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ABSTRACT

Stochastic Gradient Descent (SGD) stands as a cornerstone optimization algo-
rithm with proven real-world empirical successes but relatively limited theoretical
understanding. Recent research has illuminated a key factor contributing to its
practical efficacy: the implicit regularization it instigates. Several studies have
investigated the linear stability property of SGD in the vicinity of a stationary
point as a predictive proxy for sharpness and generalization error in overparam-
eterized neural networks (Wu et al., 2022; Jastrzebski et al., 2019; Cohen et al.,
2021). In this paper, we delve deeper into the relationship between linear stability
and sharpness. More specifically, we meticulously delineate the necessary and
sufficient conditions for linear stability, contingent on hyperparameters of SGD and
the sharpness at the optimum. Towards this end, we introduce a novel coherence
measure of the loss Hessian that encapsulates pertinent geometric properties of the
loss function that are relevant to the linear stability of SGD. It enables us to provide
a simplified sufficient condition for identifying linear instability at an optimum.
Notably, compared to previous works, our analysis relies on significantly milder
assumptions and is applicable for a broader class of loss functions than known
before, encompassing not only mean-squared error but also cross-entropy loss.

1 INTRODUCTION

Stochastic Gradient Descent (SGD) is a fundamental optimization algorithm widely used in practice.
In addition to its computational efficiency, there is irrefutable evidence of its superior generalization
performance even on non-convex functions, including neural networks (Bottou, 1991). For large
over-parameterized neural networks, the number of points to fit is often much less than the number
of free parameters in the model. In this case, there is often a high-dimensional manifold of model
weights that can perfectly fit the data (Cooper, 2021); hence, focusing solely on the ability of an
optimizer to minimize the loss function ignores a central part of training such networks. The primary
goal in a model is not to achieve high performance on a training data set but rather to achieve strong
generalization performance on previously unseen data. Although we currently lack a comprehensive
theoretical explanation for the empirical success of SGD in these models, a promising hypothesis
suggests that SGD naturally applies a form of implicit regularization (Zhang et al., 2017; Neyshabur
et al., 2015) when multiple optima are present (Keskar et al., 2017; Liu et al., 2020). This phenomenon
guides the iterative process towards more favorable optima purely through algorithmic choices.

In order to measure this distinguishing favorability between more and less desirable optima, prior
work has proposed the concept of sharpness at a minimum as an indicator of the generalization
performance of the trained model. Lower sharpness is often indicative of better generalization
performance (Hochreiter & Schmidhuber, 1997). There is a wealth of empirical work exploring
the relationship between sharpness and generalization performance, particularly in networks trained
with SGD, e.g., (Jiang et al., 2019; Jastrzebski et al., 2019; Andriushchenko et al., 2023; Wu
et al., 2017; Chaudhari et al., 2017; Izmailov et al., 2018). Furthermore, these ideas have led to
new optimizers which deliberately reduce sharpness and are observed to attain improved empirical
performance (Behdin et al., 2023; Foret et al., 2020). Although the connection between sharpness
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and generalization performance isn’t precise or completely understood, the partial achievements of
this theory has inspired several works, including ours, to investigate how SGD implicitly tends to
converge to flatter optima.

Sharpness has been defined in several ways in prior literature, but most commonly, the sharpness of a
trained neural network at a minimum is the maximum eigenvalue of the Hessian of the loss with respect
to weights. Intuitively, one can see that if w∗ is a stationary point of a smooth function f(w) with
Hessian H(w), then for perturbation v such that ∥v∥2 = ϵ, f(w∗+v) < f(w∗)+O(ϵ2)·λ1(H(w∗)),
where λ1(·) denotes the maximum eigenvalue. This relation follows from the Taylor expansion of
f(·) around w∗, and we see that the sharpness at w∗, i.e., λ1(H(w∗)), determines how rapidly small
perturbations to the weights w can increase the value of f(w). In other words, model sharpness
measures how robust the loss of the trained model is to small perturbations of the model parameters.

In this paper, our focus is on providing a precise characterization of how the SGD hyperparameters
and properties of the loss function affect its implicit regularization of model sharpness. Towards
this goal, we consider the linearized dynamics of SGD (defined in Section 2) close to the optimum.
When w is close to w⋆, it allows us to make a useful simplification by focusing on the quadratic
approximation of the loss function. In particular, we consider mean-squared stability, that is, w∗ is
considered unstable if iterates of SGD diverge from w∗ under the ℓ2-norm in expectation. Unlike
differential equation-based approaches, which liken the SGD dynamics to a continuous flow for
eliciting implicit regularization properties (Li et al., 2017; Xie et al., 2021), the linear stability
analysis does not break down in the regime of large step sizes. Moreover, the linearized dynamics in
gradient descent (GD) has been empirically validated to predict the sharpness of overparameterized
neural networks due to the Edge-of-Stability phenomenon (Wu et al., 2018; Cohen et al., 2021). This
behavior has also been observed in other optimizers (Cohen et al., 2022; Jastrzebski et al., 2019;
Bartlett et al., 2022; Wen et al., 2022; Ujváry et al., 2022), lending further weight to this theoretical
framework (Agarwala & Dauphin, 2023). While prior work has already considered the linear stability
of SGD (Wu et al., 2022; 2018; Ma & Ying, 2021; Ziyin et al., 2023; Agarwala & Dauphin, 2023),
our analysis provides substantial advancement over these prior results as we detail below.

Contributions:

• We offer an interpretable yet rigorously established sufficient condition to determine the instability
of a point w∗ under the linearized dynamics of SGD (Theorem 1). Importantly, unlike previous
works, our bound applies to any additively decomposable loss function.

• Our sufficient condition hinges on a coherence measure σ, which we introduce to capture the
relevant geometric characteristics of the loss surface around a minimum. This measure is intuitively
connected to the Gram matrix of point-wise loss Hessians. We provide additional context and
rationale for introducing this measure in Section 3.1.

• We demonstrate that our bound is nearly optimal across a natural range of SGD hyperparameters
(Theorem 2). This implies that our analysis, which offers a sufficient condition for the stability of
linearized SGD dynamics, is precise and closely aligned with the behavior of SGD across various
choices for the coherence measure σ, batch size, and learning rate.

• In the course of deriving Theorem 1, we present an independently useful technical lemma (Lemma
4.1). This lemma provides sufficient conditions for (i) the divergence of linearized SGD dynamics
and (ii) the convergence of linearized SGD dynamics toward the specified minima. An intriguing
aspect of this lemma is that it suggests a multiplicative decoupling effect between the impact of batch
size and learning rate on instability and the instability introduced by the geometry of the Hessian.

• Finally, we corroborate the validity of our theoretical findings through a series of experiments
conducted on additively decomposable quadratic loss functions. Our experimental results align with
our theory and underscore the significance of the Hessian coherence measure σ in determining the
conditions under which SGD dynamics diverge.

