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ABSTRACT

Existing denoising generative models rely on solving discretized reverse-time SDEs
or ODEs. In this paper, we identify a long-overlooked yet pervasive issue in this
family of models: a misalignment between the pre-defined noise level and the
actual noise level encoded in intermediate states during sampling. We refer to
this misalignment as noise shift. Through empirical analysis, we demonstrate that
noise shift is widespread in modern diffusion models and exhibits a systematic bias,
leading to sub-optimal generation due to both out-of-distribution generalization
and inaccurate denoising updates. To address this problem, we propose Noise
Awareness Guidance (NAG), a simple yet effective correction method that explicitly
steers sampling trajectories to remain consistent with the pre-defined noise schedule.
We further introduce a classifier-free variant of NAG, which jointly trains a noise-
conditional and a noise-unconditional model via noise-condition dropout, thereby
eliminating the need for external classifiers. Extensive experiments, including
ImageNet generation and various supervised fine-tuning tasks, show that NAG
consistently mitigates noise shift and substantially improves the generation quality
of mainstream diffusion models. Code will be released upon acceptance.

1 INTRODUCTION

Denoising-based generative models, such as diffusion models (Ho et al., 2020; Peebles & Xie, 2023)
and flow-based models (Lipman et al., 2023), have demonstrated remarkable scalability and achieved
state-of-the-art results across a wide range of visual generation tasks, including image synthesis (Ho
et al., 2020), video generation (Ho et al., 2022), and cross-modal generation (Saharia et al., 2022;
Rombach et al., 2022). The core principle of these models is to progressively recover a target sample
from pure noise. At each iteration, a neural network processes an intermediate state, which consists
of both signal and noise mixed in pre-defined proportions, and updates it to the next state according
to the network output and pre-defined coefficients.

During iterative sampling, the model is repeatedly applied and inevitably accumulates errors from
multiple sources, including imperfect network approximation, discretization in numerical integration,
and other stochastic factors. Recent studies have primarily focused on the discretization aspect,
aiming to accelerate generation by reducing the number of denoising steps (Geng et al., 2025; Song
et al., 2023; Lu et al., 2022), or on designing more effective diffusion architectures to increase model
capacity (Peebles & Xie, 2023; Ma et al., 2024; Karras et al., 2022). Nevertheless, accumulated
errors in such a complex system are unavoidable. A key manifestation of these errors is that the
noise level inherently encoded in intermediate states may deviate from the pre-defined schedule. This
misalignment, long overlooked by the community, is both widespread and rooted in the collective
effect of diverse error sources. We refer to this phenomenon as noise shift, which often leads to a
fundamental mismatch between training and inference in denoising networks.

In this work, we demonstrate that the noise shift manifests as a systematic drift toward larger noise
levels t′. We conduct an empirical analysis on recent advanced diffusion models (Ma et al., 2024)
for ImageNet generation. As illustrated in Figure 1, the noise shift issue is widespread and can be
directly observed using an external posterior noise-level estimator gϕ. This observable noise shift
δ indicates a clear mismatch: the actual noise encoded in intermediate states is not consistent with
the pre-defined noise levels, exhibiting a systematic tendency toward larger noise levels t′ = t+ δ.
To quantify noise shift, we compare the posterior estimation gϕ(t | x̂) of intermediate states during
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(a) Prior 𝑡 =	0.70 (b) Prior 𝑡 =	0.50 (c) Prior 𝑡 =	0.30

𝑝!,#(𝑡 ∣ 𝐱&)
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pure noise 𝑡 = 1.0 clean data 𝑡 = 0 

Figure 1: Empirical observation of noise shift. Denoising generative models suffer from a train-
ing–inference misalignment, where the posterior estimation during sampling tends to lean toward
larger noise levels. The yellow curves indicate the estimated probability density of the posterior
pϕ,t(t | x̂) for sampled intermediate states x̂, while the orange curves indicate the posterior pϕ,t(t | x)
for intermediate states x stochastically interpolated from training data x0 ∼ pdata(x0) on ImageNet.
The (a), (b), and (c) show comparisons between posterior estimates obtained at inference and training,
for prior noise levels t = 0.7, 0.5, and 0.3, respectively. All density functions are estimated via kernel
density estimation with 5,000 samples.

sampling with the posterior estimation gϕ(t | xt) of intermediate states from the forward process in
training, along with the reference of the corresponding pre-defined prior t.

This misalignment can lead to sub-optimal results in two ways: 1) noise shift introduces out-of-
distribution generalization issues, since the trained model is applied to a shifted intermediate state
sθ(xt+δ, t) rather than the intended sθ(xt, t). 2) noise shift causes sub-optimal denoising operations,
as the next state is computed using inaccurate pre-defined coefficients.

To address this issue, we propose Noise Awareness Guidance (NAG), a novel guidance correction
approach designed to mitigate the noise shift phenomenon. The key idea of NAG is to enable
denoising models to recognize the inherent noise level of a given intermediate state during sampling
and to generate a guidance signal that steers shifted samples back toward the accurate pre-defined
noise level. However, as discussed in prior works (Ho & Salimans, 2021; Dhariwal & Nichol,
2021), gradient-based guidance signals that rely on external classifiers suffer from several drawbacks,
including vulnerability to adversarial-like gradient manipulation, complex training pipelines, and the
need for additional costly training on noisy inputs. Inspired by the success of classifier-free guidance
(CFG) (Ho & Salimans, 2021), we further propose a classifier-free variant of NAG. Instead of relying
on the gradient of a separately trained noise estimator, classifier-free NAG combines the score
estimates of a noise-conditional diffusion model with those of a jointly trained noise-unconditional
model. This approach removes the dependency on external classifiers by applying noise-condition
dropout during training.

Empirically, we show that NAG substantially alleviates the noise shift issue, consistently leading to
significant improvements in the generation quality of mainstream denoising-based generative models.
Our comprehensive evaluations are conducted across two widely used base models: DiT (Peebles &
Xie, 2023) for diffusion models and SiT (Ma et al., 2024) for flow-based models. To demonstrate both
the effectiveness and generality of NAG, our evaluations cover two mainstream use cases of modern
denoising generative models: 1) We show that NAG can be directly incorporated into DiT and SiT
to improve ImageNet conditional generation, highlighting that foundation model development can
benefit from our approach. 2) We conduct supervised fine-tuning experiments on small downstream
datasets, verifying the effectiveness of NAG in supervised fine-tuning scenarios.

