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ABSTRACT

Considering how congestion will propagate in the near future, understanding traf-
fic congestion propagation has become crucial in GPS navigation systems for pro-
viding users with a more accurate estimated time of arrival (ETA). However, pro-
viding the exact ETA during congestion is a challenge owing to the complex prop-
agation process between roads and high uncertainty regarding the future behavior
of the process. To aid in accurate ETA calculation during congestion, we propose
a novel time delay estimation method for the propagation of traffic congestion due
to traffic accidents using lag-specific transfer entropy (TE). Nonlinear normaliza-
tion with a sliding window is used to effectively reveal the causal relationship be-
tween the source and target time series in calculating the TE. Moreover, Markov
bootstrap techniques were adopted to quantify the uncertainty in the time delay
estimator. To the best of our knowledge, the proposed method is the first to esti-
mate the time delay based on the causal relationship between adjacent roads. The
proposed method was validated using simulated data as well as real user trajectory
data obtained from a major GPS navigation system applied in South Korea.

1 INTRODUCTION

Traffic congestion has been a universal problem for urban cities owing to the dramatic growth of
population and the corresponding increase in vehicles, the economy, infrastructure, and prolifera-
tion of delivery services, among other factors. Traffic congestion affects nearby roads and causes
additional congestion, particularly in all traffic leading to congested roads (Nguyen et al., 2016),
causing greater damage to the traffic network.

(a) Road conditions when the
driver requests ETA

(b) Road conditions when the
driver arrives on the road

Figure 1: Motivating example: GPS navigation system recommending a travel route (blue lines)
based on the related road conditions (red segment, congested; green segment, free flow).

Understanding traffic congestion propagation has become crucial in GPS navigation systems to pro-
vide users with a more accurate estimated time of arrival (ETA), considering how congestion prop-
agation patterns in the near future. However, it is challenging to provide an exact ETA under cases
of congestion owing to the complex propagation process between roads and high uncertainty about
the future behavior of the process. Figure 1 illustrates the motivation for this study. Without under-
standing traffic congestion propagation, the GPS navigation system suggests the route (the blue line)
based on the road conditions when the driver requests an ETA, as shown in Figure 1(a). However,
the suggested route in Figure 1(a) faces severe traffic congestion when the driver arrives in a con-
gested area because congestion propagates while the driver is moving. If the GPS navigation system
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can identify the time delays between roads owing to congestion propagation, then it would suggest a
different route, as shown in the blue line in Figure 1(b). Hence, to provide an accurate ETA in urban
cities, a time delay estimation of traffic congestion propagation is inevitable.

In this paper, we propose a new time delay estimation method for traffic congestion propagation
between roads using lag-specific Transfer Entropy (TE). Our main contributions are as follows:

• We provide a model-free approach to estimate congestion propagation delays using a lag-
specific TE estimator in complex urban road systems.

• We show that a decomposition and a nonlinear normalization with a sliding window are
effective time series preprocessing methods in revealing the causal relationship between
traffic speed data.

• We quantify uncertainty in time delay estimation using bootstrap techniques. This uncer-
tainty quantification allows us to evaluate the reliability of time delay estimates and serves
as a basis for optimal hyperparameter tuning.

• We validate the proposed method through numerical simulations as well as real user trajec-
tory data obtained from one of the major GPS navigation systems in South Korea.

This paper is organized as follows: Section 2 reviews related studies. Section 3 describes the back-
ground necessary to understand the proposed method. Section 4 proposes our new time delay es-
timation method. Sections 5 and 6 validate the proposed method using simulated data and real
congestion propagation data in a road network, respectively. Finally, concluding remarks are made
in Section 7.

2 RELATED WORK

Congestion Propagation Pattern Analysis Recent studies on congestion propagation patterns have
been widely conducted, focusing on an analysis of spatio-temporal patterns. The STOTree and
frequent subtree algorithms were proposed based on outlier detection approaches for each road seg-
ment (Liu et al., 2011). Propagation Graphs were used to predict patterns of congestion propagation
(Xiong et al., 2018). However, existing works on congestion propagation patterns mostly focus on
detecting frequent congestion propagation patterns and calculating propagation probabilities. An-
other line of work touches upon traffic forecasting, with focus on an analysis of spatio-temporal
patterns. Yu et al. (2017) made the first attempt to apply deep LSTM recurrent neural network for
traffic forecasting and proposed mixture deep LSTM model for post-accident forecasting. Many
LSTM-based methods had been used to predict the propagation patterns in the next time steps based
on historical data (Basak et al., 2019; Di et al., 2019). Li et al. (2017) proposed a deep learning
framework for traffic forecasting, called diffusion convoluional RNN, which incorporates both spa-
tial and temporal dependency in the traffic flow. Li et al. (2021) proposed a multistep traffic forecast-
ing model, the Dynamic Graph Convolutional Network (DGCN). To develop dynamical mappings
for spatio-temporal relationships, DGCN adopted a new spatial attention variant considering the
upstream–downstream asymmetry of traffic dynamics and the influence of incomplete data. While
these approaches relate to time delay estimation in terms of understanding congestion propagation
patterns, pattern analysis and traffic forecasting are different from the time delay estimation problem
of interest.