Related Work: While extensive research investigates the intricate relationship between optimization
methods, generalization error, and sharpness, the prior work most relevant to ours focuses on a
linear stability analysis of SGD. In this section, we briefly compare our results to related research.
However, we defer a detailed comparison of our results until Section 3.2.1, which follows the formal
introduction of the problem setup and the presentation of our primary theorem.
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An important line of work in this area is that of Wu et al. (2018; 2022); Wu & Su (2023), which
progressively distill more theoretical insight into how the linear dynamics of SGD affect final
sharpness of a neural network. Our work goes beyond this in multiple ways. For sake of comparison,
the result in this line of work most related to our contribution is Theorem 3.3 in Wu et al. (2022), and
we restate this result in Appendix B. Our results are significantly more general than this theorem,
in that our results apply to any general additively decomposable loss function, which answers the
question raised in Agarwala & Dauphin (2023) on the behavior of SGD for cross-entropy loss.1
Additionally, we guarantee a stronger form of divergence. Even with relaxed conditions and stronger
implications, the condition of our theorem is practically easier to satisfy than Theorem 3.3 in Wu
et al. (2022).

Other research delves into related questions, although our study may not align directly with them.
For example, Jastrzebski et al. (2019) combine previous analysis by Wu et al. (2018) with additional
assumptions about how the optimizer behaves. The paper demonstrates the impact of learning rate
and batch size on sharpness throughout the training trajectories of SGD. Agarwala & Dauphin (2023)
examine how batch size affects sharpness within SGD training trajectories, particularly in the context
of second-order regression models. Ma & Ying (2021) provide a meticulous characterization of linear
stability. However, this characterization might not be immediately interpretable and is primarily used
to draw connections between behaviours of SGD and Sobolev regularization. Ziyin et al. (2023)
focuses on the convergence and divergence of linearized dynamics in probability rather than in
expected distance from the optimum, as considered by the other work we have mentioned.

2 PROBLEM FORMULATION

We consider the case where SGD is used to minimize an additively decomposable loss function
L(w) = 1

n

∑n
i=1 ℓi(w), where each ℓi(w) is twice-differentiable and w ∈ Rd. Given learning

rate η > 0 and batch size B ∈ [n], the dynamics of SGD are defined by the recurrence wt+1 =
wt− η

B

∑
i∈S ∇ℓi(wt), where S is uniformly sampled from all B sized subsets of [n]. To facilitate our

probabilistic analysis, we apply two standard simplifications. First, we consider Bernoulli sampling
rather than sampling with replacement so that i ∈ S with probability B/n and the event i ∈ S is
independent of the event j ∈ S for all i ̸= j. Second, we consider the quadratic approximation
to the loss around a fixed point w∗, so that ℓi(w) ≈ ℓi(w

∗) + (w − w∗)T∇ℓi(w
∗) + 1

2 (w −
w∗)T∇2ℓi(w

∗)(w − w∗) (Wu et al., 2022; Ma & Ying, 2021). Since the dynamics of SGD are
shift-invariant, we can assume w∗ = 0 without loss of generality. We restrict our attention to the
case where w∗ is a local minimum of ℓi(·) for all i ∈ [n]. This assumption is particularly relevant
in the context of overparameterized neural networks, where it is common for data to fit the model
almost perfectly (Allen-Zhu et al., 2019).

In the described linearized setting, ∇ℓi(w) = ∇w(ℓi(w
∗) + 1

2w
T∇2ℓi(w

∗)w) = ∇2ℓi(w
∗)w.

Define Hi = ∇2ℓi(w
∗), which is the Hessian of ℓi(·) at w∗. Note that Hi ∈ Rd×d is a Positive-

Semidefinitie matrix (PSD) since w∗ is a local minimum of ℓi(·) (we refer the reader to Appendix A.1
for notation and necessary background). The linearized dynamics of SGD in our setting of interest
follows below.

Definition 1. Linearized SGD Dynamics: Let {Hi}i∈[n] be a set of d × d PSD matrices, and let
H = 1

n

∑n
i=1 Hi. Let η > 0 denote the learning rate and B ∈ [n] be the batch size. The linearized

SGD dynamics are defined by the recurrence relation:

wt+1 =

(
I− η

B

∑
i∈S

Hi

)
wt, (1)

where i ∈ S with probability B
n and the event i ∈ S is independent from the event j ∈ S for all i ̸= j.

We will refer to J = I− ηH and Ĵ ∼ I− η
B

∑
i∈S Hi as the Jacobians of GD and SGD respectively.

Note that using B = n recovers the gradient descent dynamics.

1Note that linear stability is not meaningful for pure cross-entropy loss on perfectly fit data, since ∥w∗∥2 is
not finite. However, our theory holds when using label smoothing (Szegedy et al., 2016), as commonly done in
practice.
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3 THE ROLE OF HESSIAN GEOMETRY IN SGD INSTABILITY

This section introduces and motivates the Hessian coherence measure σ({Hi}i∈[n]). Subsequently,
we utilize this measure to present our primary result, Theorem 1. This theorem furnishes a sufficient
condition for E∥wk∥2 to diverge as k → ∞. Following this, we demonstrate that our established
sufficient condition in Theorem 1 is nearly optimal across a broad range of hyperparameters. We
formally state this optimality result in Theorem 2.

3.1 HESSIAN COHERENCE MEASURE

Note that, to understand the behavior of linearized SGD dynamics around a point w∗, it suffices to
consider how they operate under various configurations of η, B, and {Hi}i∈[n]. To illustrate the
effect of {Hi}i∈[n], let us explore two extreme scenarios.

First Setting: Suppose we have Hi = e1e
T
1 ∀i, where ei represents the i-th canonical basis vector.

In this scenario, with all Hi being identical, we anticipate that the stochastic dynamics will closely
resemble the deterministic dynamics. This expectation arises from the fact that 1

B

∑
i∈S Hi should

exhibit strong concentration around H. Furthermore, when the elements of S are sampled from [n]
without replacement, the SGD dynamics coincide with the GD dynamics. Therefore, we expect no
difference in the characterization of stability of the respective linearized dynamics.

Second Setting: Now, let us consider the opposite extreme, where all Hi matrices are orthogonal,
meaning that their inner products satisfy tr[HiHj ] = 0 ∀i ̸= j. In this scenario, we anticipate that
randomness exerts a substantial influence on the steps taken by SGD. In the context of a full linear
GD step, the component projected onto the subspace defined by Hi is ηHiw/n. However, in the
stochastic setting, if Hi is not selected in the sampling process, no step is taken in this particular
subspace. Conversely, if it is selected, the step taken is ηHiw/B, which significantly overshoots the
deterministic step by a factor of n/B.

