noise-level perspective to identify misalignment; however, their analysis remains primarily
 516 theoretical, lacks clear empirical quantification. Moreover, Abuduweili et al. (2025) relies on training
 517 an external model to correct the noise level, which limits its practicality.

518
 519 **Guidance techniques for condition generations.** Guidance has been shown to play a central role
 520 in conditional generation (Dhariwal & Nichol, 2021; Ho & Salimans, 2021), significantly improving
 521 alignment between generated samples and conditioning information. More recently, Kynkänniemi
 522 et al. (2024); Karras et al. (2024) proposed techniques to further improve the practical effectiveness
 523 of classifier free guidance. Our proposed Noise Awareness Guidance also falls into this category. To
 524 the best of our knowledge, it is the first method to explicitly use the noise level itself as a guidance
 525 signal, directly enhancing alignment with the intended noise condition.

526 **7 CONCLUSION**

527
 528 This paper presents a novel perspective by observing the behavior of the posterior noise level $p_t(t | \hat{x})$,
 529 and finds the noise shift issue that the empirically estimated posterior noise level $p_{\phi,t}(t | \hat{x})$ has
 530 a tendency toward a larger noise level. We analyze that the noise shift issue is a manifestation
 531 caused by a collection of errors from various sources and is widespread in the current denoising
 532 sampling process, and performing iterative denoising sampling under noise shifts leads to sub-optimal
 533 generations. We further provide a noise awareness guidance approach and its classifier-free variants
 534 to directly relieve the noise shift issue and achieve significant improvement by reducing the noise
 535 shift gap. We hope that our work will attract researchers to pay attention to the widespread training
 536 and inference misalignment in denoising generation and facilitate many possible future research
 537 directions, including theoretical or empirical analysis on the noise shift issue, building generative
 538 models that are robust to inference shift in sampling stages, exploring the boundary of high-quality
 539 generation, or faster sampling.

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of our results, we provide comprehensive details, including model
543 configurations, key hyperparameters, fine-tuning strategies, and the checkpoints used in Section 5
544 and Appendix B. We believe that, with these details, the main results can be reproduced with only a
545 few lines of modification to the official DiT and SiT codebases. For the posterior estimator g_ϕ , which
546 requires additional modifications, we will also make the corresponding code publicly available.

548 REFERENCES
549

550 Abulikemu Abuduweili, Chenyang Yuan, Changliu Liu, and Frank Permenter. Enhancing sample
551 generation of diffusion models using noise level correction. *Transactions on Machine Learning*
552 *Research*, 2025.

553 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
554 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

555 Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the optimal
556 reverse variance in diffusion probabilistic models. In *ICLR*, 2022.

557 Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
558 prediction with recurrent neural networks. *Advances in neural information processing systems*,
559 28, 2015.

560 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
561 nents with random forests. In *ECCV*, 2014.

562 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In *NeurIPS*,
563 2021.

564 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
565 function approximation in reinforcement learning. *Neural networks*, 107:3–11, 2018.

566 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
567 models. In *ICLR*, 2025.

568 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
569 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

570 Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

571 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
572 trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*, 2017.

573 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS*, 2021.

574 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
575 2020.

576 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
577 Fleet. Video diffusion models. In *NeurIPS*, 2022.

578 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
579 based generative models. In *NeurIPS*, 2022.

580 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
581 Guiding a diffusion model with a bad version of itself. In *NeurIPS*, 2024.

582 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
583 categorization. In *ICCV*, 2013.

584 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
585 precision and recall metric for assessing generative models. *NeurIPS*, 2019.

594 Tuomas Kynkänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
 595 Applying guidance in a limited interval improves sample and distribution quality in diffusion
 596 models. In NeurIPS, 2024.

597 Mingxiao Li, Tingyu Qu, Ruicong Yao, Wei Sun, and Marie-Francine Moens. Alleviating ex-
 598 posure bias in diffusion models through sampling with shifted time steps. arXiv preprint
 599 arXiv:2305.15583, 2023.

600 Peiyuan Liao, Xiuyu Li, Xihui Liu, and Kurt Keutzer. The artbench dataset: Benchmarking generative
 601 models with artworks. arXiv preprint arXiv:2206.11404, 2022.

