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Abstract

Text preprocessing is a fundamental compo-
nent of Natural Language Processing, involv-
ing techniques such as stopword removal, stem-
ming, and lemmatization to prepare text as in-
put for further processing and analysis. De-
spite the context-dependent nature of the above
techniques, traditional methods, such as the
Porter stemmer, usually ignore contextual in-
formation. Moreover, low-resource languages
frequently lack the comprehensive linguistic
resources needed for defining traditional pre-
processing techniques. In this paper, we investi-
gate the idea of using Large Language Models
(LLMs) to perform various preprocessing tasks,
due to their ability to understand context with-
out requiring extensive language-specific anno-
tated resources. Through a comprehensive eval-
uation, we compare LLM-based preprocessing
— specifically stopword removal, lemmatization
and stemming — to traditional algorithms across
multiple text classification tasks in five Euro-
pean languages. Our analysis shows that LLMs
can correctly replicate traditional lemmatiza-
tion and stemming methods with up to 83%
accuracy. Additionally, we show that ML algo-
rithms trained on texts preprocessed by LLMs
achieve an improvement of up to 8.6% with
respect to the F} measure compared to tradi-
tional techniques. Our code and results are pub-
licly available at https://anonymous.4open.
science/r/11lm_pipeline-7B@D/.

1 Introduction

Text preprocessing is a fundamental step in Natural
Language Processing (NLP), involving techniques
such as stopword removal, stemming, and lemma-
tization to standardize text for further processing
or downstream tasks, including input preparation
for Machine Learning (ML) algorithms. By reduc-
ing text to its basic features, text preprocessing
decreases the computational cost of the subsequent
processing and mitigates noise and irrelevant infor-
mation (Hofstitter et al., 2020).

Several preprocessing techniques, such as stop-
word removal and lemmatization, are inherently
context-dependent. Indeed, what qualifies as a
stopword often varies across tasks and domains,
as each is characterized by a different word distri-
bution. Additionally, the context of a text is crucial
in determining whether a word should be treated
as a stopword (Hofstitter et al., 2020). Similarly,
in lemmatization, the part of speech of a word of-
ten determines how it should be processed: for
instance, the word “saw’” may be reduced to either
“see” or “saw” depending on whether it functions
as a verb or a noun. Moreover, the broader context
of a document is also valuable for accurate lemma-
tization, as word meanings can shift significantly
based on the subject matter. For example, the noun
“leaves” could be lemmatized to “leaf” in a docu-
ment about botany, but it would be lemmatized to
“leave” in a text about employee absences.

As the above examples show, text preprocessing
depends not only on the task at hand or on the part
of speech of a word, but also on the broader context
of a sentence or document. However, traditional
preprocessing techniques rely only marginally on
contextual information. Indeed, they often make
use of predefined stopwords lists and stemming or
lemmatization rules that overlook domain-specific
information. Furthermore, these techniques depend
on extensive linguistic resources, such as annotated
datasets, which makes preprocessing challenging
for low-resource languages.

These issues highlight the need for techniques
that enable a more context-sensitive text prepro-
cessing. To fill this gap, we investigate the ability of
pre-trained Large Language Models (LLMs) to pre-
process a text. Due to their ability to understand lin-
guistic context (Radford et al., 2019; Brown et al.,
2020b; Schick and Schiitze, 2021; Plaza-del Arco
et al., 2023) without requiring extensive language-
specific annotated resources, we hypothesize that
LLMs can dynamically detect stopwords, lemmas
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Figure 1: Pipeline of the proposed approach: we compare the output of text preprocessing using traditional
techniques and LLMs. In this example, the LLM correctly disambiguates the word “leaves”, distinguishing between
employee absences and foliage in its two occurrences, and applies lemmatization accordingly.

and stems based on the input document, context and
task. Although prior work by Wang et al. (2024b)
has examined the role of LLMs in stemming within
information retrieval pipelines, the reported study
primarily focuses on retrieval effectiveness rather
than the quality of preprocessing itself.

In this paper, we thoroughly investigate the abil-
ity of LLMs to perform text preprocessing, guided
by the following research questions:

RQ1 How effectively can pre-trained LLMs per-
form stopword removal, stemming, and
lemmatization, and how does their perfor-
mance vary across different languages?