These extreme cases serve as illustrative examples, highlighting the importance of the relative geo-
metric arrangement within the set {Hi}i∈[n] in determining the stability of the dynamics (alongside
the learning rate and batch size). While we establish both sufficient and necessary conditions to
address this geometric aspect in Lemma 4.1, our aim is also to offer an intuitive characterization that
captures the significance of {Hi}i∈[n] without resorting to complex analytical expressions. To that
end, we introduce the following measure, which succinctly captures the geometric structure within
{Hi}i∈[n].

Definition 2. Coherence Measure: For a given set of PSD matrices {Hi}i∈[n], define S ∈ Rn×n

such that Sij = ∥H1/2
i H

1/2
j ∥F . Equivalently, we may define S as the entry-wise square root of the

Gram matrix of {Hi}i∈[n] under the trace inner product. The coherence measure σ is then defined
as:

σ =
λ1(S)

maxi∈[n] λ1(Hi)
.

To provide some insight into this measure, we can consider {Hi}i∈[n] as a collection of n vectors
in Rd×d, endowed with the trace inner-product. The Gram matrix of a set of vectors compiles the
pairwise inner-products among the vectors, thus representing the relative alignments and magnitudes
of these vectors within the space, and the matrix S is an entry-wise renormalization of the Gram
matrix. In the case where rank(Hi) = 1 for all i ∈ [n], λ1(Hi) is the i-th diagonal entry of S,
and σ measure how close S is to being diagonally dominant. Due to the construction of S, σ then
measures the cross-interactions within {Hi}i∈[n] relative to the magnitude of the individual Hessians
in {Hi}i∈[n] under the Frobenius norm. The case where all Hi are rank one is particularly important
since it occurs when ∇ℓ(w

∗) = 0 under loss functions such as cross-entropy loss.

Let us examine the two extreme cases mentioned earlier. In the first case, where Hi = e1e
T
1 ∀i, it

follows that ∥H1/2
i H

1/2
j ∥F = 1 ∀i, j ∈ [n]. Consequently, S becomes an n× n matrix consisting

of all ones, yielding λ1(S) =
√
n. Meanwhile, in the scenario, where Hi matrices are mutually

orthogonal, ∥H1/2
i H

1/2
j ∥F = 0 ∀i ̸= j. Therefore, S becomes the identity matrix I, and λ1(S) = 1.

In both cases, λ1(Hi) = 1 for all i ∈ [n]. Consequently, in the first case, σ =
√
n, and in the
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second case, σ = 1. This demonstrates that our coherence measure, σ, effectively distinguishes
between these two extreme scenarios and increases as the alignment among the Hi matrices grows
stronger. Below, we show how this measure allows us to establish a natural sufficient condition for
the divergence of these linear dynamics.

3.2 SIMPLIFIED DIVERGENCE CONDITION

We present our sufficient condition for the linear dynamics to diverge, which relies solely on the
values of λ1(H), η, B, n, and our coherence measure σ. Note that this bound aligns with our intuitive
expectations based on the extreme cases we examine. When all Hi = e1e

T
1 and σ =

√
n, the second

condition in the theorem cannot be met. In such cases, we must resort to the GD condition for
instability, namely, λ1(H) > 2

η . Conversely, when Hi = eie
T
i ∀i and σ = 1, the theorem asserts

that the linear dynamics will diverge even for small values of λ1(H), especially when B is small
relative to n. This behavior aligns with our expectations based on the different scenarios we consider.

Theorem 1. Let {Ĵi}i∈N be a sequence of i.i.d. copies of Ĵ defined in Definition 1. Let {Hi}i∈[n]

have coherence measure σ. If,

λ1(H) >
2

η
or λ1(H) >

σ

η
·
( n
B

− 1
)−1/2

, then, lim
k→∞

E∥Ĵk...Ĵ2Ĵ1∥2 = ∞.

We defer all proofs to Appendix A. Note that the quantity E∥Ĵk...Ĵ1∥2 = Emaxw0:∥w0∥2=1 ∥wk∥2,
where wk is the random vector determined by the SGD dynamics in Definition 1, when the dynamics
start from w0. In other words, if E∥Ĵk...Ĵ1∥2, diverges as k → ∞, the linearized SGD dynamics
diverge from almost every starting point w0 ∈ Rd. We highlight two observations of the condition in
Theorem 1. First, this analysis supports “squared-scaling” between batch size and learning rate, that
is, if B is increased proportional to η2, the stability will not increase. Second, the Hessian alignment
(captured by σ) can cause instability even when η is small and B is on the order of n.

3.2.1 COMPARISON TO PRIOR WORK

Based on the formal introduction of our result, we now provide a more detailed comparison to the
result of Wu et al. (2022). The condition outlined in Theorem 3.3 of Wu et al. (2022) represents one
of the most recent findings in this research field, which we restate in Appendix B. The contrapositive
of this theorem provides a sufficient condition, namely ∥H∥F > 1

η

√
B
µ0

, to guarantee instability.
Here, µ0 serves as an alignment metric, empirically argued to have a practical lower bound.

Theorem 1 has multiple advantages over these prior results. First, the analysis in Wu et al. (2022) is
confined solely to the MSE loss function. Second, their definition of stability entails that E[L(wk)] ≤
C · E[L(w1)] ∀k ∈ N, where C > 1 is a constant. This definition is notably weaker than our notion
of stability. Finally, despite Theorem 1 holding for more general loss functions and guaranteeing a
stronger notion of stability/instability, it is also easier to satisfy under the typical setting where H
has low stable rank, i.e., when ∥H∥2F /∥H∥22 is small. Let us ignore the effects of the measures µ0

and σ by considering both equal to one, then Theorem 3.3 (Wu et al., 2022) guarantees instability if

∥H∥F > 1
η

√
B while Theorem 1 guarantees instability if λ1(H) > 1

η

√
B
n , which is a more general

condition when the stable rank of H is less than n, as is typical in practical settings (Xie et al., 2022).

3.3 OPTIMALITY OF THEOREM 1

Theorem 1 provides a sufficient condition for the linear dynamics to diverge, where the condition is of
the form λ1(H) > f(η, σ, n,B), where f(η, σ, n,B) = σ

η

(
n
B − 1

)−1/2
. The next theorem shows

that our condition is optimal in the sense that, for a natural range of parameters (when σ, n
B = O(1)),

the function f(η, σ, n,B) is within a constant factor of its lowest possible value. This shows that our
sufficient condition cannot be significantly relaxed without relying on other information about the set
{Hi} as we do in Lemma 4.1.