602 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 603 for generative modeling. In ICLR, 2023.

604 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
 605 solver for diffusion probabilistic model sampling in around 10 steps. NeurIPS, 2022.

606 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
 607 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 608 transformers. In ECCV, 2024.

609 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 610 In ICML, 2021.

611 Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, and Itir Onal Ertugrul. Elucidating the
 612 exposure bias in diffusion models. arXiv preprint arXiv:2308.15321, 2023a.

613 Mang Ning, Enver Sangineto, Angelo Porrello, Simone Calderara, and Rita Cucchiara. Input
 614 perturbation reduces exposure bias in diffusion models. arXiv preprint arXiv:2301.11706, 2023b.

615 William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

616 Lukáš Picek, Milan Šulc, Jiří Matas, Thomas S Jeppesen, Jacob Heilmann-Clausen, Thomas Læssøe,
 617 and Tobias Frøslev. Danish fungi 2020-not just another image recognition dataset. In WACV,
 618 2022.

619 Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
 620 with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

621 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 622 resolution image synthesis with latent diffusion models. In CVPR, 2022.

623 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 624 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 625 text-to-image diffusion models with deep language understanding. In NeurIPS, 2022.

626 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 627 ICLR, 2021.

628 Florian Schmidt. Generalization in generation: A closer look at exposure bias. arXiv preprint
 629 arXiv:1910.00292, 2019.

630 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 631 In NeurIPS, 2019.

632 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 633 Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2020.

634 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023.

635 Volker Stahl, Alexander Fischer, and Rolf Bippus. Quantile based noise estimation for spectral
 636 subtraction and wiener filtering. In CASSP, 2000.

637 Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary for
 638 denoising generative models? In ICML, 2025.

648 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
649 birds-200-2011 dataset. 2011.

650

651 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
652 Large-scale scene recognition from abbey to zoo. In CVPR, 2010.

653 Junyu Zhang, Daochang Liu, Eunbyung Park, Shichao Zhang, and Chang Xu. Anti-exposure
654 bias in diffusion models. In ICLR, 2025. URL <https://openreview.net/forum?id=MtDd7rWok1>.

655

656 Jincheng Zhong, Xingzhuo Guo, Jiaxiang Dong, and Mingsheng Long. Diffusion tuning: Transferring
657 diffusion models via chain of forgetting. In NeurIPS, 2024.

658

659 Jincheng Zhong, XiangCheng Zhang, Jianmin Wang, and Mingsheng Long. Domain guidance: A
660 simple transfer approach for a pre-trained diffusion model. In ICLR, 2025.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A DERIVATION OF STATEMENT 1**
 703

704 We derive the expected noise shift δ in the presence of additive Gaussian error.
 705

706 Recall that the forward process is defined for a noise level $t \in [0, T]$ as
 707

$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}, \quad \text{where } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (13)$$

709 **Influence of error \mathbf{e} .** Consider an intermediate state perturbed by additive error:
 710

$$\hat{\mathbf{x}}_t = \mathbf{x}_t + \mathbf{e}, \quad (14)$$

712 where $\mathbf{e} \in \mathbb{R}^D$ is assumed to follow a zero-mean Gaussian distribution with unknown variance,
 713 $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma_e^2 \mathbf{I})$.

714 The perturbed state can be rewritten as
 715

$$\hat{\mathbf{x}}_t = \alpha_t \mathbf{x}_0 + (\sigma_t \boldsymbol{\epsilon} + \mathbf{e}). \quad (15)$$

717 Since $\boldsymbol{\epsilon}$ and \mathbf{e} are independent zero-mean Gaussians, their weighted sum is also Gaussian with
 718 variance

$$\text{Var}(\sigma_t \boldsymbol{\epsilon} + \mathbf{e}) = \sigma_t^2 \mathbf{I} + \sigma_e^2 \mathbf{I} = (\sigma_t^2 + \sigma_e^2) \mathbf{I}. \quad (16)$$

720 Thus, the distribution of $\hat{\mathbf{x}}_t$ is
 721

$$\hat{\mathbf{x}}_t \sim \mathcal{N}(\alpha_t \mathbf{x}_0, (\sigma_t^2 + \sigma_e^2) \mathbf{I}). \quad (17)$$

