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ABSTRACT

Recent advances have significantly elevated the quality of AI-generated videos;
however, existing evaluation metrics still struggle to align closely with human
perceptual judgments. While prior work has repurposed deep learning models or
borrowed algorithms from other domains to assess generative content, their out-
puts often exhibit noticeable discrepancies with real human evaluations. To ad-
dress this critical gap, we introduce the GQA dataset — a human-aligned bench-
mark comprising: (1) videos generated by dozens of state-of-the-art models, in-
cluding those from the VAE and Diffusion Model (DM) families; (2) dozens of
refined evaluation metrics systematically categorized into three core dimensions
— Video-Text Consistency, Realism, and Traditional Quality; and (3) a prompt-
adaptive metric selection mechanism that ensures evaluations are contextually rel-
evant, avoiding misaligned assessments across semantically unrelated dimensions.
GQA enables more accurate, interpretable, and perception-aware evaluation of
AI-generated video content.
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Figure 1: Assesstion Dimensions (Left) & Construction Methodology (Right). The GQA dataset
encompasses 32 evaluation metrics across three major categories: Consistency, Realism, and Tra-
ditional Quality. The data construction for each metric follows a structured methodology: Initial
Categorization: Videos are first categorized based on relevant attributes. Intra-class Pairwise Com-
parison: Videos within each category are then comparatively evaluated. Quality-ranked Scoring:
This process ultimately yields quality-ranked scores for the generated videos.

1 INTRODUCTION

The rapid advancement of AI-generated video technology (e.g., diffusion models like Sora Zheng
et al. (2024) and autoregressive frameworks like VideoPoet Kondratyuk et al. (2023)) has revolu-
tionized content creation. However, evaluating the quality of these synthetic videos presents unique
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challenges fundamentally distinct from traditional Video Quality Assessment (VQA). Existing ap-
proaches can be categorized into three paradigms:

Traditional Video Quality Assessment (VQA). Classical VQA methods focus on quantifying dis-
tortions introduced during compression or transmission. Full-reference metrics like PSNR and SSIM
measure pixel-level fidelity but fail to capture semantic coherence, which is crucial for AI-generated
content. No-reference methods like NIQE Mittal et al. (2013) leverage natural scene statistics, yet
their reliance on handcrafted features limits applicability to synthetic artifacts (e.g., inconsistent ob-
ject scaling in generated videos ). Hybrid models like VMAF integrate machine learning to predict
human perception but remain constrained by their design for natural video degradation patterns.

Video Aesthetic Quality Assessment (VAQA). Aesthetic assessment extends beyond technical fi-
delity to evaluate artistic merit, encompassing composition, color harmony, and emotional impact.
Datasets like AVA Murray et al. (2012) provide human-annotated aesthetic scores, while deep learn-
ing frameworks integrate low-level features (e.g., saliency maps) with high-level semantics. For
AI-generated videos, it remains fundamentally challenging to establish whether machines can learn
subjective aesthetics and how to balance creative expression with normative standards (e.g., surreal-
ism versus photorealism).

Video Generation Quality Assessment (VGQA). Emerging metrics specifically target the unique
flaws of synthetic videos: Temporal Consistency: Fréchet Video Distance (FVD) Unterthiner
et al. (2018) compares feature distributions between real and generated videos using pre-trained
3D CNNs, penalizing unnatural motion. Semantic Accuracy: CLIPScore Hessel et al. (2021)
aligns video content with text prompts via contrastive language-vision models, addressing halluci-
nations (e.g., ”a dog flying in space” violates physical laws). Artifact Detection: Recent work Ojha
et al. (2023) trains detectors on GANs producing facial distortions or diffusion model-specific noise
residuals. Despite progress, current metrics still struggle with long-term coherence (e.g., graphic
continuity in minute-long videos) and multimodal alignment (e.g., audio-visual synchronization).
Current AI video generation efforts predominantly focus on enhancing realism. Recent years have
witnessed explosive growth in novel video generation models emerging from diverse academic insti-
tutions and enterprises. Concurrently, significant work advances the evaluation of these generative
models. Notable mature frameworks include VBench Huang et al. (2024a)—a comprehensive video
generation assessment system—and Gaia Chen et al. (2024b), an evaluation benchmark specifically
targeting motion.

