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Abstract

In the realm of daily services, the deployment of deep neural networks underscores
the paramount importance of their reliability. However, the vulnerability of these
networks to adversarial attacks, primarily evasion-based, poses a concerning threat
to their functionality. Common methods for enhancing robustness involve heavy
adversarial training or leveraging learned knowledge from clean data, both neces-
sitating substantial computational resources. This inherent time-intensive nature
severely limits the agility of large foundational models to swiftly counter adversar-
ial perturbations. To address this challenge, this paper focuses on the Rapid Plug-in
Defender (RaPiD) problem, aiming to rapidly counter adversarial perturbations
without altering the deployed model. Drawing inspiration from the generaliza-
tion and the universal computation ability of pre-trained transformer models, we
propose a novel method termed CeTaD (Considering Pre-trained Transformers
as Defenders) for RaPiD, optimized for efficient computation. CeTaD strategi-
cally fine-tunes the normalization layer parameters within the defender using a
limited set of clean and adversarial examples. Our evaluation centers on assessing
CeTaD’s effectiveness, transferability, and the impact of different components
in scenarios involving one-shot adversarial examples. The proposed method is
capable of rapidly adapting to various attacks and different application scenarios
without altering the target model and clean training data. We also explore the
influence of varying training data conditions on CeTaD’s performance. Notably,
CeTaD exhibits adaptability across differentiable service models and proves the
potential of continuous learning.

1 Introduction

It has been observed that trained neural network models exhibit vulnerability, failing to correctly
predict labels when slight perturbations are added to the input examples [15, 2, 5]. This method,
known as an evasion-based adversarial attack, poses a significant challenge. Recent research works
[47, 42, 36, 41, 31] have focused on developing robust models by leveraging clean data knowledge or
employing adversarial training techniques.
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Presently, deep neural networks serve as fundamental components across various domains [25, 12].
The most prominent models are pre-trained transformers, such as GPT-2 [33], BERT [9], and VIT
[11]. Following pre-training on relevant data, they demonstrate strong generalization capabilities and
can swiftly adapt to downstream tasks.

Defending deployed service models presents a more challenging scenario. These service models
may face difficulties in fine-tuning when under attack, especially if methods like pruning [52] were
implemented before deployment to compress or accelerate the service. Retraining a more robust
model incurs a considerable computational cost and time. Furthermore, swift defense becomes crucial
to prevent further losses instead of waiting for adversarial training or redeploying the model.

Hence, Rapid Plug-in Defender (RaPiD), the goal of which is to swiftly counter adversarial perturba-
tions in different application scenarios without altering the deployed model, is of much importance.
Most current methods, especially non-invasive defenders (Detection: Magnet[28], ADN[29], DG[1],
etc; Purification: HGD[23], Defense-GAN[35], CAFD[50], DISCO[17], DensePure[43], etc.) fail to
accomplish this task due to the following reasons: First, they cannot rapidly defend with limited data
due to heavy training with much time and training data. Especially, DM-Improves-AT [42] applies
adversarial training on a large amount of data generated by diffusion models. Second, they cannot
quickly adapt to different application scenarios. For example, as shown in Table 3, on CIFAR-10,
although DiffPure [31] trained on CIFAR-10 (DiffPureCIFAR-10) performs well against StAdvAttack,
it could hardly work with that trained on Imagenet-1k (DiffPureImagenet-1k). Training a diffusion model
on a specific field needs much time and data.

Table 1: Comparison of conditions between RaPiD and related works in adversarial defense, con-
centrating on requirements such as generating additional data, target service model tuning, heavy
adversarial training application, utilization of clean data information, and the plug-in nature of the
defense.

Case Data
Generation

Tuning
Service

Heavy
Adversarial

Training

Clean
Data Plug-in

DM-Improves-AT [42] ! ! ! ! %

DyART [47] % ! ! ! %

FD [46] % % ! ! !

DISCO [17] % % ! ! !

GDMP [41] % % % ! !

DiffPure [31] % % % ! !

DensePure [43] % % % ! !

R&P [45] % % % % !

CeTaD (Ours) % % % % !

In this case, we find that the large volume of training data and the substantial number of parameters
requiring adjustment are the primary culprits causing the time-consuming nature of current methods.
Motivated by the generalization and the universal computation ability of pre-trained transformer
models [26, 19], as well as evidence that pre-training can fortify robustness [16], we propose a
new defense method, CeTaD—Considering Pre-trained Transformers as Defenders. CeTaD is a
plug-in defender, which initializes by pre-trained weights and fine-tunes minimal parameters with
only few-shot samples. Notably, CeTaD diverges from existing methods as follows: It demonstrates
efficacy with a minimal sample size required for fine-tuning the rapid defender. Additionally, CeTaD
avoids the need for modification within the deployed model, ensuring adaptability across diverse
application scenarios, especially with large foundational models.

Our experimental results demonstrate that, in the context of RaPiD, CeTaD exhibits superior
performance concerning both clean accuracy and adversarial accuracy with limited training data and
computational resources, compared to feasible baselines. The method’s effectiveness spans across
various datasets and attack methods. The minimal tuned parameters mitigate the risk of overfitting
during the training process. Through ablation studies, we evaluate the components within CeTaD,
such as the residual connection and parameter initialization. Furthermore, we explore the impact of
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data scale and balance, while the transfer test underscores its potential for generalization, with the
transfer gap potentially bolstering robustness. Our contributions are summarized as follows.

1. Introduction of the Rapid Plug-in Defender framework aimed at promptly addressing
adversarial perturbations quickly without altering the deployed model.