Overall, the following theorem demonstrates that our sufficient condition for divergent dynamics
approaches optimality among all sufficient conditions that rely solely on η, σ, B, λ1(H), and n.
However, it does not rule out further improvement in the important regime where B ≪ n.
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Theorem 2. For every choice of λ1 > 0, n ∈ N, B ∈ [n], η > 0, and σ ∈ [n], that satisfies:

λ1 <
2σ

η
·
(
σ +

n

B
− 1
)−1

,

There exists a set of PSD matrices {Hi}i∈[n] such that λ1(H) = λ1 and limk→∞ E∥Ĵk...Ĵ1∥2F < n.

4 SHARP STABILITY CONDITIONS OF LINEARIZED SGD

In the previous section, we provide a measure of the geometric coherence in {Hi}i∈[n] along with a
theorem that provides sufficient conditions for the dynamics of SGD (Definition 1) to diverge. The
proof of this theorem relies on part (i) of the following technical lemma. Aside from its utility in
establishing the aforementioned theorem, the statement of the following lemma also imparts valuable
insights into the behavior of linearized SGD dynamics.

The proof of the following lemma relies on the observation that ∥M∥22 ≤ ∥M∥2F ≤ d∥M∥22 for
all M ∈ Rd×d, where ∥ · ∥F denotes the Frobenius norm. Hence, we may focus on divergence in
the Frobenius norm of the k-step linearized dynamics. Now, E∥Ĵk...Ĵ1∥2F = E[tr[Ĵk...Ĵ

2
1...Ĵk]] =

tr[E[Ĵk...Ĵ
2
1...Ĵk]] by linearity. By operator monotonicity of the trace, we further have tr[Nk] ≥

tr[E[Ĵk...Ĵ
2
1...Ĵk]] ≥ tr[Mk], where Nk ⪰ E[Ĵk...Ĵ

2
1...Ĵk] ⪰ Mk under the Loewner ordering (see

Appendix A.1). The technical challenge in our proof lies in composing an inductive argument to
define matrices Nk and Mk. We opt for an approach that directly bounds the matrix of the k-step
linear dynamics under the Loewner ordering, which does introduce greater technical complexity
compared to using norm inequalities, as seen in previous work. However, this added complexity is
essential to accurately account for the alignment in the unstable eigenvectors of each Ĵi, allowing us
to provide a thorough characterization of the instability of SGD dynamics.

Lemma 4.1. Let Ĵi be independent Jacobians of SGD dynamics described in Definition 1.

(i) If

λ1(H) >
2

η
or lim

k→∞

(
η2

nB
− η2

n2

)k n∑
y1...,yk=1

∥Hyk
...Hy1

∥2F = ∞,

then limk→∞ E∥Ĵk...Ĵ1∥2F = ∞.

(ii) If, for some ϵ ∈ (0, 1),

ϵ

η
< λi(H) <

2− ϵ

η
for all i ∈ [d] and lim

k→∞

1

ϵk

(
η2

nB
− η2

n2

)k n∑
y1...,yk=1

∥Hyk
...Hy1∥2F = 0,

then limk→∞ E∥Ĵk...Ĵ1∥2F = 0.

Notice that part (i) and part (ii) of this theorem are complementary in the sense that the condition
of part (ii) is nearly the negation of the condition in part (i) except for the additional ϵ factor. In a
sense, the parameter ϵ captures the balance of how close we are to instability in GD dynamics, i.e.
λ1(H) > 2

η , and how much additional instability is added by the stochasticity in the dynamics of
SGD. 2

To provide a more detailed explanation of this intuition, let us consider the setting where B ≪ n.
The second term from part (ii) of the above Lemma can be approximated as:(

η2

nB
− η2

n2

)k n∑
y1...,yk=1

∥Hyk
...Hy1

∥2F ≈ η2k

nkBk

n∑
y1...,yk=1

∥Hyk
...Hy1

∥2F =
η2k

Bk
· E∥Ak...A1∥2F ,

(2)

2We believe that the requirement in part (ii) that λi(H) > ϵ
η

could likely be removed by more carefully

accounting for alignment of the negligible eigenvectors of Ĵ and J and relaxing the theorem to imply boundedness
of the limit. However, given that the role of part (ii) in the theorem is only to contrast with part (i), we do not
think this is high priority for the purpose of this paper.
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where Ai is independently sampled uniformly from the set {Hi}i∈[n]. Interestingly, this implies
that the effect of the parameters B and η can be decoupled from the structure within {Hi}i∈[n]. In
other words, if we knew the minimal learning rate η at which linearized SGD with a fixed batch size
diverges, then we would immediately be able to determine which parameter pairs (η,B) are divergent
at the given point w∗, since the term E∥Ak...A1∥2F does not change with these hyperparameters.

Note that determining whether the quantity η2k

Bk E∥Ak...A1∥2F diverges for arbitrary inputs of η, B,
and set of arbitrary symmetric matrices {Hi}i∈[n] would be an NP-Hard problem (see Section 3.3 of
Huang et al. (2022)). Even in our case, where we have the additional constraint that each Hi is PSD,
we are unaware of an efficient method to determine whether η2k

Bk E∥Ak...A1∥2F diverges, motivating
our simplified sufficient condition in Theorem 1.

5 EXPERIMENTS

In this section, we support our prior theorems by empirically evaluating the behavior of SGD on
synthetic optimization problems with additively decomposable loss functions. The high-level points
our experiments support are:

• Parameter tuples that Theorem 1 guarantees divergence do indeed diverge.
• Parameter tuples that Theorem 2 guarantees no divergence indeed do not diverge.
• The coherence measure σ has an important effect on the instability of SGD.
• Our theoretical results hold when using SGD that samples without replacement.

The first two points outlined above serve as validation for the accuracy and soundness of our theoretical
results and proofs. The third point enhances the rationale for adopting the Hessian coherence measure
we introduce. Lastly, the fourth point offers justification for employing SGD with Bernoulli sampling
in our theoretical analysis, as its behavior mirrors that of the more prevalent SGD approach that
samples without replacement. To ensure reproducibility, we include all our implementations in the
supplementary material.

5.1 EXPERIMENT SETUP

We leverage the construction used in the proof of Theorem 2 to verify our predictions empirically,
which offers two advantages: 1) we may apply the analysis of Theorem 2 for a condition that
guarantees no divergence, and 2) the construction is parameterized by σ, and so we may easily
test the effect of varying σ. In this construction, we set Hi = m · e1eT1 for all i ∈ [σ] and
Hi = m ·ei−σ+1e

T
i−σ+1 otherwise, with m = 2n

σ . We set the dimension of the space to n−σ+1, so
there is a unique minimizer of the loss, as this does not affect divergence. Notice that this construction
essentially interpolates the two extreme settings in Section 3.1 as σ varies from σ = 1 to σ = n.
Additionally, note that λ1(H) = 2 by construction. In our experiments, η ≤ 1, hence the first
condition of Theorem 1, i.e., λ1(H) > 2/η will not hold or be relevant to characterizing stability.