Our objective is to pioneer a distinct direction: advancing video generation assessment through
human-perception-driven methodologies. So we integrate objective video quality, subjective aes-
thetic quality, and AI-generated quality assessment to propose the GQA dataset. The key features of
GQA are:

• Construction of 32 targeted evaluation dimensions categorized into three major classes:
video-text consistency, realism and plausibility of video content, and traditional video qual-
ity.

• Text-content correlated evaluation where assessment dimensions are assigned based on tex-
tual descriptions and actual video content.

• Human-centered annotation scheme combining coarse-grained classification and fine-
grained comparative labeling to deliver efficient yet accurate dimensional evaluations.

2 RETHINKING VIDEO GENERATION QUALITY ASSESSMENT

With the rapid development of AI-generated video technology, evaluating the quality of generated
content has become a key research focus. Existing evaluation methods primarily rely on a combi-
nation of automated metrics and human subjective ratings, among which comprehensive evaluation
frameworks like VBench Huang et al. (2024a) have garnered significant attention in both academia
and industry. This section systematically reviews the VBench-centered evaluation system and com-
pares it with other representative works.

VBench, an open-source evaluation framework jointly proposed by Peking University and Microsoft
Research, aims to address the challenge of multi-dimensional quality assessment for generated

2
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Table 1: Number and explanation of different assessment dimensions
Type Num. Assessment Dimension Description

V
id

eo
-T

ex
tC

on
si

st
en

cy
4 Character-Text

Consistency
Whether specific characters in the video match the text description (e.g., Elon

Musk should appear as the correct individual).

1 Action-Text Consistency Whether actions in the video match the text description (e.g., running, jumping),
focusing solely on the action regardless of the subject.

17 Scene-Text Consistency Whether scenes in the video match the described settings (e.g., hospital, school),
including identifiable scene elements.

14 Object Position-Text
Consistency

Object positions refer to relative placement based on camera orientation (e.g., if
”a motorcycle is to the left of a bus,” they should appear on corresponding sides

of the video frame).

12 Object Attribute-Text
Consistency Object attributes include descriptive features like color, shape, and texture.

11 Object-Text Consistency Whether objects in the video can be correctly identified as those mentioned in the
text.

25 Video Content-Text
Consistency

Overall alignment where every textual description should be accurately
generated.

29 Video Speed-Text
Consistency

Whether video speed matches textual descriptions (current samples only include
slow-motion).

30 Video Style-Text
Consistency

Whether artistic styles mentioned in text (e.g., Van Gogh, Picasso) are
recognizable in the video.

3 Camera Movement-Text
Consistency

Whether camera movements described in text (e.g., pan left, tilt right) are
properly executed.

23 Unrealistic Description
Imaginative Presentation

When text describes unrealistic scenarios (e.g., ”an astronaut riding a horse in
space”), whether the video presentation aligns with imaginative expectations.

R
ea

lis
m

&
Pl

au
si

bi
lit

y

16 Rigid Body Collision
Realism Whether rigid body collisions in videos appear physically plausible.

2 Action Realism Whether actions could realistically be performed.

18 Scene Realism Whether scenes appear sufficiently realistic when no special style is specified in
text.

31 Weather Representation
Realism Whether weather conditions appear realistic.

22 Time Period
Representation Realism Whether time-period representations appear authentic.

8 Gaseous Motion Realism Whether gas dynamics (smoke, vapor) appear physically accurate.

7 Fluid Motion Realism Whether fluid movements appear physically plausible.

9 Gradual Change Motion
Realism

Whether gradual transformations (balloon inflation, plant growth) appear
physically accurate.

13 Object Motion
Trajectory Realism Whether object movement paths follow physically plausible dynamics.

15 Object Realism Whether objects appear sufficiently realistic.

5 Character Generation
Quality Whether human characters appear sufficiently realistic.

21 Textual Attribute
Representation Realism Whether object attributes (color, shape, texture) match real-world appearances.

