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Abstract

Text preprocessing is a fundamental compo-001
nent of Natural Language Processing, involv-002
ing techniques such as stopword removal, stem-003
ming, and lemmatization to prepare text as in-004
put for further processing and analysis. De-005
spite the context-dependent nature of the above006
techniques, traditional methods, such as the007
Porter stemmer, usually ignore contextual in-008
formation. Moreover, low-resource languages009
frequently lack the comprehensive linguistic010
resources needed for defining traditional pre-011
processing techniques. In this paper, we investi-012
gate the idea of using Large Language Models013
(LLMs) to perform various preprocessing tasks,014
due to their ability to understand context with-015
out requiring extensive language-specific anno-016
tated resources. Through a comprehensive eval-017
uation, we compare LLM-based preprocessing018
– specifically stopword removal, lemmatization019
and stemming – to traditional algorithms across020
multiple text classification tasks in five Euro-021
pean languages. Our analysis shows that LLMs022
can correctly replicate traditional lemmatiza-023
tion and stemming methods with up to 83%024
accuracy. Additionally, we show that ML algo-025
rithms trained on texts preprocessed by LLMs026
achieve an improvement of up to 8.6% with027
respect to the F1 measure compared to tradi-028
tional techniques. Our code and results are pub-029
licly available at https://anonymous.4open.030
science/r/llm_pipeline-7B0D/.031

1 Introduction032

Text preprocessing is a fundamental step in Natural033

Language Processing (NLP), involving techniques034

such as stopword removal, stemming, and lemma-035

tization to standardize text for further processing036

or downstream tasks, including input preparation037

for Machine Learning (ML) algorithms. By reduc-038

ing text to its basic features, text preprocessing039

decreases the computational cost of the subsequent040

processing and mitigates noise and irrelevant infor-041

mation (Hofstätter et al., 2020).042

Several preprocessing techniques, such as stop- 043

word removal and lemmatization, are inherently 044

context-dependent. Indeed, what qualifies as a 045

stopword often varies across tasks and domains, 046

as each is characterized by a different word distri- 047

bution. Additionally, the context of a text is crucial 048

in determining whether a word should be treated 049

as a stopword (Hofstätter et al., 2020). Similarly, 050

in lemmatization, the part of speech of a word of- 051

ten determines how it should be processed: for 052

instance, the word “saw” may be reduced to either 053

“see” or “saw” depending on whether it functions 054

as a verb or a noun. Moreover, the broader context 055

of a document is also valuable for accurate lemma- 056

tization, as word meanings can shift significantly 057

based on the subject matter. For example, the noun 058

“leaves” could be lemmatized to “leaf” in a docu- 059

ment about botany, but it would be lemmatized to 060

“leave” in a text about employee absences. 061

As the above examples show, text preprocessing 062

depends not only on the task at hand or on the part 063

of speech of a word, but also on the broader context 064

of a sentence or document. However, traditional 065

preprocessing techniques rely only marginally on 066

contextual information. Indeed, they often make 067

use of predefined stopwords lists and stemming or 068

lemmatization rules that overlook domain-specific 069

information. Furthermore, these techniques depend 070

on extensive linguistic resources, such as annotated 071

datasets, which makes preprocessing challenging 072

for low-resource languages. 073

These issues highlight the need for techniques 074

that enable a more context-sensitive text prepro- 075

cessing. To fill this gap, we investigate the ability of 076

pre-trained Large Language Models (LLMs) to pre- 077

process a text. Due to their ability to understand lin- 078

guistic context (Radford et al., 2019; Brown et al., 079

2020b; Schick and Schütze, 2021; Plaza-del Arco 080

et al., 2023) without requiring extensive language- 081

specific annotated resources, we hypothesize that 082

LLMs can dynamically detect stopwords, lemmas 083
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Figure 1: Pipeline of the proposed approach: we compare the output of text preprocessing using traditional
techniques and LLMs. In this example, the LLM correctly disambiguates the word “leaves”, distinguishing between
employee absences and foliage in its two occurrences, and applies lemmatization accordingly.