The loss function that corresponds to the set of Hessians {Hi}i∈[n] is given by the additively
decomposable quadratic function L(w) = 1

n

∑n
i=1 ℓi(w), where ℓi(w) = wTHiw. Note that, for

this construction of {Hi}i∈[n], ℓi(w) is particularly easy to compute, as it is equivalent to squaring
and rescaling a single entry of w.

Across all experiments, we set n = 100. For each set of parameters (B, η, σ), we determine
whether the combination leads to divergence or not by executing SGD for a maximum of 1000 steps.
Specifically, we classify a tuple as divergent if, in the majority of the five repetitions, the norm of the
parameter vector w increases by a factor of 1000. Conversely, we terminate SGD prematurely and
classify the point as not divergent if the norm of w decreases by a factor of 1000 during the course of
the SGD trajectory.

It is possible to construct a regression problem with mean-squared error that results in exactly the
same optimization we describe. However, we note that Theorem 3.3 in Wu et al. (2022) does not
directly apply to this problem, since the corresponding loss is zero at the optimum, and hence the
loss-scaled alignment factor (see Equation 4 below) of Wu et al. (2022) is undefined at the optimum.
Therefore, the condition of Theorem 3.3 in Wu et al. (2022) (see Theorem 3) cannot be satisfied.

7
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(a) Learning rate is set to η = 0.8. (b) Learning rate is set to η = 0.5.

Figure 1: The red area indicates where SGD diverges and blue where it does not diverge among
parameter pairs (σ,B). The solid black line is where the condition of Theorem 1 attains equality and
the dashed line is where the condition of Theorem 2 attains equality.

5.2 EXPERIMENTAL RESULTS

5.2.1 EFFECT OF COHERENCE MEASURE AND BATCH SIZE

First, we look at how the stability of SGD changes as we vary coherence measure σ and batch size B.
We show results for two fixed values of the learning rate, η = 0.8 and η = 0.5.

Two key observations in Figure 1 are that all tuples (σ,B) that are below the boundary given by
Theorem 1 indeed diverge. This is visually shown as all points below the solid black line are red
(besides some aberration due to visual smoothing). Additionally, the fact that all points above the
dashed line are blue indicate that tuples (σ,B) which the proof of Theorem 2 guarantees converge
indeed converge.

An intriguing observation is the pattern where the gap between the upper and lower bounds diminishes
as the batch size increases. Specifically, we notice that the lower bound more closely aligns with the
actual boundary between divergence and convergence across all batch sizes when η = 0.5. However,
the upper bound is closer to the true boundary when η = 0.8.

Finally, we observe that the coherence measure σ exerts a substantial influence on the stability of
SGD. For small values of σ, SGD demonstrates instability even at high values of B. This observation
underscores the importance of considering the geometry of the loss surface in understanding the
behavior of SGD. Furthermore, it highlights that the coherence measure is an effective tool for
capturing and accounting for the contribution of loss surface geometry to the stability of SGD.

5.2.2 EFFECT OF BATCH SIZE AND LEARNING RATE

Next, we examine how the stability of SGD evolves when we manipulate the batch size B and the
learning rate η. For this analysis, we maintain a fixed value of σ = 5, which provides a clear boundary
given the granularity of the point grid. We show both the log-scale plot, since learning rate generally
varies on a log-scale, and the linear-scale plot since we expect the relationship between B and η2 to
be roughly linear in the boundary.

The plots displayed in Figure 2 further corroborate the validity of Theorem 1 and Theorem 2.
Additionally, the pattern continues to support the facts that the lower bound condition more closely
approximates the true boundary as learning rate decreases, and the upper bound provides a tighter
approximation to the true boundary as learning rate increases.

6 CONCLUSION

We present precise yet interpretable, necessary and sufficient conditions to determine when a point
w∗ is stable under linearized SGD dynamics. The sufficient condition in Theorem 1 relies on a novel

8
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(a) σ = 5. Log-scale. (b) σ = 5. Linear-scale.

Figure 2: The red area indicates where SGD diverges and grey where it does not diverge among
parameter pairs (η,B). We plot the squared value of η2 to make the linear relation between B and η2

clearer. The solid black line is where the condition of Theorem 1 attains equality and the dashed line
is where the condition of Theorem 2 attains equality.

coherence measure σ that summarizes relevant information in the loss surface geometry. We next list
some open questions our work raises:

• In future research endeavors, it would be intriguing to close the gap between Theorem 1 and
Theorem 2 to establish the actual dependency of SGD stability on σ and the hyperparameters
of SGD.

• Additionally, it would be interesting to empirically measure the value of the coherence
measure σ in realistic neural networks. Acquiring knowledge about the practical range of
values that σ can assume would enhance the utility of the theoretical contributions provided
here for predicting the behavior of SGD in real-world scenarios. Developing efficient
approaches to approximate σ in large neural networks would represent a valuable step
toward achieving this objective.

• We may also consider extending the same proof techniques to characterize the stability
of sharpness-aware methods (Behdin et al., 2023; Foret et al., 2020; Zhuang et al., 2022;
Liu et al., 2022; Kwon et al., 2021; Kim et al., 2022), which are commonly employed for
training many overparameterized models.

• Along these lines, it would also be useful to consider whether the stability of SGD with
momentum or other adaptive gradient methods could be analyzed with this approach.

• The convergence analysis in Lemma 4.1 could possibly used to derive fine-grained local
convergence rates of SGD depending on Hessian alignment.
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A PROOFS

A.1 PROOF PRELIMINARIES

In this section, we provide notation and necessary background for the following proofs.

Notation: Let [n] denote 1, 2, ..., n. Let ei denote i-th canonical basis vector. Let Bern(p) be Bernoulli
distribution with parameter p. Let 0 denote the all-zero matrix or vector, where the dimension will be clear
from context. Let 1 be defined similarly as the all-ones matrix or vector. Let ∥A∥2 denote the spectral norm
of matrix A. Let λi(A) denote the i-th largest eigenvalue of the matrix A. Let ∥A∥F denote the Frobenius
norm of matrix A. Let ∥A∥Sp denote p-Schatten norm of matrix A, that is, the p-norm of the vector of singular
values of A.

Fact 1. ℓ1-ℓ2 Norm Inequality: For any vector x ∈ Rd, ∥x∥2 ≤ ∥x∥1 ≤
√
d∥x∥2.

Fact 2. Recursive Formula for Binomial Coefficients: For all n, k ∈ N such that k ≤ n, the binomial
coefficients satisfy the following recursive formula:(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

The notion of PSD matrices can be used to define a partial order on the set of symmetric matrices as follows.