722 The perturbed state $\hat{\mathbf{x}}_t$ can be expressed in terms of the initial data \mathbf{x}_0 :
 723

$$\hat{\mathbf{x}}_t = (\alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}) + \mathbf{e} = \alpha_t \mathbf{x}_0 + (\sigma_t \boldsymbol{\epsilon} + \mathbf{e}). \quad (18)$$

725 **Definition of noise shift.** This distribution coincides with that of an intermediate state from the
 726 original forward process but evaluated at a shifted noise level $t' = t + \delta$. By definition, δ satisfies
 727

$$\sigma_{t+\delta}^2 = \sigma_t^2 + \sigma_e^2, \quad (19)$$

729 and the noise shift is defined as
 730

$$\delta = t' - t. \quad (20)$$

732 **First-order approximation.** Assume that σ_t is differentiable in t and that the error variance σ_e^2 is
 733 small, so that δ is also small. A first-order Taylor expansion of $\sigma_{t+\delta}$ around t gives
 734

$$\sigma_{t+\delta} \approx \sigma_t + \dot{\sigma}_t \delta, \quad (21)$$

736 where $\dot{\sigma}_t = \frac{d\sigma_t}{dt}$.
 737

738 By construction, $\sigma_{t+\delta} = \sqrt{\sigma_t^2 + \sigma_e^2}$. Substituting yields
 739

$$\sigma_t + \dot{\sigma}_t \delta \approx \sqrt{\sigma_t^2 + \sigma_e^2}. \quad (22)$$

741 **Result.** Solving for δ gives the following approximation for the noise shift:
 742

$$\delta \approx \frac{\sqrt{\sigma_t^2 + \sigma_e^2} - \sigma_t}{\dot{\sigma}_t}. \quad (23)$$

746 **B IMLEMENTATIONS**
 747

748 All experiments are conducted in PyTorch, based on the official DiT (Peebles & Xie, 2023) and
 749 SiT (Ma et al., 2024) codebases.
 750

751 **B.1 IMPLEMENTATION TO MAIN RESULTS**
 752

753 **Architecture configurations.** We follow the transformer architectures defined in DiT, using four
 754 different configurations for various model sizes: Small (S), Base (B), Large (L), and XLarge (XL). All
 755 models employ a patch size of 2, and latent states are obtained using the pre-trained Stable Diffusion
 tokenizer (Rombach et al., 2022). The detailed model architectures are provided in Table 3.

756
757
758 Table 3: **Configurations on DiTs and SiTs.**
759
760
761
762
763
764
765

configs	S/2	B/2	L/2	XL/2
params (M)	33	130	458	676
FLOPs (G)	6.0	23.0	80.7	118.6
depth	12	12	24	28
hidden dim	384	768	1024	1152
heads	6	12	16	16
patch size	2×2	2×2	2×2	2×2
latent encoder	SD-VAE(Rombach et al., 2022)			

766
767
768 **Sampler.** For DiT, we directly adopt the DDPM sampler from the official implementation³. For
769 SiT, we use the Euler–Maruyama sampler from its official implementation⁴, with the default setting
770 $w_t = \sigma_t$ in Equation 5, and the final step size set to 0.04.
771

772 **Guidance weights.** For all baselines with CFG, we keep the setting consistent with the original
773 results, using $w_{cfg} = 1.5$. For all results of NAG without CFG, we use $w_{nag} = 3.0$ by default. For
774 NAG combined with CFG, we set $w_{cfg} = 1.2$ and $w_{nag} = 2.0$ by default.
775

776 **Training configurations.** We retain most training configurations from DiT and SiT (Peebles
777 & Xie, 2023; Ma et al., 2024), without modifying decay schedules, warmup schedules, AdamW
778 hyperparameters, or applying additional data augmentation or gradient clipping. All results are
779 reported using an exponential moving average (EMA) of model weights with a decay of 0.9999. Our
780 training setup includes two scenarios on ImageNet: (1) training from random initialization (Figure 3);
781 and (2) fine-tuning off-the-shelf pre-trained models (1400 epochs) with an unconditional noise branch
782 (Table 1). Detailed configurations are summarized in Table 4.
783

