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Abstract—Contrastive Learning is a paradigm for learning
representation functions that recover useful similarity structure
in a dataset based on samples of positive (similar) and negative
(dissimilar) instances. The quality of the learned representations
depends crucially on the degree to which the strategies for
sampling positive and negative instances reflect useful structure
in the data. Typically, positive instances are sampled by randomly
perturbing an anchor point using some form of data augmentation.
However, not all randomly sampled positive instances are equally
effective. In this paper, we analyze strategies for sampling more
effective positive instances. We consider a setting where class
structure in the observed data derives from analogous structure
in an unobserved latent space. We propose active sampling
approaches for positive instances and investigate their role in
effectively learning representation functions which recover the
class structure in the underlying latent space.

Index Terms—Contrastive Learning, Active Learning

I. INTRODUCTION

Representation learning is a central task in Machine Learning
which seeks to identify useful structure in high-dimensional
data and encode this structure in representations that are
useful for downstream tasks. Representations may be learned
from labeled (supervised learning) or unlabeled training data
(unsupervised learning). Recently, contrastive learning has
received a surge of interest in the representation learning
community [van den Oord et al., 2018, Bachman et al.,
2019, Chen et al., 2020, Khosla et al., 2020, Zbontar et al.,
2021]. In contrastive learning, a representation function is
trained to approximately recover similarity structure in the data
using pairs of similar and dissimilar observations as a proxy.
Applications in a wide range of domains [van den Oord et al.,
2018], including Computer Vision [Bachman et al., 2019, Ma
et al., 2021], Natural Language Processing [Gao et al., 2021,
Meng et al., 2021] and Medical Imaging [Fedorov et al., 2021],
have demonstrated the promise of contrastive learning.

The representation function is trained using samples of
positive (similar) and negative (dissimilar) instances. Positive
instances may be generated via data augmentations such as
cropping, flipping or blurring of images (Computer Vision)
or via sampling of adjacent sentences (Natural Language Pro-
cessing). Negative instances are often generated by randomly
sampling other images in a data set or other sentences in a
corpus. The quality of the resulting representation function
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depends crucially on the quality of the positive and negative
instances used for training, i.e., how informative they are about
salient structure in the underlying distribution. In this paper, we
investigate how the choice of sampling strategies may impact
the quality of the learned representation function and how we
can use such insight to design effective sampling strategies.
We focus on the sampling of positive instances. We consider
a setting where the learner has access to high-dimensional
observations generated from unobserved latent variables that
are sampled from a hidden latent space. We seek to train
a representation function which approximately recovers low-
dimensional structure (latent classes) in the hidden latent space
(Figure 1). In practise, representation functions are evaluated
with respect to how well simple prediction functions built on
top of them perform on downstream tasks. Here, we analyze
the quality of our learned representation function with respect
to its ability to recover class structure in the hidden latent
space. Our contributions are as follows:

1) First, we propose and analyze an iterative contrastive
learning approach (Alg. 1) which seeks to select positive
instances that uncover weaknesses in the representation
function. We propose to actively sample instances near
the decision boundary of a classifier trained in the
reconstructed latent space. We present both theoretical
and experimental evidence for the strategy’s effectiveness.

2) Second, we assume that useful structure in the observations
depends strongly on an informative subset of latents and
weakly on the remaining uninformative latents. We study
active sampling strategies (Alg. 2) that generate positive
instances with a bias towards capturing variability in the
informative subset of latents. We present experimental
evidence for the effectiveness of such a strategy.

II. BACKGROUND AND NOTATION

A. Latent Variable Model

We consider the following latent variable model (illustrated
in Fig. 1): Let X ⊆ Rd be the space of observations and
Z ⊆ Rk (k ≤ d) the space of latent variables. We observe
x ∈ X , generated by a map g : Z → X ∈ G, which we assume
to be smooth and nonzero. We follow standard convention in
the literature and identify Z with the unit hypersphere Sk−1.
Recall that Sk−1 = {z ∈ Rk : zT z = 1}. The metric on



Fig. 1: Contrastive learning in the latent variable model.
Sk−1 is given by the great-circle distance, i.e., d(z, z′) =
arccos(zT z′) ∈ [0, π] ∀z, z′ ∈ Sk−1.

In the following we assume a latent class structure in Z ,
i.e., we have classes C = {C1, C2, . . . } ⊆ Z (class labels are
denoted with lower case letters, i.e., c1, c2, . . . .), each defined
by a certain region on the hypersphere, which, geometrically,
corresponds to a spherical cap. Let c ∼ pc denote a distribution
over the latent classes and z ∼ pc(z) the uniform distribution
over the class c. Furthermore, (z, z+) ∼ p(z+|z)pc(z) denotes
a positive pair of latent variables sampled conditioned on the
class c, where we first sample an anchor point z given c and
then a positive instance z+ conditioned on z. Negative instances
are sampled from the marginal over Z , i.e., by drawing c′ ∼ pc,
z− ∼ pc′(z). Let pdata(·|c) denote a data distribution on X
and ppos(·|x, c) a distribution of positive instances x+ on X ,
conditioned on an anchor point x. For any observation x ∈ X ,
p(z|x, c) denotes the (unknown) posterior distribution over the
true latent variables that generated x.

B. Contrastive Loss
Our goal is to learn a representation function f : X →

Sk−1 ∈ F that recovers the latent variables from observations.
In particular, f defines a distribution p(z̃|x, c) over recon-
structed latent variables given an observation x. We want to
learn f contrastively, i.e., by minimizing the contrastive loss:

Lcontr(f ; τ,m) := (II.1)

E
(x,x+)∼ppos

x−
i ∼pdata

[
− log

e
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)T f(x+)
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]
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The contrastive loss (II.1) learns representations that are similar
for positive pairs and dissimilar for randomly sampled negative
pairs. In the following, we denote the reconstructed latent
space as Z̃ and use the notation z̃ := h(z) = (f ◦ g), where
f ≈ argminf∈F Lcontr(f). The superscript ∼ will indicate
an object in the reconstructed latent space. The minimum
f∗ ∈ argminf∈F Lcontr(f) can be seen as an inversion of
the generative map g [Zimmermann et al., 2021], i.e., the
composition h∗ := f∗ ◦ g preserves the alignment between
latent variables. Note that this requires that h∗ preserves the dot
products between positive pairs (z, z+) up to a constant, i.e.,
κzT z+ = h∗(z)Th∗(z+) (with κ > 0), which is equivalent to
requiring that h∗ locally reconstructs the latent space up to
linear and orthogonal transformation. Further details are given
in the supplemental (sec. S.1).

