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ABSTRACT

RolIPool/RolAlign is an indispensable process for the typical two-stage object de-
tection algorithm, it is used to rescale the object proposal cropped from the fea-
ture pyramid to generate a fixed size feature map. However, these cropped feature
maps of local receptive fields will heavily lose global context information. To
tackle this problem, in this paper, we propose a novel end-to-end trainable frame-
work, called Dense Global Context Aware (DGCA) RCNN, aiming at assisting the
neural network in strengthening the spatial correlation between the background
and the foreground by fusing global context information. The core component of
our DGCA framework is a context aware mechanism, in which both global fea-
ture pyramid and attention strategies are used for feature extraction and feature
refinement, respectively. Specifically, we leverage the dense connection to fuse
the global context information of different stages in the top-down process of FPN,
and further leverage the attention mechanism to perform global context aware.
Thus, the implicit relationship between object proposal and global features can be
captured by neural networks to improve detection performance. Experimental re-
sults on COCO benchmark dataset demonstrate the significant advantages of our
approach.

1 INTRODUCTION

Benefiting from the development and application of deep network technology in computer vision
community, the performance of wide range of computer vision tasks such as target detection, se-
mantic segmentation and instance segmentation have been greatly improved. In recent years, many
excellent detection frameworks have been proposed. For example, there are one-stage methods with
faster speed such as SSD (Liu et al.| 2016) and YOLO (Redmon et al., 2016)), and two-stage meth-
ods with better detection performance such as Faster RCNN (Ren et al., 2015) and FPN (Lin et al.,
2017). Most of the currently popular two-stage usually use RoIPool/RolAlign to align regions of
interest of different scales to meet the requirement of consistent input size of the neural network. In
FPN, it adaptively crop the regions of interest from the feature pyramid corresponding to different
spatial scales, and then uniformly resizes them to a fixed spatial scale of 7 x 7 through RolIPool,
and after flattening these feature maps, they are further encoded through two fully connected layers,
and finally classification and positioning tasks are performed respectively. But is it reasonable to
use only features of local receptive field like object proposal for classification and positioning? On
the one hand, for classification tasks, the target object has a potential relationship with other objects
in the background. For example, in real scenario, cups often appear on the dining table, and there
are food, knives, forks and bowls around them, and laptop, keyboard, mouse often appear together
on the desk, as shown in the Fig. E} On the other hand, for positioning tasks, the candidate box
coordinates predicted by the detection model are the relative positions in the whole image, so some
references in the background can help to locate the target. Therefore, simply using the feature maps
of object proposals for detection will bring about the loss of the spatial and category relationship
information between these local and global contexts.

To mitigate the drawback mentioned above, in this paper, we propose a context aware mechanism
that allows the two-stage object decetion network to fuse the global context information with the
local informations of the Rols(Regions of Interest). Specifically, we believe that the feature maps
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at different stages in the feature pyramid carry global context information of different attributes.
Therefore, in order to make full use of this information to help the neural network better complete
the object detection task, we fuse the global context information of different stages through dense
connection, and then leverage our proposed context aware module to generate higher-dimensional
global descriptors. Simultaneously, like FPN, before decoupling the positioning and classification
tasks, we use two shared fully connected layers to further extract features.

To provide evidence for these claims, in sectiond] we develop several ablation studies and conduct an
extensive evaluation on the COCO dataset 2014). We also present results beyond COCO
that indicate that the benefits of our approach are not restricted to a specific dataset. Our method
gains +1.4 and +0.6 AP on MS COCO dataset from Feature Pyramid Network (FPN) baselines with
ResNet-50 and ResNet-101 backbones.

In summary, the main contributions of this work are highlighted as follows:

1. We propose DGCA RCNN to extract and refine global context information by using dense con-
nection and attention mechanism, and fuse the global features of different stages in the feature
pyramid to calibrate the local features.

2. Unlike SENet (Hu et al.l 2018b), which uses global context information for feature recalibration
at the convolutional level, we extent it to assemble global context information on the two-stage target
detection pipeline.

3. Our method can be easily deployed in other FPN based methods and can continuously improve
their performance.

The rest of this paper is organized as follows. In section [2] we briefly review related work on
object detection and context aware. In section [3] we introduced our method in detail from dense
global context, context aware, and feature fusion. Experimental details and analysis of the results
are elaborated in section[d] Finally, we conclude the paper in section [5]

Figure 1: Examples of potential relationship between global context and local information, top row:
some kitchen utensils such as knives, forks, bowls and cups often appear on the table with food;
bottom row: computer, keyboard and mouse often appear together.

