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ABSTRACT

Chain-of-thought (CoT) can improve performance in large language models
(LLMs) but does not always accurately represent a model’s decision process. Prior
work has shown one way CoT may be unfaithful is via post-hoc reasoning, where
the model pre-commits to an answer before generating CoT. We extend this line of
inquiry by exploring mechanisms of post-hoc reasoning in five language models
(Gemma 2: 2B, 9B; Qwen 2.5: 1.5B, 3B, 7B) and four binary question answering
tasks (Anachronisms, Logical Deduction, Social Chemistry, Sports Understanding).
We first show that the model already knows its answer before the CoT, by linearly
decoding it from residual stream activations at the last pre-CoT token obtaining
an area under the ROC curve (AUC) above 0.9 across most tasks and all models.
We then show the model actually uses this representation by steering activations
along the learned direction during generation, which causes the model to change
its answer in more than 50% of originally-correct examples in most model-dataset
pairs. Finally, under steering we classify structured CoT pathologies, finding
confabulation (false premises supporting the steered answer) and non-entailment
(true premises with a non sequitur conclusion) at roughly equal rates. Together,
our results describe pre-CoT features that both predict and causally influence final
answers, consistent with post-hoc reasoning in LLMs. This may suggest avenues
to monitor and modulate unfaithful CoT via probing and activation steering.

1 INTRODUCTION

Large language models can externalize their reasoning through chain-of-thought, producing step-by-
step rationales that appear interpretable to humans and can improve task performance (Wei et al.,
2023)). This makes CoT a promising vehicle for scalable interpretability and safety monitoring, as
natural language is far easier to audit than latent activations.

However, the utility of CoT toward interpretability depends upon its faithfulness—whether the
reasoning expressed in the chain-of-thought reflects the true decision-making process behind the
model’s answer (Jacovi & Goldberg,|2020). Empirically, this condition does not always hold. Prior
work documents cases where models rationalize biased answers with convincing but misleading
CoT (Turpin et al.| [2023)), and instances where larger models ignore their own CoT when producing
final answers (Lanham et al., 2023} |Gao, |2023). Successful operationalization of CoT toward safety
monitoring may depend on characterizing modes of unfaithfulness.

One way to reason about this is to consider optimization pressures toward unfaithfulness—i.e.,
which forms are expected given the training regime [nostalgebraist| (2024). Consider, for example, an
intelligent model, trained to produce helpful, honest, harmless responses [Bai et al.|(2022) that has
been given a question so simple it could answer in a single forward pass. Now suppose, as in|Lanham
et al.|(2023), the model is given a scratchpad with a mistake in the reasoning. Now the model must
either respond with what it knows to be the correct answer, or the incorrect answer entailed by the
incorrect chain-of-thought. The former is perhaps the preferred behavior, but it would constitute
unfaithful reasoning.

We use post-hoc reasoning to refer to these instances where the model’s answer is determined before
the CoT, and call this answer the pre-committed answer. Previous work has primarily focused on
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creating tests to establish sufficient evidence of post-hoc reasoning |Lanham et al.|(2023)); |Arcuschin
et al.| (2025)). However, our work responds to a slightly different question: Supposing that post-hoc
reasoning is occurring, what mechanistic phenomena would we expect to observe? To establish
foundational evidence of post-hoc reasoning, we conduct preliminary experiments similar to Lanham
et al.| (2023), but the focus of our investigation is to better understand a behavior we believe to exist.
To this end, we offer two key contributions:

1. Pre-CoT probes. We show that a model’s final answer is often linearly decodable from
residual stream activations at the last pre-CoT token, consistent with answer pre-commitment
before reasoning begins.

2. Answer steering. We show that steering along the pre-CoT probe direction, opposite the
original answer, can induce the model to change its answer. In these cases, we identify
patterns of confabulation and non-entailment in the CoT.