and stems based on the input document, context and084

task. Although prior work by Wang et al. (2024b)085

has examined the role of LLMs in stemming within086

information retrieval pipelines, the reported study087

primarily focuses on retrieval effectiveness rather088

than the quality of preprocessing itself.089

In this paper, we thoroughly investigate the abil-090

ity of LLMs to perform text preprocessing, guided091

by the following research questions:092

RQ1 How effectively can pre-trained LLMs per-093

form stopword removal, stemming, and094

lemmatization, and how does their perfor-095

mance vary across different languages?096

RQ2 Does the use of LLMs for text preprocessing,097

as opposed to traditional methods, improve098

the performance on downstream tasks?099

To address these questions, we employ recent100

LLMs, namely EuroLLM (Martins et al., 2024),101

Gemma-2 (Team et al., 2024), LLama-3 (Dubey102

et al., 2024), and Qwen-2.5 (Yang et al., 2024),103

and we instruct them to remove stopwords, and104

to lemmatize or stem a document given a few ex-105

amples and the task we are tackling. Furthermore,106

to comparatively evaluate the effectiveness of our107

approach, we train three different ML-based classi-108

fication models by using data preprocessed by the109

LLMs. Our analysis shows that LLMs replicate110

the performance of traditional preprocessing with111

an accuracy up to 83% in English and to 97% in112

French. Furthermore, we note that ML algorithms113

trained on texts preprocessed by LLMs achieve an114

improvement of up to 8.6% with respect to the F1115

measure compared to traditional techniques. The116

paper is organised as follows: after discussing the117

related works in Section 2, Section 3 introduces118

in detail our approach, while in Section 4 we de-119

scribe the experimental setup used. Then, Section 5120

discusses the results of our evaluation. Finally,121

Section 6 concludes the study and outlines future 122

research directions. 123

2 Related Works 124

LLMs have achieved state-of-the-art performance 125

across a wide range of tasks and research fields 126

(Min et al., 2023). They are particularly effective 127

in few-shot settings, where they can be applied to 128

unseen tasks or domains without requiring addi- 129

tional supervised fine-tuning (Brown et al., 2020a; 130

Agrawal et al., 2022; Wang et al., 2024a), which 131

demands a large amount of labelled data that are 132

not always available (Thakur et al., 2021). 133

The relation between preprocessing operations, 134

such as lemmatization and stopword removal, and 135

the context of the input texts has been studied for a 136

long time (Dolamic and Savoy, 2010; Zaman et al., 137

2011; Hofstätter et al., 2020; Toporkov and Agerri, 138

2024). For instance, Hofstätter et al. (2020) show 139

how to define context-specific stopwords within an 140

information retrieval pipeline: removing context- 141

specific stopwords achieves higher performance 142

compared to removing them from a predefined 143

list. Additionally, in the context of the SIGMOR- 144

PHON 2019 (McCarthy et al., 2019) shared task, 145

Toporkov and Agerri (2024) propose a BERT (De- 146

vlin, 2018) model for context-specific lemmatiza- 147

tion. Recently, LLMs have been applied in a few- 148

shots scenario to stemming queries and documents 149

in an information retrieval pipeline (Wang et al., 150

2024b). The authors found that, although LLM- 151

based stemming alone does not improve retrieval 152

performance, using LLMs to identify named enti- 153

ties that should not be stemmed – while applying 154

the Porter algorithm (Porter, 1980) to the remain- 155

ing words – significantly enhances the retrieval 156

performance. 157

No prior work has conducted a comprehensive 158

analysis of LLMs for text preprocessing – including 159
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Language Task # Voc. Avg. Words # Labels # Train # Test
English Emoji prediction 17405 15 20 3000 3000

Hate detection 18403 26 2 2999 2970
Irony detection 11824 18 2 2862 784
Offensive lang. detection 13977 29 2 3000 860
Sentiment analysis 19631 21 3 2997 2997

French Sentiment analysis 8943 18 3 1839 870
German Sentiment analysis 10902 15 3 1839 870
Italian Sentiment analysis 9934 18 3 1839 870
Spanish Sentiment analysis 9184 18 3 1839 870

Table 1: Statistics of the adopted datasets: size of the vocabulary, average number of words in each text, number of
labels, and number of examples in the train and test splits.