RQ2 Does the use of LLMs for text preprocessing,
as opposed to traditional methods, improve
the performance on downstream tasks?

To address these questions, we employ recent
LLMs, namely EuroLLM (Martins et al., 2024),
Gemma-2 (Team et al., 2024), LLama-3 (Dubey
et al., 2024), and Qwen-2.5 (Yang et al., 2024),
and we instruct them to remove stopwords, and
to lemmatize or stem a document given a few ex-
amples and the task we are tackling. Furthermore,
to comparatively evaluate the effectiveness of our
approach, we train three different ML-based classi-
fication models by using data preprocessed by the
LLMs. Our analysis shows that LLMs replicate
the performance of traditional preprocessing with
an accuracy up to 83% in English and to 97% in
French. Furthermore, we note that ML algorithms
trained on texts preprocessed by LLMs achieve an
improvement of up to 8.6% with respect to the F;
measure compared to traditional techniques. The
paper is organised as follows: after discussing the
related works in Section 2, Section 3 introduces
in detail our approach, while in Section 4 we de-
scribe the experimental setup used. Then, Section 5
discusses the results of our evaluation. Finally,

Section 6 concludes the study and outlines future
research directions.

2 Related Works

LLMs have achieved state-of-the-art performance
across a wide range of tasks and research fields
(Min et al., 2023). They are particularly effective
in few-shot settings, where they can be applied to
unseen tasks or domains without requiring addi-
tional supervised fine-tuning (Brown et al., 2020a;
Agrawal et al., 2022; Wang et al., 2024a), which
demands a large amount of labelled data that are
not always available (Thakur et al., 2021).

The relation between preprocessing operations,
such as lemmatization and stopword removal, and
the context of the input texts has been studied for a
long time (Dolamic and Savoy, 2010; Zaman et al.,
2011; Hofstétter et al., 2020; Toporkov and Agerri,
2024). For instance, Hofstétter et al. (2020) show
how to define context-specific stopwords within an
information retrieval pipeline: removing context-
specific stopwords achieves higher performance
compared to removing them from a predefined
list. Additionally, in the context of the SIGMOR-
PHON 2019 (McCarthy et al., 2019) shared task,
Toporkov and Agerri (2024) propose a BERT (De-
vlin, 2018) model for context-specific lemmatiza-
tion. Recently, LLMs have been applied in a few-
shots scenario to stemming queries and documents
in an information retrieval pipeline (Wang et al.,
2024b). The authors found that, although LLM-
based stemming alone does not improve retrieval
performance, using LLMs to identify named enti-
ties that should not be stemmed — while applying
the Porter algorithm (Porter, 1980) to the remain-
ing words — significantly enhances the retrieval
performance.

No prior work has conducted a comprehensive
analysis of LLMs for text preprocessing — including



Language Task #Voc. Avg. Words # Labels # Train # Test
English Emoji prediction 17405 15 20 3000 3000
Hate detection 18403 26 2 2999 2970
Irony detection 11824 18 2 2862 784
Offensive lang. detection 13977 29 2 3000 860
Sentiment analysis 19631 21 3 2997 2997
French Sentiment analysis 8943 18 3 1839 870
German Sentiment analysis 10902 15 3 1839 870
Italian Sentiment analysis 9934 18 3 1839 870
Spanish Sentiment analysis 9184 18 3 1839 870

Table 1: Statistics of the adopted datasets: size of the vocabulary, average number of words in each text, number of
labels, and number of examples in the train and test splits.

stopword removal, lemmatization, and stemming
— by comparing their outputs to those produced by
traditional methods, and by assessing their impact
on text classification.

3 Methodology

The proposed approach involves prompting LLMs
for text preprocessing by defining prompts that
guide them through each preprocessing task. In
detail, the LLMs are provided with (i) a formal
description of the target preprocessing operation,
(i1) a few examples of how it should be performed,
(ii1) the text to be preprocessed, (iv) the language
of the text, and (v) the context of the downstream
task that we are addressing. The text is directly
fed into the LLLMs, which output the correspond-
ing preprocessed version. Note that our approach
is few-shot, as we provide the LLMs with a few
examples of stopwords, lemmas and stems. With
respect to stopword removal, we additionally in-
struct the LLMs to retain certain context- and task-
specific words that are generally considered stop-
words. For example, in the sentiment analysis task,
the LLMs are instructed to keep the word “not” in
the text, due to its key role in determining polar-
ity. Additionally, we evaluate our method across
multiple languages — English, French, German, Ital-
ian, and Spanish — to investigate cross-linguistic
performance. For each non-English language, we
perform experiments with the same prompts writ-
ten both in English and in that specific language
to assess whether using the native language offers
additional contextual benefits.