Overall, our contributions can be summarized as follows:

• We identify the noise shift issue, which is widespread in existing denoising generative
models but has long been overlooked. Through empirical analysis with an external noise
estimator on ImageNet generation tasks, we reveal the severity of this issue.

• We propose a novel and concise approach, Noise Awareness Guidance (NAG), to mitigate
the noise shift issue. We further introduce its classifier-free variant, which can be more
easily incorporated into mainstream denoising generative models.
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• We conduct comprehensive experiments validating the effectiveness and generality of NAG,
providing strong evidence that it mitigates the noise shift issue and leads to significant
improvements in both ImageNet generation and supervised fine-tuning tasks.

2 PRELIMIARY

We begin by reviewing denoising generative models under the unified framework of stochastic
interpolants (Albergo et al., 2023). Throughout this section, we adopt the notation of Ma et al. (2024).
Both diffusion and flow-based models can be understood as stochastic processes that gradually
transform a noise sample from simple prior distributions, typically a standard Gaussian ϵ ∼ N (0, I),
into a data sample from the complex target distribution x0 ∼ pdata(x0).

Forward process. Let x0 ∼ pdata(x0) be a sample from the data distribution. We define a
continuous-time stochastic interpolant over t ∈ [0, T ]:

xt = αtx0 + σtϵ, α0 = σT = 1, αT = σ0 = 0, (1)
where αt is monotonically decreasing and σt is monotonically increasing (Lipman et al., 2023; Ma
et al., 2024). This formulation interpolates smoothly between the clean data (t = 0) and pure noise
(t = T ).

Probability flow ODE. Given the forward process, the dynamics of xt can be equivalently described
by a probability flow ordinary differential equation (PF ODE):

ẋt = v(xt, t), (2)

where the velocity field is given by
v(x, t) = E[ẋt | xt = x] = α̇t E[x0 | xt = x] + σ̇t E[ϵ | xt = x]. (3)

In practice, the velocity is parameterized by a neural network vθ(x, t), trained with the objective

Lv(θ) := Ex0,ϵ,t

[∥∥vθ(xt, t)− α̇tx0 − σ̇tϵ
∥∥2] . (4)

Since the ODE solution at time t matches the marginal distribution pt(x) of xt, samples can be
generated by integrating Equation 2 backward from xT = ϵ ∼ N (0, I) using standard ODE solvers.

Reverse-time SDE. Equivalently, the marginals pt(x) are consistent with the reverse-time stochas-
tic differential equation (SDE):

dxt = v(xt, t) dt− 1
2wts(xt, t) dt+

√
wt dŵt, (5)

where ŵt is a reverse-time Wiener process, wt > 0 is a diffusion coefficient, and s(x, t) =
∇x log pt(x) is the score function. The score can be expressed either as a conditional expecta-
tion

s(x, t) = −σ−1
t E[ϵ | xt = x], (6)

or equivalently in terms of the velocity field:

s(x, t) = −σ−1
t

αtv(x, t)− α̇tx

α̇tσt − αtσ̇t
. (7)

Thus, data can also be generated by solving Equation 5 with the same velocity model vθ(x, t).

Conditional generation Let pt(x | y) is the density that xt is condtioned on some variable y. If
pt(y | x) is known, we can sample from pt(x | y) by solving a conditional reverse-time SDE where
the conditional score defined as:

s(x, t | y) = ∇x log pt(x | y) = ∇x log pt(x) +∇x log pt(y | x). (8)
In practice, we can build a seperate neural network to model pt(y | x) on noisy data, following
classifier guidance (Dhariwal & Nichol, 2021; Song et al., 2020). Note that pt(y | x) ∝ pt(x |
y)p−1

t (x), we can derive the classifier-free guidance sampling (Ho & Salimans, 2021). Empirically,
classifier-free guidance achieves significant performance.

For simplicity, we primarily consider the linear interpolant with T = 1, αt = 1 − t, and σt = t,
following Ma et al. (2024). Nevertheless, our analysis extends naturally to other formulations such
as DDPM (Ho et al., 2020), which employ discretized dynamics, alternative schedules (αt, σt), or
different model parameterizations.
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3 NOISE SHIFT ISSUE IN THE DENOISING PROCESS

We identify a misalignment between the training distribution pt(x), obtained from clean data samples
x0 ∼ pdata(x0), and the intermediate distribution pt(x̂) encountered during the numerical solution
of the SDE or ODE. Conceptually, this misalignment can be diagnosed by comparing the posterior
pt(t | x) inferred from perturbed states with the pre-defined prior p(t).

In practice, accumulated errors e from multiple sources—such as imperfect network approximation,
discretization error, and other modeling inaccuracies—can be viewed as an additional Gaussian
perturbation applied to xt, where x̂t = xt + e, where e ∼ N (0, σ2

eI). This perturbation increases
the effective variance from σ2

t to σ2
t + σ2

e , making the perturbed state behave as if it were sampled at
a shifted noise level t′ = t+ δ, where

σ2
t+δ = σ2

t + σ2
e . (9)

We refer to the discrepancy δ = t′ − t as the noise shift.

Statement 1 (Relation between noise shift and additive error). Given the forward process defined
in Equation 1, consider an additive error e ∼ N (0, σ2

eI). When the error variance σ2
e is small, the

shift δ admits a first-order approximation:

δ ≈
√
σ2
t + σ2

e − σt

σ̇t
, (10)

where σ̇t = dσt/dt. (See Appendix A for full derivations.)

Intuitively, Statement 1 shows that accumulated errors push the effective variance in x̂t toward a
later noise level t′ = t + δ, where δ > 0, causing a systematic bias. For example, in the linear
interpolation case σt = t, the shift reduces to δ =

√
σ2
t + σ2

e − σt, illustrating that perturbed states
tend to be interpreted as noisier than intended. Although based on simplified assumptions, this
analysis qualitatively captures the nature of noise shift in practical denoising processes.