stopword removal, lemmatization, and stemming160

– by comparing their outputs to those produced by161

traditional methods, and by assessing their impact162

on text classification.163

3 Methodology164

The proposed approach involves prompting LLMs165

for text preprocessing by defining prompts that166

guide them through each preprocessing task. In167

detail, the LLMs are provided with (i) a formal168

description of the target preprocessing operation,169

(ii) a few examples of how it should be performed,170

(iii) the text to be preprocessed, (iv) the language171

of the text, and (v) the context of the downstream172

task that we are addressing. The text is directly173

fed into the LLMs, which output the correspond-174

ing preprocessed version. Note that our approach175

is few-shot, as we provide the LLMs with a few176

examples of stopwords, lemmas and stems. With177

respect to stopword removal, we additionally in-178

struct the LLMs to retain certain context- and task-179

specific words that are generally considered stop-180

words. For example, in the sentiment analysis task,181

the LLMs are instructed to keep the word “not” in182

the text, due to its key role in determining polar-183

ity. Additionally, we evaluate our method across184

multiple languages – English, French, German, Ital-185

ian, and Spanish – to investigate cross-linguistic186

performance. For each non-English language, we187

perform experiments with the same prompts writ-188

ten both in English and in that specific language189

to assess whether using the native language offers190

additional contextual benefits.191

To address RQ1, we compare the output of each192

LLM with the one produced from the same text193

preprocessed by using traditional methods. Specifi-194

cally, these include removing words from a prede-195

fined stopwords list, applying stemming algorithms196

such as Porter (Porter, 1980), Lancaster (Paice,197

1990), and Snowball (Porter, 2001), and utilizing198

off-the-shelf implementations of rule-based or edit 199

tree lemmatizers (Muller et al., 2024). With respect 200

to RQ2, we analyze the impact of preprocessing on 201

downstream classification tasks. We represent the 202

preprocessed texts as bag-of-words with TF-IDF 203

(Aizawa, 2003). Then, we train three well-known 204

ML algorithms, i.e. Decision Tree (De Ville, 2013), 205

Logistic Regression (Nick and Campbell, 2007), 206

and Naive Bayes (Webb et al., 2010). To assess 207

the overall impact of text preprocessing across the 208

previously mentioned ML algorithms, we average 209

the single models’ performances. 210

4 Experimental Setup 211

In this section, we describe the datasets, the eval- 212

uation metrics and the models used to assess the 213

effectiveness of the proposed approach. 214

Datasets We select a suite of publicly available 215

datasets encompassing binary and multiclass clas- 216

sification tasks across multiple languages, includ- 217

ing English, French, German, Italian and Span- 218

ish. Specifically, for the evaluation of texts in En- 219

glish, we use the Twitter datasets from SemEval- 220

18 on emoji prediction (Barbieri et al., 2018) and 221

irony detection (Van Hee et al., 2018), as well as 222

from SemEval-19 on hate detection (Basile et al., 223

2019), offensive language identification (Zampieri 224

et al., 2019) and sentiment analysis (Nakov et al., 225

2013). For non-English languages, we employ four 226

datasets from the Tweet Sentiment Multilingual 227

corpus (Barbieri et al., 2022). Due to high com- 228

putational costs, we randomly sample up to 3000 229

documents for training and 3000 documents for 230

evaluation while keeping the original class distribu- 231

tions. Table 1 shows a few statistics of the adopted 232

datasets. Additionally, we create a validation set 233

of 2000 documents, extracted from the original 234

SemEval-19 sentiment analysis training set. These 235

documents are used for tuning the hyperparameters 236
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Stopword removal
You specialize in removing stopwords from text. Stopwords are words that are not relevant for processing a text. Stopwords
typically include articles, prepositions, pronouns, and auxiliary verbs. For example, the words ‘is’, ‘are’, ‘being’, ‘you’, ‘me’,
‘the’, ‘an’, ‘and’, ‘I’, ‘which’, ‘that’, ‘have’, ‘by’, ‘for’ and their alternative forms are usually considered stopwords. Note that
whether a word is a stopword or not depends on the context of the text or of an application. In this case, the relevant task is
detecting the sentiment of a tweet (positive, negative or neutral). In this task, the word ‘not’ is often not considered a stopword,
and it should be kept in the text. Please provide a version without stopwords of the following paragraph: ‘{paragraph}’. Print
only the paragraph without stopwords, do not add any explanation, details or notes.

Lemmatization
You specialize in text lemmatization. Text lemmatization is a natural language processing technique that is used to reduce words
to their lemma, also known as the dictionary form. The process of lemmatization is used to normalize text and make it easier
to process. For example, the verbs ‘is’, ‘are’, and ‘being’ must all be reduced down to the common lemma ’be’. As another
example, “he’s going” must be lemmatized to “he be go”. Lemmatization depends on correctly identifying the intended part of
speech and meaning of a word in a sentence, as well as within the larger context surrounding that sentence, such as neighbouring
sentences or even an entire document. Please provide the lemmatized version of this paragraph: ‘{paragraph}’. Print only the
lemmatized paragraph, do not add any explanation, details or notes.