To address RQ1, we compare the output of each
LLM with the one produced from the same text
preprocessed by using traditional methods. Specifi-
cally, these include removing words from a prede-
fined stopwords list, applying stemming algorithms
such as Porter (Porter, 1980), Lancaster (Paice,
1990), and Snowball (Porter, 2001), and utilizing

off-the-shelf implementations of rule-based or edit
tree lemmatizers (Muller et al., 2024). With respect
to RQ2, we analyze the impact of preprocessing on
downstream classification tasks. We represent the
preprocessed texts as bag-of-words with TF-IDF
(Aizawa, 2003). Then, we train three well-known
ML algorithms, i.e. Decision Tree (De Ville, 2013),
Logistic Regression (Nick and Campbell, 2007),
and Naive Bayes (Webb et al., 2010). To assess
the overall impact of text preprocessing across the
previously mentioned ML algorithms, we average
the single models’ performances.

4 Experimental Setup

In this section, we describe the datasets, the eval-
uation metrics and the models used to assess the
effectiveness of the proposed approach.

Datasets We select a suite of publicly available
datasets encompassing binary and multiclass clas-
sification tasks across multiple languages, includ-
ing English, French, German, Italian and Span-
ish. Specifically, for the evaluation of texts in En-
glish, we use the Twitter datasets from SemEval-
18 on emoji prediction (Barbieri et al., 2018) and
irony detection (Van Hee et al., 2018), as well as
from SemEval-19 on hate detection (Basile et al.,
2019), offensive language identification (Zampieri
et al., 2019) and sentiment analysis (Nakov et al.,
2013). For non-English languages, we employ four
datasets from the Tweet Sentiment Multilingual
corpus (Barbieri et al., 2022). Due to high com-
putational costs, we randomly sample up to 3000
documents for training and 3000 documents for
evaluation while keeping the original class distribu-
tions. Table 1 shows a few statistics of the adopted
datasets. Additionally, we create a validation set
of 2000 documents, extracted from the original
SemEval-19 sentiment analysis training set. These
documents are used for tuning the hyperparameters



Stopword removal

You specialize in removing stopwords from text. Stopwords are words that are not relevant for processing a text. Stopwords
typically include articles, prepositions, pronouns, and auxiliary verbs. For example, the words ‘is’, ‘are’, ‘being’, ‘you’, ‘me’,
‘the’, ‘an’, ‘and’, ‘I’, ‘which’, ‘that’, ‘have’, ‘by’, ‘for’ and their alternative forms are usually considered stopwords. Note that
whether a word is a stopword or not depends on the context of the text or of an application. In this case, the relevant task is
detecting the sentiment of a tweet (positive, negative or neutral). In this task, the word ‘not’ is often not considered a stopword,
and it should be kept in the text. Please provide a version without stopwords of the following paragraph: ‘{paragraph}’. Print
only the paragraph without stopwords, do not add any explanation, details or notes.

Lemmatization

You specialize in text lemmatization. Text lemmatization is a natural language processing technique that is used to reduce words
to their lemma, also known as the dictionary form. The process of lemmatization is used to normalize text and make it easier
to process. For example, the verbs ‘is’, ‘are’, and ‘being’” must all be reduced down to the common lemma ’be’. As another
example, “he’s going” must be lemmatized to “he be go”. Lemmatization depends on correctly identifying the intended part of
speech and meaning of a word in a sentence, as well as within the larger context surrounding that sentence, such as neighbouring
sentences or even an entire document. Please provide the lemmatized version of this paragraph: ‘{paragraph}’. Print only the
lemmatized paragraph, do not add any explanation, details or notes.