2. Utilization of two strategies in RaPiD to expedite response time: a) leveraging Pretrained
models to minimize parameter updates, b) employing few-shot samples for defender training.

3. CeTaD’s achievement of defense response within half an hour on a single GPU, surpassing
the current RaPiD method in efficacy. Additionally, CeTaD demonstrates proficiency in
defending against diverse attacks and enables zero-shot transfer to different datasets.

2 Related Work

Adversarial Examples and Defenses. Introduced by [38], adversarial examples could fool a neural
network into working incorrectly. Among various methods [2, 5], attacks in a white-box manner are
usually the most dangerous since the leaked information of the victim model is utilized. Many efforts
generate adversarial examples through gradients of victims. [15] yielded a simple and fast method
of generating adversarial examples (FGSM). [4] proposed much more effective attacks tailored to
three distance metrics. PGD is a multi-step FGSM with the maximum distortion limitation [27].
[8] came up with AutoAttack, a parameter-free ensemble of attacks. Facing adversarial examples,
lots of effort pay attention to defense [7]. Some works detect adversarial attack in advance. [28]
learned to differentiate between normal and adversarial examples by approximating the manifold of
normal examples. [29] proposed to augment deep neural networks with a small detector subnetwork
which is trained on the binary classification task of distinguishing genuine data from data containing
adversarial perturbations. [1] constructed a Latent Neighborhood Graph for detection. Some works
strengthen robustness by adversarial training, where the model would be trained on adversarial
examples [15]. [42] proposed to exploit diffusion models to generate much extra data for adversarial
training. [47] encouraged the decision boundary to engage in movement that prioritizes increasing
smaller margins. In addition, many works focus on adversarial purification. [23] proposed high-level
representation guided denoiser for purification. [35] trained a generative adversarial network to model
the distribution of unperturbed images. [50] proposed to remove adversarial noise by implementing a
self-supervised adversarial training mechanism in a class activation feature space. [36] combined
canonical supervised learning with self-supervised representation learning to purify adversarial
examples at test time. [17] purified adversarial examples by localized manifold projections. Similar to
[41], [31] followed a forward diffusion process to add noise and recover the clean examples through
a reverse generative process. Furthermore, [43] consisted of multiple runs of reverse process for
multiple reversed samples, which are then passed through the classifier, followed by majority voting
of inferred labels to make the final prediction.

Few-shot Adversarial Training. Here are several work on adversarial training with few-shot samples.
Many works focus on few-shot learning by adversarial training. [30] applied adversarial discriminator
for supervised adaptation problem. [49] introduced an adversarial generator to help few-shot models
learn sharper decision boundary. [22] proposed to hallucinate diverse and discriminative features on
few labeled samples. Furthermore, few-shot adversarial training is utilized to enhance the robustness.
[13] developed an adversarial training algorithm for producing robust meta-learners and found the the
meta-learning models are the most robust with only the last layer tuned. [10] integrated a adversarial-
aware classifier, adversarial-reweighted training and a feature purifier. In this paper, we implement
fine-tuning with few-shot adversarial examples for swift defense response.

Pre-trained Transformer. Introduced by [40], transformer is an efficient network architecture
based solely on attention mechanisms. It is first applied in natural language processing and then
rapidly spread in computer vision. [9] proposed BERT to utilize only the encoder of transformer
while GPT-2 [33] considered only transformer decoder. In computer vision, [11] proposed Vision
Transformer (VIT), transforming a image into sequences of patches and processing them through
a pure encoder-only transformer. Moreover, transformer has the ability of universal computation
over single modality. [26] demonstrated transformer models pre-trained on natural language could
be transferred to tasks of other modalities. Similar to [51, 48], [39] proposed to make the frozen
language transformer perceive images by only training a vision encoder as the sequence embedding.
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To strengthen robustness and generalization, we initialize the plug-in defender by a language/vision
pre-trained transformer model and only fine-tune minimal parameters.

3 Pre-trained Transformers as Defenders

Definition 1 RaPiD (Rapid Plug-in Defender): RaPiD is a defense mechanism in machine learning
designed to swiftly mitigate adversarial perturbations encountered by deployed models without
necessitating alterations to the model’s architecture or parameters. Its primary objective is to
provide rapid and effective protection against adversarial attacks while maintaining the integrity and
functionality of the existing deployed model.

For RaPiD implementation, the victim service model M is fixed, with limited clean data Xc and
a sparse set of potentially imbalanced adversarial examples Xa from a single attack method for
training, all labeled under Y∗. While this paper specifically addresses image classification within the
service task, the approach holds theoretical promise for other tasks as well. By default, only one-shot
imbalanced adversarial examples are accessible.

CeTaD, initializes with pre-trained weights from models like VIT or BERT. It involves a defender
embedding and decoder to align the plug-in defender with the input example and the service model
respectively. A residual connection retains the primary input features, resulting in the original input
combined with the defender’s output serving as the input to the service model. Default settings include
copying the embedding from VIT or BERT and utilizing PixelShuffle [37] for the decoder. Especially,
PixelShuffle rearranges the elements, unfolding channels while increasing spatial resolution, to match
the image resolution. Given limited access to adversarial examples, we opt to fine-tune minimal
parameters, such as layer normalization, in the plug-in defender, mitigating overfitting and excessive
bias on clean data.

Figure 1: The structure of CeTaD. The input ex-
ample would be added with the feature obtained
by the stack of an embedding, a transformer
encoder, and a decoder before being processed
by the deployed service model. The deployed
model is frozen in RaPiD.