Stemming
You specialize in text stemming. Text stemming is a natural language processing technique that is used to reduce words to their
base form, also known as the root form. The process of stemming is used to normalize text and make it easier to process. For
example, the words ‘programming,’ ‘programmer,’ and ‘programs’ can all be reduced down to the common stem ‘program’. As
another example, the words ‘argue’, ‘argued’, ‘argument’, ‘arguing’, and ‘arguer’ all stem to ‘argu’. Please provide the stemmed
version of this paragraph: ‘{paragraph}’. Print only the stemmed paragraph, do not add any explanation, details or notes.

Table 2: Prompts used to lemmatize, stem and remove stopwords from the texts of the SemEval Sentiment dataset.

of the ML algorithms.237

Models We compare four open source state-of-238

the-art LLMs, encompassing different sizes and239

architectures: EuroLLM-9B (Martins et al., 2024),240

Gemma-2-9B (Team et al., 2024), LLama-3.1-8B241

(Dubey et al., 2024), and Qwen-2.5-7B (Yang et al.,242

2024) in their instruction-tuned version. While243

Gemma has been primarily trained on English data,244

Llama, Qwen and EuroLLM are natively multi-245

lingual, supporting Italian, Spanish, French and246

German. We rely on the Hugging Face library to247

run the models, we set the temperature to 0.7 and,248

while generating texts, we use Sample Decoding249

(i.e. do_sample=True). The experiments are con-250

ducted on an NVIDIA Ampere A100 GPU.251

Prompts Table 2 provides examples of prompts252

used for lemmatization, stemming, and stopword253

removal in English texts. These examples are based254

on the SemEval-19 sentiment analysis dataset, with255

prompts for other datasets being straightforward256

adaptations or, in the case of multilingual datasets,257

translations of the ones shown here. All prompts258

used in this study are publicly available in our259

repository1.260

Baselines: traditional preprocessing We em-261

ploy the stopword lists and stemmers provided by262

NLTK2, and the rule-based (for English, French263

1https://anonymous.4open.science/r/llm_
pipeline-7B0D/

2https://www.nltk.org/

and Spanish) and edit tree (for German and Ital- 264

ian) lemmatizers provided by spaCy3. The word 265

“not” and language-specific negation lexicon are 266

removed from the NLTK’s stopwords lists. 267

Machine Learning algorithms We use the 268

scikit-learn4 implementations of the Multinomial 269

Naive Bayes (Webb et al., 2010), Decision Tree 270

(De Ville, 2013), and Logistic Regression (Nick 271

and Campbell, 2007) algorithms. Further details 272

on specific ML hyperparameters can be found in 273

Appendix A. 274

Evaluation metrics With respect to RQ1, for 275

each preprocessing operation, we evaluate the ac- 276

curacy of LLM-based preprocessing by computing 277

the percentage of words in a text that are processed 278

by the LLM in the same way as the corresponding 279

traditional method. Regarding RQ2, we use the 280

micro F1 measure for evaluating the performance 281

of the considered ML classification algorithms. 282

Hyperparameters settings To ensure a fair eval- 283

uation, we optimize the TF-IDF hyperparameters, 284

such as the number of features and the n-grams 285

length, on the Semeval-19 sentiment analysis val- 286

idation set using traditional preprocessing meth- 287

ods. These optimized settings are consistently 288

applied to both traditionally processed and LLM- 289

preprocessed text. The detailed hyperparameters 290

3https://spacy.io/
4https://scikit-learn.org/
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Model SW NSW L S
Porter Lanc. Snow. Any

EuroLLM 39.46 37.52 54.41 40.52 33.92 41.33 43.58
Gemma 83.60 16.36 81.96 73.51 61.60 74.24 79.98
Llama 82.69 32.45 79.32 66.11 57.07 67.40 73.09
Qwen 77.94 22.54 83.43 60.93 52.50 61.96 67.41

Table 3: Accuracy of different LLMs in performing text preprocessing in English.

Language Model SW NSW L S (Snowball)

French

EuroLLM 35.62 43.78 34.98 37.32 49.22 50.39 37.30 28.34
Gemma 96.83 97.94 28.02 33.12 61.06 53.28 51.51 34.47
Llama 65.02 32.01 37.20 23.11 54.86 55.47 45.80 34.15
Qwen 82.98 86.33 31.72 31.32 65.70 61.00 46.86 43.05

German

EuroLLM 39.32 26.13 39.80 25.92 46.03 51.15 32.04 40.40
Gemma 74.52 79.73 24.35 32.99 59.80 64.45 68.46 61.06
Llama 58.08 25.65 35.44 16.54 58.38 60.07 58.54 57.32
Qwen 57.23 47.04 31.29 22.88 64.84 64.29 53.17 48.86