Stemming
You specialize in text stemming. Text stemming is a natural language processing technique that is used to reduce words to their
base form, also known as the root form. The process of stemming is used to normalize text and make it easier to process. For
example, the words ‘programming,” ‘programmer,” and ‘programs’ can all be reduced down to the common stem ‘program’. As
another example, the words ‘argue’, ‘argued’, ‘argument’, ‘arguing’, and ‘arguer’ all stem to ‘argu’. Please provide the stemmed

version of this paragraph: ‘{paragraph}’. Print only the stemmed paragraph, do not add any explanation, details or notes.

Table 2: Prompts used to lemmatize, stem and remove stopwords from the texts of the SemEval Sentiment dataset.

of the ML algorithms.

Models We compare four open source state-of-
the-art LLMs, encompassing different sizes and
architectures: EuroLLM-9B (Martins et al., 2024),
Gemma-2-9B (Team et al., 2024), LLama-3.1-8B
(Dubey et al., 2024), and Qwen-2.5-7B (Yang et al.,
2024) in their instruction-tuned version. While
Gemma has been primarily trained on English data,
Llama, Qwen and EuroLLM are natively multi-
lingual, supporting Italian, Spanish, French and
German. We rely on the Hugging Face library to
run the models, we set the temperature to 0.7 and,
while generating texts, we use Sample Decoding
(i.e. do_sample=True). The experiments are con-
ducted on an NVIDIA Ampere A100 GPU.

Prompts Table 2 provides examples of prompts
used for lemmatization, stemming, and stopword
removal in English texts. These examples are based
on the SemEval-19 sentiment analysis dataset, with
prompts for other datasets being straightforward
adaptations or, in the case of multilingual datasets,
translations of the ones shown here. All prompts
used in this study are publicly available in our
repository!.

Baselines: traditional preprocessing We em-
ploy the stopword lists and stemmers provided by
NLTK?2, and the rule-based (for English, French

lhttps://anonymous.4open.science/r/11m_
pipeline-7B@D/
Zhttps://www.nltk.org/

and Spanish) and edit tree (for German and Ital-
ian) lemmatizers provided by spaCy>. The word
“not” and language-specific negation lexicon are
removed from the NLTK’s stopwords lists.

Machine Learning algorithms We use the
scikit-learn* implementations of the Multinomial
Naive Bayes (Webb et al., 2010), Decision Tree
(De Ville, 2013), and Logistic Regression (Nick
and Campbell, 2007) algorithms. Further details
on specific ML hyperparameters can be found in
Appendix A.

Evaluation metrics With respect to RQ1, for
each preprocessing operation, we evaluate the ac-
curacy of LLM-based preprocessing by computing
the percentage of words in a text that are processed
by the LLM in the same way as the corresponding
traditional method. Regarding RQ2, we use the
micro F; measure for evaluating the performance
of the considered ML classification algorithms.

Hyperparameters settings To ensure a fair eval-
uation, we optimize the TF-IDF hyperparameters,
such as the number of features and the n-grams
length, on the Semeval-19 sentiment analysis val-
idation set using traditional preprocessing meth-
ods. These optimized settings are consistently
applied to both traditionally processed and LLM-
preprocessed text. The detailed hyperparameters

3https: //spacy.io/
*https://scikit-learn.org/
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Model SW  NSW L S

Porter Lanc. Snow. Any
EuroLLM  39.46 37.52 5441 40.52 3392 4133 4358
Gemma 83.60 1636 8196 73.51 61.60 7424 79.98
Llama 82.69 3245 7932 66.11 57.07 6740 73.09
Qwen 7794 2254 8343 6093 5250 6196 6741

Table 3: Accuracy of different LLMs in performing text preprocessing in English.

Language Model SW NSW L S (Snowball)
EuroLLM  35.62 43.78 | 3498 37.32 | 49.22 50.39 | 37.30 28.34

French Gemma 96.83 97.94 | 28.02 33.12 | 61.06 53.28 | 51.51 34.47
Llama 65.02 32.01 | 37.20 23.11 | 5486 5547 | 4580 34.15

Qwen 8298 86.33 | 31.72 31.32 | 65.70 61.00 | 46.86 43.05

EuroLLM 3932 26.13 | 39.80 25.92 | 46.03 51.15 | 32.04 40.40

German Gemma 7452  79.73 | 2435 3299 | 59.80 64.45 | 6846 61.06
Llama 58.08 25.65 | 3544 16.54 | 58.38 60.07 | 58.54 57.32

