
RMLWeaver-JS: An algebraic mapping engine in the
KGCW Challenge 2024
Sitt Min Oo1,∗, Tristan Verbeken1 and Ben De Meester1

1IDLab, Dept. Electronics & Information Systems, Ghent University – imec, Belgium

Abstract
We present the Knowledge Graph Construction Workshop (KGCW) Challenge 2024 results of our
proof of concept mapping engine, RMLWeaver-JS, implemented in JavaScript and based on the reactive
programming paradigm. RML documents are translated into a mapping plan consisting of algebraic
mapping operators, which RMLWeaver-JS uses to execute the mapping workload. RMLWeaver-JS is
evaluated for Track 2 on performance for the Knowledge Graph Construction Challenge for CSV files.
The results of the challenge showed that RMLWeaver-JS has a constant memory usage across different
workloads, and scales linearly regarding CPU usage and execution time. However, the results also show
that the execution time of RMLWeaver-JS greatly depends on the generated mapping plan. As future
works, we will focus on the optimizations of the generated mapping plan.

Keywords
Mapping engine, mapping algebra, RML, knowledge graph construction

1. Introduction

The Knowledge Graph Construction Workshop (KGCW) Challenge 2024 [1] presents 2 tracks
of challenges measuring the different aspect of mapping engines implementing RML: 1) fea-
ture compliance with the RML specification, and 2) the performance of the mapping engine
implementation based on different workloads.

For this challenge, we implemented an algebraic mapping engine, RMLWeaver-JS1, as a proof
of concept implementation utilizing algebraic mapping plans while focusing on the performance
of the mapping engine. The implementation is based on RML.io’s RML specification v1.1.1 2 with
limited support for logical sources and reference iterators. Therefore, we did not participate in
the Track 1 challenge, which evaluates the mapping engine’s conformance to W3C Knowledge
Graph Construction Community Group RML specification 3. The engine is evaluated in the
Track 2 challenge on the performance of the mapping engines, measuring memory usage, CPU
usage, and execution time. However, due to the limitations of the engine implementation, we

ESWC 2024: Extended Semantic Web Conference May 26–30, 2024, Hersonissos, Greece
∗Corresponding author.
Envelope-Open x.sittminoo@ugent.be (Sitt Min Oo); tristan.verbeken@ugent.be (T. Verbeken); ben.demeester@ugent.be (B. De
Meester)
GLOBE https://ben.de-meester.org/#me (B. De Meester)
Orcid 0000-0001-9157-7507 (Sitt Min Oo); 0000-0003-0248-0987 (B. De Meester)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://github.com/RMLio/rmlweaver-js
2RML specification 2022: https://rml.io/specs/rml/v/1.1.1/
3https://w3id.org/rml/portal

mailto:x.sittminoo@ugent.be
mailto:tristan.verbeken@ugent.be
mailto:ben.demeester@ugent.be
https://ben.de-meester.org/#me
https://orcid.org/0000-0001-9157-7507
https://orcid.org/0000-0003-0248-0987
https://creativecommons.org/licenses/by/4.0
https://github.com/RMLio/rmlweaver-js
https://rml.io/specs/rml/v/1.1.1/
https://w3id.org/rml/portal

did not evaluate RMLWeaver-JS for the GTFS [2] test cases.
The evaluation results show that RMLWeaver-JS maintains a constant memory usage for

mapping workloads without joins, with a linear increase in execution time and full CPU usage
for increasing input data size. For mapping workloads with joins, RMLWeaver-JS has a linear
increase in memory usage, CPU usage and execution time.
Section 2 discusses the mapping pipeline, where an RML document is first translated to a

mapping plan, which RMLWeaver-JS uses to map heterogeneous data to RDF data. Section 3
presents the evaluation set-up. Section 4 presents the result of the evaluation of RMLWeaver-JS
in Track 2 of KGCW challenge, and finally, we conclude in Section 5, including a discussion for
future work on algebraic mapping engines.

2. Algebraic Mapping Engine Pipeline

RML
Document Translator RMLWeaver-JS

Algebraic
Mapping Plan

Input CSV
�le

Translation
process

Knowledge
Graph

Data mapping
process

Figure 1: Algebraic mapping engine pipeline where an RML document is first translated into an
algebraic mapping plan which is used to generate the KG.

The algebraic mapping engine pipeline consists of two stages: 1) translate RML documents to
a mapping plan consisting of algebraic operators, and 2) execute the generated mapping plan.