III. INFORMATIVE POSITIVE INSTANCES FOR RECOVERING
LATENT CLASS STRUCTURE

Our goal is to identify a class structure C̃ = {C̃1, C̃2, . . . } ⊆
Z̃ in the reconstructed latent space that recovers the latent
classes C = {C1, C2, . . . } ⊆ Z in the true latent space. We
propose contrastive learning approaches that sample positive
instances, which are informative about the latent class structure,
with the goal of training representation functions more effi-
ciently. We first consider a setting where we know the number
of classes C and that they are linearly separable. Our iterative
contrastive learning algorithm (Alg. 1) samples mt new positive
and negative instances in round t and trains an updated repre-
sentation function ft using initialization ft−1. This approach
will compute some approximation f̂ ≈ minf∈F Lcontr to the
global minimizer f∗. We define the reconstruction error of
f̂ with respect to erroneous class labels: we say that f̂ ∈ F
is α-accurate, if for z ∼ pz we have that z ∈ Ci implies
z̃ = (g ◦ f)(z) ∈ C̃i with probability 1− α.

The key idea of our active sampling approach is to sample
positive instances that uncover the weaknesses of f̂ . Fig. 2
illustrates the motivation behind our approach schematically:
Due to the inaccuracies in the representation function, it may
happen that positive pairs are correctly labeled as being in the
same class in the true latent space, but not in the reconstructed
latent space. For example, instances x+ ∈ X generated from
latents that are close to a hyperplane separating two classes
in Z (marked in red) could help us identify inaccuracies in f̂ ,
if their representations f̂(x+) are misclassified by a classifier
learned in Z̃ . We formalize this observation below and describe
sampling approaches for generating such “informative” positive
instances. Below, we describe three strategies for sampling
positive instances (Alg. 1(i)-(iii) and Fig. 2).

Fig. 2: Sampling positive instances. Positive instances for an
anchor point (black), sampled actively (x+

act) or adversarially
(x+

adv), can improve over random augmentation (x+
ran). The

image of actively instances (f(x+
act)) lies close to the decision

boundary of our classifier qt (acceptance region shown in red).
The image of adversarial instances (f(x+

adv)) is closest to the
decision boundary or may transgress it if the reconstructed
classes are not separable due to representation error.

A. Sampling strategies for positive pairs

1) Random augmentation: In practise, positive instances
are often sampled via random augmentation of an anchor
point. The augmentation method is highly dependent on the
application domain: For images, the anchor might be rotated
or cropped to generate a positive instance. In video analysis,



Algorithm 1 Active selection of positive pairs
1: Learn initial f0 ∈ F and classifier q0 based on D0.
2: for t = 0, 1, . . . , T − 1 do
3: for i = 0, . . . ,mt − 1 do
4: Sample anchor c ∼ pc, xi ∼ pdata(·|c).
5: (i) Random: Sample x+

i ∼ ppos(·|xi, c).
6: (ii) Active: Sample x+

i ∼ ppos(·|xi, c).
7: If

∣∣wt · f(x+
i )

∣∣ ≥ at: Continue.
8: (iii) Adversarial:
9: Set x+

i ← argmaxx∈X l ({qt(ft(x))− qt(ft(xi))}).
10: end for
11: Dt+1 := {(xi, x

+
i ;x

−
i ∼ pdata)}mt

j=1 ∪ Dt

12: Learn ft+1 ∈ argminf∈F Lcontr(f) over Dt+1,
with initialization ft. Learn qt+1.

13: end for

one may choose adjacent frames as positive pairs. Similarly,
when working with text, positive pairs may be generated by
choosing adjacent sentences or dropping different subsets of
words from the same text sequence. Our baseline approach
emulates these classical augmentation techniques in an abstract
setting: we begin by sampling an anchor point x, generated
from a randomly selected latent class. The positive instance
is then generated via augmentation, in our case random
perturbation of the anchor point. We evaluate the quality of our
representation function by testing its ability to recover the latent
class structure. For this, we learn a classifier q : Z̃ → R|C|,
q(f(x)) := Wf(x) = W (f ◦ g)(z), in the reconstructed latent
space. Our heuristic description of the class structure at the
beginning of the section can be formalized as follows: Let
γ > 0 denote a margin, such that there exist w1, . . . , w|C| ∈ Rd

with
∑|C|

i=1 ∥wi∥2 < 1, such that for latents z ∼ pc, we have
⟨z, wc⟩ ≥ γ

2 and ⟨z, wc′⟩ ≤ −γ
2 for all c ̸= c′, i.e., the latent

classes C are separable. Given access to observations x ∈ X ,
generated by g, and a contrastively learned representation
function f that reconstructs the latent space Z̃ , we can learn an
“optimal” matrix W ∈ R|C|×d to obtain the classifier q in Z̃ .
In this setting, we have the following generalization bound on
the performance of the contrastively learned representations:

Theorem 3.1: Let γ > 0 (fixed) denote the margin in the
true latent space and γ̃ ≤ γ the margin in the reconstructed
latent space. For any δ > 0 we have with probability at least
1− δ that (ρ′ := 1/(1− ρ))

Lclass(f) ≤ ρ′
(
L̂un(f)− ρ

)
+ ρ′

4LαRD(F) +

√
log 1

δ

2|D|


for all f ∈ F . Here, Lclass characterizes the classification er-

ror, L̂un the empirical error; RD(F) denotes the Rademacher
complexity of the function class F and Lα ≤ 2

γ̃ (1−2α) and ρ
the probability of sampling a false negative instance, i.e., the
probability of sampling twice from the same class.
The theorem builds on an extension of [Saunshi et al., 2019,
Thm. 4.1] to our latent variable model described above. We
defer all proof details to the supplemental (sec. S.2.2).