2 RELATED WORK

2.1 OBIJECT DETECTION

There are two common ways for object detection: one-stage and two-stage. Classic one-stage meth-
ods such as SSD [2016),YOLO (Redmon et al., 2016; [Redmon & Farhadil 2017} [2018),
etc. quickly classify and locate targets in an end-to-end manner. Classic two-stage methods such as
Faster RCNN (Ren et al.| 2015)), FPN (Lin et al.,2017), etc. first obtain object proposals through the
RPN(Region Proposal Network), and then use RoIPool/RolAlign to align the spatial scales of these
object proposals before performing detection. Most of the subsequent algorithms are also based
on these two structures for continuous improvement and development. CornerNet (Law & Deng]

2018), ExtremeNet (Zhou et all [2019b), CenterNet (Zhou et al [20192), and FCOS (Tian et al.

2019), etc., take advantage of the nature of the anchor box can formed by keypoint and optimize the




Under review as a conference paper at ICLR 2021

detection process of one-stage by improving the method of anchor generation. (Wu et al., 2020b)
studies that convolutional neural networks and fully connected networks have different sensitivity
to classification tasks and positioning tasks, therefore, it decouples the positioning and classification
tasks of FPN to improve detection performance. Cascade r-cnn (Cai & Vasconcelos|2018)) considers
that training samples under different loU(Intersection over Union) conditions have different effects
on the performance of target detection network, and then proposes the structure of muti stage, in
which each stage has a different IoU threshold. HTC (Chen et al.,[2019a) tries to integrate semantic
segmentation into the instance segmentation framework to obtain a better spatial context. Detec-
toRS (Qi1ao et al.| [2020) proposed RFP (Recursive Feature Pyramid) and SAC (Switchable Atrous
Convolution) to realize looking and thinking twice or more. (Wang et al.||2019) proposed to guide
the generation of anchor through image features.

2.2 CONTEXT AWARE

Assembling global context information of the target can enable the neural network to learn more
about the relationship between the foreground and the background, so that it can rely on this potential
relationship feature to help the neural network highlight and identify the target. There are many ways
to obtain contextual information, an alternative way is to use the attention mechanism to obtain
global context information (Bello et al., [2019; [Vaswani et al.l 2017 [Woo et al 2018}; [Hu et al.,
2018bza) and use it for feature recalibration. Alongside the methods described above, there is also
another way to use contextual information, for the two stage object detection task, the target needs
to be aligned to a uniform scale through RoIPool/RolAlign, the general way is to expand the object
proposal by a few pixels when cropping the target from the feature map to obtain more surrounding
information (Tang et al.l 2018} Wu et al. 2020a). Context information can also be used in many
ways, (Lin et al[2019) proposed CGC(Context-Gated Convolution) to adaptively modify the weight
of the convolutional layer. (Si et al.,[2018)) proposed DuATM (Dual Attention Matching network)
to learn context-aware feature sequences, and perform pedestrian re-identification by performing
sequence comparison simultaneously.
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Figure 2: Network architecture of Feature Pyramid Network(FPN). In this figure, the upward red
arrow represents the down-sampling process, the downward blue arrow represents the up-sampling
process, the black dashed line represents the data flow, and & represents the element-wise sum.

3 METHOD

3.1 MOTIVATION

In FPN, the feature pyramid is constructed through Bottom-up pathway, Top-down pathway and
lateral connections, as shown in Fig. |2l Where Bottom-up pathway refers to the process of down-
sampling the input image 5 times in the backbone network, and the output of the residual blocks
corresponding to {conv2, conv3, conv4d, convs} is denoted as {c2,¢3,c4,c5}. Where Top-down
pathway refers to the up-sampling process after convoluting ¢5 by 1 x 1 convolutional layer, for
simplicity, we denote the final feature map set as {p2, p3, p4, p5}. Where lateral connection refers
to the process of fusing the corresponding feature maps between {c2, ¢3, ¢4, ¢5} and {p2, p3, p4, p5}
through the 1 x 1 convolutional layer. In FPN, only using the cropped feature map of object proposal
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Figure 3: Network architecture of DGCA RCNN. In this figure, {p2, p3, p4, p5} represents the fea-
ture pyramid used to generate Rol from the corresponding feature map and the channel dimensions
are all 256, {¢0, g1, g2, g3} represents the global context feature map obtained by down-sampling
{p2, p3, p4, p5} through the corresponding 3 x 3 convolutional layer, ® represents the concatenation
function and & represents the element-wise sum.

to locate and classify the object will greatly lose the global context information, which will lead
to the loss of the convolutional neural network’s ability to perceive the relationship between the
background and the foreground information. Therefore, we design our method from two aspects:
the acquisition of global context information and the fusion of local and global information.