Empirical analysis. To better illustrate the noise shift issue, we conduct empirical simulations on
ImageNet at 256× 256 resolution using the pre-trained SiT-XL/2 model, which was trained for 1,400
epochs Previous studies (Sun et al., 2025; Stahl et al., 2000) suggest that for high-dimensional data
such as images, the posterior pt(t | x) concentrates sharply (similar to a Dirac delta), making the
noise level t encoded in x reliably estimable. Motivated by this, we train a noise estimator gϕ(t | x)
on the ImageNet 256× 256 dataset1.

Empirical comparisons between the estimated posterior distributions pϕ,t(t | x̂) are shown in Figure 1.
Consistent with Statement 1, we observe that the estimated posterior distribution pϕ,t(t | x̂) (yellow
curve) shifts toward larger values of the pre-defined prior t, demonstrating that the noise shift
phenomenon is widespread in the denoising stage. Additionally, the orange curve shows the posterior
estimation on samples generated from ImageNet through the forward process in Equation 1, serving
as evidence of the accuracy of gϕ on ground-truth intermediate states.

In particular, intermediate states with mid-level noise exhibit substantial systematic overestimation
by gϕ, highlighting a clear misalignment between the training and inference distributions. Further
results at more noise levels t can be found in the Appendix D.

The effect of noise shift δ. While our empirical analysis is constrained by the accuracy of the noise
estimator, the observed noise shift δ can still be regarded as a sufficient but not necessary condition
for indicating sub-optimal behavior in the denoising stage.

This pervasive noise shift affects the entire sampling trajectory in two primary ways: 1) The learned
velocity field vθ(x, t) suffers from out-of-distribution errors, since the model operates on perturbed
intermediate states with shifted noise levels δ. If the noise-conditioned network vθ(x, t) satisfies
a Lipschitz condition in x, the resulting model error can be bounded by Lx∥e∥, where Lx is the
Lipschitz constant. 2) The misalignment in t introduces errors in the SDE coefficients αt and σt

during reverse-time integration. Consequently, the denoising process becomes sub-optimal under the
influence of noise shift.

1Implementation details of the noise estimator are provided in the Appendix B.2
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(c) Guidance with noise conditions (NAG)

Figure 2: Conceptual comparison of guidance behaviors based on class information and noise
awareness. (a) A conceptual example of noise shift, where x̂t is drifted to a larger noise level by δ.
(b) Class-conditional guidance pushes the trajectory toward regions aligned with the class condition
c. (c) Noise-aware guidance instead pushes x̂t toward the position better aligned with the intended
noise level t from the pre-defined prior. NAG explicitly targets the noise shift issue.

As discussed above, δ can be interpreted as a collection of errors originating from various sources,
making it unrealistic to eliminate completely. Notably, reducing δ to zero is not a sufficient condition
for generating better images. For instance, if an intermediate sample corresponds to an image that
is entirely out of distribution, generation will still fail due to the limited capability of the model.
Nevertheless, since the existence of noise shift always induces some degree of misalignment, our
qualitative findings provide valuable insights into the design of corrective methods.

4 NOISE AWARENESS GUIDANCE

In this section, we introduce the core concept of Noise Awareness Guidance (NAG), which directly
addresses the noise shift issue. We interpret the shift δ as the misalignment between the sampled state
x̂t and its intended noise condition t. Inspired by conditional guidance methods (Dhariwal & Nichol,
2021; Song et al., 2020), we propose a mechanism that explicitly steers the sampling trajectory to
remain consistent with the pre-defined noise schedule. Our key insight is that by reinforcing the
conditioning on t, the posterior pt(t | x̂) along the reverse-time SDE (or ODE) trajectory remains
closer to the pre-defined t, thereby mitigating the noise shift δ.

Noise awareness guidance. The noise-conditional score can be written as

s(x | t) = ∇x log pt(x | t) = ∇x log pt(x) +∇x log pt(t | x). (11)

Analogous to Equation 8, if pt(t | x) were available, we could sample from pt(x | t) by solving the
conditional reverse-time SDE in Equation 11. As discussed in Section 3, the posterior pt(t | x) can
be reliably estimated from a noisy data point xt. Intuitively, we can guide the sampling trajectory
with ∇ log gϕ(t | x) as the guidance signal, where gϕ is the posterior estimator model in Section 3.
Since it relies on being aware of the accurate noise level encoded in an intermediate state. We refer to
this approach as Noise Awareness Guidance (NAG). As the gradient ∇ log gϕ(t | x) is provided by
an external posterior estimator gϕ, we call this formulation classifier-based NAG.

Classifier-free noise awareness guidance. Despite its effectiveness, classifier-based NAG inherits
the drawbacks of classifier guidance (Dhariwal & Nichol, 2021; Song et al., 2020), including the high
computational cost of training an external posterior estimator for t, increased pipeline complexity,
and the risk of adversarial-like behavior in explicit classifiers. To address these issues, we extend the
idea of classifier-free guidance (CFG) (Ho & Salimans, 2021) to NAG.

Noting that pt(t | x) ∝ pt(x | t)/pt(x), we can utilize a score mixture to approximate the gradient
of an implicit noise predictor as

swnag(x | t) = (wnag + 1) s(x | t)− wnag s(x), (12)

where wnag is the guidance parameter for NAG. Importantly, modern denoising models already accept
the noise level t along with the intermediate state x, inherently defining the conditional score s(x | t).
Thus, we only need access to the unconditional score s(x), without explicitly training a separate
noise-level predictor. To implement NAG, we follow the training strategy of CFG: during training, the
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noise condition t is randomly dropped with a fixed probability, allowing the model to share weights
between conditional and unconditional objectives.

Discussion and relation to CFG. The mechanism of NAG can be intuitively understood in analogy
to CFG. From the perspective of conditional generation, sampling without NAG corresponds to
relying solely on the conditional score model. By strengthening the conditioning on t, NAG guides
the trajectory toward lower-temperature regions where the model produces higher-confidence samples,
ensuring that each intermediate state remains aligned with its intended noise level.

As illustrated in Figure 2, the noise-level conditioning axis introduced by NAG is orthogonal to the
conditional axis of CFG, providing complementary control over the sampling process. It is worth
noting that because the noise shift δ arises from various sources, CFG empirically mitigates it to some
extent, as it biases sampling toward lower-temperature regions where models are more confident.
However, compared to this indirect effect of CFG, NAG directly targets the reduction of δ and thereby
constructs improved sampling trajectories. Figure 4 visualizes the mitigating effect on noise shift by
different methods.