The method is formulated as follows: In a single-
label image classification task, each image xc from
the clean set Xc is attached with a label y∗ within
the corresponding label set Y∗. A deployed model
M maps xc into the prediction yc as yc = M(xc).

If the model M works correctly, yc = y∗. Uti-
lizing leaked information about M, the attacker
edits the original image xc to an adversarial image
xa by introducing noises, resulting in an adversar-
ial image xa within the adversarial set Xa. The
prediction for xa is then determined as

ya = M(xa) (1)

If the attack succeeds, ya ̸= y∗. The tuning set
for defense, denoted as Xd, represents a subset
of Xa and has a limited size within the RaPiD
framework. Our approach incorporates a defender
module D with parameters θ, while maintaining
M fixed. As illustrated in Fig. 1, M consists of
the embedding of a pre-trained VIT, a pre-trained
transformer encoder as a feature poccessor, and a parameter-free PixelShuffle block as a decoder.
Only limited parameters are fine-tuned within Xd. The loss function is formulated as

argmin
θ1

∑
xd∈Xd

loss(M(Dθ1,θ2(xd) + xd), y
∗) (2)

where loss is the cross-entropy for classification. Within this framework, θ1 and θ2 represent
the parameters of D, with only θ1 being subject to tuning. Specifically, θ1 pertains to the layer
normalization parameters, while θ2 encapsulates the remaining parameters. With the trained defender
Dθ∗

1 ,θ2
, the final prediction y is obtained as

y = M(Dθ∗
1 ,θ2

(x′) + x′) (3)
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Table 2: Accuracy performance with different
methods for RaPiD.

Method CA(%) AA(%)
None 93.75 00.00

R&P ([45]) 93.16 02.34
RN(std=0.05) ([32]) 68.95 05.86
RN(std=0.06) ([32]) 57.23 11.13
RN(std=0.07) ([32]) 48.24 13.67

Linear 23.44 21.68
FFN 18.95 19.34

Bottleneck 23.44 20.90
FD ([46]) 37.50 23.83

CeTaD-GPT-2 55.08 39.65
CeTaD-VIT 82.81 30.27

CeTaD-VIT-large 71.68 44.14
CeTaD-BERT 68.75 44.34

CeTaD-BERT-large 66.02 48.83

Table 3: Accuracy performance with StAdvAt-
tack on CIFAR-10.

Method CA(%) AA(%)
None 93.75 00.00

R&P 92.19 01.76
RN(std=0.05) 70.90 01.95
RN(std=0.07) 46.29 05.27
RN(std=0.09) 32.03 08.20

Linear 18.36 15.43
FFN 20.12 16.01

Bottleneck 18.35 13.47
FD 29.49 14.64

DiffPureCIFAR-10 87.50 71.88
DiffPureImagenet-1k 91.41 00.59

CeTaD-GPT-2 14.64 09.57
CeTaD-VIT 84.57 00.39

CeTaD-VIT-large 67.57 06.64
CeTaD-BERT 56.25 11.52

CeTaD-BERT-large 56.64 17.38

where θ∗1 is the optimized parameters, and x′ ∈ (Xc

⋃
Xa).

Module Selection. Module selection is a critical aspect of CeTaD given the limited parameter tuning.
The embedding and decoder modules play pivotal roles in facilitating the mapping between the input
and hidden spaces. Meanwhile, the encoder holds paramount importance for discerning adversarial
cues and fortifying robustness, as it remains the sole trainable module and undertakes the most
computation within CeTaD. Flexibility characterizes CeTaD, contingent upon ensuring harmonious
dimensions across the modules.

Outlined below are succinct introductions to the utilized modules: BERT [9], a transformer encoder
model, pre-trained for masked language modeling (MLM) and next sentence prediction (NSP) on a
substantial uncased English dataset (available in base and large versions); VIT [11], a transformer
encoder model, pre-trained for image classification on ImageNet-21k at a resolution of 224x224
(accessible in base and large versions); GPT-2 [33], a transformer decoder model, pre-trained for
causal language modeling (CLM) on an extensive English corpus (available in 124M variant);
PixelShuffle [37], a technique reorganizing elements within channels to enhance spatial resolution.

Details of Optimization. In our default setup, only layer norm parameters (48 parameter groups,
36864 variables in total) are fine-tuned using Lion [6] with default hyper-parameters. We optimize
Eq. (2) over 500 epochs with a batch size of 32.

Discussion. Two perspectives elucidate CeTaD’s functionality. Initially, it functions akin to a purifier,
detecting and filtering adversarial perturbations by introducing adaptive noise. Alternatively, akin
to prompt engineering in natural language processing [24], CeTaD can be perceived as a prompt
generator, creating adaptive prompts. These prompts serve as cues for the service model, aiding in
enhanced classification of adversarial examples.

4 Experiments

Experimental Setup Datasets. Three image classification datasets, MNIST [21], CIFAR-10 [20],
CIFAR-100 [20], and Imagenet-1k[34], are utilized. We utilize the library, Datasets, to prepare data.
For simplicity, the training set only consists of adversarial examples whose number equals to that
of the classes, namely one-shot. The detailed information of datasets and pretrained models can be
found in Appendix Section A.

Attacks. Evasion methods PGD [27], AutoAttack [8] and StAdvAttack [44] simulate service model
leakage. Following [42], l∞-norm’s max distortion is 8/255 and l2-norm is 128/255. PGD parameters
include ten iterations and step size ϵ/4. Metrics include Clean Accuracy (CA) and Adversarial
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Accuracy (AA). Clean accuracy stands for the accuracy on clean data while adversarial accuracy on
adversarial data.