The separation of the interpretation and the execution step allows reusing the interpretation
step in different development contexts (i.e. different programming languages and frameworks
can execute the same mapping plan). Furthermore, depending on the structure of the generated
mapping plan, the performance of the mapping engine can be improved.
In order to show the correlation between the structure of the mapping plan and the perfor-

mance of the mapping engine, we made the following choices in the implementation languages
used for the interpretation and the execution engines.
The interpretation engine, which translates RML documents to mapping plans, is written in

Rust 4. We decided to use Rust for the interpretation engine due to (i) its ability to be compiled
for a multitude of runtimes (e.g. into WebAssembly to be used by JavaScript); (ii) its robust
feature support in writing CLI 5 applications; and (iii) low memory footprint as it does not
have a memory garbage collector. This ensures that the whole pipeline of knowledge graph

4Rust: https://www.rust-lang.org/
5Rust Clap: https://github.com/clap-rs/clap

https://www.rust-lang.org/
https://github.com/clap-rs/clap

construction does not suffer from high memory usage for fast mapping plan translation. The
mapping process described by the RML document is translated to a mapping plan consisting of
several algebraic operators, as described in our previouswork on algebraicmapping operators [3].
For the KGCW challenge, the interpretation engine only supports RML.io’s RML specification,
v1.1.1.

The execution engine, which executes the mapping plan and generates the KG from hetero-
geneous data sources, is implemented in JavaScript with a reactive programming paradigm.
We utilized RxJS 6 to enable reactive programming for the mapping plan execution. Reactive
programming ensures that we process the input data one record at a time in streaming fashion,
which lowers the memory usage throughout the mapping process. We used JavaScript to imple-
ment the execution engine to show that even engine implementations in interpreted languages
could execute KG construction workloads with reasonable performance, as shown in Section 4.

As it is a proof-of-concept implementation, the execution engine has the following limitations
for this challenge: i) it can only process CSV input files, ii) it does not ignore empty values, and
iii) it cannot deduplicate the generated KG triples. Thus, due to the aforementioned limitations,
GTFS test cases could not be run since they test the engine’s ability to process a combination of
different input data formats.
Figure 1 illustrates the mapping pipeline deployed for the challenge. The interpretation

engine is used to first translate RML documents into a mapping plan. Afterwards, the execution
engine uses the generated mapping plan to execute the mapping process described in the RML
document.

3. Experiment

The experiment environment for KGCW challenge 2024 is a virtual machine provided by
Orange 7. The machine has an 64 bit architecture, and it is configured with an Intel(R) Xeon(R)
Gold 6161 CPU at 2.20GHz with 4 cores, 16765 MB of RAM memory, and 150 GB of storage
space. The operating system of the machine is Ubuntu 22.04.03 LTS.
The pipeline as described in Section 2 is benchmarked for part 1 of the Track 2 challenge,

measuring the performance of RMLWeaver-JS based on Knowledge Graph Construction Param-
eters. For the experiment, we execute the algebraic mapping pipeline with the execution tools
provided by the KGCW challenge [1], isolated by using a Docker container8.

We use the default settings of 3 runs per experiment and collected the median measurements
as the results. Since the engine generates multiple output files to write the generated triples,
the generated results are aggregated into a single file first before comparison with the baseline
results of the challenge. We compare the aggregated output results with the baseline results
provided by the challenge to ensure the correctness of our algebraic mapping engine.

6RxJS: https://rxjs.dev/
7Orange Telecom: https://www.orange.be/
8Docker: https://www.docker.com/

https://rxjs.dev/
https://www.orange.be/
https://www.docker.com/

1T
M 15

PO
M

3T
M 5P

OM

5T
M 3P

OM

15
TM

 1P
OM

0

5

10

15

20

25

30

35

40

Ex
ec

ut
io

n
tim

e
(s

)

43

1T
M 15

PO
M

3T
M 5P

OM

5T
M 3P

OM

15
TM

 1P
OM

0

100

200

300

400

500

M
ax

 R
AM

 u
sa

ge
 (M

B)

555

Figure 2: RMLWeaver-JS has a significant increase in execution time, at 43 seconds, for the test case
with 15 triples maps and 3 predicate object maps despite almost constant memory usage across the
different test cases.