5 EXPERIMENTS

In this section, we present a comprehensive empirical analysis to demonstrate the effectiveness and
generality of NAG. Our study considers two settings: (1) standard ImageNet generation benchmarks
(Section 5.1) and (2) supervised fine-tuning off-the-shelf models on small, fine-grained datasets
(Section 5.2). These experiments provide evidence of NAG’s compatibility with two widely used
scenarios: large-scale foundation model training and supervised fine-tuning. Section 5.3 presents
more discussion on empirical analysis of noise shift δ.

5.1 NAG FOR IMAGENET GENERATION

Implementation details. Our experiments are conducted on two representative variants of denoising
generative models: DiTs (Peebles & Xie, 2023) for diffusion-based models and SiTs (Ma et al.,
2024) for flow-based models. We faithfully follow the experimental setups described in the DiT and
SiT papers, unless otherwise specified. All experiments are performed at a resolution of 256× 256
(denoted as ImageNet 256× 256), where 32× 32× 4 latent vectors are obtained using the pre-trained
Stable Diffusion VAE tokenizer (Rombach et al., 2022). For model configurations, we adopt the
S/2, B/2, L/2, and XL/2 variants introduced in the DiT and SiT papers (Peebles & Xie, 2023; Ma
et al., 2024), all of which process inputs with a patch size of 2. For experiments trained from random
initialization, we train for 80 epochs and apply a 10% dropout probability on the noise conditions.
Due to computational limitations, evaluations on fully converged XL/2 models are instead conducted
by fine-tuning for an additional 10 epochs on off-the-shelf checkpoints pre-trained for 1,400 epochs
with 20% noise dropout. Additional experimental details are provided in Appendix B.

Evaluation. For experiments with DiT, we follow the default setup using 250 DDPM sampling
steps (Peebles & Xie, 2023). For SiT, consistent with its original setup, we always adopt the
SDE–Euler–Maruyama sampler with 250 sampling steps (Ma et al., 2024). For experiments across
different architectures of DiTs and SiTs, we report the Fréchet Inception Distance (FID) (Heusel
et al., 2017) computed with 10,000 samples. For converged results, to enable direct comparison with
the original papers, we report FID, precision (Prec.), and recall (Rec.) (Kynkäänniemi et al., 2019)
computed with 50,000 samples by default.

Comparison. Figure 3 presents the results of training DiTs and SiTs from scratch across various
architectures. The results show that NAG consistently brings substantial improvements over the
baselines. An interesting observation is that DiTs benefit more from NAG than SiTs when trained for
80 epochs. This may arise from the different training schedules: the DDPM-style setup used in DiTs
could lead to better training of the noise-unconditional branch, thereby providing a more accurate
guidance direction for NAG. Notably, for extensively pre-trained models, it is sufficient to fine-tune
only the noise-unconditional branch at a small fraction of the original cost (e.g., 10% additional
epochs, approximately 0.7% of the full 1,400-epoch pre-training cost) to enable the model to apply
NAG. Remarkably, using NAG alone allows the model to achieve generation quality close to that of
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Table 1: Converged comparsions on ImageNet 256× 256 with DiT-XL/2 and SiT-XL/2. We
fine-tune off-the-shelf DiT-XL/2 and SiT-XL/2 checkpoints for an additional 10 epochs to support
NAG sampling, with and without classifier-free guidance (CFG), following the setup in the original
papers (Peebles & Xie, 2023; Ma et al., 2024). All metrics are reported on 50k generated images.

Model Training
Epoches

Generation w/o CFG Generation w/ CFG
FID Prec. Rec. FID Prec. Rec.

DiT-XL/2 (Peebles & Xie, 2023) 1400 9.62 0.67 0.67 2.27 0.83 0.57
+NAG (ours) 10+(1400∗) 2.59 0.79 0.60 2.14 0.80 0.61
SiT-XL/2 (Ma et al., 2024) 1400 8.61 0.68 0.67 2.06 0.82 0.59
+NAG (ours) 10+(1400∗) 2.26 0.75 0.66 1.72 0.77 0.66

(d) Model XL/2(a) Model S/2 (b) Model B/2 (c) Model L/2

w/o NAG
w/ NAG

FI
D

-1
0K

Figure 3: FID comparison of vanilla DiTs and SiTs on ImageNet 256 × 256 after 80 epochs of
training. Classifier-free guidance (CFG) is not used. All metrics are computed with 10K samples.

a CFG-guided model. Moreover, when combined with CFG, NAG continues to provide additional
improvements, demonstrating that its mechanism is complementary and orthogonal to CFG.

5.2 NAG FOR SUPERVISED FINE-TUNING

Implementation Details. Supervised fine-tuning of an off-the-shelf pre-trained checkpoint to a
new domain is a fundamental task in generative modeling. To further demonstrate the general
effectiveness of NAG, we conduct supervised fine-tuning evaluations following the setups in Zhong
et al. (2025; 2024). Specifically, we evaluate NAG on fine-tuning DiT-XL/22 across seven well-
established fine-grained downstream datasets: Food101 (Bossard et al., 2014), SUN397 (Xiao et al.,
2010), DF20-Mini (Picek et al., 2022), Caltech101 (Griffin et al., 2007), CUB-200-2011 (Wah et al.,
2011), ArtBench-10 (Liao et al., 2022), and Stanford Cars (Krause et al., 2013). We fine-tune for
24,000 steps with a batch size of 32 at 256× 256 resolution for each task. The compared baselines
include vanilla generation, generation with classifier-free guidance (CFG), and Domain Guidance
(DoG) (Zhong et al., 2025). Notably, DoG is a guidance method specifically designed for fine-tuning
scenarios. To demonstrate both the fundamental effect and generality of NAG, we directly apply it
on top of these baselines without any modifications, except for introducing noise-dropout training
to support the noise-unconditional branch. Detailed implementation information is provided in
Appendix B.

Evaluations. Followling the setup in (Zhong et al., 2025), all results are generated with 50 DDPM
sampling steps. and the FIDs are computed with 10,000 samples.