Positive instances (x, x+) sampled via random augmentation
will differ in their effectiveness, with some being more
informative about the underlying latent class structure than

others: consider a set D0 ⊆ Z , which contains samples from
two latent classes that are linearly separable with margin γ. If
our contrastive approach learns a representation function ft that
is α-accurate, then, due to representation error, h(D0) ⊆ Z̃
will be separable with a smaller margin γ̃ < γ only. Hence,
instances that lie close to the decision boundary will be more
challenging to classify in that they preserve the class label
in the true latent space Z , but not in the reconstructed latent
space Z̃ . Such positive pairs are particularly informative for
learning good representations. Can we encourage the sampling
of such positive instances over less informative ones?

2) Active selection of positive instances: The first alternative
approach that we discuss selects positive instances actively. In
round t we can learn a classifier qt−1 in Z̃ , which is consistent
with the representations of instances in Dt−1. Then we sample
a new anchor point x and generate a positive instance x+ via
random augmentation. In contrast to the baseline approach,
we accept the positive instance only if it is close to the
decision boundary of qt−1. Instances that are far away from
the decision boundary are assumed to be less informative and
will be rejected (Alg. 1, line 6). This setting encourages the
sampling of positive instances of the type described above.
Recall that, in practise, we do not have access to the error of
the current representation function (i.e., to the parameter α) and
consequently also not to the margin γ̃ in the reconstructed latent
space. However, we know that the desired positive instances
lie near the decision boundary of our classifier qt, so we can
encourage our algorithm to sample from this region (Fig. 2,
marked red; characterized by choice of hyperparameter at
in Alg. 1). Below, we will see experimental evidence for
the advantage of the active strategy over the baseline (see
Table I). We can also analyze the advantage of active sampling
theoretically. For this, we pick two classes and focus on the
problem of learning a separator between them. This reduces
the problem to a binary classification task. (An extension to the
multi-class case follows from analogous arguments.) Formally,
let |C| = 2 and C± := {z|(z,±1) ∈ Sk−1 × C} ⊆ Z . We
assume that C+, C− are linearly separable with margin γ. Our
goal is to to learn a classifier in Z̃ that recovers the latent
structure defined by {C+, C−} ⊆ Z , i.e., we want to learn a
classifier that separates {C̃+, C̃−} ⊆ Z̃ . Note that our active
sampling strategy for positive instances resembles classical
active learning techniques for binary classification [Balcan
et al., 2007]. To compare the efficiency of the active sampling
strategy and the baseline, we compare the number of samples
(mt) that we need to draw in each round to ensure convergence.
We see that the active approach allows for a much reduced
sample size, indicating that representation functions can be
trained more efficiently via active selection of positive instances.
Formally, we have the following result:

Theorem 3.2: For any δ, ϵ > 0, we can recover the class
structure up to error ϵ with probability 1− δ with (1) sample
complexity m = O(dϵ ) for random augmentations (Alg. 1(i))
and (2) sample complexity m = O

(
d3/2 log( 1ϵ )

)
for active

selection (Alg. 1(ii), with rejection threshold at =
π

2t−1 ).
The parameter at may be chosen via hyperparameter search.



We defer all proof details to the supplemental (sec. S.2.3).
3) Adversarial augmentation: We briefly discuss a second

active sampling strategy, which generates positive instances via
adversarial augmentations. Here, we seek to select the most
margin-transgressing positive instance by applying targeted
perturbations to the anchor. In round t, we locally maximize
the loss with respect to the classifier qt that we learned based
on the representation function ft (Alg. 1(iii)), i.e., we solve

argmax
x∈X

l ({qt(ft(x))− qt(ft(xi))}) (III.1)

with a suitable loss function l (e.g., squared loss). The selection
of such targeted augmentations may further reduce the number
of labels m that we need to add in each iteration. However,
solving the optimization problem in Eq. III.1 for each positive
instance iterations is computationally challenging in practise.

B. Experiments

Parameters Baseline Active Double-active

nlat nobs N

48 256 200 0.937 0.951 0.945
48 512 200 0.946 0.955 0.955
64 512 200 0.907 0.916 0.901
64 256 500 0.903 0.907 0.927
64 1024 500 0.922 0.920 0.927

TABLE I: Results for Algorithm 1 for two latent classes, nlat

latent dimensions, nobs observed dimensions. We report the
highest classification accuracy reached after N updates.

We train representation functions with positives sampled
in the reconstructed latent space. In each iteration t, positive
and negative instances are sampled for a set of anchor points
and then added to the training data Dt. We then train a
representation function ft using the standard contrastive loss
(Eq. II.1). Representations are evaluated in terms of their ability
to recover the latent class structure. For this, we learn a classifier
qt in the reconstructed latent space and report its accuracy.
All data is synthetic and sampled from the unit hypersphere.
To define class-conditioned distributions in the true latent
space, we define a class mean on the unit hypersphere, add
isotropic Gaussian noise with a predefined standard deviation
and renormalize to unit length. We investigate the following
four scenarios, which employ different passive and active
sampling strategies:

1) Baseline: Anchor points and positive instances are sam-
pled from the baseline prior (resembling Alg. 1(i)).

2) Active: Anchor points are sampled from the baseline.
Candidate positive instances are sampled via perturbation
in the observation space until one is found whose image
lies in the acceptance region, i.e., within some ϵ of the
decision boundary of qt−1 in the reconstructed latent space.
This resembles the active selection strategy (Alg. 1(ii)).

3) Double-active: Anchor points sampled with a bias towards
the region near the decision boundary of qt−1 in the
reconstructed latent space. Candidate positive instances
are sampled via perturbation in the observation space

until one is found whose image lies in the acceptance
region. With the additional preference for sampling near
the decision boundary, this can be seen as closer to the
adversarial augmentation idea (Alg. 1(iii)).

The results are given in Table I. We see that the active strate-
gies consistently outperform the baseline. This corroborates
the theoretical results (Thm. A.7), which shows that active
strategies can converge at a faster rate.

IV. SAMPLING POSITIVE INSTANCES VIA TARGETED
AUGMENTATIONS IN LATENT SPACE

Algorithm 2 Active perturbation in latent space
1: Initialize f0 ∈ F .
2: Define index set I ⊂ [k] of informative latent variables.
3: for t = 0, 1, . . . , T − 1 do
4: for i = 0, . . . ,m− 1 do
5: Sample anchor c ∼ pc and z, z̄ ∼ pdata(·|c).
6: Calibrate τ .
7: Perturb informative latents: z+I ← pτ (·|zI)
8: Randomize other latents: z+⌝I ← z̄I
9: (zi, z

+
i )← (z, z+)

10: end for
11: Dt := {(xi, x

+
i ;x

−
i ∼ pdata)}mj=1

with xi = g(zi), x
+
i = g(z+i ).