Definition 3. Loewner Order: The Loewner order is a partial order on the set of positive semidefinite symmetric
matrices. For two positive semidefinite matrices A and B, we write A ⪯ B to denote that B−A is positive
semidefinite and A ≺ B to denote that B−A is positive definite.

Note that if A is a PSD matrix, then for any symmetric B, BAB must also be PSD.

We frequently use the following properties of the trace in our derivations.

Properties of the Trace:

• tr[A] =
∑n

i=1 λi(A).

• Invariance to cyclic permutation: tr[ABC] = tr[CAB].

• Linearity of the trace: tr[cA+B] = c tr[A] + tr[B], where c ∈ R.

Lemma A.1. For any matrix M ∈ Rn×n, ∥M∥F ≤ ∥M∥S1 ≤
√
n∥M∥F .

Proof. This follows from the fact that ∥M∥F = ∥M∥S2 and ∥M∥Sp is the p-norm of the spectrum of M along
with applying the ℓ1-ℓ2-norm inequality (Fact 1).

Lemma A.2. For any length k sequence of square matrices A1...Ak ∈ Rd×d, tr[A1A2...Ak] ≤√
d∥A1∥F ∥A2∥F ...∥Ak∥F .

Proof. First, it follows from Weyl’s Majorant Theorem that tr[A1A2...Ak] ≤ ∥A1A2...Ak∥S1 (see Section
III.5 (Bhatia, 2013)). Then, applying Lemma A.1 implies,

tr[A1A2...Ak] ≤ ∥A1A2...Ak∥S1 ≤
√
d∥A1A2...Ak∥F .

Finally, we conclude the lemma statment by submultiplicativity of the Frobenius norm.

A.2 PROOFS

Proof of Theorem 1

Proof. Note that ∥M∥22 ≤ ∥M∥2F ≤ d∥M∥22 for all M ∈ Rd×d. Therefore, by Lemma 4.1, it suffices to show
that the condition of the theorem implies that the following quantity diverges towards infinity as k → ∞:(

η2

nB
− η2

n2

)k n∑
y1...,yk=1

∥Hyk ...Hy1∥
2
F
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From here, we lower bound it by the following. Note that ∥M∥2F ≥ 1
d
∥M∥2S1

, where ∥M∥S1 is the 1-Schatten
norm (see Lemma A.1).(

η2

nB
− η2

n2

)k n∑
y1...,yk=1

∥Hyk ...Hy1∥
2
F ≥

(
η2

nB
− η2

n2

)k n∑
y1...,yk=1

1

d
∥Hyk ...Hy1∥

2
S1

≥
(

η2

nB
− η2

n2

)k n∑
y1...,yk=1

1

d
tr[Hyk ...Hy1 ]

2

≥
(

η2

nB
− η2

n2

)k
1

d

n∑
y=1

tr[Hk
y ]

2

≥
(

η2

nB
− η2

n2

)k
1

nd

(
n∑

y=1

tr[Hk
y ]

)2

The last line follows by again applying the L1-L2 norm inequality. Now we show that the complexity measure σ
satisfies:

nk

d2 · σk
· tr[Hk] ≤

n∑
y=1

tr[Hk
y ].

First, we bound the left-hand term as follows. By Lemma A.2 we know that tr[A1A2...Ak] ≤
d∥A1∥F ∥A2∥F ...∥Ak−1∥F ∥Ak∥F . Therefore,

tr[Hk] =
1

nk
·

n∑
y1...,yk=1

tr[Hyk ...Hy1 ]

=
1

nk
·

n∑
y1...,yk=1

tr[(H1/2
y1 H1/2

yk )(H1/2
yk H1/2

yk−1
)...(H1/2

y2 H1/2
y1 )]

≤ d

nk
·

n∑
y1...,yk=1

∥H1/2
y1 H1/2

yk ∥F · ∥H1/2
yk H1/2

yk−1
∥F · ... · ∥H1/2

y2 H1/2
y1 ∥F

=
d

nk
·

n∑
y1...,yk=1

Sy1,ykSyk,yk−1 ...Sy2,y1

=
d

nk
· tr[Sk] ≤ d2

nk
· λ1(S)

k.

Therefore,

nk

d2 · σk
· tr[Hk] =

nk ·maxi∈[n] λ1(Hi)
k

d2 · λ1(S)k
· tr[Hk] ≤ max

i∈[n]
λ1(Hi)

k ≤
n∑

y=1

tr[Hk
y ].

Starting from where we left off before,

E tr[Ĵk...Ĵ
2
1...Ĵk] ≥

(
η2

nB
− η2

n2

)k
1

nd

(
n∑

y=1

tr[Hk
y ]

)2

≥
(

η2

nB
− η2

n2

)k
1

nd

(
nk

d2 · σk
· tr[Hk]

)2

≥
(

η2

nB
− η2

n2

)k
1

nd5
· n

2k

σ2k
· λ1(H)2k

= η2k

(
n

σ2B
− 1

σ2

)k
1

nd5
· λ1(H)2k

We see that by the condition of the theorem that λ1(H) > 1
η
·
(

n
σ2B

− 1
σ2

)−1/2 that this above equation diverges
towards infinity as k → ∞. Hence, we conclude the theorem statement.

Proof of Theorem 2
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Proof. Construct {Hi}i∈[n] so that Hi = m · e1e
T
1 if i ∈ [σ] and Hi = 0 otherwise, where m = λ1·n

σ
. Note

that λ1(H) = σ
n
· m = λ1. Furthermore, note that ∥H1/2

i H
1/2
j ∥F = m if i, j ∈ [σ] and zero otherwise.

Therefore, S, the entry-wise square root of the Gram matrix (i.e, Sij = ∥H1/2
i H

1/2
j ∥F ), has all of the first σ×σ

entries equal to m and the rest equal to zero. Therefore, λ1(S) = m · σ. Meanwhile, maxi∈[n] λ1(Hi) = m.
Hence, we see the Hessian coherence measure for this constructed problem is indeed equal to the chosen value
of σ.