Traffic Causality Analysis The traffic causal analysis methods have been developed to identify
causal relationships among congested roads and to detect congestion propagation patterns. Bayesian
network (BN) approaches were widely implemented to analyse traffic causality. It is a probabilis-
tic graphical model which comprises a set of random variables and their conditional dependencies
through directed acyclic graph (Pearl, 1988). To reflect spatial temporal feature of traffic data,
Bayesian network was extended into dynamic BN (DBN) which models causality of sequence of
variables such as a time series or stochastic process (Ghahramani, 1997). Based on the causality
captured via DBN, Sun et al. (2005) forecast future traffic flow by ranking the input variables to
identify a subset of BN as the cause nodes using the Pearson correlation coefficient. However, this
approach mainly focuses on revealing causal relationship, not providing information about estimated
time delay among the roads during congestion being propagated.
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Lag Estimation in Multiple Time Series To discover the relationships between neighboring road
segments, several methods have been used to analyze interactions among multiple time series, rang-
ing from the detrended cross-correlation analysis (DCCA) cross-correlation coefficient (Zebende,
2011) operating in the time or frequency domains to transfer entory (TE) operating in the infor-
mation domain. Based on the DCCA cross-correlation coefficient, Shen (2015) proposed a time-
lagged DCCA cross-correlation coefficient to quantify the level of time-lagged cross-correlations
between two non-stationary time series at different time scales. Chandra & Al-Deek (2008) used
cross-correlation analysis to prove significant relationship between the current value of speed at the
station in question and the past values of the speed at both upstream and downstream stations in
freeway traffic network. In information theory, transfer entropy (TE) (Schreiber, 2000), as a model-
free approach, has been a popular measure of the directional interaction between two time series,
because of its inherent ability to incorporate directional and dynamical information, its sensitivity to
both linear and nonlinear interactions (Barnett et al., 2009). To quantify the information transfer be-
tween time series in complex networks and to detect the timing when such a transfer occurs, several
lag-specific TE estimators have been proposed (Faes et al., 2014; Wibral et al., 2013). Xiao et al.
(2020) used transfer entropy to discover the real dynamic process of flight-delay propagation among
multiple airports. However, to the best of our knowledge, our proposed method is the first to use
lag-specific TE to predict the time delay for congestion propagation in road traffic networks. The
proposed method is compared with the time-lagged DCCA cross-correlation coefficient in Section
5.

3 BACKGROUND

3.1 BOOTSTRAP FOR MARKOV CHAINS

Suppose that {Xt}t≥1 be a stationary Markov chain with a finite state space S = {s1, . . . , sn},
where n ∈ N. Let P = (pij) ∈ Rn×n be a transition probability matrix of the chain and the
stationary distribution by π = (π1, . . . , πn). Thus, for any 1 ≤ i, j ≤ n, pij = P (Xt+1 = sj |Xt =
si) and πi = P (Xt = si). Given a time series {X1, . . . , XL} of size L from a stationary Markov
chain, we can estimate πi and pij as

π̂i =
1

L

L∑
t=1

1(Xt = si), p̂ij =
1

π̂iL

L∑
t=1

1(Xt = si, Xt+1 = sj). (1)

The bootstrap observations {X∗1 , . . . , X∗L} can now be generated using the estimated transition ma-
trix and the marginal distribution in Eq.(1) (Kreiss & Lahiri, 2012).

1) Generate a random variableX∗1 from the discrete distribution on {1, . . . , n} that assigns mass
π̂i to si, 1 ≤ i ≤ n.

2) Generate a random variable X∗t+1 from the discrete distribution on {1, . . . , n} that assigns
mass p̂ij to j, 1 ≤ j ≤ n, where si is the value of X∗t .

3) Repeat step 2) until a simulated time series {X∗1 , . . . , X∗L} has been obtained.

3.2 LAG-SPECIFIC TRANSFER ENTROPY

TE is a measurement of directed information flow (Schreiber, 2000) based on the concept of Shannon
entropy (Shannon, 1948) in the area of information theory. For a discrete random variable I with
probability distribution p(i), Shannon entropy represents the average number of bits required to
optimally encode independent draws, which can be calculated as follows:

H(I) = −
∑
i

p(i) log2 p(i). (2)

Eq.(2) can be easily extended to the concept of conditional entropy with two variables. Given two
discrete random variables I and J , conditional entropy is defined as

H(I|J) = −
∑∑

p(i, j) log2 p(i|j) (3)

and it can be used to measure the information flow between two discrete random variables.
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Consider two discrete random variables, I and J , with marginal probability distributions p(i) and
p(j), and joint probability p(i, j). Suppose they are stationary Markov processes of order k and l,
respectively. For an order k Markov process I , Eq.(2) can be extended to

H(k)(I) = −
∑
i

p(it, i
(k)
t−1) log p(it|i(k)t−1),

where i(k)t−1 = (it−1, . . . , it−k). Analogously, the information flow from process J to I is measured
by quantifying the deviation from the generalized Markov property p(it|i(k)t−1) = p(it|i(k)t−1, j

(l)
t−u) for

an arbitrary source-target lag u, as follows:

T
(k,l)
J→I(t, u) =

∑
p(it, i

(k)
t−1, j

(l)
t−u) log

p(it|i(k)t−1, j
(l)
t−u)

p(it|i(k)t−1)
. (4)

Eq.(4) preserves the computational interpretation of TE as an information transfer, which is the only
relevant option in keeping with Wiener’s principle of causality (Wibral et al., 2013). The transfer
entropy is known to be biased in small samples (Marschinski & Kantz, 2002). To correct any bias,
(Marschinski & Kantz, 2002) proposed the effective transfer entropy (ETE),

ETE
(k,l)
J→I(t, u) = T

(k,l)
J→I(t, u)− T (k,l)

Jshuffled→I(t, u). (5)

where T (k,l)
Jshuffled→I indicates the transfer entropy using a shuffled version of time series J . Shuffling

randomly draws values from the original time series J and realigns them to generate a new time
series. In this way, shuffling destroys the time series dependencies of J as well as the statistical
dependencies between J and I . Note that T (k,l)

Jshuffled→I converges to zero as the sample size increases,

and any nonzero value of T (k,l)
Jshuffled→I(t, u) is due to the small sample effects. To derive a consistent

estimator, shuffling is repeated, and the average of the resulting shuffled transfer entropy estimates
across all replications serves as an estimator for the small sample bias, which is subsequently sub-
tracted from the Shannon or Rényi transfer entropy estimate to obtain a bias-corrected effective
transfer entropy estimate.