4. Results

The metrics are collected and uploaded to Zenodo9. The performance results of RMLWeaver-JS
for Track 2 on Knowledge Graph parameters benchmarks are as we expected for a mapping
engine implemented in JavaScript. To summarize, RMLWeaver-JS has a constant memory usage
even when the parameter values are changed for each groups of test cases. CPU usage is only
25% (100% CPU usage is achieved by multiplying execution time with the number of cores
available on the system) despite the presence of four cores on the virtual machine provided for
the challenge. This limitation is due to RMLWeaver-JS not utilizing all four cores of the CPU
on the virtual machine, since JavaScript is single-threaded (when not using Web Workers10).
Thus, we can still conclude that RMLWeaver-JS has a 100% CPU utilization on a single core.
We plotted a bar graph in Figure 2 where RMLWeaver-JS performed poorly in execution time
despite the usage of only a single data source in the test cases. Table 1 shall be used to explain
the general behaviour of RMLWeaver-JS across the different test cases.
Figure 2 shows the test case where the number of triples maps and predicate object maps

are the independent variables of the experiment. RMLWeaver-JS has a significant increase in
execution time of 43 seconds for the test case with 15 triples maps and 3 predicate-object maps
despite the constant memory usage. The constant memory usage is explainable by the reactive
programming paradigm implemented by RMLWeaver-JS where the data input is processed
one at a time in a streaming manner. The increase in execution time is due to the way the
interpreter engine translates RML documents into mapping plans. The RML document provided
with the challenge contains several definitions of logical sources, despite all the logical sources
referencing the same data.csv file, with the same iterator. The interpreter engine generates a

9https://zenodo.org/doi/10.5281/zenodo.11209233
10Web workers: https://html.spec.whatwg.org/multipage/workers.html

https://zenodo.org/doi/10.5281/zenodo.11209233
https://html.spec.whatwg.org/multipage/workers.html

Table 1
Median measurements of RMLWeaver-JS’s performance in terms of execution time (s), CPU (s), and
maximum RAM (MB) usage. The output is also checked with the ground truth provided by the challenge.

Test cases Execution time (s) CPU usage (s) Peak RAM (MB) Output correct? (Y/N)

Records (20 col)
10K rows 2.56 3.34 476 Yes
100K rows 13.51 14.76 485 Yes
1M rows 112.05 125.52 505 Yes
11M rows 1116.40 1249.97 544 Yes

Duplicates
0 percent 12.90 14.70 534 Yes

100 percent 12.70 14.60 531 No
Empty

0 percent 12.70 14.50 530 Yes
100 percent 12.60 14.40 531 No
Joins 1-N

1-10 0 percent 15.60 17.60 664 Yes
1-10 100 percent 30.00 33.60 638 Yes

Joins N-1
10-1 0 percent 15.60 17.80 656 Yes

10-1 100 percent 30.00 33.80 636 Yes
Joins N-M

5-5 25 percent 35.16 38.80 673 Yes
5-5 100 percent 82.00 90.90 814 Yes
10-5 25 percent 35.20 39.50 661 Yes
10-5 100 percent 82.30 91.00 781 Yes

new source operator for each of the logical sources encountered in the RML document. This
results in RMLWeaver-JS reading the input file 𝑁 times for the 𝑁 number of triples maps defined
in the RML document. We can potentially improve the performance by enabling the detection
of semantically similar logical sources in the interpreter engine and generating only unique
source operators.

Table 1 contains the median measurement of each group of test cases, some results are omitted
since they do not show interesting trends to explain the behaviour of RMLWeaver-JS for the
performance measured.

With the linearly increasing number of records, with 20 columns, RMLWeaver-JS experience
a linear increase in execution time. A 10 times increase in the number of rows results in a 10
times increase in execution time, approximately.
For the test cases testing on empty and duplicate values, RMLWeaver-JS does not produce

the correct RDF triples output compared to the ground truth. This limitation arises due to
RMLWeaver-JS not supporting the handling of empty values, nor does it deduplicate the gener-
ated triples.

For test cases on joins, RMLWeaver-JS have the same performance across all metrics depending
on the 𝑚𝑖𝑛(𝑁 ,𝑀) in test case Join N-M. This can be explained as follows: A test case Join N-M
has two data sources with 𝑆1 and 𝑆2, where 𝑁 records in 𝑆1 has 𝑀 records from 𝑆2, with which
it matches to be joined. RMLWeaver-JS employs a hash-join approach when joining data from

two different sources. Two hash maps, one for each of the two sources, are used internally by
RMLWeaver-JS for bookkeeping when joining records from the two different data sources. For
example, when joining on attribute 𝐴, and provided 𝑁 < 𝑀 and 𝑁 records come from 𝑆1 and 𝑀
records come from 𝑆2. The following condition is necessary for RMLWeaver-JS to have similar
performance as shown in the table: 𝑁 records for a specific attribute 𝐴 need to arrive first at
the join operator and be stored in the hash map 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝑆1(𝐴) from source 𝑆1. This results
in a lower amortized cost of having to only loop through 𝑁 times to join the records arriving
from source 𝑆2. Otherwise, if 𝑀 records from 𝑆2, for attribute 𝐴, arrives first with 𝑀 > 𝑁, it
will take a longer amortized time to produce the join results where each new arriving records
from 𝑆1 will have to loop through at least 𝑀 times. This explains the similar performance of
RMLWeaver-JS for both Join 5-5 and Join 10-5 in terms of maximum RAM and CPU usage, and
the execution time.