Qwen 5723 47.04 | 31.29 22.88 | 64.84 6429 | 53.17 48.86

EuroLLM  36.32 25.26 | 35.66 25.24 | 46.26 52.87 | 29.04 34.86

Ttalian Gemma 86.48 89.20 | 20.82 22.36 | 59.30 58.31 | 56.65 50.86
Llama 67.27 6273 | 31.51 2578 | 5322 51.31 | 39.83 40.72

Qwen 69.67 84.88 | 28.18 33.06 | 63.92 62.27 | 4730 46.66

EuroLLM 39.83 4394 | 38.22 35.12 | 42.70 48.20 | 2991 4394

Spanish Gemma 8591 87.90 | 20.46 26.68 | 57.86 57.68 | 63.76 62.14
) Llama 69.99 3353 | 29.02 21.44 | 51.02 52.11 | 48.69 51.90
Qwen 67.46 7555 | 26.84 2581 | 62.30 61.11 | 5478 52.05

Table 4: Accuracy of different LLMs in performing text preprocessing in four European languages. For each
preprocessing operation, the values on the left and right refer to the scores obtained with an English prompt and

with a language-specific prompt, respectively.

settings for each model and preprocessing tech-
nique can be found in Appendix A.

5 Results

In Section 5.1, we examine how closely LLMs are
able to reproduce traditional preprocessing tech-
niques (RQ1). As mentioned in the introduction,
LLMs may however identify different stopwords,
stems, and lemmas compared to traditional tech-
niques, due to their ability to manage contextual
information. We investigate whether this leads to
improved performance in text classification (RQ2)
in Section 5.2.

5.1 LLMS’ preprocessing abilities

Tables 3 and 4 compare the preprocessing output
produced by the LLMs with that produced by tra-
ditional methods. Specifically, SW refers to the
percentage of words removed by the LLM that
match NLTK’s stopwords list, while NSW mea-
sures the percentage of words removed by the LLM,
among those that are not considered stopwords by
NLTK. Additionally, L and S represent the percent-
age of words that are respectively lemmatized and
stemmed by the LLM exactly like the correspond-
ing traditional techniques. For stemming in English

(Table 3), the LLMs are first compared against each
of the Porter, Lancaster and Snowball algorithms,
then they are compared against the three algorithms
collectively (i.e., the LLM’s output is valid if it
matches the output of any of the three algorithms).
The reported values are averages over all texts in
the same language. These measures assess the
similarity between LLM-based preprocessing and
traditional techniques, with the best-performing
LLM being the one that maximizes SW, L and
S, while minimizing NSW. The best scores within
each dataset and preprocessing type are highlighted
in bold in Tables 3 and 4.

Since Gemma is trained primarily on English
data and it is the model with the largest number
of parameters, it would be expected to perform
best on English texts. Indeed, Gemma outper-
forms all the other models in stopword removal
and stemming, although Qwen achieves the highest
accuracy in lemmatization. Notably, this pattern
is consistent across all the analyzed languages. In-
terestingly, despite being a natively multilingual
model with parameter size comparable to Gemma,
EuroLLM does not perform as well as the other
models with respect to any preprocessing opera-
tion. Additionally, we note that language-specific



SW+S S
Dataset Model SW SW +L L Porter | Lanc. | Snow. Porter | Lanc. | Snow.
Classic 21.15 21.41 21.42 21.06121.11121.03  21.01120.96120.88
EuroLLM  20.82 20.44 20.79 19.82 20.12
Emoji Gemma 2152 22.617  21.66 21.19 21.00
Llama 21.71 21.99 21.22 20.51 20.99
Qwen 21.63 22.53 21.47 20.97 20.60
Classic 48.73 48.93 49.67 49.47149.40147.87 46.99147.74147.82
EuroLLM  51.19 53.141 51.54 51.14 50.40
Hate Gemma 49.61 47.47 49.52 49.77 49.24
Llama 49.50 49.75 51.31 50.45 50.15
Qwen 50.80 49.09 48.93 49.61 50.34
Classic 61.05 60.11 59.73 61.96163.01161.39 60.96162.15159.73
EuroLLM  53.70 54.63 60.24 50.72 59.01
Irony Gemma 61.64 62.63 61.14 59.40 60.63
Llama 61.44 62.29 63.35" 59.31 58.80
Qwen 61.99 61.22 63.18 57.95 59.35
Classic 75.62 74.53 73.19 75.73175.93174.61 74.22175.46 175.65
EuroLLM  71.71 70.93 70.81 71.09 70.58
Offensive ~ Gemma 74.81 74.88 73.02 73.95 72.71
Llama 76.71% 73.95 71.47 73.76 71.20
Qwen 74.03 73.84 74.38 72.40 71.36
Classic 48.891 48.05 48.71 47.81148.54148.18 47.89148.62148.61
EuroLLM  45.64 41.30 43.90 45.00 45.01
Sentiment Gemma 48.13 47.77 48.35 46.59 47.39
Llama 47.96 48.13 48.02 45.80 47.06
Qwen 46.98 45.54 46.84 46.04 46.38