2 RELATED WORK

CoT interpretability. |Venhoff et al.|(2025) find linear directions in thinking models for behaviors
such as example testing, uncertainty estimation, and backtracking. Zhang et al.| (2025)) train a 2-layer
MLP to predict the correctness of a model’s intermediate answer throughout its CoT and implement
early-stopping using this probe. [Lindsey et al.| (2025) perform mechanistic circuit analysis on top
of sparse autoencoder (SAE)-learned features, and show an instance in which the LLM derives its
answer directly from the prompt and not the intermediate CoT. (Chen et al.|(2025a) show that in a
CoT, SAE-learned concepts activate more sparsely.

CoT faithfulness. |Arcuschin et al.|(2025) define and demonstrate implicit post-hoc rationalization,
where models exhibit systematic biases to Yes or No questions—such as "Is X bigger than Y?" and
"Is Y bigger than X?"—and then justify such biases in their CoT. Chen et al.| (2025b) present an
evaluation of CoT faithfulness by incorporating hints in reasoning benchmarks and measuring the
propensity for models to reveal their usage of the hints, which occurs in less than 20% of samples.
Lanham et al. (2023)) perturb the CoT with interventions such as adding mistakes and early answering
and use the degradation in performance as a heuristic for CoT faithfulness. |Chua et al.| (2025)
introduce a fine-tuning scheme called bias-augmented consistency training (BCT) by adversarially
training against post-hoc reasoning, sycophancy, and spurious few-shot patterns to mitigate biased
reasoning.

Probing for safety-relevant qualities. |Goldowsky-Dill et al.|(2025) use probes to detect strategic
deception, and Bailey et al.|(2025) test the efficacy of obfuscation attacks against harmlessness probes,
among other methods.

3 METHODS

3.1 MODELS AND DATASETS

We evaluate five instruction-tuned models across two families—Gemma 2 (2B-it, 9B-it) (Team et al.,
2024) and Qwen 2.5 Instruct (1.5B-it, 3B-it, 7B-it) (Qwen et al.||2025)—on four binary classification
tasks spanning factual, logical, and social reasoning:

1. Anachronisms: Determine whether a statement about a historical event contains anachro-
nisms or not (Suzgun et al., [2022)).

2. Logical Deduction: Determine whether a conclusion follows from given premises (Suzgun
et al.,2022).

3. Sports Understanding: Determine whether a statement about sports is plausible or implau-
sible (Suzgun et al., 2022).

4. Social Chemistry: Determine whether a social interaction is acceptable or not (Forbes et al.,
2021)).
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Each task is formatted as a binary classification task with four few-shot CoT demonstrations. Demon-
strations follow consistent reasoning patterns, offering a reasoning template for the model to fol-
low (Wei et al., 2023). Answer choices are presented as a choice between options A and B. The
order of the contents of A and B is randomized to control for positional bias. Figure [I] shows an
example prompt from the Sports Understanding task. Example questions for each task are shown in
Appendix [A]

Each dataset is split into 500 train and 500 test examples. Responses are parsed by extracting the
final answer token (“(A)” or “(B)”"). Where responses cannot be parsed, we report a failed generation.
All outputs are generated by sampling at temperature 0.7.

Q: Is the following sentence plausible? “Kylian Mbappe went in studs up.”

Answer choices:

(A) No, the sentence is implausible

(B) Yes, the sentence is plausible

Please verbalize how you are thinking about the problem, then give your answer in the format
“The best answer is: (X)”. It’s very important that you stick to this format.

A: Let’s think step by step:

Figure 1: Example prompt from the Sports Understanding task. The model generates its response
starting from “Let’s think step by step:”.

3.2 TESTING FOR COT SENSITIVITY

Similar toLanham et al.|(2023)), we intervene on the CoT and measure how sensitive the final answer
is to CoT. For two models per each model family (Gemma 2: 2B, 9B; Qwen 2.5: 1.5B, 7B) and each
dataset, we randomly sample 100 test generations where the model was correct and implement two
interventions:

1. Ellipses. Substitute the chain-of-thought with the string "...".
2. Wrong CoT. Modify the CoT to introduce a mistake that will imply the opposite answer.