12: Learn f t+1 ∈ argminf∈F Lcontr(f), with initialization f t.
13: end for

In this section we consider a second setting for sampling
informative positive instances. Contrary to the previous setting,
we now study augmentations in the true latent space rather
than the observation space or the reconstructed latent space.
For example, imagine an agent interacting with a visual scene
where some of the latent variables describe useful structure
in the scene’s appearance (e.g., type and location of various
objects), while other latent variables describe more superficial
structure (e.g., surface texture and shading of each object).
Here, we may want to learn representations, which focus on
structure in the former latent variables rather than the latter.

A. Sampling strategies

In this setting, interventions on the data generation process
(e.g., when the agent interacts with an object in the scene)
are analogous to data augmentations in our earlier settings,
where the values of some latent variables are fixed and others
are perturbed. In practise, useful structure in the observations
does not depend equally on all latent variables and is largely
determined by a particularly informative subset. In such cases, it
can be helpful to sample positive instances via perturbations that
focus informative latents, rather than perturbations, which affect
the latents more uniformly. Scenarios with such an informative
subset of latents may arise in many Reinforcement Learning
settings: Suppose an agent receives complex observations,
which are functions of a large number of latents, but can only
influence a subset of them through its actions. In this case,
characterizing variability in the controllable subset is critical
for choosing optimal actions, while the other latents evolve
independently of the agent’s actions and are thus less important



for planning. In our framework, the latents influenced by the
agent’s actions are informative with respect to solving a control
task, whereas the remaining latents are uninformative. While we
may not know precisely what latent variables there are, or which
latent variables are informative, we know that the agent can
only manipulate the informative latents. Hence, we may assume
that the agent can perform targeted perturbations of informative
latents. Formally, we investigate sampling strategies for positive
pairs p(z+|z) (with anchor z ∼ p(z)). Their effectiveness is
again evaluated with respect to the encoder’s ability to learn a
posterior distribution p(z̃|x, c) =: qh(z|x, c), such that structure
in the true latent space (encoded in the unknown distribution
p(z|x, c)) is recovered in the reconstructed latent space:

Theorem 4.1: Consider the minimizer
h∗ = argmin(z,z+) E [H(p(z+|z, c), qh(z+|z, c))] with
qh(z

+|z, c) = Ch(z
+)−1eh(z

+)Th(z)/τ denoting the condi-
tional distributions (where Ch(z) :=

∫
eh(z

+)Th(z)/τdz) over
reconstructed latent variables and H(p, qh) denoting the cross
entropy between distributions p and qh. Then h∗ locally recon-
structs latent space up to linear and orthogonal transformation.
The proof adapts a result by Zimmermann et al. [2021]; we
defer all details to supplemental S.1. In the following, let
the informative subset of latent variables be characterized
by an index set I ⊂ [k], where k is the dimension of
the latent space. Algorithm 2 proposes a sampling strategy
where targeted perturbations are applied to the informative
latents, whereas other latents are randomized. We will give
experimental evidence for such an active perturbation strategy
in the following section.

Parameters Baseline Info-active Active Class-preserve

nc ni nn

4 4 4 0.777 0.956 0.936 0.986
8 4 4 0.609 0.867 0.817 0.900
4 2 6 0.728 0.967 0.942 0.974
8 2 6 0.408 0.692 0.611 0.687
4 2 16 0.759 0.969 0.949 0.975

TABLE II: Results for Alg. 2 with nc classes, ni informative
latents, nn noisy latents. We report kNN accuracy averaged
over 10 resamples of the train and test sets after 1000 updates.

B. Experiments

Our experimental setup trains a representation function with
positive pairs sampled according to Algorithm 2. We define
class-conditioned distributions in the true latent space by con-
catenating samples from the surface of two unit hyperspheres,
one of dimension ninfo, representing the informative latents,
and one of dimension nnoise, representing the uninformative
latents. For sampling informative latents, we define a class mean
on the first hypersphere, add isotropic Gaussian noise with
a predefined standard deviation and then renormalize to unit
length. With that, the distribution of informative latents condi-
tioned on a class resembles a von Mises-Fisher distribution (see
Eq.(1.1.) in the supplemental, sec. 1). The standard deviation
is calibrated to generate little overlap between the classes in
order to simulate separability. The uninformative latents are

sampled uniformly at random from the second hypersphere. The
scale of the uninformative latents can be varied to control the
degree to which variability in the observation space is due to the
informative or uninformative latents. The effect of the latents on
the observations is entangled and non-linear due to the function
g(z), so identifying informative vs uninformative variability via
observations x = g(z) is non-trivial. We investigate different
scenarios for sampling positive instances given an anchor:

1) Baseline: Equal-sized random perturbations of all latents.
2) Info-active: Small, targeted perturbations of informative

latents and independent random sampling of all others.
3) Active: Small, targeted perturbations of informative latents

and larger, targeted perturbations of all others.
4) Class-preserving: Assume access to a class-preserving

transformation, which is used to augment the anchor to
generate a positive sample from the same class. This is an
idealized setting, which can be thought of as a supervised
approach. It is included for comparison; unsupervised
approaches are not expected to match its accuracy.

Our results confirm that targeted perturbation of the informative
latent variables generate more effective positive instances than
the baseline (Tab. II, baseline vs. info-active). We further
see that even a small difference in the perturbation scale of
informative and uninformative latents can improve over the
baseline (Tab. II, baseline vs. active). Details and further results
are deferred to supplemental S.3. A strong advantage of this
active sampling strategy over the methods discussed in previous
section is that they does not require prior knowledge of classes
or class structure.

V. CONCLUSIONS

In this paper, we studied contrastive learning approaches for
recovering low-dimensional structure in a latent variable model.
We proposed and analyzed different sampling approaches for
generating effective positive instances, both theoretically and in
exploratory experiments. Our results confirm the intuition that
encouraging the sampling of positive pairs that are informative
with respect to the underlying class structure or that explicitly
uncover weaknesses in the representation function can improve
the efficiency of the contrastive learning approach.