Table 5: Comparison of LLM-based and traditional (classic) preprocessing on several text classification tasks. The
scores are averages of the results obtained with three different ML algorithms. While applying traditional stemming,
we report the values of the Porter | Lancaster | Snowball stemmers, following this order.

prompts achieve the highest SW scores, while the
specification of the same prompts in English pro-
duces the best lemmatization (L) and stemming (S)
performance. More specifically, EuroLLM’s per-
formance improves with language-specific prompts
in 60% of preprocessing tasks. In contrast, Gemma
and Qwen perform better with an English prompt
in at least 70% of cases, while Llama benefits from
it in 55% of combinations.

We further observe that LLMs often eliminate
words not traditionally considered stopwords (NSW
column). Among them, Gemma aligns most closely
with NLTK for English, Italian, and Spanish, while
Llama performs analogously for French and Ger-
man. This behaviour supports our hypothesis
that LLMs’ contextual understanding influences
stopword selection. For instance, “user” is fre-
quently removed, which is reasonable given that
the datasets consist of social media text from Twit-
ter (Barbieri et al., 2022). Regarding stemming, the
lower overall scores compared to traditional pre-
processing might be due to LLMs producing differ-
ent stems of the same word appearing in different
texts. Although this deviates from traditional stem-

ming rules, this might allow for a more context-
specific preprocessing, as also observed by Wang
et al. (2024b).

Overall, these results show that LL.Ms are quite
effective at identifying stopwords across multiple
languages, with Gemma detecting 97% of stop-
words in French texts, and at least 79% in other
languages. Additionally, they show a good lemma-
tization capability in English, with Gemma, Llama
and Qwen correctly identifying over 79% of lem-
mas.

5.2 Text classification

Tables 5 and 6 report the averaged performance
score of the three ML models we have trained on
English (Table 5) and non-English text (Table 6),
by applying the LLM-based preprocessing and tra-
ditional preprocessing methods. Each column cor-
responds to a specific preprocessing task: SW de-
notes stopword removal, SW+L applies lemmatiza-
tion followed by stopword removal, L represents
lemmatization alone, SW+S combines stopword re-
moval and stemming, and S applies stemming only.
For each dataset and preprocessing task, the best



Dataset Model SW SW+ L L SW + S S
Classic 52.95 52.49 53.48 53.98" 52.87
EuroLLM | 45.44 4670 | 41.00 4421 | 4934 4874 | 4376 39.38 | 4559 4330

French  Gemma 5218 5253 | 49.66 4954 | 51.88 5291 | 51.65 49.54 | 47.81 50.34
Llama 5057 5207 | 47.13 4820 | 50.19  51.38 | 46.05 47.66 | 49.04 48.00
Qwen 5050 49.89 | 51.23 49.80 | 5345 53.52 | 50.08 47.16 | 47.85 49.08
Classic 55.137 52.80 53.18 53.52 54.06
EuroLLM | 46.70 4892 | 41.65 4341 | 4728 4855 | 39.58 44.41 | 46,70 48.08

German Gemma 4847 4977 | 50.04 4693 | 53.56 50.26 | 50.27 4931 | 54.48 52.07
Llama 4713 5057 | 4724 50.04 | 51.99 5337 | 4648 50.46 | 50.96 53.56
Qwen 4659 4954 | 4773 4927 | 5230 51.88 | 4586 46.05 | 51.46 48.35
Classic 51.84 52.07 50.61 51.30 52.33
EuroLLM | 47.13  49.16 | 43.14 47.13 | 50.92 5038 | 4548 46.70 | 48.08 48.89