Using Eq.(5), the time lag in a causal relationship J → I can be estimated by solving the optimiza-
tion problem,

û = argmax
u∈N

ETE
(k,l)
J→I(t, u). (6)

In this study, we assume k = ` = 1.

4 METHODOLOGY

4.1 PROBLEM DEFINITION

Suppose that information of congestion is transferred from a source road to a destination road with
a time delay of u, given a road network. The goal of time delay estimation is to estimate the time
delay lag u between the source road and the target road, given previously observed traffic speed data
on the two roads. Denote the traffic speed data observed on the source road and the target road as
{Xt}Lt=1 and {Yt}Lt=1, respectively. Then, time delay estimation problem aims to develop a function

f(·) that computes the source-target lag u,
[
{Xt}Lt=1, {Yt}Lt=1

] f(·)−−→ u.

4.2 DECOMPOSITION AND BOOTSTRAPPING

Consider a time series of congested traffic speed data, {Xt}Lt=1, which have properties of scale-
dependence, nonlinearity, and non-stationarity. To identify the causal relationship effectively among
such complicated time series, the application of appropriate preprocessing methods is essential.

First of all, we decompose a time series into a trend and its residual as follows:

∀t,Xt = Tt +Rt =
1

m

m−1∑
j=0

Xt−j +Rt, (7)
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where Tt is the trend component and Rt is the residual component. The trend component is a one-
sided moving average of order m and the average of the forefront value at time t. The purpose
of the trend component is to smooth a time series in order to estimate the underlying trend. After
extracting the underlying trend from {Xt}Lt=1, the residual time series {Rt}Lt=1 is assumed to be a
stationary Markov process. The assumption of Markovian property in traffic speed is not new. Many
traffic speed prediction or modeling studies have been conducted under this assumption (Hong et al.,
2006; Chandra & Al-Deek, 2009; Vlahogianni et al., 2014; Pavlyuk, 2017; Song et al., 2019). Based
on {Rt}Lt=1, we can generate the bootstrap residuals {R∗(b)t }Lt=1 as explained in Section 3.1. Once
the bootstrap residuals are generated, then we easily obtain a bootstrap time series {X∗(b)t }Lt=1 by
Tt +R

∗(b)
t for t = 1, . . . , L.

4.3 NORMALIZATION

For the obtained bootstrap time series, we apply nonlinear normalization with a sliding window to
handle scale-dependent, nonlinear, and non-stationary time series of traffic speed data. To make
them scale-independent and close to linear (Wang et al., 2019), a nonlinear function Φ, which is a
standard normal cumulative distribution function, is applied. In addition, a sliding window technique
has been applied to handle a non-stationary time series (Ogasawara et al., 2010). Let Xt,w ={
X
∗(b)
k

}t
k=t−w+1

be the forefront sequence of X∗(b)t with a sliding window size of w, and F25,t,

F50,t, and F75,t be the 25th, 50th, and 75th percentiles of Xt,w. Note that these percentiles depend

on the location of the sliding window. Then, a normalized time series,
{
X̃
∗(b)
t

}L
t=1

, can be obtained
by

X̃
∗(b)
t = Φ

(
0.5× X

∗(b)
t − F50,t

F75,t − F25,t

)
. (8)

To verify the effectiveness of the nonlinear normalization method in Eq.(8), we compared its perfor-
mances with existing normalization methods (Wang et al., 2019; Ogasawara et al., 2010), including

the min-max method
(
X̃
∗(b)
t =

X
∗(b)
t

maxXt,w

)
, and a z-score method

(
X̃
∗(b)
t =

X
∗(b)
t −µ(Xt,w)
σ(Xt,w)

)
with

or without a sliding window technique in Section 5.

4.4 SYMBOLIC ENCODING AND TRANSFER ENTROPY

To compute the lag-specific TE in Eq.(4), we discretize continuous data using symbolic encoding.
This discretization can be obtained by partitioning the data into a finite number of bins. We denote
the bounds specified for the n bins by q1, q2, . . . , qn−1, where q1 < q2 < · · · < qn−1. For the
normalized time series in Eq.(8), we can obtain the encoded time series {J∗(b)t }Lt=1 by

J
∗(b)
t =


1 for X̃∗(b)t ≤ q1
2 for q1 < X̃

∗(b)
t < q2

...
...

n for X̃∗(b)t ≥ qn−1.

(9)

The choice of bins is motivated by the distribution of the data. In the case in which tail observations
are commonly of particular interest, binning is usually based on empirical quantiles such that the left
and right tail observations are selected into separate bins. In this study, we implemented symbolic
encoding with n = 3 based on 5% and 95% empirical quantiles to focus on the extreme high or low
speed caused by dynamic speed change or traffic accidents.