Pre-trained Models. Reproducibility relies on public models and checkpoints available on GitHub
or Huggingface. For MNIST, the victim model is a fine-tuned VIT-base; for CIFAR-10, both of
a fine-tuned VIT-base and a standardly trained WideResNet-28-10 are considered as victims; for
CIFAR-100, a fine-tuned VIT-base is the victim; for Imagenet-1k, VIT-base is the victim. Pre-trained
BERT-base, BERT-large, VIT-base, VIT-large and GPT-2-124M are considered as the choices of the
defender initialization.

Other Details. Default settings include BERT-base defending WideResNet-28-10 against l∞-PGD on
CIFAR-10, with the defender’s embedding sourced from pre-trained VIT.

Baselines R&P [45] and Random Noise [32] are training-free, while the others (Linear, FFN, Bot-
tleneck and FD [46]) undergo optimization. R&P employs random resizing and padding against
adversarial examples, while Random Noise adds zero-mean normal distribution noise similar to BaRT
[32]. Linear, FFN, Bottleneck, and FD replace module D in Fig. 1, maintaining the rest akin to
CeTaD. Linear uses a single layer sans activation, FFN has two doubled hidden feature linear layers
with a RELU activation, Bottleneck halves the hidden feature dimension, and FD integrates non-local
denoising with a 1x1 convolution and identity skip connection, performing optimally at a hidden
dimension of 256. Our method distinguishes itself from prior adversarial training approaches like
[42], excelling in rapid defense without extensive retraining needs.

CeTaD versus Baselines We compare CeTaD with other possible structures and feasible state-
of-the-art baselines for RaPiD. Here, BERT-base is the defender for the WideResNet-28-10 against
l∞-PGD on CIFAR-10. The results are shown in Table 2.

Table 4: Accuracy performance in zero-shot transfers
from the top to the bottom. "Source" refers to the en-
vironment where the defender is tuned, while "Target"
represents the environment to which the defender trans-
fers. None denotes direct training of the defender in the
target environment without transfer.

Target Data
(Target Model) Defender Source Data

(Source Model) CA(%) AA(%)

CIFAR-10
(ResNet)

BERT None 68.75 44.34
CIFAR-100 (VIT) 63.87 7.42

VIT None 82.81 30.27
CIFAR-100 (VIT) 69.73 7.42

CIFAR-10
(VIT)

BERT None 41.80 36.33
CIFAR-100 (VIT) 73.63 51.17

VIT None 80.86 45.90
CIFAR-100 (VIT) 79.88 47.66

MNIST
(VIT)

BERT
None 98.05 92.77

CIFAR-10 (VIT) 96.29 90.43
CIFAR-100 (VIT) 97.85 89.84

VIT
None 98.24 91.41

CIFAR-10 (VIT) 97.66 87.50
CIFAR-100 (VIT) 97.66 86.91

R&P maintains clean accuracy but shows
minimal improvement in adversarial accu-
racy. Adding random noise slightly boosts
adversarial accuracy but drastically re-
duces clean accuracy. Generally, training-
free methods perform worse in adversarial
accuracy compared to optimized ones like
Linear, FFN, and Bottleneck, which per-
form similarly. With the fixed denoising
structure and limited tuned parameters, FD
outperforms other prior methods shown.

However, CeTaD, initialized by GPT-2,
VIT, VIT-large, BERT, or BERT-large, ex-
cels in adversarial accuracy while main-
taining high clean accuracy compared to
the aforementioned methods. Notably,
GPT-2-based initialization shows relatively
poor performance, suggesting the need for
better fusion of information between pre-
ceding and subsequent patches in visual
tasks. Scaling matters too, as larger-scale
defenders outperform their base-scale counterparts in adversarial accuracy.

When designing a defender, minimal tuned parameters and robustness are crucial. Linear, FFN, and
Bottleneck, being more flexible with additional tuned parameters during training, tend to bias towards
clean data. Conversely, CeTaD’s fixed blocks with fewer tuned parameters, exhibit greater robustness,
resulting in superior performance. Further exploration on CeTaD’s tuned parameters is detailed in
Section 4. Evaluating the residual connection’s role in CeTaD, Table 5 showcases that without this
module, both clean and adversarial accuracy degrade significantly, highlighting the crucial role of the
residual connection with minimal tuned parameters and one-shot adversarial examples.

Generalization of CeTaD on Different Attacks In reality, deployed service models face vari-
ous attack methods. To gauge defenders’ reliability, we subject them to different attack methods,
following default experimental settings. Table 6 showcases CeTaD’s adaptability performs well
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Table 5: Accuracy performance on the residual
connection. without-res stands for removing the
residual connection.

Defender CA(%) AA(%)
None 93.75 00.00

CeTaD-BERT 68.75 44.34
CeTaD-BERT-without-res 11.13 10.55

CeTaD-VIT 82.81 30.27
CeTaD-VIT-without-res 12.89 12.89

Table 6: Accuracy performance against differ-
ent attack methods. None represents no attack
method is applied.