27 Video Lighting and
SGQAow Realism Whether lighting and sGQAows appear physically accurate.

10 Moving Scene
Reasonableness

Whether scene transitions during camera movements maintain proper
perspective.

Tr
ad

iti
on

al
Q

ua
lit

y

6 Entity Motion
Naturalness Objects should maintain natural form without distortion during movement.

26 Video Content
Aesthetics Overall visual appeal of video content.

0 Abnormal Lighting
Detection Videos should avoid lighting artifacts (overexposure, abnormal flares).

28 Video Noise-Free Videos should exhibit no noticeable noise artifacts.

24 Video Clarity Whether video resolution is sufficiently sharp.

19 Static Content
Non-distortion Stationary objects shouldn’t distort abnormally during camera movement.

20 Static Content Stability Stationary objects shouldn’t distort abnormally over time (temporal consistency).

3
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videos. Its core design philosophy employs a hierarchically decoupled evaluation structure covering
two primary dimensions: video quality and content consistency.

VBench 1.0 defined 16 evaluation metrics categorized into two classes: Video Quality: Including
temporal consistency (Temporal Flickering), motion smoothness (Motion Smoothness), aesthetic
quality (Aesthetic Quality), etc. Video-Condition Consistency: Encompassing text-video seman-
tic alignment (Text-Video Alignment), spatial relationships (Spatial Relationship), object attributes
(Object Attribute), etc. The evaluation system employs algorithms and models from diverse domains
for different metrics, while correlating with human-annotated MOS (Mean Opinion Score) scores to
enhance assessment reliability. However, real-world cases still reveal discrepancies between model
evaluation results and human perception.

VBench++ Huang et al. (2024b) expanded the framework by introducing realism-centric metrics,
including Physical Plausibility and Commonsense Consistency, resulting in 18 total metrics. For
example: Physical Plausibility: Evaluates adherence to real-world physical laws (e.g., gravity,
collisions, fluid dynamics), such as ”whether a flying dragon’s wing flap generates plausible air-
flow disturbance.” Commonsense Consistency: Detects logical flaws in generated content, such as
”whether food realistically enters the mouth during a person’s eating action.” More sophisticated
models—such as human pose detectors and physics simulation engines—were integrated into the
evaluation pipeline, leading to significant improvements in accuracy.

Diverging from VBench’s approach, we prioritize human-centric evaluation. We contend that the
most direct and valuable method is to present AI-generated videos to humans for judgment. Our
objective is to design protocols enabling humans to make effortless and unbiased assessments. Our
methodology involves decomposing video evaluation into multiple dimensions, similar to VBench,
aiming to provide clear guidance on specific aspects evaluators should focus on, thereby simplifying
the assessment process. Recognizing the difficulty humans face with absolute scoring tasks, we
leverage their comparative strength: direct choice between options. Consequently, our next step
implements a pairwise comparison paradigm. Evaluators simply select the preferred video for a
specific attribute from two presented options. This approach significantly lowers cognitive load,
increases decision ease, and improves assessment accuracy.

3 DATASET DESCRIPTION

3.1 ASSESSMENT DIMENSIONS

As shown in the Table 1, GQA comprises 32 evaluation metrics spanning three major categories:
consistency, realism, and traditional quality. For identical video content, we perform fine-grained
segmentation according to different evaluation objectives. Taking the dual aspects of consistency
and realism as an example: consistency ultimately requires the coupling between human cognition
and textual descriptions, similar to the alignment of image and text modalities in CLIP, both being
semantically grounded cognition. Realism concerns only the video itself without any relation to
text. A simple example: for a video generating an apple based on text, the highest objective for
evaluators under the consistency dimension is to effortlessly recognize the object in the video as an
apple. Realism requires evaluators to perceive this apple as if it were a real apple seen in reality
captured by a camera.