Consequently, we obtain {J∗(b)t }Lt=1 from {X̃∗(b)t }Lt=1 and {I∗(b)t }Lt=1 from {Ỹ ∗(b)t }Lt=1, respec-
tively, for b = 1, . . . , B. Given {J∗(b)t }Lt=1 and {I∗(b)t }Lt=1, b = 1, . . . , B, we obtain bootstrap
observations of the time lag, u∗(1), . . . , u∗(B) using Eq.(6) as explained in Section 3.2.
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4.5 TIME DELAY ESTIMATION AND HYPERPARAMETER TUNING

Suppose that bootstrap observations of the time lag follows a distribution G,

u∗(1), . . . , u∗(B) ∼ G,
where G represents the distribution of the time lag, which is unknown in practice. Let µ and σ2

denote the mean and variance of G, respectively, and they can be estimated by

µ̂B =
1

B

B∑
b=1

u∗(b), σ̂2
B =

1

B

B∑
b=1

(
u∗(b)

)2
− µ̂2

B .

Proposition 1 implies 1) the bootstrap estimate µ̂B is an unbiased estimate of µ, 2) 1
B σ̂

2
B quantifies

the uncertainty of µ̂B . That is, we can evaluate uncertainty of the bootstrap estimate µ̂B using
1
B σ̂

2
B , which is practically useful because µ is unknown. This can also be applied to hyperparameter

tuning. In this study, we used a grid search to find a set of hyperparameters (the length of time series
(L) and the sliding window size (w)) that minimize 1

B σ̂
2
B .

Proposition 1. Let u∗(1), . . . , u∗(B) be a bootstrap sample and E(u∗(b)) = µ, V ar(u∗(b)) = σ2.
Then, sample mean µ̂B = 1

B

∑B
b=1 u

∗(b) approximately follows N
(
µ, 1

B σ̂
2
B

)
, where σ̂2

B is the
sample variance of the bootstrap sample.

Proof. Since σ̂2
B → σ2 in probability,

√
B(µ̂B−µ)
σ̂B

= σ
σ̂B

√
B(µ̂B−µ)

σ

d−→ N (0, 1) by the Central Limit
Theorem and Slutsky’s Theorem (Casella & Berger, 2021). Hence, µ̂B approximately follows a
normal distribution, µ̂B ∼ N

(
µ, 1

B σ̂
2
B

)
.

5 SIMULATION STUDIES

(a) Simulated data (b) Proposed method (c) The time-lagged DCCA cross-
correlation coefficient

Figure 2: The results of simulation study

The proposed method was validated using the simulated data. Two time series, {Xt}120t=1 and
{Yt}120t=1, are generated by

Xt =


100 + εx,t for t < 10

0.95Xt−1 + εx,t for 10 ≤ t < 95

1.10Xt−1 + εx,t for t ≤ 120

, Yt =

{
70 + εy,t for t < 10

0.5Xt−u0
+ 20 + εy,t for t ≥ 10

,

where εx,t ∼ N (0, 2) and εy,t ∼ N (0, 2). A predetermined source-target lag (u0) exists such that
a significant information flow from X to Y is formed, but not vice versa. Figure 2(a) depicts two
time series with u0 = 10. The black solid line and red dashed line represent {Xt}120t=1 and {Yt}120t=1,
respectively. This simulation represents a typical congestion propagation situation between two
adjacent roads, RX and RY , assuming that there was a traffic accident on road RX at t = 10 and
that the congestion was resolved at t = 95. With the time shift u0 = 10, the congestion on RX
propagates to road RY .
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The proposed method was applied to the simulated data with m = 2 and w = 20 as explained
in Section 4. Figure 2(b) compares the distributions of bootstrap observations obtained based on
two time series without normalization and those obtained based on two time series with nonlinear
normalization. The red and blue lines in Figure 2(b) depict the values of

(
µ̂B , σ̂

2
B

)
in a distribution

form, which are
(
9.54, 3.942

)
and

(
10.30, 1.352

)
, respectively. Here, a normal distribution was

used for visualization purposes in the figure. As a result, we confirmed that nonlinear normalization
with a sliding window improved the accuracy of the time delay estimation, because 1.352 < 3.942.

For comparison purposes, the time-lagged DCCA cross-correlation coefficient was also applied with
various overlapping box sizes (6, 8, 10) to the simulation data as shown in Figure 2(c). This bench-
mark method correctly estimated µ0 for some overlapping box sizes, but it was too sensitive to the
changes of overlapping box sizes to be used as time delay estimation. The detailed results with
additional 100 simulated datasets are presented in Appendix A.

Table 1: Simulations results comparison (u0 = 10) with B = 1000

Decomposition Normalization Metrics Window length Average10 20 30 40 120 (all)

false

none
µ̂B - - - - 11.23 11.23
σ̂2
B - - - - 7.03 7.03

MAE - - - - 6.13 6.13

min-max
µ̂B 12.93 12.64 13.14 12.71 14.89 13.26
σ̂2
B 7.21 7.49 7.27 7.39 6.72 7.21

MAE 6.73 6.94 6.92 6.82 7.20 6.92

z-score
µ̂B 13.06 13.51 12.97 13.29 14.84 13.53
σ̂2
B 6.98 6.97 7.00 7.15 6.73 6.97

MAE 6.49 6.67 6.52 6.75 7.23 6.73

nonlinear
µ̂B 13.29 12.86 12.28 13.17 14.27 13.17
σ̂2
B 7.12 7.24 7.13 7.07 6.89 7.09