784
785 Table 4: **Training Configurations on ImageNet**
786
787

configs	from scratch (Figure 3)	fine-tuning (Table 1)
training iterations	400K	50K
batch size	256	256
optimizer	AdamW	AdamW
$((\beta_1, \beta_2)$	(0.9,0.999)	(0.9,0.999)
noise dropout	10%	20%
learning rate	1×10^{-4}	1×10^{-5}

793
794 **Fine-tuning with noise condition dropout on ImageNet.** Compared to training from scratch,
795 fine-tuning requires more careful handling to avoid catastrophic forgetting of learned generative
796 capability. Following the strategy for class-unconditional inputs, we introduce a pseudo noise level
797 (i.e., 1001 for DiT, 1.001 for SiT) that remains consistent across inputs, rather than discarding noise
798 embeddings directly. In addition, we reduce the learning rate to one tenth of the original value
799 (1×10^{-5} instead of 1×10^{-4}) and double the noise dropout ratio to 20%. When training from
800 scratch, the choice of unconditional implementation has only a minor effect on training dynamics.
801

802 **Fine-tuning on new datasets.** We strictly follow the setup in Domain Guidance (Zhong et al.,
803 2025), using a constant learning rate of 1×10^{-4} and a batch size of 32 with the AdamW optimizer
804 for 24,000 iterations across all datasets. For NAG, we apply 10% noise dropout.
805

806 **FID calculation.** For fair comparison across benchmarks, we strictly follow the FID calculation
807 protocol used in the original implementation of each task. For ImageNet generation, we compute
808

809³<https://github.com/facebookresearch/DiT>

⁴<https://github.com/willisma/SiT>

810 FID scores between generated images (10K or 50K) and all available real images in the ImageNet
 811 training set, using ADM’s TensorFlow evaluation suite⁵ (Dhariwal & Nichol, 2021). For fine-tuning
 812 experiments on downstream datasets, we observe small performance variations between different FID
 813 implementations. To ensure consistency with results reported in (Zhong et al., 2025), we compute
 814 FID scores using a PyTorch implementation⁶, comparing 10K generated images against all available
 815 images in the test set for each downstream task.

816

817 B.2 IMPLEMENTATION OF EMPIRICAL POSTERIOR ESTIMATOR g_ϕ .

818

819 To empirically identify the noise shift issue, we rely on an external posterior estimator g_ϕ . Here we
 820 describe the construction of the estimator g_ϕ used in Section 3 and Section 5.3. All related code will
 821 be made publicly available.

822 To reduce computational costs, we fine-tune the existing SiT-XL/2 checkpoint (the same model used
 823 for ImageNet generation) by replacing its final layer with a noise level regressor. The regressor is
 824 implemented as a two-layer MLP applied to the globally averaged token: the first layer projects the
 825 hidden state from 1152 to 576 dimensions with SiLU activation (Elfwing et al., 2018), and the second
 826 layer outputs the predicted noise level.

827 We inherit the training pipeline and hyperparameters from the noise-condition fine-tuning setup
 828 on ImageNet described in Section B.1, including a learning rate of 1×10^{-5} , the same batch size,
 829 AdamW optimizer settings, and identical data preprocessing. The key difference is that the noise
 830 level is used as the prediction target rather than as an input condition. The model parameters ϕ are
 831 optimized by minimizing the L_2 loss between the predicted and true noise levels, with the noise
 832 condition input masked by a pseudo condition (set to 1.001 in practice).

833 The posterior model operates in the latent space obtained from the SD-VAE (Rombach et al., 2022),
 834 avoiding the need to transform noisy latent states back to image space. We train g_ϕ on ImageNet
 835 256×256 for 40 epochs (approximately 200K iterations), reaching a training loss of 0.0002. No
 836 EMA is applied to g_ϕ .

837 All probability density functions in this paper are plotted using kernel density estimation (KDE) with
 838 5,000 samples.

839 The samples are constructed in two steps. First, we randomly sample 5,000 images from ImageNet
 840 and generate 5,000 noise samples. We then linearly interpolate the images and noise following
 841 the linear schedule, producing 5,000 forward trajectories in which intermediate states share the
 842 same clean data point x_0 and noise ϵ . Second, we generate 5,000 reverse trajectories using the
 843 Euler–Maruyama SDE solver with 20 steps, incorporating the same class information, and save all
 844 intermediate states. In both cases, intermediate states within the same trajectory are tied to the same
 845 clean data point and noise. Finally, we compute the densities via KDE for samples associated with
 846 the same prior t and the same generation process.