Results. The FID comparisons across various fine-tuning tasks are summarized in Table 2. The
results indicate that NAG is highly general and exhibits strong compatibility across different baselines,
benchmarks, and guidance approaches. Consistent with the ImageNet results, NAG alone achieves
performance comparable to sampling with CFG. Furthermore, Table 2 shows that both CFG-guided
sampling and DoG-guided sampling can be substantially improved by NAG. This broad compatibility
highlights that the noise shift issue is indeed widespread in denoising-based generation, and that NAG,
by directly addressing this issue, can consistently improve generation quality across various baselines.
Notably, Domain Guidance (DoG) (Zhong et al., 2025), a CFG variant specifically designed for
supervised fine-tuning, also benefits from NAG, with significant improvements observed in Table 2.

2https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt
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Table 2: FID Comparisons on fine-tuning tasks with pre-trained DiT-XL-2-256x256.

Method
Dataset Food SUN Caltech CUB

Bird
Stanford

Car DF-20M ArtBench Average
FID

Fine-tuning (w/o CFG) 16.04 21.41 31.34 9.81 11.29 17.92 22.76 18.65
+ NAG (ours) 11.18 14.95 24.32 5.68 5.92 14.79 19.22 13.72

Fine-tuning (with CFG) 10.93 14.13 23.84 5.37 6.32 15.29 19.94 13.69
+ NAG (ours) 5.78 8.81 21.87 3.52 3.91 12.55 15.69 10.31

Fine-tuning (with DoG) 9.25 11.69 23.05 3.52 4.38 12.22 16.76 11.55
+ NAG (ours) 6.45 8.24 21.88 3.41 4.21 11.38 14.80 10.05

(a) Estimated 𝑝!,# 𝑡 𝐱$ − 𝑡 (b) Estimated 𝑝!,# 𝑡 𝐱$ − 𝑝!,# 𝑡 𝐱

w/o CFG
w/ CFG

NAG w/o CFG
NAG w/ CFG

𝐱!~𝑝"#$#

Figure 4: Comparisons of the estimated posterior pϕ(t | x) on ImageNet 256 × 256 with a
converged SiT/XL-2 model. (a) Noise shift across the entire sampling process, computed as the
difference between the estimated posterior pϕ(t | x̂) and the pre-defined prior t. The visualization
shows that noise shift δ becomes increasingly severe as sampling progresses. (b) Noise shift measured
between the estimated pϕ(t | x̂) and pϕ(t | x), where x is generated from real data. This comparison
reflects the training–inference misalignment while accounting for the inherent inaccuracy of gϕ.

5.3 EMPIRICAL OBSERVATIONS OF NOISE SHIFT WITH NAG

We present a detailed empirical analysis based on the estimator gϕ, as an expansion beyond Section 3.

As the sampling process progresses, the noise shift can be divided into two stages. In the first stage,
the shift increases steadily until it reaches a threshold (e.g., when the signal-to-noise ratio is around 1).
In the second stage, the shift plateaus, remaining relatively stable as the actual noise level decreases
from 0.5 to 0. When intermediate states approach the data distribution at very low noise levels, the
estimated noise shift relative to the pre-defined prior t tends to be overestimated. This occurs because
gϕ applied to intermediate states x generated from real data suffers from larger estimation errors due
to its limited capability in this regime. This overestimate can be viewed in Figure 4(a) and released
by mean normalization in Figure 4(b).

As shown in Figure 4, NAG primarily influences the sampling process when the signal-to-noise ratio
is larger than 1 (roughly t ≈ 0.5), effectively reducing the noise shift in this range. In contrast, its
effect is less pronounced in the early denoising stage, where the signal-to-noise ratio is low. Figure 5
further illustrates that NAG shifts the density of intermediate states toward the posterior pϕ,t(t | x)
estimated from real data, and hence closer to the pre-defined prior t.

Classifier-free guidance (CFG) (Ho & Salimans, 2021) is known to steer the sampling trajectory
toward low-temperature regions associated with the target class, thereby producing higher-quality
samples within high-confidence regions. This can be interpreted as a reduction of model fitting errors.
Since noise shift δ reflects the accumulation of errors from multiple sources, CFG also reduces noise
shift to some extent (as observed in Figure 1(a–b)). However, its effect remains indirect and limited,
as CFG primarily mitigates errors along the class-conditional dimension. In contrast, Figures 4
and 5(c–d) demonstrate that NAG can be directly applied on top of CFG-guided models, substantially
reducing the remaining noise shift.

It is important to clarify that eliminating the estimated noise shift δ is not a sufficient condition for
achieving optimal generation, since potential pitfalls may lie in the imperfect accuracy of the noise
estimator or in other complex factors. Nevertheless, the presence of a distinguishable noise shift
during sampling is a sufficient condition for sub-optimal generation. This observation motivates us to
address the noise shift issue directly.
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(a) Prior 𝑡 =	0.40 (b) Prior 𝑡 =	0.15 (d) Prior 𝑡 = 0.15 (c) Prior 𝑡 =	0.40

w/o CFG
NAG w/o CFG

𝐱!~𝑝"#$#

w/ CFG
NAG w/ CFG

𝐱!~𝑝"#$#

Figure 5: Empirical observations of NAG mitigating the noise shift δ. (a–b) Effects of NAG
without interference from CFG. (c–d) Compatibility of NAG under CFG, showing that NAG addresses
the noise shift directly, rather than relying on the indirect effects of CFG.

5.4 ABLATION ANALYSIS

In this section, we provide extensive ablation analysis on several factors, including wnag, the number
of sampling steps, and model sizes. The main analysis results are shown in Figure 6.

(a) Effect of NAG weight 𝑤!"# on FID (b) Effect of NAG weight 𝑤!"# on Recall
w/o NAG
w/ NAG

w/o NAG
w/ NAG

(c) Estimated 𝑝$,& 𝑡 𝐱% − 𝑝$,& 𝑡 𝐱 across different model sizes (d) Effect of sampling steps on FID

SiT-XL/2
DiT-XL/2

SiT-XL/2
DiT-XL/2

Figure 6: Sensitivity analysis of Noise Awareness Guidance (NAG).

NAG weight wnag. We conduct analysis on how wnag influences the sampling results with NAG, as
shown in Figure 6(a–b). As a guidance-based technique, NAG shows a similar effect to CFG; namely,
with increasing wnag, the diversity will be sacrificed, which can be seen as a form of temperature
controlling in denoising generation, even though NAG does not incorporate any class information.