3.2 DENSE GLOBAL CONTEXT

The structure of the dense global context module is depticted in Fig.[3] In order to unify the spa-
tial scale of the global context information at different stages in the feature pyramid, we lever-
age adaptive average pooling to downsample the spatial scale of {p2, p3,p4,p5} to (M, N) x
{1,1/2,1/4,1/8} respectively. Then we continue to downsample these pooled feature maps using
four parallel branches which containing {3, 2, 1,0} downsampling blocks respectively, each down-
sampling block refers to the composite function of two consecutive operations: a 3 X 3 convolution
(conv) with stride 2 followed by a ReLU(rectified linear unit) (Nair & Hinton, |[2010) activation func-
tion, for simplicity, we denote the downsampling block as D. To this end, the global context feature
map set obtained by dense connection is denoted as {¢0, g1, g2, g3}. As a consequence, the benefits
of the global context captured by multi-branch downsampling blocks can be accumulated through
the network. The output feature g; is defined by

gi = D’ ([6(pir2), Wil), )
0 0 0
w=[1 9 0] (D) D'[6(pa), D} (6(m))] [0 91.92]) " @
0 0 1

where D’ represents the total use of i downsampling blocks, ¢ stands for adaptive average pool-
ing function, and where W, represents the i-th row of matrix W. After getting the feature set
{40, g1, g2, g3} of the global context information, we input g; and the feature maps of object pro-
posal respectively into four parallel context aware modules. Motivated by (Huang et al.,[2017), we
define [¢(p;), W;] as a concatenation of the feature-maps in it.

3.3 CONTEXT AWARE

A diagram illustrating the structure of an context aware module is shown in Fig.[4] the context aware
module consists of two sub-modules: attention module and task decoupling. In the attention mod-
ule, inspired by (Hu et al., 2018b), we embedding these global context information {¢0, g1, g2, g3}
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Figure 4: Network architecture of context aware module. It contains two sub-modules: attention and
task decoupling, the attention module is in charge of mappings global context information to high-
dimensional space and the task decoupling module outputs the prediction results of classification
and positioning.

into higher-dimensional features for characterizing the global features. Specifically, we leverage the
global average pooling layer to squeeze the spatial scale of {g0, g1, g2, g3} that produces a channel-
wise statistics by aggregating feature maps across their spatial dimensions, then we leverage a bot-
tleneck block composed of two fully connected layers with reduction of r to squeeze-and-excitation
the dimension of the feature map and learn a non-mutually-exclusive relationship between global
context information and local information, note that in the bottleneck block, the first fully connected
layer uses the ReLU activation function, and the second fully connected layer uses the sigmoid acti-
vation function. In the task decoupling module, we first do the channel-wise multiplication between
the global context descriptor obtained by the squeeze-excitation module and the 256 x 7 x 7 object
proposal feature tensor after RolAlign resize, and then in order to further combine features of differ-
ent attributes and enhance generalization, after flattening the object proposal feature map, like FPN,
we used two fully connected layers with an output dimension of 1024. It is worth notice, different
from SENet multiplying the global descriptor on each channel of the squeeze-and-excitation block
input feature map to perform feature recalibration, we multiply it on each channel of the 256 X 7 x 7
feature tensor obtained by RolAlign to strengthen the mutual relationship between global context
and local receptive field.

3.4 FEATURE FUSION

Different from the box head in FPN, the object proposal rescaled by RolAlign will be classified and
located after the subsequent two fully connected layers. In our approach, we leverage four parallel
branches to extract global context information at different stages in the feature pyramid, and further
leverage these global context informations to fusion with the local receptive fields of object proposals
in each branch through the attention mechanism. Simultaneously, like SENet, after each branch, we
separately encode these fused feature information through two parallel fully connected layers, and
then decouple the classification task and the positioning task. Finally, the one-dimensional features
output by these four branches are fused through the element-wise sum method and then the object
proposals are classified and located respectively.