Attack Method CA(%) AA(%)
None 93.75 -

l∞-PGD 68.75 44.34
l∞-AutoAttack 70.70 49.41

l2-PGD 76.17 57.03
l2-AutoAttack 73.44 61.33

against AutoAttack. We observe that within AutoAttack, only Auto-PGD succeeds; this method is
the initial step of the ensemble and singularly overwhelms the victim model. Auto-PGD adjusts its
step size automatically, seeking minimal efficient perturbations. However, this pursuit of minimal
perturbations may compromise their robustness, allowing for more successful defense strategies.
Thus, maintaining a balance between maximum distortion and perturbation effectiveness is critical
for generating resilient perturbations. In addition, we include another attack method, StAdvAttack, in
Table 3. With a tougher attack method, our method shows good generalization as well.

Zero-shot Transfer to Different Datasets Given the generalization potential of pre-trained models
[19, 16, 26], we assess CeTaD across varied datasets without re-tuning, named zero-shot transfer.
Table 4 indicates that transferring to ResNet on CIFAR-10 from VIT on CIFAR-100 yields lower ad-
versarial accuracy, even worse than random selection. When the target model is VIT, CeTaD exhibits
improved transfer performance. This sensitivity to victim model structures suggests challenges in
direct transfer across different models. Instead, similarity between victim models might aid beneficial
transfers between tasks. Notably, the transferred BERT defender achieves higher adversarial accuracy,
indicating superior performance of CeTaD with diverse prior knowledge.

Further evaluations consider MNIST as the target dataset and CIFAR-10 or CIFAR-100 as the source.
Performance remains consistent regardless of the source dataset, suggesting uniform transferable
knowledge among these defenders. Shifting focus to more challenging target tasks, Table 7 shows sur-
prising results: defenders tuned on MNIST demonstrate superior adversarial accuracy on CIFAR-100
compared to CIFAR-10. This highlights that transfer from unrelated data might bolster defender ro-
bustness. In summary, leveraging transfer gaps enhances defense robustness, potentially empowering
defenders across diverse datasets to strengthen performance on individual datasets.

Table 7: Accuracy performance on zero-
shot transfer from bottom to top.

Defender Source Data
(Source Model) CA(%) AA(%)

BERT
None 44.53 34.77

CIFAR-10 (VIT) 13.87 12.89
MNIST (VIT) 26.37 23.44

VIT
None 52.34 30.47

CIFAR-10 (VIT) 45.31 27.54
MNIST VIT) 49.41 28.91

Effect of Pre-trained Models on CeTaD We ana-
lyze how two pre-trained models affect CeTaD’s per-
formance across MNIST, CIFAR-10, and CIFAR-100
datasets, employing default settings from Section 4. Ta-
ble 8 highlights the vulnerability of the original service
model in the absence of a defender. Despite limited tun-
able parameters and access to only one-shot adversarial
examples, CeTaD-equipped models well classify adver-
sarial samples. Notably, CeTaD defends both VIT and
ResNet on CIFAR-10, demonstrating its adaptability
across diverse victim models. In addition, as shown in Table 9, CeTaD could be applied to a larger
dataset such as Imagenet-1k. Furthermore, the effective performance of BERT and VIT defenders
suggests the potential universality of frozen modules, aligning with prior studies [26, 19].

Overall, defense performance varies based on dataset and defender initialization. MNIST’s clear
number pixels and consistent backgrounds enable effective defense with both defenders. Conversely,
CIFAR-10 and CIFAR-100’s diverse scenes pose challenges; tuning introduces bias, impacting
clean accuracy. CeTaD-VIT defenders excel in clean accuracy, while CeTaD-BERT defenders
perform better in adversarial scenarios. CeTaD-VIT’s stability from similar training tasks renders it
vulnerable to adversarial perturbations, whereas CeTaD-BERT’s diverse training complicates clean
classification.
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Table 8: Accuracy performance of CeTaD on
different datasets. None represents no defense
strategy. TC(mins) refers to time cost.

Dataset Model Defender CA(%) AA(%) TC

MNIST VIT
None 98.83 00.78 0
BERT 98.05 92.77 24
VIT 98.24 91.41 22

CIFAR-10

ResNet
None 93.75 00.00 0
BERT 68.75 44.34 14
VIT 82.81 30.27 14

VIT
None 98.05 00.00 0
BERT 41.80 36.33 19
VIT 80.86 45.90 25

CIFAR-100 VIT
None 91.41 00.00 0
BERT 44.53 34.77 32
VIT 52.34 30.47 28

Table 9: Accuracy performance on Imagenet-1k.
Method CA(%) AA(%)

None 81.64 00.00

R&P 78.71 26.56
RN(std=0.1) 75.98 10.16
RN(std=0.2) 57.42 35.55
RN(std=0.3) 34.18 24.41

Linear 47.66 39.45
FFN 25.20 14.84

Bottleneck 40.63 22.85
FD 52.15 27.15

CeTaD-GPT-2 61.52 30.31
CeTaD-VIT 51.17 34.38

CeTaD-VIT-large 45.70 36.33
CeTaD-BERT 53.32 36.91

CeTaD-BERT-large 65.63 43.55

While humans perceive similarity between clean and adversarial examples, networks struggle, result-
ing in clean data performance drops due to catastrophic forgetting [14]. Additionally, treating the
defender as a prompt generator implies prompts added to examples, guiding the service model to
focus on adversarial features, potentially disregarding clean features.

Discussion on Convergence and Overfitting We address two key concerns: 1) Can CeTaD
effectively adapt to adversarial examples with most parameters frozen and minimal tuning? 2) Given
the default one-shot adversarial examples in the training data, is CeTaD susceptible to overfitting?

To assess these, we track clean and adversarial accuracy on both training and test data using default
experimental settings. However, the limited quantity of training data may limit the expressiveness of
accuracy. To gain deeper insights into the training process, we also monitor the training loss on the
training data.