Can better fitness of the denoising model reduce noise shift? An intuitive question is that, since
model prediction errors contribute to part of the noise shift, can we mitigate the noise shift by building
stronger networks, such as increasing model size or training for many more iterations? Unfortunately,
Figure 6(c) shows that the empirical noise shift always falls within a relatively stable range and
cannot be significantly reduced by increasing the fitness of the model. Note that SiT-XL/2∗ is widely
believed to be a convergent model with 1400 epochs of training on ImageNet256, yet it still suffers
from the noise shift issue. As shown in Figure 3, NAG can consistently improve generation quality
across various model sizes.

Sampling steps. Although NAG does not directly optimize the sampling steps, Figure 6(d) still
shows that we can effectively save sampling steps after applying NAG. Notably, although NAG
introduces a double forward pass to compute the guidance signal, we can use only around one-fifth of
the sampling steps (50 steps compared to 250 steps) to achieve comparable sampling results.
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6 RELATED WORK

Denoising generative models. Denoising generative models, including diffusion models and flow-
based models (Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020; Lipman et al., 2023), generate
high quality samples from pure noise through an iterative denoising process. Recent progress in this
field has primarily focused on noise schedules (Nichol & Dhariwal, 2021; Karras et al., 2022), training
objectives (Salimans & Ho, 2021), and model architectures (Peebles & Xie, 2023; Ma et al., 2024),
which aim to reduce approximation errors caused by limited model capacity. Another important
direction is the development of faster denoising methods with fewer iterative steps, such as high
order solvers (Bao et al., 2022; Lu et al., 2022) and improved interval modeling (Frans et al., 2025;
Geng et al., 2025; Song et al., 2023). These works primarily address numerical errors introduced by
discretized integration. In contrast, most prior studies have focused on eliminating specific sources of
error. In this paper, we instead highlight a pervasive issue, namely noise shift, and demonstrate how
addressing it alleviates the persistent sub optimality in the generation process.

Training–inference misalignment. Training–inference misalignment is a fundamental challenge
that has accompanied the development of generative modeling. Modern generative models suffer
from this issue severely, particularly due to their multistep sampling nature. In autoregressive models,
each token is generated conditioned on previous model predictions, and accumulated errors propagate
throughout the sampling chain, a well-known problem referred to as exposure bias (Bengio et al.,
2015; Ranzato et al., 2015; Schmidt, 2019; Zhang et al., 2025). Recent works have investigated
analogous misalignment phenomena in diffusion models (Ning et al., 2023a;b). Specifically, Ning et al.
(2023b) aims to reduce generalization error under misalignment by improving the model’s Lipschitz
continuity, while Li et al. (2023) manipulates the sampling schedule to mitigate the mismatch. Ning
et al. (2023a) further proposes a training-free epsilon scaling method that rescales the removed noise
at intermediate states. Compared to these works, our formulation of noise shift provides an empirical
and objective perspective for quantifying the misalignment, and it naturally motivates the design of
NAG as a direct method to mitigate this issue. The most related work, Abuduweili et al. (2025), also
adopts a noise-level perspective to identify misalignment; however, their analysis remains primarily
theoretical, lacks clear empirical quantification. Moreover, Abuduweili et al. (2025) relies on training
an external model to correct the noise level, which limits its practicality.

Guidance techniques for condition generations. Guidance has been shown to play a central role
in conditional generation (Dhariwal & Nichol, 2021; Ho & Salimans, 2021), significantly improving
alignment between generated samples and conditioning information. More recently, Kynkäänniemi
et al. (2024); Karras et al. (2024) proposed techniques to further improve the practical effectiveness
of classifier free guidance. Our proposed Noise Awareness Guidance also falls into this category. To
the best of our knowledge, it is the first method to explicitly use the noise level itself as a guidance
signal, directly enhancing alignment with the intended noise condition.

7 CONCLUSION

This paper presents a novel perspective by observing the behavior of the posterior noise level pt(t | x̂),
and finds the noise shift issue that the empirically estimated posterior noise level pϕ,t(t | x̂) has
a tendency toward a larger noise level. We analyze that the noise shift issue is a manifestation
caused by a collection of errors from various sources and is widespread in the current denoising
sampling process, and performing iterative denoising sampling under noise shifts leads to sub-optimal
generations. We further provide a noise awareness guidance approach and its classifier-free variants
to directly relieve the noise shift issue and achieve significant improvement by reducing the noise
shift gap. We hope that our work will attract researchers to pay attention to the widespread training
and inference misalignment in denoising generation and facilitate many possible future research
directions, including theoretical or empirical analysis on the noise shift issue, building generative
models that are robust to inference shift in sampling stages, exploring the boundary of high-quality
generation, or faster sampling.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide comprehensive details, including model
configurations, key hyperparameters, fine-tuning strategies, and the checkpoints used in Section 5
and Appendix B. We believe that, with these details, the main results can be reproduced with only a
few lines of modification to the official DiT and SiT codebases. For the posterior estimator gϕ, which
requires additional modifications, we will also make the corresponding code publicly available.
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Lukáš Picek, Milan Šulc, Jiří Matas, Thomas S Jeppesen, Jacob Heilmann-Clausen, Thomas Læssøe,
and Tobias Frøslev. Danish fungi 2020-not just another image recognition dataset. In WACV,
2022.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In NeurIPS, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
ICLR, 2021.

Florian Schmidt. Generalization in generation: A closer look at exposure bias. arXiv preprint
arXiv:1910.00292, 2019.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023.

Volker Stahl, Alexander Fischer, and Rolf Bippus. Quantile based noise estimation for spectral
subtraction and wiener filtering. In CASSP, 2000.

Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary for
denoising generative models? In ICML, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In CVPR, 2010.

Junyu Zhang, Daochang Liu, Eunbyung Park, Shichao Zhang, and Chang Xu. Anti-exposure
bias in diffusion models. In ICLR, 2025. URL https://openreview.net/forum?id=
MtDd7rWok1.

Jincheng Zhong, Xingzhuo Guo, Jiaxiang Dong, and Mingsheng Long. Diffusion tuning: Transferring
diffusion models via chain of forgetting. In NeurIPS, 2024.

Jincheng Zhong, XiangCheng Zhang, Jianmin Wang, and Mingsheng Long. Domain guidance: A
simple transfer approach for a pre-trained diffusion model. In ICLR, 2025.