847

848 C COMPARISON WITH PRIOR WORKS

849

850 In this section, we compare NAG with several prior works that also aim to address training–inference
 851 misalignment. The baselines include two training-free approaches, Epsilon Scaling (ES) (Ning
 852 et al., 2023a) and Time Shift (TS) (Li et al., 2023), as well as one training-intensive approach,
 853 Input Perturbation (IP) (Ning et al., 2023b). The results are provided in Table 5. NAG significantly
 854 outperforms all prior works, especially under the w/o CFG setup.

855 All these prior works rely on the assumption that model predictions during sampling tend to exhibit
 856 larger variance compared to those during training, and they apply manually designed matching
 857 strategies to compensate for this. ES scales the model predictions by a fixed hyperparameter, which
 858 may not be effective across all sampled states. TS searches for nearby time steps that better align
 859 with the inherent variance of the intermediate states, but this approach is sensitive to the number of

860
 861 ⁵<https://github.com/openai/guided-diffusion/tree/main/evaluations>

862
 863 ⁶<https://github.com/mseitzer/pytorch-fid>

Table 5: Full comparison on ImageNet 256×256 with DiT-XL/2 and SiT-XL/2. We fine-tune off-the-shelf DiT-XL/2 and SiT-XL/2 checkpoints for 10 additional epochs to support NAG sampling, with and without classifier-free guidance (CFG), following the original setups (Peebles & Xie, 2023; Ma et al., 2024). All metrics are reported on 50k generated images.

Model	Training Epochs	Generation w/o CFG			Generation w/ CFG		
		FID	Prec.	Rec.	FID	Prec.	Rec.
DiT-XL/2 (Peebles & Xie, 2023)	1400	9.62	0.67	0.67	2.27	0.83	0.57
+ ES (Ning et al., 2023a)	1400	12.25	0.63	0.69	2.20	0.79	0.60
+ TS (Li et al., 2023)	1400	13.14	0.64	0.62	3.70	0.75	0.60
+ IP (Ning et al., 2023b)	10+(1400*)	10.20	0.63	0.69	2.19	0.79	0.61
+ NAG (ours)	10+(1400*)	2.55	0.79	0.60	2.14	0.80	0.61
SiT-XL/2 (Ma et al., 2024)	1400	8.61	0.68	0.67	2.06	0.82	0.59
+ ES (Ning et al., 2023a)	1400	8.70	0.67	0.68	1.96	0.81	0.61
+ TS (Li et al., 2023)	1400	8.65	0.67	0.68	1.94	0.81	0.61
+ IP (Ning et al., 2023b)	10+(1400*)	8.06	0.68	0.67	1.95	0.81	0.59
+ NAG (ours)	10+(1400*)	2.26	0.75	0.66	1.72	0.77	0.66

sampling steps and the search window. IP introduces Lipschitz regularization by injecting additional noise into training samples, aiming to reduce the generalization error when x_t becomes misaligned with the conditioning input t . However, accumulated errors arise from multiple factors, not solely from model prediction errors. We believe that NAG benefits from avoiding explicit assumptions about the error structure and from being naturally adaptive throughout the sampling process.

The implementations for DiT-XL/2 of these prior works are based on their official repositories. Since these methods are not directly available for flow models, the results on SiT-XL/2 are obtained by reproducing their basic discrete implementations and extending them to continuous setups in our own codebase.

D MORE VISUALIZATION RESULTS WITH KERNEL DENSITY ESTIMATION

In this section, we provide the full probability density results of the estimated posterior t , as an extension of Figure 1 and Figure 5.

E THE USE OF LARGE LANGUAGE MODELS (LLMs)

We use large language models (LLMs) only as grammar checkers during paper writing.