We now show that limk→∞ E∥Ĵk....Ĵ1∥2F < n. Note that Ĵ = I − η
∑n

i=1 xiHi, where the xi’s are i.i.d.
random variables sampled from a Bernoulli distribution with parameter p = B/n. A key observation here is
that all Ĵ are diagonal (since I and all Hi are diagonal) and hence Ĵ1...Ĵk commute. Therefore,

E∥Ĵk....Ĵ1∥2F = E tr[Ĵk...Ĵ
2
1...Ĵk] = E tr[Ĵ2

k...Ĵ
2
1] = tr[E[Ĵ2

1]
k],

where in the last step we use the fact that all of the Ĵ are independent and identically distributed. Recall that
the trace is the sum of the diagonal entries in a matrix and hence tr[E[Ĵ2

1]
k] =

∑n
i=1 e

T
i E[Ĵ2

1]
kei. Note that

eT
i E[Ĵ2

1]
kei = 1 when i ̸= 1, so tr[E[Ĵ2

1]
k] = (n − 1) + eT

1 tr[E[Ĵ2
1]

k]e1. To show that this quantity is
bounded by n, we must show that eT

1 E[Ĵ2
1]

ke1 = (eT
1 E[Ĵ2

1]e1)
k is bounded. Following the base case of part (i)

in Lemma 4.1, we have that:

E[Ĵ2
1] = I− 2ηH+ η2H2 +

(
η2

nB
− η2

n2

) n∑
i=1

H2
i

We can then write eT
1 E[Ĵ2

1]e1 as:

eT
1 E[Ĵ2

1]e1 = 1− 2η
σ

n
·m+ η2 σ

2

n2
m2 +

(
η2

nB
− η2

n2

)
· σ ·m2,

where we used the fact that eT
1 He1 = λ1(H) = σ

n
·m in our construction and eT

1 H
2
i e1 = m2 if i ∈ [σ] and

zero otherwise. To show convergence, we must show that the previous equation is less than 1. This is equivalent
to the following condition:

η2 σ
2

n2
m2 +

(
η2

nB
− η2

n2

)
· σ ·m2 < 2η · σ

n
·m

⇐⇒ η2 σ
2

n2
m2 + η2

(
n
B

− 1
)

σ
· σ

2

n2
·m2 < 2η · σ

n
·m

⇐⇒ η2λ1(H)2 + η2

(
n
B

− 1
)

σ
· λ1(H)2 < 2η · λ1(H)

⇐⇒ λ1(H) <
2

η
·
(
1 +

n/B − 1

σ

)−1

⇐⇒ λ1 <
2σ

η
·
(
σ +

n

B
− 1
)−1

.

Therefore, we conclude the theorem statement

Proof of Lemma 4.1

Proof. First, note that ∥M∥2F = tr(MTM). Since J and Ĵ are always symmetric, to prove the theorem
conclusion, we must show that limk→∞ E[tr[Ĵk...Ĵ1Ĵ1...Ĵk]] = ∞. We will achieve this by inductively
proving a PSD lower bound on the expectation of this product of matrices and then leveraging the operator
monotonicity of the trace. To that end, we define the matrix:

Mr = J2r +

(
η2

nB
− η2

n2

)r n∑
y1...,yr=1

Hyr ...H
2
y1 ...Hyr .
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We show that E[Ĵk...Ĵ1Ĵ1...Ĵk] ⪰ Mk ∀k ∈ N. First, let us start with the base case r = 1. Recall that
H = 1

n

∑n
i=1 Hi and Ĥ = 1

B

∑n
i=1 xiHi, where xi ∼ Bern(B/n).

E[Ĵ1Ĵ1] = E[(I− ηĤ1)(I− ηĤ1)]

= E[I− 2ηĤ1 + η2Ĥ2
1]

= E

[
I− 2

(
η

B

n∑
i=1

xiHi

)
+

(
η

B

n∑
i=1

xiHi

)2]

= I− 2η

n

n∑
i=1

Hi +
η2

B2

n∑
i,j=1

E[xixj ]HiHj

At this point, we have simply substituted in the relevant definitions and rearranged the terms. Now, note
that E[xixj ] = B2

n2 if i ̸= j and E[xixj ] = B
n

otherwise. We substitute this in, and use the fact that
H2 =

(
1
n

∑n
i=1 Hi

)2.

E[Ĵ1Ĵ1] = I− 2η

n

n∑
i=1

Hi +
η2

nB

n∑
i=1

H2
i +

η2

n2

n∑
i ̸=j

HiHj

= I− 2η

n

n∑
i=1

Hi +
η2

n2

n∑
i,j=1

HiHj +

(
η2

nB
− η2

n2

) n∑
i=1

H2
i

= I− 2ηH+ η2H2 +

(
η2

nB
− η2

n2

) n∑
i=1

H2
i

= M1

Thus, we have proved the base case E[Ĵ2
1] ⪰ M1, which also implies E[Ĵ2

k] ⪰ M1, since they are identically
distributed. We next prove the inductive step under the assumption that E[Ĵk−1...Ĵ

2
1...Ĵk−1] ⪰ Mk−1. By the

Law of Total Expectation and linearity,

E[Ĵk...Ĵ
2
1...Ĵk] = E[E[Ĵk...Ĵ

2
1...Ĵk|Ĵk]] = E[Ĵk · E[Ĵk−1...Ĵ

2
1...Ĵk−1] · Ĵk] ⪰ E[ĴkMk−1Ĵk].

The arithmetic in the next part of the argument is analogous to the argument in the base case.

E[ĴkMk−1Ĵk] = E[(I− ηĤk)Mk−1(I− ηĤk)]

= Mk−1 − ηMk−1H− ηHMk−1 + E

[
η2

B2

n∑
i,j=1

xixjHiMk−1Hj

]

= Mk−1 − ηMk−1H− ηHMk−1 +
η2

n2

n∑
i,j=1

HiMk−1Hj

+ η2

(
1

nB
− 1

n2

) n∑
i=1

HiMk−1Hi

= JkMk−1Jk + η2

(
1

nB
− 1

n2

) n∑
i=1

HiMk−1Hi

Next, we substitute in the definition of Mk−1. Recall that if A is symmetric and B is PSD, then ABA is also
PSD.

E[ĴkMk−1Ĵk] = Jk

J2(k−1) +

(
η2

nB
− η2

n2

)k−1 n∑
y1...,yk−1=1

Hyk−1 ...H
2
y1 ...Hyk−1

Jk

+η2

(
1

nB
− 1

n2

) n∑
i=1

Hi

J2(k−1) +

(
η2

nB
− η2

n2

)k−1 n∑
y1...,yk−1=1

Hyk−1 ...H
2
y1 ...Hyk−1

Hi

⪰ J2k +

(
η2

nB
− η2

n2

)k n∑
y1...,yk=1

Hyk ...H
2
y1 ...Hyk

= Mk
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Note that we are able to drop the cross-terms in the first step since ABA ⪰ 0, whenever A is symmetric and B

is PSD. Therefore, we have show that E[Ĵk...Ĵ
2
1...Ĵk] ⪰ Mk for all k ∈ [n]. By the operator monotonicity and

linearity of the trace,

E[tr[Ĵk...Ĵ
2
1...Ĵk]] = tr[E[Ĵk...Ĵ

2
1...Ĵk]] ≥ tr[Mk]