MAE 6.77 6.66 6.36 6.63 7.03 6.69

true

none
µ̂B - - - - 9.54 9.54
σ̂2
B - - - - 3.94 3.94

MAE - - - - 2.45 2.45

min-max
µ̂B 14.12 10.57 8.88 10.28 16.97 12.16
σ̂2
B 4.24 2.81 2.51 3.53 4.94 3.61

MAE 4.75 1.88 1.95 2.26 7.38 3.64

z-score
µ̂B 10.09 10.28 10.63 11.97 16.83 11.96
σ̂2
B 2.87 3.58 3.90 4.19 5.90 4.09

MAE 1.58 2.26 2.55 2.75 7.96 3.42

nonlinear
µ̂B 10.78 10.30 10.78 10.99 13.38 11.25
σ̂2
B 2.98 1.35 1.49 2.04 6.72 2.91

MAE 1.53 0.94 1.25 1.72 6.04 2.30

To investigate the performance of the proposed method, we carried out simulation studies under
various settings in (1) decomposition, (2) normalization, and (3) the length of sliding window. Their
performances were evaluated by µ̂B , σ̂2

B , and MAE, where MAE = 1
B

∑B
i=1 |ûi−u0|. The closer the

value is to u0, the better the estimate µ̂B . The smaller the values of σ̂2
B and MAE are, the better the

results. As Table 1 summarized, the decomposition technique improved the overall performance and
the nonlinear normalization with w = 20 generally performed better than the other normalization
methods.

6 REAL DATA EXAMPLE : AN ACCIDENT-DRIVEN TRAFFIC CONGESTION
PROPAGATION

The proposed method was applied to discover causal relationships between roads in two real traffic
accident cases that occurred in the city of Seoul, South Korea. The blue stars in Figure 3(a) and
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(a) Case 1 (b) Case 2

Figure 3: Two real traffic accident cases that occurred in the city of Seoul

Figure 3(b) depict the exact location where the accident occurred. Case 1 represents a simple road
network having a small number of propagation paths involved, whereas case 2 represents a com-
plex road network having many propagation paths involved. Here, we define the propagation path
by a sequence of incoming roads in the opposite direction of the traffic flow. For example, case
1 has one propagation path, [A,B,C,D], whereas case 2 has five propagation paths, [A,B,C,D],
[A,E, F,G], [A,H, I, J ], [A,H,K,M ] and [A,H,K,L]. Traffic congestion caused by traffic acci-
dents propagates along the propagation paths. The kth element in the propagation path is denoted as
Hop(k-1). Hop0 refers to the road where the accident occurred. In this study, we investigated up to
k = 4. The black, red, blue, and green line segments in the figures indicate Hop0, Hop1, Hop2, and
Hop3, respectively.

6.1 CASE 1: SIMPLE TRAFFIC NETWORK

The accident occurred on September 8, 2020, at 06:44 AM. TE was calculated using average speed
data recorded at one-minute intervals from the previous 1 hour to the next 2 hours based on the time
when the accident was reported. Figures 4(a) and 4(b) show the results of time delay estimation
for the propagation path [A,B,C,D] for the time series without normalization and the time series
with nonlinear normalization, respectively. The time series with nonlinear normalization provided
a more consistent estimate of the time delay that increases with each hop. Table 2 confirmed this
observation. The values of σ̂2

B with nonlinear normalization are much smaller then the others, which
indicates nonlinear normalization makes time delay estimate µ̂B to be more reliable. Therefore, we
conclude that the congestion effect of the accident propagated along the propagation path to Hop1,
Hop2, and Hop3 3.60 min, 7.30 min, and 19.97 min after the accident.

(a) Without normalization (b) Nonlinear normalization

Figure 4: Time delay estimation for Case 1

Table 2: The results of time delay estimation for Case 1

Normalization Hop1 Hop2 Hop3

µ̂B σ̂2
B µ̂B σ̂2

B µ̂B σ̂2
B

without normalization 9.62 83.70 8.07 61.31 12.08 34.83
nonlinear normalization 3.60 2.88 7.30 13.83 19.97 8.93
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6.2 CASE 2: COMPLEX TRAFFIC NETWORK

The accident occurred on September 4, 2020, at 22:16 PM and affected total five propagation paths.
For each path, the previous 1 hour and following 2 hours were considered for time delay estimation.
Here, nonlinear normalization was applied and the hyperparameters were tuned by using a grid
search. Figure 5 and Table 3 show the results of time delay estimation. In path 1, no specific
causal relationship could be found as depicted in Figure 5(a). This finding was supported by the
corresponding large values of σ̂2

B in the table. Similarly, we conclude that the congestion effect of
the accident at road A did not propagate along the path 2, but propagated along the paths 3, 4 and 5.
Moreover, the values of σ̂2

B in Table 3 indicate that the congestion effect propagated along the path
3 up to Hop2 as depicted in Figure 5(b), and along paths 4 and 5 up to Hop3 as depicted in Figure
5(c). For paths 4 and 5, the time delay estimates are (8.23, 15.65, 22.06) and (8.22, 15.55, 20.75),
respectively.