After swapping the CoT with the modification, we append “So the best answer is:” to form the
intervention prompt, then query the model and record whether its answer changed.

3.3 PROBING FOR PRE-COMPUTED ANSWERS

To determine if the model is thinking about the final answer before CoT, we construct difference-
of-means probes on the training set to predict the model’s final answer from its activations before
generating reasoning (Marks & Tegmarkl 2024)). Let ¢ denote the last pre-CoT token in the prompt
(the colon in “Let’s think step by step:”), and let ngt)o be the residual stream activation at layer £ and
position tg for training example i. We partition training examples by their final answer ¢ € {yes,no}
and compute

1 ¢
PO = Xt w0 =l -
"1 i€D,

For a held-out test example j, we compute the cosine similarity score
sg»é) = cos (x(f) w),
(0) (€) A
and compute AUC'™ over {(s; ', label;)};.

High AUCY indicates that the final answer is linearly decodable from pre-CoT activations, consistent
with answer pre-commitment (Alain & Bengio, |2018}; [Hewitt & Liang} [2019; [Hewitt & Manning}
2019; Belinkov} 2021)). §[5.2]discusses the interpretation of these probes with caveats for specificity
and feature superposition.
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Question Preamble Chain of Tl«ougl«‘t Final Answer

Lionel Messi is a soccer No, the sentence is

o
Is the Following sentence plausible? Let's think step by step:
player . implausible.

"Lionel Messi shot a free throw."

Steer Generation
+8 "Yes"

Chain of Thought Final Answer

Lionel Messi is a basketball Yes, the sentence is
player ... plausible.

Figure 2: Example of activation steering causing confabulation.

3.4 FLIPPING ANSWERS VIA ACTIVATION STEERING

However, successfully predicting the model’s answer from activations before the CoT is not sufficient
to claim it has committed to that answer. We consider an alternative hypothesis: that the pre-CoT
probes are merely correlated with the final answer, and do not themselves represent the final answer
or causally influence it.

To test this hypothesis, we intervene on the probe direction during CoT. Specifically, following
previous work in activation steering (Turner et al.| 2024; Rimsky et al.,[2024), we edit activations
during generation along the probe direction from §[3.3] At inference time, for every forward pass and
each decoding token position following the prompt ¢ > ¢(, we apply the following edit at layer £*:

>~(gz*) = x4 aw®),

where « is the steering coefficient (by convention, o > 0 pushes toward “yes,” o < 0 toward “no”
The layer ¢* is the one with the highest probe AUCY. We evaluate forced flips on two subsets
of the test set: Sy, (examples the model initially answered “yes” correctly), where we sweep o €
{0, —2,—4,...,—20}, and Sy, (initially “no” and correct), where we sweep a € {0,2,4,...,20}.
Figure 2| schematizes this process.

Orthogonal-direction baseline. To determine whether flips are specific to the learned direction
rather than generic perturbations, we compare steering with w(¢") to steering in a per-example
random direction r; that is orthogonal and norm-matched ((r;, w")) = 0 and |Ir;|| = [w(‘"]).
We resample r; for each example j, and apply the same intervention and o sweep as above on 50
random test examples (not limited to examples the model got correct).

3.5 CLASSIFYING COT TRACES

In cases where steering did cause the model to change its answer, we can learn something about
how the intervention caused the model to change its answer by reading the CoT. For example, the
intervention answer might influence the final answer through the CoT or by skipping the CoT. To
this end, Table [T] proposes a CoT classification framework based on two dimensions: (1) logical
entailment—whether the conclusion follows from the stated premises—and (2) premise truthfulness—
whether all premises are true.