Italian  Gemma 48.16 4873 | 4559 47.16 | 5134 5061 | 4551 44.80 | 5230 52.53
Llama 46.44 4656 | 4494 4847 | 5272 5146 | 4234 4387 | 48.62 51.92
Qwen 4548 4471 | 4594 4188 | 53371 5299 | 4344 4448 | 4897 50.50
Classic 4747 49.43 48.47 49.88 49.61
EuroLLM | 43.14  44.02 | 39.58 4345 | 4352 4736 | 40.80 4230 | 41.88 45.86

Spanish  Gemma 49.85  49.92% | 48.31 4870 | 47.05  48.08 | 4747 48.74 | 48.43 48.74
Llama 4840  48.62 | 4567 45.10 | 4847 4648 | 43.80 4628 | 4590 47.55
Qwen 4939 4770 | 49.08 4575 | 48.12 4874 | 46.67 4533 | 46.86 45.86

Table 6: Comparison of LLM-based and traditional (classic) preprocessing on several sentiment analysis tasks in
multiple European languages. The scores are averages of the results obtained with three different ML algorithms.
For each combination of preprocessing operations, the value on the left refers to the score obtained with the English
prompt, and the one on the right refers to the score obtained with the language-specific one. Traditional stemming is

performed with the Snowball algorithm.

results are highlighted in bold, while the second-
best scores are underlined. The best result within
each dataset is marked with a §.

English language We first note that LLMs out-
perform traditional methods in all datasets except
for Irony, and more specifically in 16 out of the 25
examined combinations of datasets and preprocess-
ing tasks. Moreover, in over 65% of these cases,
the second-best result is also achieved by an LLM.
Traditional preprocessing outperforms LLM-based
preprocessing in 9 out of 25 combinations, with
a margin greater than 1 point in F} in 6 of them
(Irony SW+S and S, Offensive SW+S and S, and
Sentiment SW+S + S). Notably, LLMs achieve
the highest performance in stopword removal and
lemmatization across 4 out of 5 datasets, indicating
their ability to dynamically identify task-relevant
stopwords and lemmas in a more context-sensitive
manner than traditional techniques. The only ex-
ception is the Sentiment dataset, where Gemma
underperforms by less than 1 point compared to tra-
ditional preprocessing. Additionally, our approach
outperforms traditional preprocessing across all
datasets when applying lemmatization combined
with stopword removal: in particular, in the Hate
dataset EuroLLM achieves an 8.6% improvement
over traditional techniques.

Our results indicate however that stemming with

LLMs is not as effective as other preprocessing
operations. Several factors may contribute to this
outcome. First, stemming is a task where context
plays a limited role, making it less sensitive to the
contextual capabilities of LLMs. This aligns with
findings by Wang et al. (2024b), who show that
LLMs’ stemming performance is suboptimal in an
information retrieval pipeline. Furthermore, we
note that LLMs exhibit inconsistencies in stem-
ming across documents. Unlike traditional algo-
rithms, which apply fixed rules, LLMs may stem
the same word differently depending on context.
For instance, in some cases, an LLM may generate
a stem that matches the Porter stemmer, while in
others, it may align with the Lancaster stemmer
or be completely different. This lack of consis-
tency results in non-standardized text representa-
tions, which can negatively impact downstream
tasks such as lexical feature extraction, and conse-
quently their classification performance.

Non-English languages Table 6 presents the per-
formance of text classification across French, Ger-
man, Italian, and Spanish. Overall, LLMs achieve
performance on par with or even better than tra-
ditional techniques in half of the evaluated cases.
Notably, LL.Ms achieve the highest performance
across all datasets when lemmatization is applied,
showing their ability to understand contextual in-



formation even in non-English languages. More-
over, LLMs achieve the highest performance in the
Italian and Spanish datasets (marked with }) and
perform marginally lower than the best score in
French and German.

Interestingly, for Italian and German, Gemma
outperforms traditional methods even in stemming,
in contrast to the findings in the English setting. For
Spanish, Gemma also shows a significant improve-
ment in stopword removal, underscoring its ability
to identify stopwords based on context. Moreover,
in Spanish, traditional preprocessing outperforms
LLMs by only 1 point in stemming, and similarly
in stopword removal when combined with lemma-
tization or stemming.