Figure 2: Accuracy and loss over epochs. Top: Accuracy curves representing training and test data.
Training refers to accuracy on training data, while Test denotes accuracy on test data. It’s notable
that clean training data remains unseen during training. Bottom: The loss curve depicting training
data. Given the consistent 100% accuracy after 90 epochs, this loss curve provides insights into the
training process.

Figure 2 illustrates compelling insights. Initially, within 90 epochs, CeTaD swiftly reaches 100%
adversarial accuracy on training data, showcasing its rapid adaptation, mainly tuning layer norm
parameters. Surprisingly, clean accuracy simultaneously reaches 100%, suggesting that training on
adversarial examples can unveil reflective feature of clean examples, even when they are not directly
presented to the model.
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On test data, adversarial accuracy steadily improves, signifying CeTaD’s capacity to generalize
from a single-shot adversarial dataset. However, this gain comes at the cost of declining clean
accuracy. The divergence in distributions and mapping between clean and adversarial data, due to
added perturbations, causes a trade-off: aligning with adversarial data benefits but compromises
performance on clean data.

In the latter 400 epochs, while maintaining 100% training accuracy, test adversarial accuracy continues
a slight ascent, clean accuracy gently declines, and the loss sporadically fluctuates. This pattern
suggests that rather than overfitting, CeTaD continues to explore and assimilate information from
adversarial examples. It is a crucial capability in RaPiD, where conventional methods like evaluation
or early stopping might not be feasible due to limited training data.

Table 10: Performance across vari-
ous initialization strategies and param-
eter tuning levels are evaluated. "Ran-
dom" denotes random initialization of
CeTaD. The "Tune-All" suffix signi-
fies optimization for all parameters
within module D, whereas the ab-
sence of a suffix indicates the original
CeTaD.

Defender CA(%) AA(%)

None 93.75 00.00
Random 52.93 42.39

Random-Tune-All 43.36 33.79
BERT 68.75 44.34

BERT-Tune-All 59.77 44.14
VIT 82.81 30.27

VIT-Tune-All 69.14 36.14

Role of Pre-trained Initialization and Frozen Parameters
As highlighted in Section 4, the initialization strategies and
tuned parameters play a pivotal role in defender performance.
Here, we delve into these aspects within CeTaD. Given the
identical transformer layer structure, the divergence between
the BERT and VIT defenders lies primarily in weight ini-
tialization. Table 10 illustrates that tuning all parameters
generally diminishes clean and adversarial accuracy. Here,
the fixed modules in the pre-trained VIT, aligned with im-
age classification, result in a closer mapping relationship
between the defender with limited tuning and the victim ser-
vice, rendering it susceptible to adversarial examples. Con-
trastingly, comprehensive parameter tuning for VIT fosters a
divergence from the original mapping relationship, reinforc-
ing robustness and elevating adversarial accuracy. Notably,
the BERT defender excels in adversarial accuracy, while the
VIT defender showcases superiority in clean accuracy. Even
the randomly initialized defender surpasses the VIT defender in adversarial accuracy. Thus, the
VIT-initialized defender appears suboptimal and conservative in comparison.

Table 11: Accuracy performance
on different training data settings.
1adv (1clean) stands for one-shot
adversarial (clean) examples re-
spectively. Balanced stands for
the class balance.

Training Data CA(%) AA(%)

1adv 68.75 44.34
1adv-1clean 76.76 48.24

4adv 70.12 50.20
1adv-Balanced 77.34 49.02

Effect of Training Data on CeTaD The default setup offers
only one-shot and unbalanced adversarial examples for swift
defense. For example, only 10 adversarial examples sampled
randomly are available on CIFAR-10. To investigate how training
data variations impact CeTaD’s performance, we relax these
constraints for assessment. Table 11 highlights that, under default
setups, introducing one-shot clean examples as auxiliary data,
considering four-shot adversarial examples, or balancing the class
distribution in training data significantly improves both clean and
adversarial accuracy. Notably, establishing class-balanced data
and supplementing clean examples play crucial roles in enhancing
CA.

Table 12: Performance
against continuous attack.

Round CA(%) AA(%)

– 93.75 00.00
1 73.83 55.47
2 78.71 64.84

Continuous Attack. Similar to adaptive attacks, continuous attacks
have the access to the existing system including the defender, which
is a very demanding setting in practice. However, our method requires
limited tuning on few-shot adversarial samples, which may make
continuous defense possible and slightly. Treating each Attack-Then-
Defense period as a round, we conduct a pilot evaluation of one-shot
continuous rapid defense under the 1adv-1clean setting mentioned in
Section 4. Results in Table 12 demonstrate that both adversarial and clean accuracy is enhanced
through continuous adversarial learning. We foresee the potential expansion of CeTaD into an active
defender against adaptive attacks in the future.

Black-Box Attack Black-box attacks are usually more generalized and robust than white-box
methods. We evaluate CeTaD on two kinds of black-box attacks, square attack [3] and composite
adversarial attack [18], under the default settings. For Square Attack, 5000 queries are applied for
randomized perturbation search; for Composite Adversarial Attack (CAA6), semantic perturbations
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are combined with scheduled ordering. As shown in Table 13 and 14, CeTaD is able to adapt to
different black-box attacks by one-shot adversarial fine-tuning.