3.2 GENERATION MODEL

Our evaluation framework encompasses 35 generative models, including: Show-1 Zhang et al.
(2023), StepVideo Ma et al. (2025a), CogVideo Yang et al. (2024), Vchitect Fan et al. (2025), Gen-2
Runway (2023), HiGen Qing et al. (2024), EasyAnimate Xu et al. (2024), AnimateDiff Guo et al.
(2024), InstructVideo Yuan et al. (2024), VideoCrafter Chen et al. (2023; 2024a), RepVideo Si et al.
(2025), IPOC Yang et al. (2025), Gen-3 Runway (2024), OpenSora Zheng et al. (2024), Lavie Wang
et al. (2024c), Mochi Team (2024), HunyuanVideo Kong et al. (2024), Mira Ju et al. (2024), TFt2v
Wang et al. (2024b), Pika Labs (2023), LTX-Video HaCohen et al. (2024), STIV Lin et al. (2024),
Latte Ma et al. (2025b), AnimateLCM Wang et al. (2024a), MiniMax Minimax (2024), Wanx Wan
et al. (2025), Luma AI (2024), Kling DeepSeek (2024). We obtain generated videos of these models
from VBench’s publicly shared Test Data. These models predominantly represent work from the
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past two years while also including relatively early generative models. The publication dates of the
models may serve as indicators of video generation quality to some extent.
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Figure 2: Heatmap representing the comparative performance of various generative models across
different dimensions. Each cell represents the normalized average score (in percentage) of a model
for a specific dimension, with scores adjusted to reflect the proportion of the highest score within
each dimension.

As illustrated in Figure 2, we computed the average scores of each generative model across all
dimensions, normalized them into percentage scores based on the respective upper and lower bounds
of each dimension, and visualized the results in a heatmap. The heatmap reveals that no single
model excels across all dimensions; however, overall, newly released models outperform their older
counterparts, and closed-source models generally surpass open-source ones.

3.3 ANNOTATION SCHEME

As shown in Figure 1, we employ a combined annotation methodology of classification followed by
pairwise comparison.

In stage 1 we collect and filter prompt texts based on our designed assessment dimensions. Our
annotation data is sourced from VBench’s evaluation videos. Consequently, we classify the 945
prompts used by VBench. Each prompt may correspond to multiple assessment dimensions. For
example, the prompt ’A beautiful coastal beach in spring, waves lapping on sand, zoom in’ relates to
dimensions like scenery, fluid motion, and camera movement. Through this classification, we gather
varying numbers of videos and their corresponding prompts for each assessment dimension.

For each assessment dimension, we design specific questions with unique response options. These
options represent quality levels (effectively serving as scores) within that dimension. Example
(Object-Text Alignment): This dimension includes 4 options:

• -1 (Invalid Question): A universal option present in most dimensions. Annotators select
this to discard a sample when: The prompt for a ”consistency” dimension lacks a specified
target (e.g., object, scene). The prompt for a ”realism” dimension intentionally describes
an unrealistic scenario.

• 1 (Completely Inconsistent): The object exhibits no alignment with the text description.
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• 2 (Partially Consistent): The object exhibits characteristics of the described target.

• 3 (Fully Consistent): The object perfectly matches the text description. This coarse-grained
classification approach significantly reduces annotator burden, enabling them to perform
accurate labeling efficiently.

In stage 2 we aggregate the Stage 1 annotation results and partition the data into groups sharing
the same assessment dimension, same prompt text, and same initial classification label. Within
each group, we generate all possible unique pairwise combinations of videos (from start to end).
Annotators are presented with video pairs and simply judge which video is superior for the specific
dimension in question, or if they are equivalent. Based on the pairwise comparison results, videos
are ranked ordinally within their group for the dimension. Fine-grained scores are assigned within
the range defined by the initial coarse class. For instance, videos initially classified as 1 (Completely
Inconsistent) in Stage 1 are assigned specific scores within the interval [1, 2) based on their relative
position in the Stage 2 ranking.

3.4 ANNOTATION TEAM

Prior to annotation, the team leader conducted a structured training session for 18 professional anno-
tators from a certified annotation company, using theoretical instruction and case demonstrations to
ensure a shared understanding of the annotation guidelines and promote consistency and accuracy.