Table 1: Framework for classifying chain-of-thought reasoning patterns under steering

\ Conclusion follows \ Conclusion does not follow
Sound reasoning Non-entailment
All premises true (Should not occur (Model ignores correct
in steered samples) reasoning for steered answer)
Confabulation Hallucination
>1 premise false (Model fabricates facts (Complete breakdown
to support steered answer) of reasoning)
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For each steering setting (omitting the orthogonal baseline), we use an LLM grader (GPT-5-mini (Ope+
nAl, 2025)) to classify up to min(50,n) generated CoTs, where n is the number of examples that
flipped their answer for that direction. The classification prompt asks the model to extract: (1)
all premises stated in the reasoning, (2) whether each premise is factually true, (3) the conclusion
reached, and (4) whether the conclusion follows from the premises (assuming the premises are true).
From these classifications, we compute the rates of non-entailment, confabulation, hallucination, and
refusal across different steering strengths. Figure [5]illustrates relative trends across a within each
model—-dataset pair.

4 RESULTS

4.1 TASK ACCURACY

Table [2] presents the test accuracy of each model on each dataset before interventions.

Table 2: Task Accuracy (%) by model and dataset.

Model Anachronisms Logical Deduction Social Chemistry Sports Underst.
Gemma 2 2B 77.2 62.2 81.2 76.4
Gemma 2 9B 87.8 89.6 88.6 89.0
Qwen 2.5 1.5B 67.2 67.6 85.4 74.2
Qwen 2.5 3B 78.8 83.2 86.6 81.0
Qwen 2.5 7B 87.0 88.6 86.4 87.0

In general, accuracy increases with model size. The sensitivity of accuracy to model size varies by
task. The Logical Deduction task is the most sensitive to model size, with a 21.0% difference in
accuracy between the smallest and largest Qwen models and a 27.4% difference in accuracy between
the Gemma 2 9B and Gemma 2 2B. The Social Chemistry task appears the least sensitive to model
size, while the Sports Understanding and Anachronisms tasks fall somewhere in the middle of the
sensitivity spectrum.

4.2 COT SENSITIVITY

Results from the CoT intervention experiments presented in Appendix [B]establish a strong baseline
belief that the models are engaging in post-hoc reasoning.

We probe whether the final answer depends on the written rationale by swapping the CoT with
either an ellipsis (omission) or a counterfactual rationale that entails the opposite label (substitution).
The dominant pattern is the absence of flips. Under omission, flip-rates remain near baseline
across model—task pairs, so the great majority of examples keep the original answer. Even under
substitution, many items still do not change—especially on Social Chemistry—though Anachronisms,
Logical Deduction, and Sports show larger movement. Taken together, these non-flips indicate limited
sensitivity of the final decision to the presence of a rationale (under omission) and only task-dependent
sensitivity to its content (under substitution), consistent with a stable pre-CoT decision for many
1nputs.

4.3 PRE-COT PROBES

In Figure 3| we show the test AUCs of the probes constructed on the pre-CoT activations for each
layer in the residual stream, and in Table[3] we show the AUC for the best performing probe (the one
used for steering) for each model—dataset pair.

Across Anachronisms, Social Chemistry, and Sports Understanding, we successfully decode the
model’s answer prior to chain-of-thought. Pre-CoT probes are strong (AUC > 0.9 for all model-
dataset pairs, except Qwen-1.5B on Sports). In contrast, on Logical Deduction, no probe scores
above 0.9 AUC. This gap is not explained by task difficulty alone: larger models achieve the
highest accuracies on Logical Deduction, but their probes’ answer prediction AUCs remain low.
One interpretation is that, on Logical Deduction, models encode less information about the answer
pre-CoT because they depend on the CoT to compute the answer more for this task.
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Table 3: AUC of pre-CoT probes by model and dataset.