13

https://openreview.net/forum?id=MtDd7rWok1
https://openreview.net/forum?id=MtDd7rWok1


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DERIVATION OF STATEMENT 1

We derive the expected noise shift δ in the presence of additive Gaussian error.

Recall that the forward process is defined for a noise level t ∈ [0, T ] as

xt = αtx0 + σtϵ, where ϵ ∼ N (0, I). (13)

Influence of error e. Consider an intermediate state perturbed by additive error:

x̂t = xt + e, (14)

where e ∈ RD is assumed to follow a zero-mean Gaussian distribution with unknown variance,
e ∼ N (0, σ2

eI).

The perturbed state can be rewritten as

x̂t = αtx0 +
(
σtϵ+ e

)
. (15)

Since ϵ and e are independent zero-mean Gaussians, their weighted sum is also Gaussian with
variance

Var(σtϵ+ e) = σ2
t I+ σ2

eI = (σ2
t + σ2

e)I. (16)
Thus, the distribution of x̂t is

x̂t ∼ N
(
αtx0, (σ

2
t + σ2

e)I
)
. (17)

The perturbed state x̂t can be expressed in terms of the initial data x0:

x̂t = (αtx0 + σtϵ) + e = αtx0 + (σtϵ+ e). (18)

Definition of noise shift. This distribution coincides with that of an intermediate state from the
original forward process but evaluated at a shifted noise level t′ = t+ δ. By definition, δ satisfies

σ2
t+δ = σ2

t + σ2
e , (19)

and the noise shift is defined as
δ = t′ − t. (20)

First-order approximation. Assume that σt is differentiable in t and that the error variance σ2
e is

small, so that δ is also small. A first-order Taylor expansion of σt+δ around t gives

σt+δ ≈ σt + σ̇t δ, (21)

where σ̇t =
dσt

dt .

By construction, σt+δ =
√
σ2
t + σ2

e . Substituting yields

σt + σ̇t δ ≈
√

σ2
t + σ2

e . (22)

Result. Solving for δ gives the following approximation for the noise shift:

δ ≈
√
σ2
t + σ2

e − σt

σ̇t
. (23)

B IMLEMENTATIONS

All experiments are conducted in PyTorch, based on the official DiT (Peebles & Xie, 2023) and
SiT (Ma et al., 2024) codebases.

B.1 IMPLEMENTATION TO MAIN RESULTS

Architecture configurations. We follow the transformer architectures defined in DiT, using four
different configurations for various model sizes: Small (S), Base (B), Large (L), and XLarge (XL). All
models employ a patch size of 2, and latent states are obtained using the pre-trained Stable Diffusion
tokenizer (Rombach et al., 2022). The detailed model architectures are provided in Table 3.
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Table 3: Configurations on DiTs and SiTs.

configs S/2 B/2 L/2 XL/2

params (M) 33 130 458 676
FLOPs (G) 6.0 23.0 80.7 118.6
depth 12 12 24 28
hidden dim 384 768 1024 1152
heads 6 12 16 16
patch size 2×2 2×2 2× 2 2× 2
latent encoder SD-VAE(Rombach et al., 2022)

Sampler. For DiT, we directly adopt the DDPM sampler from the official implementation3. For
SiT, we use the Euler–Maruyama sampler from its official implementation4, with the default setting
wt = σt in Equation 5, and the final step size set to 0.04.

Guidance weights. For all baselines with CFG, we keep the setting consistent with the original
results, using wcfg = 1.5. For all results of NAG without CFG, we use wnag = 3.0 by default. For
NAG combined with CFG, we set wcfg = 1.2 and wnag = 2.0 by default.

Training configurations. We retain most training configurations from DiT and SiT (Peebles
& Xie, 2023; Ma et al., 2024), without modifying decay schedules, warmup schedules, AdamW
hyperparameters, or applying additional data augmentation or gradient clipping. All results are
reported using an exponential moving average (EMA) of model weights with a decay of 0.9999. Our
training setup includes two scenarios on ImageNet: (1) training from random initialization (Figure 3);
and (2) fine-tuning off-the-shelf pre-trained models (1400 epochs) with an unconditional noise branch
(Table 1). Detailed configurations are summarized in Table 4.

Table 4: Training Configurations on ImageNet

configs from scratch (Figure 3) fine-tuning (Table 1)

training iterations 400K 50K
batch size 256 256
optimizer AdamW AdamW
((β1, β2) (0.9,0.999) (0.9,0.999)
noise dropout 10% 20%
learning rate 1× 10−4 1× 10−5

Fine-tuning with noise condition dropout on ImageNet. Compared to training from scratch,
fine-tuning requires more careful handling to avoid catastrophic forgetting of learned generative
capability. Following the strategy for class-unconditional inputs, we introduce a pseudo noise level
(i.e., 1001 for DiT, 1.001 for SiT) that remains consistent across inputs, rather than discarding noise
embeddings directly. In addition, we reduce the learning rate to one tenth of the original value
(1 × 10−5 instead of 1 × 10−4) and double the noise dropout ratio to 20%. When training from
scratch, the choice of unconditional implementation has only a minor effect on training dynamics.

Fine-tuning on new datasets. We strictly follow the setup in Domain Guidance (Zhong et al.,
2025), using a constant learning rate of 1× 10−4 and a batch size of 32 with the AdamW optimizer
for 24,000 iterations across all datasets. For NAG, we apply 10% noise dropout.

FID calculation. For fair comparison across benchmarks, we strictly follow the FID calculation
protocol used in the original implementation of each task. For ImageNet generation, we compute

3https://github.com/facebookresearch/DiT
4https://github.com/willisma/SiT
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FID scores between generated images (10K or 50K) and all available real images in the ImageNet
training set, using ADM’s TensorFlow evaluation suite5 (Dhariwal & Nichol, 2021). For fine-tuning
experiments on downstream datasets, we observe small performance variations between different FID
implementations. To ensure consistency with results reported in (Zhong et al., 2025), we compute
FID scores using a PyTorch implementation6, comparing 10K generated images against all available
images in the test set for each downstream task.

B.2 IMPLEMENTATION OF EMPIRICAL POSTERIOR ESTIMATOR gϕ .