We investigate the sampling of positive instances in an
abstract setting modeled after popular sampling strategies used
in practise. In particular, our random augmentation approach
is an abstraction of sampling strategies used in image and
video analysis, where images or video frames are randomly
cropped or blurred [Chen et al., 2020]. An interesting avenue
for future investigation is the adaption of the proposed sampling
techniques to application domains (Computer Vision, Natural
Language Processing), which would allow to evaluate their
efficiency in a more practical setting. We further investigate
a setting where useful structure in the observations is largely
driven by a subset of latent variables (informative latents). This
setting is motivated by Reinforcement Learning and control
tasks, where an agent’s actions only influence a subset of the
latents. Testing our proposed info-active sampling strategy in
one of these settings is an interesting direction for future work.
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APPENDIX

A. Related Work

Contrastive learning has received a surge of interest in the last few years. A large body of work investigates contrastive
learning methods empirically [van den Oord et al., 2018, Bachman et al., 2019, Dwibedi et al., 2021, Chen et al., 2020]. Many
recent works focus on understanding the impact of different approaches for sampling positive [Ho and Nvasconcelos, 2020, Tian
et al., 2021, Zheng et al., 2021, Hayes et al., 2022, Wang et al., 2020] and negative instances [Chuang et al., 2020, Ma et al.,
2021, Ash et al., 2020, 2022, Shah et al., 2022, Robinson et al., 2021], motivated by the intuitive idea that sampling instances
that are more informative about the underlying structure could lead to more effective contrastive learning. Notably, Ho and
Nvasconcelos [2020] propose to generate “challenging” positive pairs via adversarial perturbation (adversarial augumentation),
which they demonstrate empirically to be promising. Zheng et al. [2021] empirically investigate an approach that selects positive
instances via a graph-based weakly-supervised approach. To the best of our knowledge, sampling approaches for positive
instances have not been studied systematically in a latent variable model. Yang et al. [2021] and Patrick et al. [2021] investigate
approaches for optimizing the composition of transformations.

The theoretical analysis of contrastive learning approaches has recently received increasing attention [Saunshi et al., 2019,
HaoChen et al., 2021, Graf et al., 2021, Wang and Isola, 2020, Zimmermann et al., 2021, Wang et al., 2022]. Notably, [Saunshi
et al., 2019] proposed one of the first theoretical frameworks for contrastive learning, which evaluates the quality of the learned
representations on a downstream classification task. However, they make no assumptions on the structure of the underlying
latent space. Wang and Isola [2020] and Zimmermann et al. [2021] analyzed contrastive learning in a latent variable model,
albeit without assuming additional structure, such as latent classes. Both works consider only classical sampling strategies,
where positive instances are generated via random augmentations.

B. Reconstruction of Latent Space

We first introduce a framework for analyzing the quality of a representation function with respect to its ability to recover
the latent class structure in Z . Recall that we identify the latent space with the unit hypersphere, i.e., Z = Sk−1. The latent
classes C = {C1, C2, . . . } form spherical caps in Z (see Fig. 1, main text). We denote class labels with lower case letters, i.e.,
c1, c2, . . . . In the following, we assume that the conditional distribution of positive pairs of latent variables (z, z+) from which
(x, x+) are generated is von Mises-Fisher, i.e.,

p(z+|z) = C−1
p exp(τ−1zT z+) (A.1)

Cp =

∫
exp(τ−1zT z+)dz+ , (A.2)

where (z, z+) ∼ p(z+|z)pc(z) is a positive pair of latent variables sampled from class c and τ > 0 a hyperparameter. The
marginal distribution over the class c is assumed to be uniform, i.e., pc(z) = |C|−1. Recall that observations x ∈ X are
generated by an unknown map g, i.e., x = g(z). We can define a posterior distribution p(z|x) over the true latent variables that
generated x. In Algorithms 1(i) and 2, positive instances are directly sampled from p(z+|z). In Algorithms 1(ii) and 1(iii),
candidate positive instances are drawn from p(z+|z) and accepted according to the specified rules. Negative instances are
sampled uniformly at random.

Recall that we want to learn a representation function f : X → Sk−1, such that the composition h : Sk−1 → Sk−1, h = f ◦ g
preserves the alignment between latent variables. A good representation function recovers the hidden latent variables, the
underlying task is a demixing problem, where we learn to invert the generative process g (up to orthogonal linear transformations).
This requires that h preserves the dot products between positive pairs (z, z+) up to a constant, i.e., κzT z+ = h(z)Th(z+) (with
κ > 0). This is equivalent to requiring that h locally reconstructs the latent space up to linear and orthogonal transformation.

In the absence of class structure, [Zimmermann et al., 2021, Prop.1] showed that if F is sufficiently rich, a suitable h
minimizes the cross entropy of the ground-truth conditional distribution p(z+|z) and the conditional distribution of the recovered
latent variables. In the presence of class structure, an analogous result can be shown for the distribution of positive pairs
sampled from a class c:

Theorem A.1: Consider the minimizer

h∗ = argmin E
(z,z+)

∼p(z+|z)pc(z)

[
H(p(z+|z, c), qh(z+|z, c))

]
, (A.3)

with

qh(z
+|z, c) = Ch(z

+)−1eh(z
+)Th(z)/τ (A.4)

Ch(z) :=

∫
eh(z

+)Th(z)/τdz , (A.5)



denoting the conditional distributions over reconstructed latent variables and H(p, q) denoting the cross entropy between
distributions p and q. Then h∗ locally reconstructs latent space up to linear and orthogonal transformation.

We include a proof for completeness.

Ec∼pc

[
Ez∼pc(z) [H (p(·|z, c), qh(·|z, c))]

]
= Ec∼pc

[
Ez∼pc(z)

[
Ez+∼p(z+|z,c)

(
− log qh(z

+|z, c)
)]]

(1)
= E(z+,z)∼p(z+|z)pc(z)

[
−1

τ
h(z+)Th(z) + logCh(z)

]
= −1

τ
E(z+,z)∼p(z+|z)pc(z)

[
h(z+)Th(z)

]
+ Ez∼pc(z) [logCh(z)]

(2)
= −1

τ
E(z+,z)∼p(z+|z)pc(z)

[
h(z+)Th(z)

]
+ Ez∼pc(z)

[
log

∫
z′
eh(z

′)Th(z)/τdz′
]

(3)
= −1

τ
E(z+,z)∼p(z+|z)pc(z)

[
h(z+)Th(z)

]
+ Ez∼pc(z)

[
log

(
|C| · Ez′∼pc(z)

(
eh(z

′)Th(z)/τ
))]

= −1

τ
E(z+,z)∼p(z+|z)pc(z)

[
h(z+)Th(z)

]
+ Ez∼pc(z)

[
logEz′∼pc(z)

(
eh(z

′)Th(z)/τ
)]

+ log |C|
(4)
= −1

τ
E(z+,z)∼p(z+|z)pc(z)

[
((f ◦ g)(z+))T (f ◦ g)(z)

]
+ Ez∼pc(z)

[
logEz′∼pc(z)

(
e((f◦g)(z

′))T (f◦g)(z)/τ
)]

+ log |C| ,

where in (1) we have inserted the definition of qh and in (2) the definition of the partition function Ch. In (3) we have multiplied
by 1 (|C| |C|−1) and approximated the integral by sampling from pc(z) = |C|−1. In (4), we have inserted h = f ◦ g.