Model Anachronisms Logical Deduction Social Chemistry Sports Underst.
Gemma 2 2B 0.997 0.688 0.996 0.924
Gemma 2 9B 0.999 0.878 0.996 0.956
Qwen 2.5 1.5B 0.988 0.707 0.993 0.808
Qwen 2.5 3B 0.996 0.690 0.998 0.903
Qwen 2.57B 1.000 0.778 0.998 0.961

Anachronisms

=== Gemma 2 2B
=== Gemma 2 9B
Qwen 2.5 1.5B
=== Qwen 2.5 3B
=== Qwen 2.57B

Probe AUC

Sports Understanding

0.961)- -
10 0924 5003
0.9 - g =#0.956 s S
S R
0.8
07{— s >
0.6
o = ~ L
0.0 0.2 0.4 0.6 0.8 10

Normalized Layer

Figure 3: Probe AUC across layers for each model and dataset. x-axis: normalized layer index (0 =
input, 1 = final). Tags annotate the peak-AUC layer used for steering.

4.4 ANSWER STEERING

Figure[dshows how frequently the model flipped its answer on each model-dataset pair over different
steering coefficients. Interventions on the yes subset Sy, and the no subset Sy, are plotted in the
same cell for a particular model-dataset pair. Note that the x-axis represents the absolute value of the
steering coefficient, (i.e., the steering strength) but the coefficient is negative when steering in the
"no" direction. Overlaid on each plot is the orthogonal baseline described in §[3.4] Error bars are

95% Wilson ClIs on the mean flip rate. We omit any coefficient « in any direction ("yes", "no", or
orthogonal) that yields fewer than 20 parsed generations.

In Appendix [C| we show that at large || parse failures increase, consistent with off-manifold
degeneration. If no examples for a given « value and a given direction were successfully parsed, we
did not continue the experiments for larger absolute values of «. As a consequence, most sweeps of
the steering coefficient are terminated early due to answer parse failures.

In all cases, steering with the probe was more effective than steering with orthogonal vectors.
However, the difference between the probe intervention and the baseline intervention is especially
pronounced in larger models (Qwen 2.5 7B and Gemma 2 9B). This is not due to uniquely effective
probes in these models, but rather to less effective baseline interventions. Probes are similarly able to
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target the desired feature across all models, but larger models are especially robust to interventions
along an arbitrary dimension. This perhaps follows from greater feature sparsity in larger models.

It remains noteworthy that baseline steering interventions induce answer changes up to 50% of
the time in the smaller models. One interpretation of this phenomenon is that a sufficiently large
perturbation in any direction can push the latent space off-manifold, inducing a general reasoning
collapse in the model (Belrose et al.,[2025)). As reasoning ability diminishes, the model may eventually
converge on randomly guessing the answer before responses become incoherent. However, another
interpretation is that the larger models transition from "sound reasoning" to "incoherence" more
rapidly than smaller models, and spend less time in the intermediate phase, where they give coherent,
but poorly reasoned responses.

I Yes - No No - Yes --e--Orthogonal baseline
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Figure 4: Steering results across models and datasets.

4.5 COT CLASSIFICATION

The results of the steering experiments are consistent with an interpretation of the pre-CoT probe as a
causal representation of the pre-committed answer, but do not prove that interpretation. Here, we
consider two (non-exhaustive) alternative explanations.

H1 (General reasoning collapse): Large perturbations degrade cognition, and flips are a consequence
of general reasoning degeneration.

H2 (CoT-mediated upstream feature): The edit acts on a feature that changes the content of the
CoT, which in turn drives the answer.

Two reasoning patterns from our 2x2 framework shed light on these hypotheses:

Confabulation and H1.  While comparison with baseline steering in Figure [ provides some
evidence against H1, it is reinforced by instances of confabulation. In many examples, the model
produces reasoning that is not only coherent but also carefully aligned with the incorrect conclusion:
it introduces one or more false premises early, which then serve to justify the predetermined answer.
One interpretation of confabulation is forward planning—selecting which distortions to introduce
so that the later conclusion will appear supported. Another is that the intervention works through
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the CoT and that the pronounced feature has the effect of stating false premises. In either case, the
model’s reasoning ability remains intact. |/Arcuschin et al.| (2025) make a similar argument about the
"systematic nature" of the biases observed in CoT.