The performance differences among languages
may stem from their varying morphological com-
plexity. For instance, Markus Sadeniemi and
Honkela (2008) found that English, French, Italian,
and Spanish exhibit relatively low morphological
complexity, whereas German demonstrates signifi-
cantly higher complexity, possibly due to its use of
compound words.

Notably, the performance of EuroLLM and
Llama improves when using language-specific
prompts in 80% of the preprocessing tasks. For
Gemma this is instead true in 60% of the analyzed
combinations, and for Qwen only in 40%. This
finding is unexpected, given that Qwen is inher-
ently multilingual, while Gemma is mostly trained
on English data.

6 Conclusions and Future Works

In this paper, we investigate the capability of LLMs
to perform text preprocessing, including stopword
removal, lemmatization, and stemming. We con-
duct a comparative analysis of various LLMs, dif-
fering in both size and architecture, to assess their
ability to replicate traditional preprocessing tech-
niques across five languages. Additionally, we eval-
uate the impact of LL.M-based preprocessing on
multiple downstream Machine Learning classifica-
tion tasks by training models on text preprocessed
using traditional and LLM-based approaches. Our
findings indicate that LLMs outperform traditional
lemmatization techniques across all evaluated lan-
guages and consistently improve stopword removal
in English, both with and without lemmatization.
However, LLMs do not appear to perform competi-
tively in stemming.

Although preprocessing for European languages

has been extensively studied, we note that stem-
mers and lemmatizers for many other languages
have received significantly less attention (Silvello
et al., 2018), often resulting in reduced effective-
ness. Given the promising results achieved, future
work will explore the potential of LLMs as stem-
ming and lemmatization tools for low-resource lan-
guages.

7 Ethics Statement and Limitations

Ethics statement Our approach shares the same
possibilities as most of previous works based on
LLMs, such as misusage, containing data bias, and
suffering from adversarial attacks. Since we are
however using LL.Ms to preprocess text, we con-
clude that our work will not likely have a negative
ethical impact.

Limitations Regarding RQ1, the ability of LLMs
to perform text preprocessing is evaluated by com-
paring their outputs to those generated by well-
known Python libraries, such as NLTK and spaCy.
There may however be instances where LLMs out-
perform these libraries — for example, by splitting a
long hashtag like “#illegalaliens” and correctly
lemmatizing it as “illegal alien” —that are not
accounted for in the evaluation metrics.

We do not perform extensive prompt engineering
in this work, as we are interested in investigating
the abilities and raw behaviour of Large Language
Models rather than obtaining the best results. This
is also due to computational constraints and costs.
However, some results may differ if other prompts
are considered.

Another limitation of the proposed approach is
the high computational cost of using LLMs for text
preprocessing, which is significantly greater than
that of traditional methods. Therefore, LLM-based
preprocessing is best justified for low-resource lan-
guages. Our results, demonstrating that LLMs can
consistently match or even surpass traditional pre-
processing techniques across multiple languages,
further support their use in such cases.
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ML algorithm  Preproc. N-grams Features dim. Fy

| 3000 57.55

Sw 2 3000 56.70

1 3000 57.00

SW+L 2 5000 56.40

Decision Tree L 2 5000 57.55

1 3000 56.65

S 2 5000 56.75

3 7000 56.65

1 3000 58.75

SW+S | 7000 57.05

2 5000 71.00

sw 3 5000 70.95

2 7000 70.60

Multinomia SW+L 2 5000 70.45
ultinomia.

; 2 7000 7115

Naive Bayes L 3 7000 7075

S 3 7000 71.25

2 7000 71.15

3 7000 70.40

SW+S 2 5000 70.30

2 7000 68.75

sw 1 5000 68.70

3 5000 68.85

Lo SW+L 2 7000 68.80

Rzgzzlfion L 2 5000 69.20

st 2 7000 68.80

S 3 7000 70.15

3 5000 69.95

2 5000 68.75

SW+S 1 7000 68.70

Table 7: Study on the impact of hyperparameters using
classical preprocessing techniques. The applied stem-
ming algorithm is Porter.
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