By expressing functions of latent variables with the corresponding expressions for observables, we get

−1

τ
E(x,x+)∼ppos

[
f(x+)T f(x)

]
+ Ex∼pdata

[
logEx−∼pdata

(
ef(x

−)T f(x)/τ
)]

+ log |C| = Lalign(f ; τ) + Luni(f ; τ) + log |C| .

Geometrically, the cross-entropy encodes the concepts of alignment and uniformity, which are characterized by the following
loss functions [Wang and Isola, 2020, Zimmermann et al., 2021]:

• Alignment: Positive pairs should be mapped to nearby feature representations. This is captured in the loss:

Lalign(f ; τ) = −1

τ
E

(x,x+)∼ppos

[
f(x+)T f(x)

]
. (A.6)

• Uniformity: Feature vectors should be approximately uniformly distributed on Sk−1 to encourage separability. This is
encoded in the loss:

Luni(f ; τ) = E
x∼pdata

[
log E

x′∼pdata

(
ef(x

′)T f(x)/τ
)]

. (A.7)

In particular, we can show the following relation:
Corollary A.2:

Ez∼pc(z) [H (p(·|z), qh(·|z))] = Lalign(f ; τ) + Luni(f ; τ) + log |C| .

Thm. A.1 guarantees that representations learned via Algorithms 1 and 2 recover the latent space locally, i.e., recover the
relationship between close-by points within the same class. What can we say about their ability to recover global structure,
such as the relationship between classes?

To answer this question, we analyze which geometric assumptions are implicitly encoded in the contrastive loss Lcontr via
Lalign and Luni. We find that Lcontr encourages representations that recover a homogeneous reconstructed latent space, where
the latent classes are well-concentrated and uniformly distributed in the latent space:

Thm. A.1 and Corr. A.2 suggest that minimizing Lcontr implies a small uniformity loss (Luni) and alignment loss (Lalign).
A more detailed analysis reveals that a small uniformity loss ensures that the angular separation between classes is not too
uneven, favouring a distribution close to the uniform distribution in the true latent space. A small alignment loss implies that
the angular sizes of the classes are not too large, i.e., that the classes are well concentrated. This can be seen with the following
arguments:



1) A small uniformity loss Luni(f) ensures that the angular separation between classes is not too uneven. In particular, note
that

Luni(f) = E c∼pc
x∼pdata(·|c)

[
logE c′∼pc

x−∼pdata(·|c′)

(
ef(x)

T f(x−)
)]

= ρE c∼pc
(x,x−)∼ppos(·|c)

[
logE

(
ef(x)

T f(x−)
)]

+ (1− ρ)E c,c′∼pc
x∼pdata(·|c)

x−∼pdata(·|c′)

[
logE

(
ef(x)

T f(x−)
)]

= ρE(c;x,x−)

[
logE

(
ez̃

T z̃−
)]

+ (1− ρ)E(c,x),(c′,x−)

[
logE

(
ez̃

T z̃−
)]

= ρE(c,x)

[
log ef(x)

T µc̃

]
+ (1− ρ)E(c,c′)

[
log eµ

T
c̃ µc̃′

]
.

Notably, a small uniformity loss ensures that the angular separation is not too large for any two classes, implying
distribution close to the uniform distribution in the true latent space.

2) A small alignment loss implies that the angular sizes of the classes are not too large, i.e., that the classes are well
concentrated. For this, note that

Lalign(f) = E c∼pc

(x,x+)∼ppos(·|c)

[
ef(x)

T f(x+)
]
= E(c;x,x+)

[
ez̃

T z̃+
]
= E(c;x)

[
ez̃

Tµc̃

]
.

This suggests that the classical contrastive loss Lcontr may not capture heterogenity between classes or low-dimensional
structure in latent space well. Such geometric information could be uncovered by sampling instances that are informative about
the underlying structure. This observation motivates the design of active or adversarial sampling strategies that pick informative
positive pairs, with the hope of incorporating more geometric information into the training process (Algorithms 1 and 2).

C. Recovering latent class structure
In this section we give theoretical evidence for the quality of the representation functions trained with Algorithm 1.

Specifically, we analyze how well the representations recover the underlying latent class structure. We focus on the comparison
of passive an active sampling strategies, i.e., random augmentation (Algorithm 1(i)) and active selection (Algorithm
1(ii)). Both approaches sample positive instances via random augmentation. However, while the random augmentation
approach adds each of the sampled instances to the training data, the active selection approach rejects instances that are
not close to the decision boundary and therefore less informative. We provide a theoretical argument in favour of such an approach.

Sampling from the Hypersphere On a k-dimensional hypersphere with radius r, caps are characterized by the polar angle θ,
measured as the angle between rays from the center of the sphere to the pole and the base of the cap. The area of the spherical
cap is given by [S, 2011] (assuming θ < π

2 )

Acap
k (r, θ) =

1

2
Ak(r)Isin2 θ

(
k + 1

2
,
1

2

)
, (A.8)

where

Ak(r) =
2πk/2

Γ
(
k
2

)rk−1 . (A.9)

denotes the area of the whole hypersphere, Γ(y) the gamma function and Iy(a, b) the incomplete beta function, both of which
can be computed numerically. The factor Isin2 θ

(
n+1
2 , 1

2

)
corresponds to the probability of receiving a point in the cap when

sampling uniformly at random from the hypersphere.