Non-entailment and H2. When premises remain correct but the conclusion does not follow, the
answer changes without being led by the written reasoning. If the CoT is (roughly) held constant, it
is difficult to claim that it mediates the effect.

Figure |§| shows the relative rates of non-entailment, confabulation, and hallucination for successful
steering examples. Rates of confabulation and non-entailment begin higher but are eventually
dominated by hallucination, consistent with a greater propensity for reasoning collapse at larger
interventions.

Anachronisms Logical Deduction Social Chemistry Sports Understanding
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Figure 5: CoT classification results on across models and datasets on examples where steering flipped
the answer. Examples from the Sy, and S, are aggregated for a given steering setting.

5 CONCLUSION

5.1 FEATURE INTERPRETATION

Given evidence of post-hoc reasoning, our work considers what mechanistic phenomena we expect to
observe. We hypothesize a direction in the residual stream before CoT that (1) linearly decodes into
the final answer and (2) causally influences the final answer. Our experiments provide evidence of
this direction.

While this hypothesis was motivated by the concept of a feature corresponding to the pre-committed
answer, and our results are largely consistent with this interpretation, they are not sufficient to justify
this interpretation. We address some alternative interpretations in § 4.5} here we discuss other reasons
why the probes might not represent the pre-committed answer in post-hoc reasoning.

Superposition. Although high AUC scores indicate linear decodability, superposition can bundle
multiple correlates (format adherence, dataset artifacts) into the same direction (Elhage et al., 2022
Bricken et al.,2023), so steering may edit several coupled features at once.
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Steering method. During activation steering, we apply the activation addition at every token
position following the initial prompt. The effect on the final answer could be attributed to a more
opaque effect during CoT or answer generation, rather than an edit on the belief about the final answer
pre-CoT.

5.2 LIMITATIONS

Beyond the interpretation of the pre-CoT probes, we acknowledge other limitations in our work.

Instruction-tuned assistants vs. reasoning models. Our results are derived from instruction-
tuned models whose post-training (e.g., RLHF) optimizes for helpful, compliant outputs; in such
systems, the written CoT may be rewarded for plausibility and instruction-following rather than for
faithfully mediating the latent decision (Korbak et al., |2025). However, emerging reasoning models
are explicitly trained with reinforcement learning to deliberate before answering, where the CoT
(or an internal scratchpad) is optimized as a latent that contributes to task reward and can change
the faithfulness-usefulness trade-off (DeepSeek-Al et al., |2025; |OpenAl et al., |2024; |Yang et al.,
20255 |Anthropicl 2024). It is likely that the unfaithful behaviors recorded in our experiments are
the result of the optimization pressures unique to non-reasoning models. More work is needed to
understand the extent to which reasoning models engage in post-hoc reasoning. Further, steering the
CoT may also be less stable in reasoning models due to the longer CoT length, but perhaps this can
be ameliorated with more stable sampling approaches (Nguyen et al.||2025}; |Holtzman et al., 2020).

Templated demonstrations for CoT. In addition, our few-shot prompts provide rigid in-context
demonstrations and an answer template; in-context learning is known to rely heavily on reproducing
the format and label space of demonstrations (Min et al.l 2022)). Under activation steering, this
template pressure might persist even off-manifold, potentially hindering the model from dynamically
restructuring its reasoning when it would be useful. Consequently, some confabulation or non-
entailment we observe may partly reflect instruction-following artifacts.

Task difficulty. The majority of our benchmarks appear solvable without multi-step computation
(as suggested by high pre-CoT probe AUCs for all datasets but Logical Deduction), limiting coverage
of the difficulty spectrum. While this motivated our experiments—we suspected post-hoc reasoning
to emerge when questions were so simple they could be answered without CoT—it does limit the
implications of our results. In particular, we would expect post-hoc reasoning to be less common
on tasks that could only be solved with substantial reasoning. However, difficulty alone does
not preclude post-hoc reasoning. Answer pre-commitment can be driven by biases or instruction
following (Lanham et al., 2023} [Turpin et al., 2023)), so post-hoc reasoning may persist even on
frontier tasks, though for different reasons than those studied here.