A quality review panel—comprising the team leader and three senior annotators—was established
to oversee annotation quality. The panel performed random audits of 25% of each batch; non-
compliant batches were returned for revision. Common issues were addressed through representa-
tive examples, and annotators received real-time support, continuously improving both efficiency
and reliability.

All tasks were carried out on an in-house annotation platform designed to isolate individual assign-
ments, preventing cross-influence among annotators and ensuring the objectivity and independence
of each annotation judgment.
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Figure 3: The data volume of different assessment dimensions in the dataset, among which the
attribute of overall consistency has the highest value, which is 7669.

3.5 DATA DISTRIBUTION

As shown in Table 2, after the two-stage annotation process, the GQA dataset contains 9,474 videos
from 945 prompts, resulting in a total of 39,724 merged human annotations.

The sample distribution across assessment dimensions in our dataset exhibits significant variation,
ranging from 7,669 (highest) to 100 (lowest) samples per dimension as illustrated in the accom-
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Figure 4: Distribution of Data Across Assessment Dimensions in the GQA Dataset. Serial numbers
correspond to Table 1. The grid spacing in sub-tables represents a 1-point interval, with the minimum
score being 1 point for each dimension.

Table 2: Statistics of the GQA dataset.
Item Count Item Count

Total Videos 9474 Total Prompts 945
Classification Annotations 42594 Pairwise Comparison Annotations 31468

Final Combined Annotations 39724

panying Figure 3. Dimensions pertaining to Foundational Quality maintain a relatively substantial
sample size overall, owing to their minimal dependence on specific video content. For Consistency
dimensions directly corresponding to those in VBench, the availability of relevant prompts allowed
sufficient coverage; we employed random sampling of prompts during annotation to prevent sub-
stantial disparities in sample sizes compared to other dimensions. Realism dimensions necessitate
meticulous content scrutiny, revealing notable challenges: Rigid-body collisions prove exceedingly
rare in the collected videos. Within the limited collision-related content available, elastic collisions
predominate. However, due to the frequent absence of close-up shots explicitly depicting collision
dynamics in these instances, evaluation focus primarily shifts to analyzing the motion trajectories of
involved objects.

The scarcity of samples also leads to highly concentrated distributions, as illustrated in the accom-
panying Figure 4. Specifically, the dimensions of Time Period Representation Realism (22), Unre-
alistic Description Imaginative Presentation (23), Video Clarity (24), Video Speed-Text Consistency
(29), and Weather Representation Realism (31) exhibit particularly clustered distributions.

4 BASELINE

As illustrated in Figure 5, we utilize VideoMAE Tong et al. (2022) for video encoding and CLIP
Radford et al. (2021) for text encoding to construct a video generation quality assessment model,
training dedicated baseline models for each evaluation dimension. During training, parameters of
the VideoMAE and CLIP encoders remain frozen. The 3D features output by VideoMAE undergo
channel fusion through a linear layer, then concatenate with CLIP’s textual features for joint re-
gression and classification training. Each baseline model is trained for 5 epochs on a single A100
GPU using the Adam optimizer with a learning rate of 1e-3 and a batch size of 64. Data for each
evaluation dimension is split into 9:1 training-test sets.

7
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Figure 5: Baseline model structure.

Table 3: Baseline models test results. Serial numbers correspond to Table 1.
Num. MSE↓ Acc.↑ % Num. MSE↓ Acc.↑ %

0 0.165 77.23 16 0.677 26.66
1 0.766 45.45 17 0.402 87.50
2 0.539 20.00 18 0.460 87.50
3 0.251 62.06 19 0.519 46.23
4 0.754 54.54 20 0.481 43.69
5 0.966 42.67 21 0.315 65.02
6 0.327 63.75 22 0.415 63.07
7 0.330 67.74 23 0.370 63.55
8 0.279 64.28 24 0.353 55.24
9 0.539 40.00 25 0.790 52.80

10 0.567 91.66 26 0.359 65.05
11 0.643 60.00 27 0.401 53.75
12 0.312 62.30 28 0.592 49.11
13 0.504 51.51 29 0.222 65.00
14 5.241 28.57 30 1.052 56.52
15 0.147 90.00 31 0.359 84.00

As shown in Table 3, we provide a minimal, proof-of-concept baseline to demonstrate the feasibility
of learning from the GQA annotations. Specifically, we train a unified multimodal classification-
regression multi-task model across all 32 evaluation dimensions, using the same architecture and
hyperparameters for every task—without any dimension-specific tuning or architectural customiza-
tion.