Italian

EuroLLM 36.32 25.26 35.66 25.24 46.26 52.87 29.04 34.86
Gemma 86.48 89.20 20.82 22.36 59.30 58.31 56.65 50.86
Llama 67.27 62.73 31.51 25.78 53.22 51.31 39.83 40.72
Qwen 69.67 84.88 28.18 33.06 63.92 62.27 47.30 46.66

Spanish

EuroLLM 39.83 43.94 38.22 35.12 42.70 48.20 29.91 43.94
Gemma 85.91 87.90 20.46 26.68 57.86 57.68 63.76 62.14
Llama 69.99 33.53 29.02 21.44 51.02 52.11 48.69 51.90
Qwen 67.46 75.55 26.84 25.81 62.30 61.11 54.78 52.05

Table 4: Accuracy of different LLMs in performing text preprocessing in four European languages. For each
preprocessing operation, the values on the left and right refer to the scores obtained with an English prompt and
with a language-specific prompt, respectively.

settings for each model and preprocessing tech-291

nique can be found in Appendix A.292

5 Results293

In Section 5.1, we examine how closely LLMs are294

able to reproduce traditional preprocessing tech-295

niques (RQ1). As mentioned in the introduction,296

LLMs may however identify different stopwords,297

stems, and lemmas compared to traditional tech-298

niques, due to their ability to manage contextual299

information. We investigate whether this leads to300

improved performance in text classification (RQ2)301

in Section 5.2.302

5.1 LLMs’ preprocessing abilities303

Tables 3 and 4 compare the preprocessing output304

produced by the LLMs with that produced by tra-305

ditional methods. Specifically, SW refers to the306

percentage of words removed by the LLM that307

match NLTK’s stopwords list, while NSW mea-308

sures the percentage of words removed by the LLM,309

among those that are not considered stopwords by310

NLTK. Additionally, L and S represent the percent-311

age of words that are respectively lemmatized and312

stemmed by the LLM exactly like the correspond-313

ing traditional techniques. For stemming in English314

(Table 3), the LLMs are first compared against each 315

of the Porter, Lancaster and Snowball algorithms, 316

then they are compared against the three algorithms 317

collectively (i.e., the LLM’s output is valid if it 318

matches the output of any of the three algorithms). 319

The reported values are averages over all texts in 320

the same language. These measures assess the 321

similarity between LLM-based preprocessing and 322

traditional techniques, with the best-performing 323

LLM being the one that maximizes SW, L and 324

S, while minimizing NSW. The best scores within 325

each dataset and preprocessing type are highlighted 326

in bold in Tables 3 and 4. 327

Since Gemma is trained primarily on English 328

data and it is the model with the largest number 329

of parameters, it would be expected to perform 330

best on English texts. Indeed, Gemma outper- 331

forms all the other models in stopword removal 332

and stemming, although Qwen achieves the highest 333

accuracy in lemmatization. Notably, this pattern 334

is consistent across all the analyzed languages. In- 335

terestingly, despite being a natively multilingual 336

model with parameter size comparable to Gemma, 337

EuroLLM does not perform as well as the other 338

models with respect to any preprocessing opera- 339

tion. Additionally, we note that language-specific 340
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Dataset Model SW SW + L L SW + S
Porter | Lanc. | Snow.

S
Porter | Lanc. | Snow.

Emoji

Classic 21.15 21.41 21.42 21.06 | 21.11 | 21.03 21.01 | 20.96 | 20.88
EuroLLM 20.82 20.44 20.79 19.82 20.12
Gemma 21.52 22.61† 21.66 21.19 21.00
Llama 21.71 21.99 21.22 20.51 20.99
Qwen 21.63 22.53 21.47 20.97 20.60

Hate

Classic 48.73 48.93 49.67 49.47 | 49.40 | 47.87 46.99 | 47.74 | 47.82
EuroLLM 51.19 53.14† 51.54 51.14 50.40
Gemma 49.61 47.47 49.52 49.77 49.24
Llama 49.50 49.75 51.31 50.45 50.15
Qwen 50.80 49.09 48.93 49.61 50.34

Irony

Classic 61.05 60.11 59.73 61.96 | 63.01 | 61.39 60.96 | 62.15 | 59.73
EuroLLM 53.70 54.63 60.24 50.72 59.01
Gemma 61.64 62.63 61.14 59.40 60.63
Llama 61.44 62.29 63.35† 59.31 58.80
Qwen 61.99 61.22 63.18 57.95 59.35