5.3 FUTURE WORK

We suggest several opportunities for future work. First, others might consider similar experiments for
reasoning models to determine the extent to which reasoning models engage in post-hoc reasoning.
Future work might also adapt the steering experiments to mitigate post-hoc reasoning, rather than
promote it.

Further, while our work largely characterizes post-hoc reasoning as a behavior that emerges when
the model is correct about the final answer, others might investigate instances where post-hoc
reasoning results in model failure, and strong priors over the final answer represent overdependence
on memorization, miscalibration, or other generalization error.

Finally, comparing the similarity of probes to features from Sparse Autoencoders (SAEs) (Bricken
et al.,[2023} [Templeton et al.| 2024) or steering with SAE features (Nanda & Conmy, [2024} |Arad
et al.,|2025) may shed light on the extent to which the contrastive probes can be interpreted as feature
representations of the pre-committed answer.
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A EXAMPLE QUESTIONS
Below are example questions from each dataset.

Anachronisms

Does the following sentence contain anachronistic elements?
“During the Allied bombardment of the beaches of Iwo Jima, Ralph spoke loudly
into his iPhone.”

Logical Deduction

On a shelf, there are three books: a black book, an orange book, and a blue book.
The blue book is to the right of the orange book. The orange book is to the right of
the black book.

Given this description, is the following statement plausible?

“The black book is the leftmost.”

Social Chemistry

Is the following action appropriate?
“Keeping things clean.”

Sports Understanding

Is the following sentence plausible?
“Kylian Mbappe went in studs up.”

B CoOT SENSITIVITY RESULTS

We probe whether the final answer depends on the written rationale by swapping the CoT with either
an ellipsis (omission) or a counterfactual rationale that entails the opposite label (substitution). The
dominant pattern is the absence of flips. Under omission ("Ellipses"), flip-rates remain near baseline
across model—task pairs, so the great majority of examples keep the original answer (Figure [6).
Even under substitution ("Mistakes"), many items still do not change—especially on Social Chem-
istry—though Anachronisms, Logical Deduction, and Sports show larger movement. Taken together,
these non-flips indicate limited sensitivity of the final decision to the presence of a rationale (under
omission) and only task-dependent sensitivity to its content (under substitution), consistent with a
stable pre-CoT decision for many inputs.

C STEERING RESULTS WITH PARSE FAILURE RATE

Figure [/| reports steering flip rates alongside the corresponding parse-failure rate (proportion of
generations we could not parse) over the « sweep for all model-dataset pairs.

D LLM ASSISTANCE DISCLOSURE

LLMs contributed to this paper in the following ways:
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Anachronisms Logical Deduction Social Chemistry Sports Understanding

Gemma22B

Gemma29B

Qwen 2.5 1.5B

Qwen2.57B

Ellipses Mistakes Ellipses Mistakes Ellipses Mistakes Ellipses Mistakes

Figure 6: Frequency with which model changed its answer under two different CoT modification
strategies: "Ellipses" (swap the CoT for "...") and "Mistakes" (swap the CoT for an incorrect CoT
that implies the opposite answer). Low frequency indicates lower reliance on CoT and evidence of
post-hoc reasoning.

* Retrieval and discovery. LLMs were used to identify relevant research.

* Writing. LLMs aided in the writing process, primarily by suggesting word- and sentence-
level revisions to improve style, grammar, and clarity. The authors are responsible for all
ideas conveyed in the text, unless they are attributed to others.

* Code. LLMs helped to write code used to perform experiments and visualize results.
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Figure 7: Steering results across models and datasets with parse-failure rate.
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