To empirically identify the noise shift issue, we rely on an external posterior estimator gϕ. Here we
describe the construction of the estimator gϕ used in Section 3 and Section 5.3. All related code will
be made publicly available.

To reduce computational costs, we fine-tune the existing SiT-XL/2 checkpoint (the same model used
for ImageNet generation) by replacing its final layer with a noise level regressor. The regressor is
implemented as a two-layer MLP applied to the globally averaged token: the first layer projects the
hidden state from 1152 to 576 dimensions with SiLU activation (Elfwing et al., 2018), and the second
layer outputs the predicted noise level.

We inherit the training pipeline and hyperparameters from the noise-condition fine-tuning setup
on ImageNet described in Section B.1, including a learning rate of 1× 10−5, the same batch size,
AdamW optimizer settings, and identical data preprocessing. The key difference is that the noise
level is used as the prediction target rather than as an input condition. The model parameters ϕ are
optimized by minimizing the L2 loss between the predicted and true noise levels, with the noise
condition input masked by a pseudo condition (set to 1.001 in practice).

The posterior model operates in the latent space obtained from the SD-VAE (Rombach et al., 2022),
avoiding the need to transform noisy latent states back to image space. We train gϕ on ImageNet
256 × 256 for 40 epochs (approximately 200K iterations), reaching a training loss of 0.0002. No
EMA is applied to gϕ.

All probability density functions in this paper are plotted using kernel density estimation (KDE) with
5,000 samples.

The samples are constructed in two steps. First, we randomly sample 5,000 images from ImageNet
and generate 5,000 noise samples. We then linearly interpolate the images and noise following
the linear schedule, producing 5,000 forward trajectories in which intermediate states share the
same clean data point x0 and noise ϵ. Second, we generate 5,000 reverse trajectories using the
Euler–Maruyama SDE solver with 20 steps, incorporating the same class information, and save all
intermediate states. In both cases, intermediate states within the same trajectory are tied to the same
clean data point and noise. Finally, we compute the densities via KDE for samples associated with
the same prior t and the same generation process.

C COMPARISON WITH PRIOR WORKS

In this section, we compare NAG with several prior works that also aim to address training–inference
misalignment. The baselines include two training-free approaches, Epsilon Scaling (ES) (Ning
et al., 2023a) and Time Shift (TS) (Li et al., 2023), as well as one training-intensive approach,
Input Perturbation (IP) (Ning et al., 2023b). The results are provided in Table 5. NAG significantly
outperforms all prior works, especially under the w/o CFG setup.

All these prior works rely on the assumption that model predictions during sampling tend to exhibit
larger variance compared to those during training, and they apply manually designed matching
strategies to compensate for this. ES scales the model predictions by a fixed hyperparameter, which
may not be effective across all sampled states. TS searches for nearby time steps that better align
with the inherent variance of the intermediate states, but this approach is sensitive to the number of

5https://github.com/openai/guided-diffusion/tree/main/evaluations
6https://github.com/mseitzer/pytorch-fid
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Table 5: Full comparison on ImageNet 256× 256 with DiT-XL/2 and SiT-XL/2. We fine-tune
off-the-shelf DiT-XL/2 and SiT-XL/2 checkpoints for 10 additional epochs to support NAG sampling,
with and without classifier-free guidance (CFG), following the original setups (Peebles & Xie, 2023;
Ma et al., 2024). All metrics are reported on 50k generated images.

Model Training
Epochs

Generation w/o CFG Generation w/ CFG
FID Prec. Rec. FID Prec. Rec.

DiT-XL/2 (Peebles & Xie, 2023) 1400 9.62 0.67 0.67 2.27 0.83 0.57
+ ES (Ning et al., 2023a) 1400 12.25 0.63 0.69 2.20 0.79 0.60
+ TS (Li et al., 2023) 1400 13.14 0.64 0.62 3.70 0.75 0.60
+ IP (Ning et al., 2023b) 10+(1400∗) 10.20 0.63 0.69 2.19 0.79 0.61
+ NAG (ours) 10+(1400∗) 2.55 0.79 0.60 2.14 0.80 0.61

SiT-XL/2 (Ma et al., 2024) 1400 8.61 0.68 0.67 2.06 0.82 0.59
+ ES (Ning et al., 2023a) 1400 8.70 0.67 0.68 1.96 0.81 0.61
+ TS (Li et al., 2023) 1400 8.65 0.67 0.68 1.94 0.81 0.61
+ IP (Ning et al., 2023b) 10+(1400∗) 8.06 0.68 0.67 1.95 0.81 0.59
+ NAG (ours) 10+(1400∗) 2.26 0.75 0.66 1.72 0.77 0.66

sampling steps and the search window. IP introduces Lipschitz regularization by injecting additional
noise into training samples, aiming to reduce the generalization error when xt becomes misaligned
with the conditioning input t. However, accumulated errors arise from multiple factors, not solely
from model prediction errors. We believe that NAG benefits from avoiding explicit assumptions
about the error structure and from being naturally adaptive throughout the sampling process.

The implementations for DiT-XL/2 of these prior works are based on their official repositories. Since
these methods are not directly available for flow models, the results on SiT-XL/2 are obtained by
reproducing their basic discrete implementations and extending them to continuous setups in our own
codebase.

D MORE VISUALIZATION RESULTS WITH KERNEL DENSITY ESTIMATION

In this section, we provide the full probability density results of the estimated posterior t, as an
extension of Figure 1 and Figure 5.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use large language models (LLMs) only as grammar checkers during paper writing.
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Figure 7: More visualization of noise shift. The yellow curves indicate the estimated probability
density of the posterior pϕ,t(t | x̂) for sampled intermediate states x̂, while the orange curves indicate
the posterior pϕ,t(t | x) for intermediate states x stochastically interpolated from training data
x0 ∼ pdata(x0) on ImageNet. The black indicator is the pre-defined t.
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Figure 8: Additional visualization of how NAG mitigates noise shift. The yellow curves represent
the estimated probability density of the posterior pϕ,t(t | x̂) for sampled intermediate states x̂. The
blue curve shows the density influenced by CFG, while the pale gold curve highlights the mitigating
effect of NAG. The orange curves correspond to the posterior pϕ,t(t | x) for intermediate states
x stochastically interpolated from training data x0 ∼ pdata(x0) on ImageNet. The black indicator
denotes the pre-defined t.
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