Unsurprisingly, performance varies widely: the best-performing dimensions achieve up to 90% ac-
curacy and 0.14 MSE, while the worst drop to 20% accuracy. We attribute this gap to two key
factors: (1) the heterogeneous nature of the evaluation dimensions—some require fine-grained tem-
poral reasoning (e.g., fluid motion realism), while others rely on coarse semantic alignment (e.g.,
object-text consistency); and (2) significant imbalances in annotation volume across dimensions,
which affect model convergence.

Importantly, this baseline is not intended to be competitive or optimal. Rather, it serves as a starting
point to illustrate how GQA can be used for supervised learning. We anticipate that future work
will develop specialized architectures, incorporate modality-specific pretraining, or leverage human
feedback loops to achieve robust performance across all dimensions. Our goal here is not to solve
the assessment problem, but to enable and encourage such research through a human-aligned, fine-
grained benchmark.

5 CONCLUSIONS

This paper proposes a novel evaluation framework for AI-generated video quality assessment, estab-
lishing the human perception-driven multidimensional video generation quality assessment dataset
GQA. Guided by three primary categories—video-text consistency, realism & plausibility of video

8
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content, and fundamental video quality—GQA encompasses 12 consistency-related dimensions, 13
Realism-Plausibility dimensions, and 7 fundamental quality dimensions, comprehensively covering
key aspects of AI-generated videos. We further design an annotation-efficient evaluation protocol
combining categorical and comparative labeling, significantly enhancing annotation efficiency and
accuracy. Finally, we construct and train baseline models based on video-text encoders, demon-
strating the dataset’s feasibility for model training. Future work will address data imbalance and
insufficiency across dimensions in GQA while expanding evaluation coverage, ultimately establish-
ing a large-scale human-centric AI video assessment system.

Snow rocky mountains peaks canyon. snow 
blanketed rocky mountains surround and 
shadow deep canyons. the canyons twist and 
bend through the high elevated mountain 
peaks, featuring a steady and smooth 
perspective

Moving_Scene_Reasonableness:2.334/3
Video_Content_Aesthetics:1.5/4
Video_Lighting_and_Shadow_Realism:2/4

A tranquil tableau of a tranquil lakeside cabin 
nestled among tall pines, its reflection mirrored 
perfectly in the calm water

Video_Content-Text_Consistency:5/5
Video_Lighting_and_Shadow_Realism:2/4

In a still frame, a tranquil pond 
was fringed by weeping cherry 
trees, their blossoms drifting 
lazily onto the glassy surface

Video_Noise-Free:2/5
Fluid_Motion_Realism:2/3
Static_Content_Stability:3/5
Video_Content-
Text_Consistency:4/5

A person is catching or throwing baseball

Character_Generation_Quality:1/5
Entity_Motion_Naturalness:2/3
Object_Motion_Trajectory_Realism:1/3
Video_Clarity:1/3
Video_Content-Text_Consistency:4/5a person and a hair drier

Object-Text_Consistency:3/4
Object_Realism:2/4

A cute happy Corgi playing in park, sunset, 
featuring a steady and smooth perspective

Camera_Movement-Text_Consistency:2.334/3
Moving_Scene_Reasonableness:2.334/3
Static_Content_Stability:3/5
Time_Period_Representation_Realism:2/3
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Scene_Realism:2/4
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Video_Noise-Free:2/5

A person is ironing
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Figure 6: Data instances in the GQA Dataset, where a single video may correspond to multiple
assessment dimensions.
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In this paper, Large Language Models (LLMs) were used as an assistive tool during the writing
process, primarily to aid in language polishing and improve clarity and fluency. All core ideas,
research design, data analysis, and conclusions were independently developed by the authors. The
LLM was not involved in any academic judgment or substantive content generation. Further details
on its use are provided in the main paper.
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