4 EXPERIMENTS

4.1 DATASET AND METRICS

We verify our approch on the large scale detection benchmark COCO dataset with 80 object cate-
gories, which are splited into 115k, 5k and 41k images for train/minival/test. Because the labels of
its test-dev split are not publicly available, we use its minival dataset for our ablation study. Simul-
taneously, we present our final results on the test-dev split (20K images) by uploading our detection
results to the evaluation server. We use the coco standard metric to evaluate the AP under different
IoU [0.5:0.05:0.95], and finally take the average of APs under these thresholds as the result, denoted
as mAP@[.5, 95 ].



Under review as a conference paper at ICLR 2021

Table 1: Effect of dense connection on COCO val2017 (%)

Method AP APO 5 APO 75
FPN baseline 36.8 58.0 40.0
Without Dense connection(ours) 37.7 59.6 40.3
Dense connection(ours) 37.8 60.0 40.6

4.2 IMPLEMENTATION DETAILS

Our model is end-to-end trained based on the torchvision detection module (Paszke et al.l |2019),
using SGD with 0.9 momentum, 0.0005 weight decay for gradient optimization. We train detectors
on a single NVIDIA titan xp GPU with the mini-batch size of one image. Unless specified, ResNet-
50 pretrained on imagenet (Deng et al., |2009) is taken as the backbone networks on this dataset.
Following the common practice, the size of the input image is adjusted to 800 for the short side and
less or equal to 1333 for the long side. We train detectors for 22 epoches with an initial learning
rate of 0.0025, and decrease it by 0.1 after 16 and 22 epoches, respectively. For data augmenta-
tion, we randomly flip the input image horizontally with a probability of 0.5. And all newly added
convolutional layers are randomly initialized with the “xavier” method (Glorot & Bengio, [2010).

4.3 ABLATION STUDY

Dense connection: Table|l|shows the impact of whether {p2, p3, p4, p5} these global context fea-
tures at different stages in the feature pyramid are densely connected on the performance of our
proposed model, it should be noted that we did not use the attention mechanism in this experiment
and the initial adaptive pooling size is (64, 96). Specifically, in order to further encode local recep-
tive field information and global context information, after the two branches of the object proposal
256 x 7 x 7 feature map tensor and the one-dimensional global context information captured through
global average pooling, we connect a fully connected layer with an output dimension of 512 respec-
tively. Finally, we concatenate the two pieces of information together, and then connect a fully
connected layer with an output dimension of 1024 to learn the potential relationship between local
receptive fields and global context information.

From Table |1| we can see that with or without dense connection, the AP value of our proposed
method is improved relative to the FPN baseline, which also illustrates the importance of global
context information. However, using dense connection can integrate global context information at
different stages, so the model performance is better improved(outperforms FPN basline by 1.0%
on COCQO’s standard AP metric and by 2.0% on AP@IoU=0.5). We used dense connections in all
subsequent experiments.

Dense connection with different pooling size: Table 2] shows the impact of dense connection
of global context information at different stages in the feature pyramid on the performance of the
model under different pooling size conditions. Assuming that our initial adaptive pooling size is
(128, 192), thus the pooling sizes corresponding to the four stages {p2, p3, p4, p5} from the bottom
to the top of the FPN are (128,192) x {1/8,1/4,1/2,1}, with the goal of balancing the memory
consumption and accuracy, we analyze the model performance when the initial pooling size are
(128,192) x {1,1/2,1/4,1/8} respectively. The comparison in Table [2| shows that performance
dose not continuously increasing with bigger pooling size, we found that setting the initial pool size
to (64, 96) achieved a good balance between memory consumption and accuracy, we used this value
in all subsequent experiments.

The choices of the attention module: For the sake of better integrating global context information
and local receptive field information, we explore different attention methods, the results of com-
parison are shown in Table[3] specifically, we directly multiply the 256-dimensional global context
information output by the squeeze-excitation module with the 256 x 7 x 7 feature tensor of the object
proposal, and we denote this method as attention on “conv”. Further more, on the basis of attention
on “conv”, we added a new branch to the squeeze-excitation module and increase the output dimen-
sion to 1024, then multiply it respectively with the 1024-dimensional output of the first(attention
on "conv+fcl”) and second fully connected layers (attention on “conv+fc2”) after the 256 X 7 x 7
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Table 2: Effect of dense connection with different pooling size on COCO val2017 (%)
Pooling Size AP AP045 APO.75