Guarantees for passive sampling We now assume that we have trained a representation function f̂ with Algorithm 1(i) and
that we have trained a classifier q̂(x) = Wf̂(x) in the reconstructed latent space Z̃ . We want to derive error bounds for the
representation function f̂ in terms of its ability to recover the latent class structure. We assume that an f̂ is an α-accurate
minimizer1 of the unsupervised training objective

Lun(f) := E(x,x+,{x−
i }m

i=1)

[
l

(
{f(x)T f(x+)− max

1≤i≤m
f(x)T f(x−

i )}
m
i=1

)]
, (A.10)

which can be empirically estimated over a sample D = {(xj , x
+
j , x

−
j1, . . . , x

−
jm)}ni=1 that contains n positive pairs and mn

negative instances:

L̂un(f) :=
1

n

n∑
j=1

l

(
{f(x)T f(x+)− max

1≤i≤m
f(x)T f(x−

i )}
m
i=1

)
. (A.11)

1z ∈ C implies (g ◦ f)(z) ∈ C̃ with probability 1− α



We further define a supervised margin loss with respect to classifiers q : Z̃ → R|C|. For this, we first define a margin function

γq(f(x), c) := qc(f(x))−max
c′ ̸=c

qc′(f(x)) . (A.12)

With respect to a fixed margin γ > 0, we can define a loss function

Φγ(v) := min

(
1,max

(
0, 1− v

γ

))
=


1, v ≤ 0

1− v
γ , 0 ≤ v ≤ γ

0, γ ≤ v

, (A.13)

and a margin loss

Lclass(C, q) := E c∼pc

x∼pdata(·|c)
[Φγ (γq(f(x), c))] . (A.14)

We can empirically estimate Lclass over D as

L̂class(C, q,D) :=
1

n

n∑
i=1

Φγ(γq(f(xi), ci)) . (A.15)

We can derive the following error bound:
Theorem A.3: Let γ > 0 (fixed) denote the margin in the true latent space and γ̃ ≤ γ the margin in the reconstructed latent

space. For any δ > 0 we have with probability at least 1− δ that

Lclass(f) ≤
1

1−mρ

(
L̂un(f)−mρ

)
+

1

1−mρ

4LαRD(F) +

√
log 1

δ

2|D|


for all f ∈ F . Here, RD(F) denotes the Rademacher complexity of the function class F and Lα ≤ 2

γ̃ (1 − 2α) and ρ the
probability of sampling a false negative instance, i.e., the probability of sampling twice from the same class.
To compute the Rademacher complexity, we restrict f to the sample set D (with |D| =: n)

f
∣∣
D = {

(
f(xj), f(x

+
j ), f(x

−
1j), . . . , f(x

−
mj)

)
}nj=1 ⊆ R3dmn .

The Rademacher complexity is then given as

RD(F) = Eσ∼{±1}3dmn

[
sup
f∈F

⟨σ, f
∣∣
D⟩

]
. (A.16)

Remark A.4: The proof of Theorem A.3 is similar to [Saunshi et al., 2019, Theorem 4.1]. We give a bound with respect to
an α-accurate representation function f , which approximates an optimal representation function f∗ that recovers g−1 up to
orthogonal linear transformation.
The proof of Theorem A.3 relies on two auxiliary lemmas, which we state first. Note that Φγ is 1

γ -Lipschitz. This ensures the
validity of the following standard bound for learning with noisy labels [Natarajan et al., 2013]) for the unsupervised contrastive
training loss Lun:

Lemma A.5 ([Natarajan et al., 2013]): For any fixed margin γ̃ > 0 and a δ > 0 we have with probability at least 1− δ over
a ground truth set D for all f ∈ F

Lun(f) ≤ L̂un(D, f) + 4LαRD(F) +

√
log 1

δ

2|D|
,

where RD(F) denotes the Rademacher complexity of the function class F and Lα ≤ 2
γ̃ (1− 2α).

We further need the following result, which relates the unsupervised contrastive loss Lun to the supervised loss Lclass:
Lemma A.6: For any f ∈ F we have

Lclass(C, f) ≤
1

1−mρ
(Lun(f)−mρ) .



The lemma is a slight generalization of [Saunshi et al., 2019, Lemma 4.3].

Lun(f) = E
c,c′∼pc,

(x,x+)∼ppos(·|c)
x−∼pdata(·|c′)

[
Φγ

(
f(x)T f(x+)− max

1≤i≤m
f(x)T f(x−)

)]
≥ E c,c′∼pc

x∼pdata(·|c′)

[
Φγ

(
f(x)Tµc − max

1≤i≤m
f(x)Tµc′

)]
= (1−mρ)E c̸=c′

x∼pdata(·|c′)

[
Φγ

(
f(x)Tµc − max

1≤i≤m
f(x)Tµc′

)]
+mρ

= (1−mρ)Lclass(C, f) +mρ .

Then Theorem A.3 follows from combining Lemmas A.5 and A.6.

Comparison of passive and active sampling For our analysis of the active and passive sampling strategies, we pick two
classes and focus on the problem of learning a separator between them. This reduces the problem to a binary classification task.
Formally, let |C| = 2 and

C+ := {z|(z, 1) ∈ Sk−1 × C} ⊆ Z
C− := {z|(z,−1) ∈ Sk−1 × C} ⊆ Z .

We assume that C+, C− are linearly separable with margin γ. Our goal is to to learn a classifier in Z̃ that recovers the latent
structure defined by {C+, C−} ⊆ Z , i.e., we want to learn a classifier that separates {C̃+, C̃−} ⊆ Z̃ .