Offensive

Classic 75.62 74.53 73.19 75.73 | 75.93 | 74.61 74.22 | 75.46 | 75.65
EuroLLM 71.71 70.93 70.81 71.09 70.58
Gemma 74.81 74.88 73.02 73.95 72.71
Llama 76.71† 73.95 71.47 73.76 71.20
Qwen 74.03 73.84 74.38 72.40 71.36

Sentiment

Classic 48.89† 48.05 48.71 47.81 | 48.54 | 48.18 47.89 | 48.62 | 48.61
EuroLLM 45.64 41.30 43.90 45.00 45.01
Gemma 48.13 47.77 48.35 46.59 47.39
Llama 47.96 48.13 48.02 45.80 47.06
Qwen 46.98 45.54 46.84 46.04 46.38

Table 5: Comparison of LLM-based and traditional (classic) preprocessing on several text classification tasks. The
scores are averages of the results obtained with three different ML algorithms. While applying traditional stemming,
we report the values of the Porter | Lancaster | Snowball stemmers, following this order.

prompts achieve the highest SW scores, while the341

specification of the same prompts in English pro-342

duces the best lemmatization (L) and stemming (S)343

performance. More specifically, EuroLLM’s per-344

formance improves with language-specific prompts345

in 60% of preprocessing tasks. In contrast, Gemma346

and Qwen perform better with an English prompt347

in at least 70% of cases, while Llama benefits from348

it in 55% of combinations.349

We further observe that LLMs often eliminate350

words not traditionally considered stopwords (NSW351

column). Among them, Gemma aligns most closely352

with NLTK for English, Italian, and Spanish, while353

Llama performs analogously for French and Ger-354

man. This behaviour supports our hypothesis355

that LLMs’ contextual understanding influences356

stopword selection. For instance, “user” is fre-357

quently removed, which is reasonable given that358

the datasets consist of social media text from Twit-359

ter (Barbieri et al., 2022). Regarding stemming, the360

lower overall scores compared to traditional pre-361

processing might be due to LLMs producing differ-362

ent stems of the same word appearing in different363

texts. Although this deviates from traditional stem-364

ming rules, this might allow for a more context- 365

specific preprocessing, as also observed by Wang 366

et al. (2024b). 367

Overall, these results show that LLMs are quite 368

effective at identifying stopwords across multiple 369

languages, with Gemma detecting 97% of stop- 370

words in French texts, and at least 79% in other 371

languages. Additionally, they show a good lemma- 372

tization capability in English, with Gemma, Llama 373

and Qwen correctly identifying over 79% of lem- 374

mas. 375

5.2 Text classification 376

Tables 5 and 6 report the averaged performance 377

score of the three ML models we have trained on 378

English (Table 5) and non-English text (Table 6), 379

by applying the LLM-based preprocessing and tra- 380

ditional preprocessing methods. Each column cor- 381

responds to a specific preprocessing task: SW de- 382

notes stopword removal, SW+L applies lemmatiza- 383

tion followed by stopword removal, L represents 384

lemmatization alone, SW+S combines stopword re- 385

moval and stemming, and S applies stemming only. 386

For each dataset and preprocessing task, the best 387
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Dataset Model SW SW + L L SW + S S

French

Classic 52.95 52.49 53.48 53.98† 52.87
EuroLLM 45.44 46.70 41.00 44.21 49.34 48.74 43.76 39.38 45.59 43.30
Gemma 52.18 52.53 49.66 49.54 51.88 52.91 51.65 49.54 47.81 50.34
Llama 50.57 52.07 47.13 48.20 50.19 51.38 46.05 47.66 49.04 48.00
Qwen 50.50 49.89 51.23 49.80 53.45 53.52 50.08 47.16 47.85 49.08

German

Classic 55.13† 52.80 53.18 53.52 54.06
EuroLLM 46.70 48.92 41.65 43.41 47.28 48.55 39.58 44.41 46.70 48.08
Gemma 48.47 49.77 50.04 46.93 53.56 50.26 50.27 49.31 54.48 52.07
Llama 47.13 50.57 47.24 50.04 51.99 53.37 46.48 50.46 50.96 53.56
Qwen 46.59 49.54 47.73 49.27 52.30 51.88 45.86 46.05 51.46 48.35

Italian

Classic 51.84 52.07 50.61 51.30 52.33
EuroLLM 47.13 49.16 43.14 47.13 50.92 50.38 45.48 46.70 48.08 48.89
Gemma 48.16 48.73 45.59 47.16 51.34 50.61 45.51 44.80 52.30 52.53
Llama 46.44 46.56 44.94 48.47 52.72 51.46 42.34 43.87 48.62 51.92
Qwen 45.48 44.71 45.94 41.88 53.37† 52.99 43.44 44.48 48.97 50.50