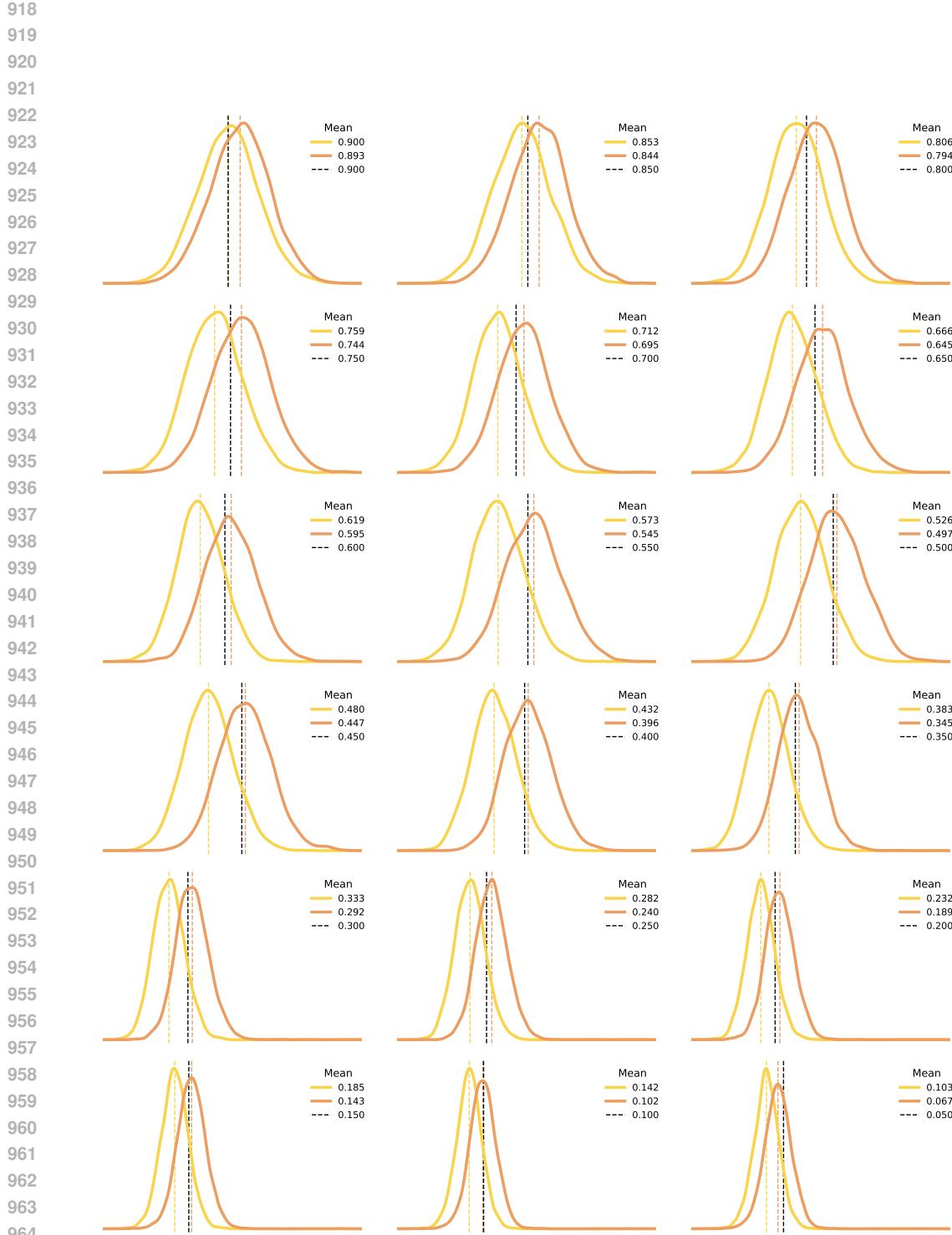


Figure 7: **More visualization of noise shift.** The yellow curves indicate the estimated probability density of the posterior $p_{\phi,t}(t | \hat{x})$ for sampled intermediate states \hat{x} , while the orange curves indicate the posterior $p_{\phi,t}(t | x)$ for intermediate states x stochastically interpolated from training data $x_0 \sim p_{\text{data}}(x_0)$ on ImageNet. The black indicator is the pre-defined t .