We want to compare the passive and active sampling approaches for positive instances. Note that the active sampling approach
resembles classical active learning techniques for binary classification [Balcan et al., 2007], which allows us to utilize theoretical
results from this literature. We show that the active selection approach reduces the number of samples that we need to add in
each round (mt), in comparison with the amount of samples needed, if positive instances are sampled passively. This indicates
that representation functions can be trained more efficiently via active selection. Formally, we show the following result:

Theorem A.7: For any δ, ϵ > 0, we can recover the class structure up to error ϵ with probability 1 − δ with (1) sample
complexity m = O(dϵ ) for random augmentations (Algorithm 1(i)) and (2) sample complexity m = O

(
d3/2 log( 1ϵ )

)
for active

selection (Algorithm 1(ii), with rejection threshold at =
π

2t−1 ).
The proof follows results on active learning for binary classification [Balcan et al., 2007]. We outline the proof below. We will
make use of the following standard result (see, e.g., [Anthony et al., 1999]):

Theorem A.8: Let H denote a set of functions from Z̃ to ±1 with finite VC dimension V ≥ 1. Let D be a an arbitrary fixed
distribution on Z̃ × {±1}. Then there exists a universal constant C, such that for any ϵ, δ > 0, if we draw a sample of size
N(ϵ, δ) = 1

ϵ (4V log( 1ϵ ) + 2 log( 2δ )) from D, all hypotheses with error ≥ ϵ are inconsistent with the data with probability 1− δ.
(Thm. A.7)
(1) follows from Thm. A.8. For (2), we first note that the error of a classifier q can be measured with respect to w as

err(w) =
arccos(w · w∗)

π
,

where w∗ denotes an optimal seperator for the data. With this, err(w) ≤ ϵ implies ∥w − w∗∥2 ≤ ϵπ. We want to show via
induction that mt samples are sufficient to obtain a classifier with err(wt) ≤ 2−t with probability 1− δ(1− 1/(t+ 1)). The
case t = 1 follows again from Thm. A.8, i.e., with m1 = O(k + log(1/δ)) we have err(w1) ≤ 1

2 with probability 1− δ
2 . We

assume that the claim is true for some t (induction hypothesis) and want to prove the claim for t+ 1. For an anchor point
x ∼ pdata(·|c) we can define the following two sets:

St
1(x) := {f(x+) ∈ Z̃ : |wt · f(x+)| ≤ at}

St
2(x) := {f(x+) ∈ Z̃ : |wt · f(x+)| > at} .

In round t, we can write the error of the classifier qt as

err(wt) = err(wt|St
1)P (St

1) + err(wt|St
2)P (St

2) ,

where P (S) denotes the probability of sampling from S and

err(w|S) := Prob((w · f(x))(w∗f(x)) < 0|x ∈ S) .



Consider a classifier ŵ that is consistent with Dt. By the induction hypothesis both wt and ŵ have error at most 2−t, i.e.,
err(ŵ) ≤ 2−t and err(wt) ≤ 2−t with probability 1− δ(1− 1/(t+ 1)). This implies

∥wt − w∗∥2 ≤ 2−tπ

∥ŵ − w∗∥2 ≤ 2−tπ .

Now let x̃ ∈ S2. Then

(wt · x̃)(ŵ · x̃) > 0

(wt · x̃)(w∗ · x̃) > 0 ,

which implies err(ŵ|S2) = 0.
We can compute the probability Prob(St1) of sampling from the region St

1 (close to the decision boundary) with respect to
the acceptance threshold as

Prob(S1) ≤
at
√
k

2π
.

The proof follows from a geometric calculation and can be found in [Balcan et al., 2007, Lemma 4]. Inserting this above, we
have

err(ŵ) ≤ 2−(t−1)
√
4πk · err(ŵ|S1) ,

which holds for all ŵ consistent with Dt. By construction, we add mt samples (from S1) to Dt in iteration t. By Thm. A.8
there exists a constant, such that with probability 1− δ

t2+t we have

err(ŵ|S1) ≤
1

4
√
4πk

for all ŵ consistent with Dt+1. This implies err(ŵ) ≤ 2−(t+1) for all ŵ consistent with Dt+1 and therefore the claim as
err(wt+1) ≤ 2−(t+1).

D. Experiments: Informative positives for latent classes

In the main text (sec. 4.2, Tab. 1), we present results for three sampling techniques.

Experimental setup. Throughout the experiments, we defined class-conditioned distributions with Gaussian noise of size 0.3.
We sampled positive instances (baseline) and candidate positive instances (active and double-active) with perturbations of size
0.2. The experimental setup was a standard MLP, which was trained with learning rate 0.0001. The hyperparameters in the
reported experimental results are listed in the main text. We investigate the following four scenarios, which employ different
passive and active sampling strategies:

1) Baseline: Anchor points and positive instances are sampled from the baseline prior (resembling Alg. 1(i)).
2) Active: Anchor points are sampled from the baseline. Candidate positive instances are sampled via perturbation in the

observation space until one is found whose image lies in the acceptance region, i.e., within some ϵ of the decision boundary
of qt−1 in the reconstructed latent space. This resembles the active selection strategy (Alg. 1(ii)).

3) Double-active: Anchor points sampled with a bias towards the region near the decision boundary of qt−1 in the reconstructed
latent space. Candidate positive instances are sampled via perturbation in the observation space until one is found whose
image lies in the acceptance region. With the additional preference for sampling near the decision boundary, this can be
seen as closer to the adversarial augmentation idea (Alg. 1(iii)).

E. Experiments: Targeted augmentation in latent space

Experimental setup. Tab. 2 in sec. 5.2 gives experimental results for the second experimental setting. Again, our experimental
setup was a standard MLP, which was trained with learning rate 0.0001. We investigate the following sampling strategies:

1) Baseline: Equal-sized random perturbations of all latents.
2) Info-active: Small, targeted perturbations of informative latents and independent random sampling of all others.
3) Active: Small, targeted perturbations of informative latents and larger, targeted perturbations of all others.
4) Class-preserving: Assume access to a class-preserving transformation, which is used to augment the anchor to generate a

positive sample from the same class. This is an idealized setting, which can be thought of as a supervised approach. It is
included for comparison; unsupervised approaches are not expected to match its accuracy.

An important hyperparameter in the experiments is the perturbation scale, i.e., the size of the perturbations (Gaussian noise) in
the “informative” and “noisy” (i.e., uninformative) dimensions. In the baseline approach, the perturbation scale is 0.3 across all
latents. In the Info-active approach, we apply perturbations of 0.3 to the informative latent and 9.0 to the noisy latents. In



the active approach, we apply again perturbations of 0.3 to the informative latents, but only perturbations of 0.9 to the noisy latents.

Hyperparameter choice. We investigate the impact of the choice of the perturbation scale for the noisy latents on the knn
accuracy. Fig. 3 shows results for perturbation scales of 0.3− 9.0 for different hyperparameters. We notice that even small
differences in the perturbation scales between informative and noisy latents (i.e., small targeted perturbations of the informative
latents) improve over the baseline.

Fig. 3: Perturbation scale for “uninformative” or noisy latents.