Spanish

Classic 47.47 49.43 48.47 49.88 49.61
EuroLLM 43.14 44.02 39.58 43.45 43.52 47.36 40.80 42.30 41.88 45.86
Gemma 49.85 49.92† 48.31 48.70 47.05 48.08 47.47 48.74 48.43 48.74
Llama 48.40 48.62 45.67 45.10 48.47 46.48 43.80 46.28 45.90 47.55
Qwen 49.39 47.70 49.08 45.75 48.12 48.74 46.67 45.33 46.86 45.86

Table 6: Comparison of LLM-based and traditional (classic) preprocessing on several sentiment analysis tasks in
multiple European languages. The scores are averages of the results obtained with three different ML algorithms.
For each combination of preprocessing operations, the value on the left refers to the score obtained with the English
prompt, and the one on the right refers to the score obtained with the language-specific one. Traditional stemming is
performed with the Snowball algorithm.

results are highlighted in bold, while the second-388

best scores are underlined. The best result within389

each dataset is marked with a †.390

English language We first note that LLMs out-391

perform traditional methods in all datasets except392

for Irony, and more specifically in 16 out of the 25393

examined combinations of datasets and preprocess-394

ing tasks. Moreover, in over 65% of these cases,395

the second-best result is also achieved by an LLM.396

Traditional preprocessing outperforms LLM-based397

preprocessing in 9 out of 25 combinations, with398

a margin greater than 1 point in F1 in 6 of them399

(Irony SW+S and S, Offensive SW+S and S, and400

Sentiment SW+S + S). Notably, LLMs achieve401

the highest performance in stopword removal and402

lemmatization across 4 out of 5 datasets, indicating403

their ability to dynamically identify task-relevant404

stopwords and lemmas in a more context-sensitive405

manner than traditional techniques. The only ex-406

ception is the Sentiment dataset, where Gemma407

underperforms by less than 1 point compared to tra-408

ditional preprocessing. Additionally, our approach409

outperforms traditional preprocessing across all410

datasets when applying lemmatization combined411

with stopword removal: in particular, in the Hate412

dataset EuroLLM achieves an 8.6% improvement413

over traditional techniques.414

Our results indicate however that stemming with415

LLMs is not as effective as other preprocessing 416

operations. Several factors may contribute to this 417

outcome. First, stemming is a task where context 418

plays a limited role, making it less sensitive to the 419

contextual capabilities of LLMs. This aligns with 420

findings by Wang et al. (2024b), who show that 421

LLMs’ stemming performance is suboptimal in an 422

information retrieval pipeline. Furthermore, we 423

note that LLMs exhibit inconsistencies in stem- 424

ming across documents. Unlike traditional algo- 425

rithms, which apply fixed rules, LLMs may stem 426

the same word differently depending on context. 427

For instance, in some cases, an LLM may generate 428

a stem that matches the Porter stemmer, while in 429

others, it may align with the Lancaster stemmer 430

or be completely different. This lack of consis- 431

tency results in non-standardized text representa- 432

tions, which can negatively impact downstream 433

tasks such as lexical feature extraction, and conse- 434

quently their classification performance. 435

Non-English languages Table 6 presents the per- 436

formance of text classification across French, Ger- 437

man, Italian, and Spanish. Overall, LLMs achieve 438

performance on par with or even better than tra- 439

ditional techniques in half of the evaluated cases. 440

Notably, LLMs achieve the highest performance 441

across all datasets when lemmatization is applied, 442

showing their ability to understand contextual in- 443
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formation even in non-English languages. More-444