Table 13: Performance against Square Attack.
method CA(%) AA(%)

None 93.75 00.00
CeTaD-VIT 83.20 74.02

CeTaD-VIT-large 81.45 75.39
CeTaD-BERT 82.42 79.30

CeTaD-BERT-large 84.57 83.59

Table 14: Performance against Composite Ad-
versarial Attack.

method CA(%) AA(%)
None 93.75 00.00

CeTaD-VIT 85.74 61.52
CeTaD-VIT-large 69.33 52.15

CeTaD-BERT 78.52 65.23
CeTaD-BERT-large 84.18 68.36

5 Discussion: Limitations and Future Work

In the present scope of RaPiD, there remains a notable performance gap for CeTaD even without
accounting for more potent attacks. End-to-end tuning in CeTaD tends to impact clean data perfor-
mance to a certain extent. Investigating the latent clean data features left in adversarial data might
potentially preserve clean accuracy. While this paper focuses solely on image classification, CeTaD
holds promise for broader application in differentiable systems. Future endeavors aim to assess its per-
formance and generalization across diverse tasks. Additionally, exploring non-differentiable methods
like genetic algorithms or reinforcement learning could circumvent differentiability constraints.

Furthermore, the choice of initialization strategy and parameter tuning significantly affects CeTaD’s
efficacy (Section 4). This study primarily assesses three initialization strategies from standard pre-
trained models and explores only parameter tuning for layer norm and full defender parameters.
Enhanced strategies for initialization and refined parameter selection through data-driven approaches
could bolster performance.

The characteristics of training data are pivotal. While this paper mostly utilizes one-shot imbalanced
adversarial examples, Section 4 highlights the potential benefits of class-balanced adversarial exam-
ples and their mixture with clean data. Relaxing RaPiD’s limitations by structuring a training set
with few-shot clean and adversarial examples might optimize performance.

Considering lifelong learning is imperative. The focus on a single attack method in each experiment
doesn’t account for the reality where service models encounter diverse attack methods. Developing a
defender capable of continuous learning to combat new attacks while leveraging past knowledge is
essential. By the way, we believe that the defense for deployed models is a complex system. Though
we focus on the core (how to defend), there are many other unresolved important problems, such as
how to rapidly detect adversarial examples when the attack happens.

In Section 4, surprising outcomes indicate that indirectly related data transfer performs better than
related data transfer. This suggests consistency across differing domains, raising questions about
aligning modalities based on such consistency. Moreover, exploring transferability across diverse
attack methods and various victim models remains open for future exploration. By integrating
multiple service models across different tasks and modalities, a relatively universal defender could
strengthen its domain robustness.

6 Conclusion

Defending operational service models poses challenges, especially with potential difficulties in
fine-tuning during attacks, particularly post-pruning. Reinforcing a more resilient model demands
extensive computational resources and time. Rapid defense is vital to prevent further damage rather
than waiting for adversarial training or model redeployment. Recent methods might lack efficiency in
RaPiD due to the extensive training data and numerous parameters, causing methodical delays. We
introduce CeTaD, capitalizing on pre-trained transformer models’ broad applicability, harnessing
pre-training’s capacity to fortify robustness. CeTaD excels in clean and adversarial accuracy within
constrained resources, minimizing overfitting through minimal parameter adjustments. Evaluations
highlight its efficacy across datasets and attacks, probing CeTaD’s components via ablation studies.
Additionally, exploring data scale and balance effects, transfer tests demonstrate its potential for
broader adaptability, possibly reinforcing robustness through transfer gap analysis.
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A Details of Data Preparations

For reproducibility, we illustrate how to prepare data in the experiments.

All datasets are available from Huggingface: MNIST (https://huggingface.co/datasets/
mnist), CIFAR-10 (https://huggingface.co/datasets/cifar10) and CIFAR-100 (https:
//huggingface.co/datasets/cifar100). The library, Datasets (https://github.com/
huggingface/datasets), which includes the methods mentioned below, is utilized for down-
loading and splitting data.

N-shot Training Samples. First, we split data by class using filter. Then, for each category, two
methods, shuffle with a given seed and select for getting the first n samples, are applied in turn.
Finally, we mix the selected samples of all classes by concatenate_datasets and shuffle with the seed.

512 Fixed Test Samples. We apply shuffle with the seed and select to get the first 512 samples.

In details, data is class-split via filter. Each category undergoes shuffle and select methods for
obtaining n samples, followed by concatenate_datasets and shuffle for mixing all class samples.
As per [31], evaluation involves 512 randomly selected images from the test dataset, reducing
computational expenses. We apply shuffle with the seed and select to get the first 512 samples.

Figure 3: Comparison between previous adversarial training methods and ours: (a) Previous methods
heavily rely on vast adversarial examples to tune the original model, demanding significant time and
computational resources. (b) In contrast, our approach focuses on tuning only a subset of parameters
within the plug-in defender block using limited adversarial examples, enabling swift impact without
exhaustive computational demands.

B Details of Module Selections inside CeTaD

Module selections are essential for CeTaD since only limited parameters are tuned. The embedding
and the decoder are vital for feature mapping between the input space and the hidden space. The
encoder is significant for perceiving adversarial information and enhancing robustness since it is the
only trainable module and bears the most computation in CeTaD.

As shown in Figure 1 and illustrated in Section 3, CeTaD is flexible as long as the dimensions of the
modules match with each other. However, pre-trained weights may help.