(a) Path 1 (b) Path 3 (c) Path 5

Figure 5: Time delay estimation for Case 2

Table 3: The results of time delay estimation for Case 2

Propagation path Hop1 Hop2 Hop3

µ̂B σ̂2
B µ̂B σ̂2

B µ̂B σ̂2
B

Path 1: [A,B,C,D] 16.03 47.09 11.59 73.56 15.17 30.46

Path 2: [A,E, F,G] 4.93 19.19 7.20 21.58 7.04 14.54

Path 3: [A,H, I, J ] 8.21 7.97 12.13 7.03 15.72 57.16

Path 4: [A,H,K,M ] 8.23 7.62 15.65 9.01 22.06 3.24

Path 5: [A,H,K,L] 8.22 7.67 15.55 11.01 20.75 3.17

7 CONCLUSION

Traffic congestion due to an accident spreads its effects to the inflow roads, which creates a causal
relationship between the accident road and the inflow roads. To identify the causal relationship
between them, we have proposed a new method for estimating the differences in congestion time.
The proposed method utilizes a lag-specific TE estimator with decomposition and normalization
techniques. This paper conducted extensive performance comparisons with various experimental
settings and found that the proposed decomposition and nonlinear normalization methods outper-
form those without them. Moreover, the bootstrap technique and its density estimation of statistical
functionals enable uncertainty quantification of the time delay estimates. This uncertainty quantifi-
cation allows us to evaluate the reliability of time delay estimates and serves as a basis for optimal
hyperparameter tuning. It is also confirmed that the proposed method provided more stable and ro-
bust results than existing time lag estimation methods such as time-lagged DCCA cross-correlation
coefficient. The proposed time delay estimation helps to quantitatively understand the propagation
of traffic congestion and can be used in GPS navigation systems to provide users with a more ac-
curate ETA. However, there are limitations that need to be addressed. In the proposed method, σ̂2

B
serves as a key indicator of a causal relationship between two time series, but lacks guidance on how
to make a decision based on its value. The rigorous and practical decision-making based on σ̂2

B will
be left for future research.
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REPRODUCIBILITY STATEMENT

We implemented simulation studies in Python 3.8.0 on AMD Ryzen Threadripper 3970X 32-Core
processor workstation. For calculating the effective transfer entropy (ETE), we relied on the R
package, RTransferEntropy (version 0.2.13). All scripts for simulation studies are available
on https://bit.ly/3Bczn1n.
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A DETAILED RESULTS OF SIMULATION STUDIES

A.1 EXPERIMENT ENVIRONMENT

We implemented simulation studies in Python 3.8.0 on AMD Ryzen Threadripper 3970X 32-Core
processor workstation. For calculating the effective transfer entropy (ETE), we relied on the R
package, RTransferEntropy (version 0.2.13) 1. All scripts for simulation studies are available
on https://bit.ly/3Bczn1n.

A.2 SUPPLEMENTARY RESULTS FOR TABLE 1 IN THE MANUSCRIPT

We applied three different normalization methods with or without sliding window. Figure 6 shows
their results for the time seriesX and Y , respectively. The top row of Figure 6 represents time series
after applying normalization methods without sliding window, while the bottom row illustrates time
series after applying normalization methods with sliding window (w = 20). The histograms in
Figure 7 show the bootstrap distribution for 100 resamples, µ∗(b), b = 1, . . . , 100, for three different
normalization methods with or without sliding window. Figure 6(f) and Figure 7(f) confirmed that
the nonlinear normalization with sliding window outperforms the others, because it better reflects
the local volatility.

(a) min-max (b) z-score (c) nonlinear

(d) min-max (w = 20) (e) z-score (w = 20) (f) nonlinear (w = 20)

Figure 6: Comparison of normalization methods

A.3 SUPPLEMENTARY RESULTS FOR HYPERPARAMETER TUNING

For hyperparameter tuning in the time delay estimation, we used a grid search to find a set of
hyperparameters that minimize only 1

B σ̂
2
B , because true µ (µ0) is unknown in reality. To jus-

tify the objective function in hyperparameter optimization, we showed that the bootstrap estimate
(µ̂B) approaches µ0 as 1

B σ̂
2
B decreases. To this end, we investigated the relationship between

1https://github.com/BZPaper/RTransferEntropy
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(a) min-max (b) z-score (c) nonlinear

(d) min-max (w = 20) (e) z-score (w = 20) (f) nonlinear (w = 20)

Figure 7: Comparison of Bootstrap estimation results

Diff (= |µ̂B−u0|) and σ̂2
B using further simulation studies for three different normalization methods

under various experimental settings:

µ0 = {5, 10, 15}, σx = σy = {1, 2, 3}, w = {10, 20, 30, 40}.

Figure 8: Relationship between Diff and σ̂2
B

Figure 8 shows a scatter plot whose x-axis and y-axis represent σ̂2
B , Diff, respectively. The shapes

of points indicate the type of normalization method and the horizontal lines are the average Diff
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values of the points corresponding to the normalization method. As we expected, we observed
that |µ̂B − u0| tends to approach 0 as σ̂2

B decreases. Moreover, we confirmed that the nonlinear
normalization method is generally superior to the other methods. Tables 4 and 5 present detailed
simulation results used to construct the scatter plot. Each number in the table represent the mean
value of 100 random simulations with different lags and noise levels. Bold numbers in the tables
represent the smallest numbers within the same µ0 and noise level.