(128,192) 378 60.0 40.6
(64,96) 38.0  60.1 41.0
(32,48) 37.8 597 40.9
(16,24) 377 597 40.2

Table 3: Effect of different choices of the attention module on COCO val2017 (%)

Attention AP APO,5 APO,75
cony 38.2 59.9 41.0
fel 37.5 58.8 40.6
fe2 37.6 59.4 40.1
conv+fcl 37.7 59.5 40.3
conv+fc2 37.7 59.2 40.6
conv+fcl+fc2 37.9 59.4 40.9

feature map tensor of the object proposal. In addition, we connected three parallel output branches
after the squeeze-excitation module, denote as “conv+fcl+fc2”. Simultaneously, we also explored
different combinations of attention on single “fc” layer. The results reported in Table[3]indicate that
assembling global context information multiple times in the box head network will cause ambiguity,
and mapping it to the low-dimensional features of the local information can better learn the relation-
ship between the global context and the local receptive field. By using attention on conv we got the
best AP value, which exceeded FPN baseline by 1.4% on COCO’s standard AP metric.

Attention with different reduction ratio: The comparison in Table ] shows the effect of different
reduction ratios in the squeeze-excitation module on the performance of our model. Different re-
duction ratios allow us to explore different capacity and computational cost of the attention module
in the network. We can achieve the best results when r is equal to 8, therefore, we use this value in
all of our other experiments.

Bottom-up or Top-down: In the previous experiment, we obtained global context information by
continuously down-sampling from top to bottom. In this experiment, we replace all newly added
3 x 3 convolutional layers with deconvolutional layers to obtain global context information in a
bottom-up manner, and keep other network structures unchanged, the results are shown in Table 5]

Additional datasets: We next investigate whether the benefits of global context information gen-
eralise to datasets beyond COCO. We perform experiments with our method on Cityscapes dataset
which comprise a collection of 2975 training, 500 validate and 1525 test 2048 x 1024 pixel RGB
images, and labelled with 8 classes. We train our model a total of 64 epochs, the learning rate is
initially set to 0.0025 and drops by a factor of 10 after 48 epochs. We set the initial pooling size to
(128, 256). The shorter edges of the images are randomly sampled from [800, 1024] for reducing
overfitting, other parameters are the same as those set in the experiment on coco dataset. From Ta-
ble[6] we observe that our method achieves a better AP value(1.2% improvement) than FPN baseline
on Cityscapes datasets, which further illustrates the robustness of our method.

Comparison with Baselines and State-of-the-art Methods on COCO: In Table [/, we com-
pare the performance of our method with FPN baselines and Double-Head (Wu et al.l 2020b) on

Table 4: Effect of different reduction ratios r on COCO val2017 (%)
ratio AP APO_5 APO_75

4 37.8 59.7 40.5
8 38.2 59.9 41.0
16 37.9 59.6 40.6
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Table 5: Effect of Bottom-up and Top-down on COCO val2017 (%)

Method AP APO_5 APO_75
Bottom-up 374 58.7 40.2
Top-down 38.2 59.9 41.0

Table 6: Comparisons with FPN baseline on Cityscapes datasets with ResNet-50 backbone (%)

Method AP APO.5 APO_75 APS APm AP[
FPN baseline 36.2 63.6 34.8 10.6 309 51.3
DGCA(ours) 37.4 63.8 38.2 13.0 31.9 522

COCO val 2017, where Double-Head(with DGCA) means to assemble our method on Double-Head
RCNN (Wau et al.| 2020b) based on mmdetection (Chen et al.l 2019b)), note that in this method we
only applied our method to the fully connected head and we re-implemented Double-Head RCNN
using two Titan xp GPUs with one image per GPU(schedule_1x). Our method can achieve contin-
uous gains on different backbone networks(1.4% improvement with ResNet-50 and 0.6% improve-
ment with ResNet-101) and model(0.7% compared to Double-Head). Table[8|shows the comparison
between our method with the state-of-the-art methods on MS COCO 2017 test-dev. Compared with
FPN baseline, our method is better at detecting small and medium targets, which is due to the in-
creased connection between global context and local information.

Table 7: Object detection results (bounding box AP) on COCO val2017.