For example, we take the embedding from the pre-trained VIT, get the transformer blocks from
the pre-trained BERT, VIT or GPT-2, and consider PixelShuffle as the decoder. The mod-
ules we used are briefly introduced as follows: BERT ([9]) is a transformer encoder model
pre-trained for masked language modeling (MLM) and Next sentence prediction (NSP) on a
large corpus of uncased English data (base: https://huggingface.co/bert-base-uncased;
large: https://huggingface.co/bert-large-uncased); VIT ([11]) is a transformer encoder
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model pre-trained for image classification on ImageNet-21k at resolution 224x224 (base: https:
//huggingface.co/google/vit-base-patch16-224-in21k; large: https://huggingface.
co/google/vit-large-patch16-224-in21k); GPT-2 ([33]) is a transformer decoder model
pre-trained for causal language modeling (CLM) on a large corpus of English data (124M:
https://huggingface.co/gpt2); PixelShuffle ([37]) rearranges elements unfolding channels
to increase spatial resolution 2.

C Details of Optimization

Optimization loops are implemented by PyTorch. To optimize limited parameters and freeze the
others, following [26], we set requires_grad=True for tunable parameters while requires_grad=False
for the others. The optimizer is initialized by registering the parameters with requires_grad=True.
Under the default experimental setup, only layer norm parameters (48 parameter groups, 36864
variables in total) are tuned. We use seed 42 for reported accuracies following [26], each experiment
running within 30 minutes on an NVIDIA RTX A5000 GPU.

By the way, the implementation of Lion ([6]), the optimizer which we apply, is available at https:
//github.com/lucidrains/lion-pytorch.

D Memory&Latency

We evaluate GPU memory (peak value) and inference time (average value per batch) on the test set
under other default settings with the following device configuration: CPU, 14 vCPU Intel(R) Xeon(R)
Gold 6330 CPU @ 2.00GHz; GPU, 1 NVIDIA RTX 3090(24GB). As shown in Table 15, our method
would not lead to a heavy non-trivial inference overhead. However, with larger pre-trained models,
the memory and latency increase accordingly. It is supposed to be a trade-off between defense
performance and resource consumption.

Table 15: Accuracy performance on different training data settings. 1adv (1clean) stands for one-shot
adversarial (clean) examples respectively. Balanced stands for the class balance.

method GPU memory (MB) time (s/batch)
No-defender 2186 0.07818

CeTaD-BERT 2638 0.08014
CeTaD-BERT-large 3460 0.08496

E JPEG Compression for Defense

Our evaluation includes naive and training-free defense methods such as Random Noise and R&P.
Results show that Random Noise could not balance clean and adversarial accuracy while R&P keeps
high clean accuracy but has little effect on adversarial accuracy. We further evaluate that whether an
old and simple method, JPEG compression with different quality factors, could work. As shown in
Table 16, it is also poor on adversarial accuracy. To conclude, these methods do not work well in the
RaPiD scenario, which is more practical yet challenging.

F Error Bars

Following [31], we evaluate the accuracy on a fixed subset of 512 images randomly sampled from
whole test data to save computational cost. Besides, because of the number of experiments and the
page limit, following [26], in the content, we only report the results with one seed (42—the answer
to the ultimate question of life, the universe and everything). In this section, to show the validity of
the results in the content, we additionally repeat two experiments described in Section 4 and Section
4 with another two seeds (41 and 43).

2In the experiments, upscale_factor is always set to 16. Thus, if the scale of the transformer encoder is large,
which means the hidden feature is of 1024 dimensions and four channels are given after PixelShuffle, we just
ignore the last channel for simplicity.
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Table 16: Accuracy performance with JPEG compression under default settings.
quality factor CA(%) AA(%)

90 90.63 01.37
60 88.48 09.77
40 86.72 10.55
30 86.33 09.96
10 82.62 08.98
1 71.09 06.45

In Table 8, Table 17 and Table 18, with a different seed, though the training data and the fixed subset
for evaluation vary, leading to accuracy fluctuation, the relative performances of different methods
remain the same. Specifically, as illustrated in Section 4, VIT defenders are better at clean accuracy
while BERT defenders are likely to outperform at adversarial accuracy. Furthermore, the trends of
the corresponding curves in Figure 2, Figure 4 and Figure 5 are similar. It demonstrates that our
experiments are both efficient and effective.

Figure 4: Accuracy and loss vs. epoch with seed 41.

Table 17: Accuracy performance with seed 41.
Dataset Model Defender CA(%) AA(%)

MNIST VIT
None 99.02 00.59
BERT 97.07 90.82
VIT 99.02 91.60

CIFAR-10

ResNet
None 93.95 00.00
BERT 70.12 43.55
VIT 76.95 28.91

VIT
None 97.85 00.00
BERT 35.94 31.84
VIT 76.37 41.60

CIFAR-100 VIT
None 91.80 00.39
BERT 50.78 38.28
VIT 54.30 31.45

Table 18: Accuracy performance with seed 43.
Dataset Model Defender CA(%) AA(%)

MNIST VIT
None 99.22 00.59
BERT 98.83 93.36
VIT 99.22 87.70

CIFAR-10

ResNet
None 95.51 00.00
BERT 73.05 44.73
VIT 79.30 32.81

VIT
None 98.05 00.00
BERT 69.73 53.52
VIT 80.86 53.13

CIFAR-100 VIT
None 94.14 00.20
BERT 44.14 34.18
VIT 47.07 28.32
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Figure 5: Accuracy and loss vs. epoch with seed 43.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No Assumption and Proof
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4 and Appendix Section A
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: See Section 4 and Appendix Section A. Moreover, Code of CeTaD is easy to
implement.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4 and Appendix Section A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Appendix Section F

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: NVIDIA RTX A5000 GPU

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 5 and 6

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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