Table 4: Detailed results of simulation studies on Diff

Experiment settings (u0 and noise level)

Methods Window
length

5 10 15

1 2 3 1 2 3 1 2 3

min-max

10 9.86 6.94 11.92 9.66 4.66 5.02 1.63 2.02 0.33
20 7.25 8.84 1.50 3.85 4.87 0.52 0.72 0.46 2.28
30 0.54 4.78 0.86 0.69 0.69 1.12 1.43 0.07 3.15
40 1.42 1.64 1.26 3.01 3.05 0.54 1.56 1.64 2.07

120 (all) 2.04 5.40 0.77 0.87 3.37 1.88 1.31 0.60 0.06

z-score

10 3.13 4.73 5.70 1.85 2.83 0.97 0.45 0.45 1.96
20 2.96 5.79 2.57 2.27 3.12 0.75 0.73 0.44 2.29
30 3.15 7.17 1.88 1.53 4.10 0.47 0.21 2.46 1.04
40 1.66 7.14 2.32 2.45 1.91 0.18 0.06 1.16 2.58

120 (all) 2.04 5.38 0.78 0.86 3.37 1.88 1.30 0.59 0.05

nonlinear

10 3.04 8.08 9.94 0.63 4.63 1.06 0.04 2.56 0.75
20 0.02 2.96 1.75 0.69 3.67 0.96 0.32 0.79 1.69
30 0.68 1.14 1.07 0.72 2.79 1.09 0.75 1.24 2.60
40 0.27 0.94 0.65 0.49 0.50 0.15 1.54 1.64 3.95

120 (all) 0.79 4.06 0.41 0.85 3.32 1.78 0.55 0.89 0.64

Table 5: Detailed results of simulation studies on σ̂2
B

Experiment settings (u0 and noise level)

Methods Window
Length

5 10 15

1 2 3 1 2 3 1 2 3

min-max

10 33.03 27.05 39.09 25.01 37.11 43.50 18.87 39.30 47.86
20 66.79 39.80 28.20 37.18 24.76 13.19 9.89 24.72 10.85
30 4.96 56.50 7.03 4.33 15.74 11.22 10.17 12.91 14.13
40 10.23 15.20 7.16 17.59 9.07 3.21 15.10 17.33 14.29

120 (all) 38.49 52.71 6.90 6.24 40.73 11.54 8.35 4.59 9.41

z-score

10 42.67 53.19 46.17 23.69 38.40 37.03 24.21 43.07 41.04
20 30.77 55.88 26.03 23.75 38.58 31.42 35.65 27.73 27.36
30 29.56 66.75 21.16 12.43 12.23 11.47 9.86 16.86 21.80
40 7.44 63.99 22.09 21.44 15.01 10.17 21.09 32.85 20.70

120 (all) 38.48 52.61 6.96 6.24 40.79 11.54 8.33 4.61 9.44

nonlinear

10 39.19 50.86 48.71 12.15 52.29 11.45 10.57 38.39 37.21
20 1.82 23.86 34.33 8.56 11.53 3.48 5.77 8.47 16.96
30 9.14 6.18 5.13 8.19 7.44 2.64 6.64 8.02 11.08
40 3.07 3.40 5.24 3.15 3.64 10.44 8.24 5.90 12.54

120 (all) 25.15 47.38 8.06 7.34 42.60 10.43 5.46 5.78 7.63

A.4 SUPPLEMENTARY RESULTS FOR PERFORMANCE COMPARISON WITH BASELINE

We compare the performance of the proposed method with time lagged correlation with Detrended
cross correlation analysis (DCCA). We compare the MAE score of estimated time lag with a dif-
ferent time lag and noise level with 100 different simulation samples. The numbers in the Table 6
represents the mean value of all experiments.

Time lagged correlation with Pearson’s correlation coefficient is a typical approach to analyze the
relationship between time series. This approach is helpful for identifying lags of theXt that might be
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useful predictors of Yt. When there is time lag of u between Xt and Yt, Xt and shifted time series
Yt+u would have higher correlation coefficient (Olden & Neff, 2001; Chandra & Al-Deek, 2008;
Probst et al., 2012; Damos, 2016). However, Pearson’s correlation should be applied to stationary
time series. Thus we use DCCA coefficient instead of the Pearson’s correlation coefficient. DCCA
can estimate lag between time series using detrended fluctuation analysis (Podobnik & Stanley,
2008; Zebende, 2011; Shen, 2015; Bianchi, 2020). Shen (2015) proposed time lagged DCCA, which
is similar concept of TLCC.

Here we use DCCA coefficient with a various overlapping box size n(= 6, 8, 10). The performance
is sensitive to hyperparameter n and it is not consistent with different simulation settings. Also, it
shows larger error when the noise level is high. Thus it shows unstable results for lag estimation
Compare to time lagged DCCA coefficient, the proposed approach is much stable in the perspective
of MAE value. Furthermore, the proposed method can provide distribution of estimated time lag
rather than fixed value as we explained in the manuscript.

Table 6: Performance comparison of proposed approach on MAE

Experiment settings (u0 and noise level)

Methods Window
Length

5 10 15

1 2 3 1 2 3 1 2 3

DCCA(6) - 0.12 16.83 0.00 0.00 0.00 0.00 0.00 7.00 7.00
DCCA(8) - 0.12 0.00 2.50 0.00 0.00 0.00 0.00 7.00 7.00

DCCA(10) - 0.12 16.83 0.00 0.00 12.00 12.00 0.00 0.00 0.00

without normalization - 3.34 6.19 1.54 1.49 4.85 2.70 1.82 1.48 2.03

min-max

10 10.14 7.51 12.07 10.05 6.49 6.79 3.43 5.86 5.68
20 7.82 9.18 3.64 4.99 5.81 2.81 1.96 3.96 3.33
30 1.76 5.85 2.35 1.66 2.97 2.63 2.34 2.66 3.92
40 2.07 2.72 2.30 3.77 3.32 1.43 3.08 3.39 3.78