Method Backbone AP APys APy AP, AP, AP
FPN baseline (Lin et al.,[2017) ResNet-50 36.8 58.7 40.4 21.2 40.1 48.8
DGCA(ours) ResNet-50 382 599 41.0 2277 42.0 49.0
FPN baseline (Lin et al.l 2017) ResNet-101  39.1  61.0 42.4 222 425 51.0
DGCA(ours) ResNet-101 39.7 610 43.3 23.0 437 51.3
Double-Head (Wu et al.,[2020b)  ResNet-50 395 598 43.0 232 432 51.1
Double-Head(with DGCA) ResNet-50 40.2 610 44.0 24.1 438 52.6

Table 8: Object detection results (bounding box AP) on COCO test-dev.

Method Backbone AP APy 5 APy 75 AP, AP, AP,
FPN (Lin et al.,[2017) ResNet-101  37.3  59.6 40.3 19.8 402 48.8
Mask RCNN (He et al.,2017) ResNet-101 382 603 41.7 20.1 41.1 50.2
DGCA(ours) ResNet-101 400  61.6 43.5 228 432 50.3
Double-Head (Wu et al.,[2020b) ~ ResNet-50 39.8  60.2 43.4 23.0 427 49.8
Double-Head(with DGCA) ResNet-50 403  61.1 439 2377 430 50.7

5 CONCLUSION

In this paper, we propose Dense Global Context Aware (DGCA) RCNN to learn the potential rela-
tionship between image background and foreground by integrating global context information with
local receptive field information of Rol, and different from the attention mechanism on the convolu-
tion level for feature recalibration, we extend it to the network pipeline to strengthen the connection
between local and global information. Experiments on the COCO and Cityscapes datasets have
verified the effectiveness of our method, and we also hope that our method will be helpful to other
scholars.



Under review as a conference paper at ICLR 2021

REFERENCES

Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention augmented
convolutional networks. In Proceedings of the IEEE International Conference on Computer Vi-
sion, pp. 3286-3295, 2019.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6154-6162,
2018.

Kai Chen, Jiangmiao Pang, Jiagi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Zi-
wei Liu, Jianping Shi, Wanli Ouyang, et al. Hybrid task cascade for instance segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4974—4983,
2019a.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli
Ouyang, Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019b.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256, 2010.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), Oct 2017.

Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks for object
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3588-3597, 2018a.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132-7141, 2018b.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700-4708, 2017.

Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 734-750, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Tsung-Yi Lin, Piotr Dollér, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117-2125, 2017.

Xudong Lin, Lin Ma, Wei Liu, and Shih-Fu Chang. Context-gated convolution. 2019.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer
vision, pp. 21-37. Springer, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, 2010.



Under review as a conference paper at ICLR 2021

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, pp.
8024-8035, 2019.

Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors: Detecting objects with recursive
feature pyramid and switchable atrous convolution. arXiv preprint arXiv:2006.02334, 2020.

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7263-7271, 2017.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,

pp- 91-99, 2015.

Jianlou Si, Honggang Zhang, Chun-Guang Li, Jason Kuen, Xiangfei Kong, Alex C Kot, and Gang
Wang. Dual attention matching network for context-aware feature sequence based person re-
identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 5363-5372, 2018.

Xu Tang, Daniel K Du, Zegiang He, and Jingtuo Liu. Pyramidbox: A context-assisted single shot
face detector. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 797-
813, 2018.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 9627—
9636, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Jiaqi Wang, Kai Chen, Shuo Yang, Chen Change Loy, and Dahua Lin. Region proposal by guided
anchoring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp- 2965-2974, 2019.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European conference on computer vision (ECCV), pp.
3-19, 2018.

Jianchao Wu, Zhanghui Kuang, Limin Wang, Wayne Zhang, and Gangshan Wu. Context-aware
renn: A baseline for action detection in videos. arXiv preprint arXiv:2007.09861, 2020a.

Yue Wu, Yinpeng Chen, Lu Yuan, Zicheng Liu, Lijuan Wang, Hongzhi Li, and Yun Fu. Rethinking
classification and localization for object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10186—-10195, 2020b.

Xingyi Zhou, Dequan Wang, and Philipp Krihenbiihl. Objects as points. arXiv preprint
arXiv:1904.07850, 2019a.

Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl. Bottom-up object detection by grouping
extreme and center points. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 850-859, 2019b.

10



	Introduction
	Related Work
	Object Detection
	Context Aware

	Method
	Motivation
	Dense global context
	Context aware
	Feature fusion

	Experiments
	Dataset and metrics
	Implementation Details
	Ablation study

	Conclusion