over, LLMs achieve the highest performance in the445

Italian and Spanish datasets (marked with †) and446

perform marginally lower than the best score in447

French and German.448

Interestingly, for Italian and German, Gemma449

outperforms traditional methods even in stemming,450

in contrast to the findings in the English setting. For451

Spanish, Gemma also shows a significant improve-452

ment in stopword removal, underscoring its ability453

to identify stopwords based on context. Moreover,454

in Spanish, traditional preprocessing outperforms455

LLMs by only 1 point in stemming, and similarly456

in stopword removal when combined with lemma-457

tization or stemming.458

The performance differences among languages459

may stem from their varying morphological com-460

plexity. For instance, Markus Sadeniemi and461

Honkela (2008) found that English, French, Italian,462

and Spanish exhibit relatively low morphological463

complexity, whereas German demonstrates signifi-464

cantly higher complexity, possibly due to its use of465

compound words.466

Notably, the performance of EuroLLM and467

Llama improves when using language-specific468

prompts in 80% of the preprocessing tasks. For469

Gemma this is instead true in 60% of the analyzed470

combinations, and for Qwen only in 40%. This471

finding is unexpected, given that Qwen is inher-472

ently multilingual, while Gemma is mostly trained473

on English data.474

6 Conclusions and Future Works475

In this paper, we investigate the capability of LLMs476

to perform text preprocessing, including stopword477

removal, lemmatization, and stemming. We con-478

duct a comparative analysis of various LLMs, dif-479

fering in both size and architecture, to assess their480

ability to replicate traditional preprocessing tech-481

niques across five languages. Additionally, we eval-482

uate the impact of LLM-based preprocessing on483

multiple downstream Machine Learning classifica-484

tion tasks by training models on text preprocessed485

using traditional and LLM-based approaches. Our486

findings indicate that LLMs outperform traditional487

lemmatization techniques across all evaluated lan-488

guages and consistently improve stopword removal489

in English, both with and without lemmatization.490

However, LLMs do not appear to perform competi-491

tively in stemming.492

Although preprocessing for European languages493

has been extensively studied, we note that stem- 494

mers and lemmatizers for many other languages 495

have received significantly less attention (Silvello 496

et al., 2018), often resulting in reduced effective- 497

ness. Given the promising results achieved, future 498

work will explore the potential of LLMs as stem- 499

ming and lemmatization tools for low-resource lan- 500

guages. 501

7 Ethics Statement and Limitations 502

Ethics statement Our approach shares the same 503

possibilities as most of previous works based on 504

LLMs, such as misusage, containing data bias, and 505

suffering from adversarial attacks. Since we are 506

however using LLMs to preprocess text, we con- 507

clude that our work will not likely have a negative 508

ethical impact. 509

Limitations Regarding RQ1, the ability of LLMs 510

to perform text preprocessing is evaluated by com- 511

paring their outputs to those generated by well- 512

known Python libraries, such as NLTK and spaCy. 513

There may however be instances where LLMs out- 514

perform these libraries – for example, by splitting a 515

long hashtag like “#illegalaliens” and correctly 516

lemmatizing it as “illegal alien” – that are not 517

accounted for in the evaluation metrics. 518

We do not perform extensive prompt engineering 519

in this work, as we are interested in investigating 520

the abilities and raw behaviour of Large Language 521

Models rather than obtaining the best results. This 522

is also due to computational constraints and costs. 523

However, some results may differ if other prompts 524

are considered. 525

Another limitation of the proposed approach is 526

the high computational cost of using LLMs for text 527

preprocessing, which is significantly greater than 528

that of traditional methods. Therefore, LLM-based 529

preprocessing is best justified for low-resource lan- 530

guages. Our results, demonstrating that LLMs can 531

consistently match or even surpass traditional pre- 532

processing techniques across multiple languages, 533

further support their use in such cases. 534
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A Hyperparameters Setting 747
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for each ML model and traditional preprocessing 749

algorithm. The length of the n-grams ranges from 750

1 to 3, while the number of features can be 1000, 751

3000, 5000 or 7000. Regarding Naive Bayes, we 752

put the smoothing parameter alpha = 1. Decision 753

Tree relies on Gini impurity (Laber and Murtinho, 754

2019) to measure the quality of each split. Regard- 755

ing Logistic Regression, we add a L2 penalty term. 756
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we set the random seed to 42. 758
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ML algorithm Preproc. N-grams Features dim. F1

Decision Tree

SW 1 3000 57.55
2 3000 56.70

SW + L 1 3000 57.00
2 5000 56.40

L 2 5000 57.55
1 3000 56.65

S 2 5000 56.75
3 7000 56.65

SW + S 1 3000 58.75
1 7000 57.05

Multinomial
Naive Bayes

SW 2 5000 71.00
3 5000 70.95

SW + L 2 7000 70.60
2 5000 70.45

L 2 7000 71.15
3 7000 70.75

S 3 7000 71.25
2 7000 71.15

SW + S 3 7000 70.40
2 5000 70.30

Logistic
Regression

SW 2 7000 68.75
1 5000 68.70

SW + L 3 5000 68.85
2 7000 68.80

L 2 5000 69.20
2 7000 68.80

S 3 7000 70.15
3 5000 69.95

SW + S 2 5000 68.75
1 7000 68.70

Table 7: Study on the impact of hyperparameters using
classical preprocessing techniques. The applied stem-
ming algorithm is Porter.
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