= tr[J2k] +

(
η2

nB
− η2

n2

)k

tr

 n∑
y1...,yk=1

Hyk ...H
2
y1 ...Hyk


= tr[J2k] +

(
η2

nB
− η2

n2

)k n∑
y1...,yk=1

∥Hyk ...Hy1∥
2
F

Hence, we have proved part (i) of the lemma. We will now prove part (ii). Define the following matrix:

Nr =

(
η2

nB
− η2

n2

)r n∑
y1...,yr=1

Hyr ...H
2
y1 ...Hyr ,

and define N0 = I. We will prove that:

E[Ĵk...Ĵ
2
1...Ĵk] ⪯

k∑
r=0

(1− ϵ)2(k−r)

(
k

r

)
Nr, (3)

for all k ∈ N, where ϵ > 0. First, note that the condition of the theorem implies −(1− ϵ)I ≺ J ≺ (1− ϵ)I for
some ϵ > 0. First, note that the base case:

E[Ĵ2
1] ⪯ (1− ϵ)2N0 +N1 = (1− ϵ)2I+

(
η2

nB
− η2

n2

) n∑
i=1

H2
i ,

holds from our computations in part (i), since J2 ⪯ (1 − ϵ)2N0. Now for the inductive step. Under the
assumption that Equation 3 holds for k − 1, we show it also hold for k. By the same argument as in part (i), we
find that:

E[Ĵk...Ĵ
2
1...Ĵk] ⪯ E

[
Ĵk

(
k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr

)
Ĵk

]

= Jk

(
k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr

)
Jk

+

(
η2

nB
− η2

n2

) n∑
i=1

Hi

(
k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr

)
Hi

⪯ (1− ϵ)2
(

k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr

)

+

(
η2

nB
− η2

n2

) n∑
i=1

Hi

(
k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr

)
Hi

=

k−1∑
r=0

(1− ϵ)2(k−r)

(
k − 1

r

)
Nr

+

k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
·
(

η2

nB
− η2

n2

) n∑
i=1

HiNrHi

=

k−1∑
r=0

(1− ϵ)2(k−r)

(
k − 1

r

)
Nr +

k−1∑
r=0

(1− ϵ)2(k−1−r)

(
k − 1

r

)
Nr+1,
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where the last line follows from
(

η2

nB
− η2

n2

)∑n
i=1 HiNrHi = Nr+1. We can rewrite the second summation

to go from r = 1 to r = k by replacing r + 1 with r to combine the terms like so:

k−1∑
r=0

(1− ϵ)2(k−r)

(
k − 1

r

)
Nr +

k∑
r=1

(1− ϵ)2(k−r)

(
k − 1

r − 1

)
Nr

= (1− ϵ)2kN0 +

k−1∑
r=1

[
(1− ϵ)2(k−r)

(
k − 1

r

)
+ (1− ϵ)2(k−r)

(
k − 1

r − 1

)]
Nr +Nk

= (1− ϵ)2kN0 +

k−1∑
r=1

(1− ϵ)2(k−r)

(
k

r

)
Nr +Nk

=

k∑
r=0

(1− ϵ)2(k−r)

(
k

r

)
Nr.

Hence, we have completed the proof by induction. Note that to go from the second to the third line in the
previous equation block, we applied the recursive formula for binomial coefficients (see Fact 2). Now, doing the
same as before, we can conclude that:

E tr[Ĵk...Ĵ
2
1...Ĵk] ≤

k∑
r=0

(1− ϵ)2(k−r)

(
k

r

)
tr[Nr].

By the condition of the theorem that limk→∞

(
η2

nB
− η2

n2

)k∑n
y1...,yk=1 ∥Hyk ...Hy1∥2F = 0, we have that:

tr[Nr] =

(
η2

nB
− η2

n2

)r n∑
y1...,yr=1

tr[Hyr ...H
2
y1 ...Hyr ]

=

(
η2

nB
− η2

n2

)r n∑
y1...,yr=1

∥Hyr ...Hy1∥
2
F ,

goes to zero as r → ∞. Let nr = tr[Nr] and δ = (1 − ϵ)2. To prove the theorem statement, it suffices to
show that limk→∞

∑k
r=0 δ

k−r
(
k
r

)
nr = 0, when δ ∈ (0, 1) and (nr)r∈N is a sequence of positive real numbers

converging to zero. By the theorem statement, we know that 1
ϵr

tr[Nr] → 0. Therefore, there exists some
constant C such that 1

ϵr
tr[Nr] ≤ C for all r ∈ [n], which implies tr[Nr] ≤ ϵrC. Therefore, by the Binomial

formula:

k∑
r=0

δk−r

(
k

r

)
nr ≤

k∑
r=0

(
k

r

)
(1− ϵ2)k−r · Cϵr = C

(
(1− ϵ)2 + ϵ

)k
.

This term must go to zero as k → ∞, since (1− ϵ)2 + ϵ = 1− ϵ+ ϵ2 < 1.

B RESULT OF WU ET AL. (2022)

Here, we summarize the relevant information needed to state Theorem 3.3 of Wu et al. (2022), which considers
the settings where one has access to a dataset of the form (xi, yi)i∈[n], where xi ∈ Rm, yi ∈ R. f(xi,w) is a
function parameterized by w such that f : Rm × Rd → R. The loss function applied to each sample is MSE,
denoted by ℓi(w) = |f(xi,w)−yi|2, and the total loss over all the samples is given by L(w) = 1

n

∑n
i=1 ℓi(w).

The linearized SGD dynamics considered is the same as Definition 1, except that S ⊂ [n] is sampled from all
size B subsets of [n] uniformly.

One can now define two critical matrices. Let Σ(w) = 1
n

∑n
i=1 ∇ℓi(w)∇ℓi(w)T − ∇L(w)∇L(w)T be

the noise covariance matrix, and let G(w) = 1
n

∑n
i=1 ∇f(xi,w)∇f(xi,w)T be the Fisher matrix that

characterizes the local geometry of the loss landscape. Next, Wu et al. (2022) define the loss-scaled alignment
factor (Equation 3 in Wu et al. (2022)):

µ(w) =
tr[Σ(w)G(w)]

2L(w)∥G(w)∥2F
. (4)

The last step before stating the theorem is the introduction of the definition of linear stability considered in Wu
et al. (2022).
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Definition 4. (Linear stability in Wu et al. (2022)) A global minimum w∗ is said to be linearly stable if there
exists a C > 0 such that it holds for linearized dynamics that E[L(wt)] ≤ C ·E[L(w0)] ∀t ≥ 0, with w0 being
sufficiently close to w∗.

Finally, the theorem follows.

Theorem 3. (Theorem 3.3 in Wu et al. (2022)) Let w∗ be a global minima that is linearly stable (Definition
4). Denote by µ(w) the alignment factors for linearized SGD (Equation 4). If µ(w) > µ0, then ∥H(w∗)∥F ≤
1
η

√
B
µ0

.
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