5. Conclusion

In this work, we participated in KGCW Challenge 2024, for Track 2 on Knowledge Graph
Construction parameters, to evaluate the performance of RMLWeaver-JS in terms of execution
time, maximum RAM and CPU usage. The results demonstrated that RMLWeaver-JS has a
constant memory usage of around 500 MB despite the increasing number of rows in the input
data source. RMLWeaver-JS also has an efficient usage of CPU by maintaining a 100% usage for
a single core since it is implemented in JavaScript, which is single-threaded.

The constant memory usage, despite the increase in the size of the input data, and an efficient
usage of CPU demonstrates the viability of implementing mapping engines in interpreted
language like JavaScript in web browsers. Implementation of mapping engines in JavaScript
could potentially empower both the client and the server web applications with semantic
knowledge from heterogeneous data sources.
Furthermore, we also identified a potential solution to the performance bottleneck suffered

as a result of badly generated mapping plans by the interpreter engine. The interpreter engine
could generate unique source operators (instead of its current behaviour of creating duplicate
operators for each identical source), thus, reducing the number of data sources being iterated
over, which leads to increase in performance by RMLWeaver-JS by reducing execution time.
This also shows the potential of utilizing algebraic mapping plans, where the mapping engines
benefit from the optimizations done on the algebraic mapping plans, without any changes to
the implementation of the mapping engine.

As a future work, the interpreter engine could be improved with mappings partition as done
by Morph-KGC [4], and employing heuristic-based planning just like SDM-RDFizer [5]. These
optimization techniques could improve the performance of RMLWeaver-JS without changing its
implementation, as the mapping plan optimizations could be done at the interpretation stage.

References

[1] D. Van Assche, D. Chaves-Fraga, A. Dimou, U. Serles, A. Iglesias, KGCW 2024 Challenge @
ESWC 2024, 2024. doi:10.5281/zenodo.10973433.

http://dx.doi.org/10.5281/zenodo.10973433

[2] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus, O. Corcho, GTFS-Madrid-
Bench: A benchmark for virtual knowledge graph access in the transport domain, Journal
of Web Semantics 65 (2020) 100596. URL: https://www.sciencedirect.com/science/article/
pii/S1570826820300354. doi:10.1016/j.websem.2020.100596.

[3] Sitt Min Oo, B. De Meester, R. Taelman, P. Colpaert, Towards Algebraic Mapping Operators
for Knowledge Graph Construction, in: I. Fundulaki, K. Kouji, D. Garijo, J. M. Gomez-Perez
(Eds.), Proceedings of the ISWC 2023 Posters, Demos and Industry Tracks: From Novel
Ideas to Industrial Practice co-located with 22nd International Semantic Web Conference
(ISWC 2023), 2023. URL: https://ceur-ws.org/Vol-3632/ISWC2023_paper_412.pdf.

[4] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M. Pérez, O. Corcho, Morph-kgc: Scalable
knowledge graph materialization with mapping partitions, Semantic Web 15 (2022) 1–20.
doi:10.3233/SW-223135.

[5] E. Iglesias, M. Vidal, S. Jozashoori, D. Collarana, D. Chaves-Fraga, Empowering the SDM-
RDFizer Tool for Scaling Up to Complex Knowledge Graph Creation Pipelines, Semantic
Web Journal (2024) 1–28. doi:10.3233/sw-243580.

https://www.sciencedirect.com/science/article/pii/S1570826820300354
https://www.sciencedirect.com/science/article/pii/S1570826820300354
http://dx.doi.org/10.1016/j.websem.2020.100596
https://ceur-ws.org/Vol-3632/ISWC2023_paper_412.pdf
http://dx.doi.org/10.3233/SW-223135
http://dx.doi.org/10.3233/sw-243580

	1 Introduction
	2 Algebraic Mapping Engine Pipeline
	3 Experiment
	4 Results
	5 Conclusion