120 (all) 3.33 6.20 1.53 1.49 4.85 2.70 1.83 1.47 2.02

z-score

10 4.22 6.12 6.72 3.35 5.34 5.11 3.05 5.54 5.31
20 3.39 6.98 4.00 3.57 5.80 4.35 4.16 4.04 4.47
30 3.69 8.05 3.68 2.23 4.56 2.44 1.57 3.93 3.86
40 1.79 7.68 3.78 3.36 3.50 2.37 2.71 4.79 4.11

120 (all) 3.33 6.18 1.54 1.50 4.86 2.70 1.82 1.48 2.02

nonlinear

10 3.49 8.69 10.03 2.09 7.29 1.61 2.03 5.52 4.32
20 0.69 3.52 3.53 1.69 4.00 1.12 1.42 2.02 3.34
30 1.46 1.82 1.78 1.73 2.98 1.50 1.61 2.33 3.46
40 1.37 1.73 2.02 1.29 1.46 2.47 2.32 2.19 4.23

120 (all) 2.35 5.05 1.65 1.80 5.00 2.61 1.30 1.81 1.92
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B DETAILED RESULTS OF REAL DATA EXAMPLE

B.1 CASE 2: COMPLEX TRAFFIC NETWORK

Accident occurred at the 2nd lane out of 5 lanes of the expressway on September 4th 22:16. Previous
1 hour and following 2 hours are considered to calculate transfer entropy. Case 2 has five propaga-
tion paths, [A,B,C,D], [A,E, F,G], [A,H, I, J ], [A,H,K,M ] and [A,H,K,L]. Some paths are
directly affected by root road and other are not affected. Suggested approach can investigate which
road has causal relationship with accident road.

Due to space limitations in the manuscript, we could not show results for all five paths. Tables 7
presents detailed results of real data example used to construct Figure 9. Figure 10 presents the
effective transfer entropy (ETE), which is Eq. (6) in the manuscript, and the bootstrap distribution
over u ∈ N for all five paths.

In hyperparameter optimization, we need to decide the sliding window size w and the sequence
length L, which affect the accuracy of the time delay estimate. To find the optimal (w,L) values,
we conducted the grid search over hyperparameter space. In the following table, The three numbers
in square brackets mean the value of σ̂2

B for Hop1, Hop2, and Hop3, respectively.

Figure 9: Traffic network for Case 2

• Path 1: [A,B,C,D]

• Path 2: [A,E, F,G]

• Path 3: [A,H, I, J ]

• Path 4: [A,H,K,M ]

• Path 5: [A,H,K,L]

Table 7: Detailed results of real data example on σ̂2
B

Path # Window length L = 120 180 240

Path 1

20 [10.37, 15.18, 6.35] [56.10, 9.44, 1.03] [41.09, 9.64, 0.93]
40 [2.86, 8.08, 8.83] [3.31, 6.91, 11.06] [6.65, 15.14, 26.83]
60 [3.52, 19.75, 8.03] [3.04, 13.35, 8.57] [2.05, 11.71, 1.77]
80 [15.16, 37.17, 27.01] [3.89, 21.37, 17.19] [5.69, 8.56, 10.38]

Path 2

20 [1.45, 13.55, 8.25] [2.81, 16.66, 11.12] [1.46, 17.41, 10.39]
40 [2.71, 4.29, 4.31] [2.07, 3.23, 3.15] [2.59, 8.72, 5.09]
60 [8.58, 10.68, 7.66] [3.81, 6.95, 16.16] [4.58, 2.48, 7.93]
80 [13.45, 28.39, 12.03] [5.98, 14.72, 15.9] [6.24, 7.63, 12.54]

Path 3

20 [2.15, 17.79, 21.82] [19.15, 26.75, 14.82] [14.55, 25.88, 14.95]
40 [3.91, 8.69, 9.77] [2.88, 7.02, 3.36] [2.67, 5.03, 4.64]
60 [17.41, 12.29, 57.25] [7.73, 7.44, 57.58] [2.56, 4.49, 40.95]
80 [10.95, 9.56, 7.7] [5.79, 4.46, 7.74] [4.72, 10.72, 9.69]

Path 4

20 [2.27, 25.78, 2.11] [18.23, 25.19, 9.86] [14.42, 18.74, 15.05]
40 [3.91, 22.42, 1.31] [2.61, 27.66, 0.65] [2.67, 61.19, 2.54]
60 [17.96, 31.64, 4.89] [7.67, 11.1, 3.22] [3.59, 17.43, 1.3]
80 [10.23, 29.86, 7.79] [5.94, 14.54, 2.95] [6.34, 11.82, 5.75]

Path 5

20 [2.28, 26.26, 29.79] [19.15, 25.13, 54.45] [14.1, 19.33, 58.18]
40 [3.9, 22.14, 3.53] [3.33, 27.98, 1.51] [2.77, 60.14, 0.92]
60 [19.45, 30.48, 4.94] [7.67, 10.57, 3.95] [3.52, 18.62, 5.67]
80 [10.63, 30.37, 29.91] [5.88, 14.19, 7.66] [4.03, 11.93, 6.13]
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(a) Path 1: ETE (b) Path 1: bootstrap distribution

(c) Path 2: ETE (d) Path 2: bootstrap distribution

(e) Path 3: ETE (f) Path 3: bootstrap distribution

(g) Path 4: ETE (h) Path 4: bootstrap distribution

(i) Path 5: ETE (j) Path 5: bootstrap distribution

Figure 10: Case 2. ETE and bootstrap distribution for all five paths
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