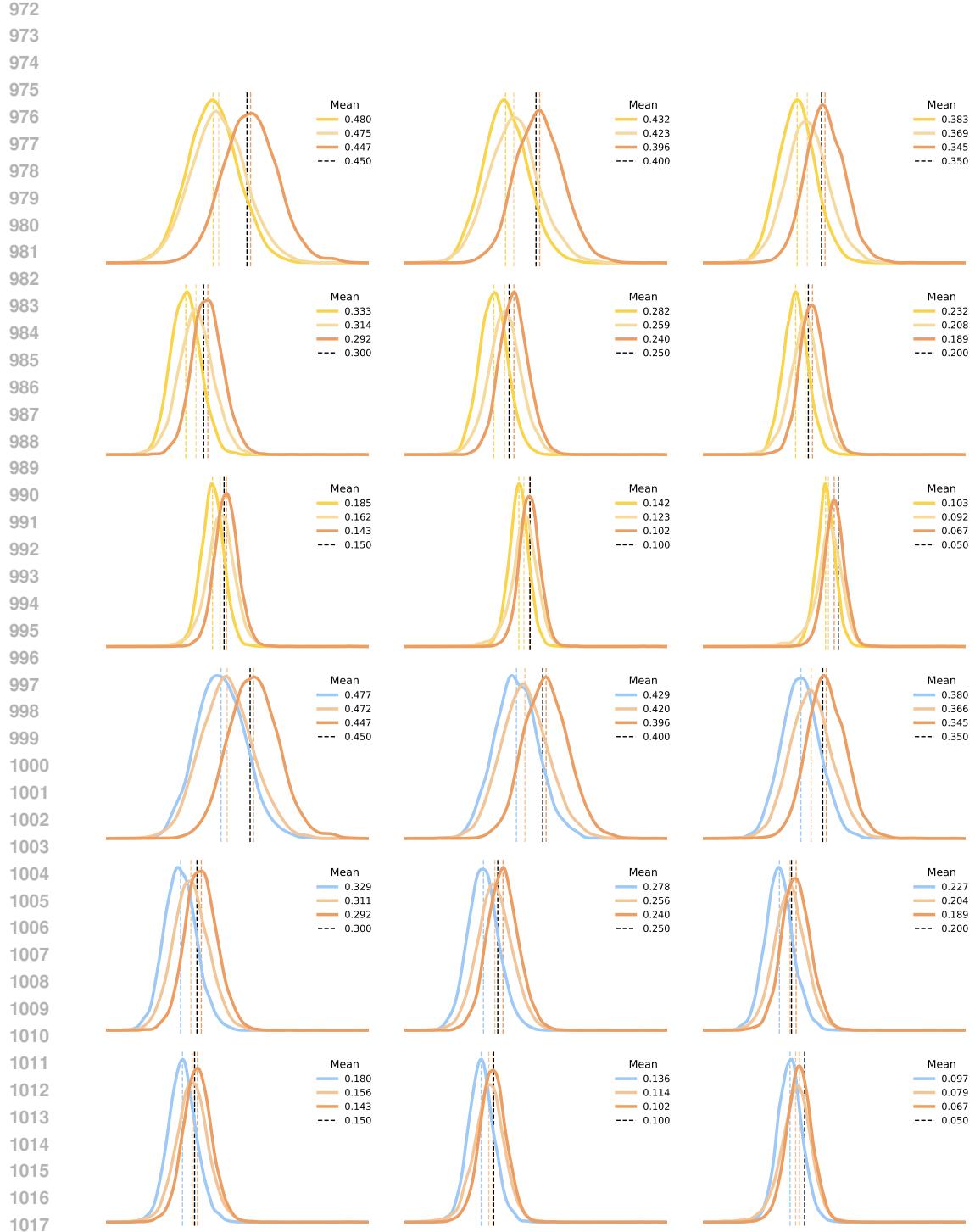


Figure 8: **Additional visualization of how NAG mitigates noise shift.** The yellow curves represent the estimated probability density of the posterior $p_{\phi,t}(t | \hat{x})$ for sampled intermediate states \hat{x} . The blue curve shows the density influenced by CFG, while the pale gold curve highlights the mitigating effect of NAG. The orange curves correspond to the posterior $p_{\phi,t}(t | x)$ for intermediate states x stochastically interpolated from training data $x_0 \sim p_{\text{data}}(x_0)$ on ImageNet. The black indicator denotes the pre-defined t .