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ABSTRACT

We introduce the concept of provably robust adversarial examples for deep neural
networks – connected input regions constructed from standard adversarial examples
which are guaranteed to be robust to a set of real-world perturbations (such as
changes in pixel intensity and geometric transformations). We present a novel
method called PARADE for generating these regions in a scalable manner which
works by iteratively refining the region initially obtained via sampling until a
refined region is certified to be adversarial with existing state-of-the-art verifiers.
At each step, a novel optimization procedure is applied to maximize the region’s
volume under the constraint that the convex relaxation of the network behavior
with respect to the region implies a chosen bound on the certification objective. Our
experimental evaluation shows the effectiveness of PARADE: it successfully finds
large provably robust regions including ones containing ≈ 10573 adversarial exam-
ples for pixel intensity and ≈ 10599 for geometric perturbations. The provability
enables our robust examples to be significantly more effective against state-of-the-
art defenses based on randomized smoothing than the individual attacks used to
construct the regions.

1 INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial attacks: small input perturbations that
cause misclassification (Szegedy et al., 2013). This has caused an increased interest in investi-
gating powerful attacks (Goodfellow et al., 2015; Carlini & Wagner, 2017; Madry et al., 2018;
Andriushchenko et al., 2019; Zheng et al., 2019; Wang et al., 2019; Croce & Hein, 2019; Tramèr
et al., 2020). An important limitation of existing attack methods is that they only produce a single
concrete adversarial example and their effect can often be mitigated with existing defenses (Madry
et al., 2018; Hu et al., 2019; Sen et al., 2020; Xiao et al., 2020; Pang et al., 2020; Lécuyer et al.,
2019; Cohen et al., 2019; Salman et al., 2019; Fischer et al., 2020; Li et al., 2020). The effectiveness
of these attacks can be improved by robustifying them: to consolidate the individual examples to
produce a large symbolic region guaranteed to only contain adversarial examples.

This Work: Provably Robust Adversarial Examples. We present the concept of a provably robust
adversarial example – a tuple consisting of an adversarial input point and an input region around it
capturing a very large set (e.g., > 10100) of points guaranteed to be adversarial. We then introduce a
novel algorithm for generating such regions and apply it to the setting of pixel intensity changes and
geometric transformations. Our work relates to prior approaches on generating robust adversarial
examples (Athalye et al., 2018; Qin et al., 2019) but differs in a crucial point: our regions are
guaranteed to be adversarial while prior approaches are empirical and offer no such guarantees.

Main Contributions. Our key contributions are:

• The concept of a provably robust adversarial example – a connected input region capturing
a very large set of points, generated by a set of perturbations, guaranteed to be adversarial.

• A novel scalable method for synthesizing such examples called ProvAbly Robust ADversar-
ial Examples (PARADE), based on iterative refinement that employs existing state-of-the-art
techniques to certify the robustness. Our method is compatible with a wide range of certifi-
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cation techniques making it easily extendable to new adversarial attack models. We make
the code of PARADE available at https://github.com/eth-sri/parade.git

• A thorough evaluation of PARADE, demonstrating it can generate provable regions con-
taining ≈ 10573 concrete adversarial points for pixel intensity changes, in ≈ 2 minutes, and
≈ 10599 concrete points for geometric transformations, in ≈ 20 minutes, on a challenging
CIFAR10 network. We also demonstrate that our robust adversarial examples are signifi-
cantly more effective against state-of-the-art defenses based on randomized smoothing than
the individual attacks used to construct the regions.

2 BACKGROUND

We now discuss the background necessary for the remainder of the paper. We consider a neural
network f : Rn0 → Rnl with l layers, n0 input neurons and nl output classes. While our method
can handle arbitrary activations, we focus on networks with the widely-used ReLU activation.
The network classifies an input x to class y(x) with the largest corresponding output value, i.e.,
y(x) = argmaxi[f(x)]i. Note for brevity we omit the argument to y when it is clear from the context.

2.1 NEURAL NETWORK CERTIFICATION

In this work, we rely on existing state-of-the-art neural network certification methods based on convex
relaxations to prove that the adversarial examples produced by our algorithm are robust. These
certification methods take a convex input region I ⊂ Rn0 and prove that every point in I is classified
as the target label yt by f . They propagate the set I through the layers of the network, producing a
convex region that covers all possible values of the output neurons (Gehr et al., 2018). Robustness
follows by proving that, for all combinations of output neuron values in this region, the output neuron
corresponding to class yt has a larger value than the one corresponding to any other class y 6= yt.

Commonly, one proves this property by computing a function Ly : Rn0 → R for each label y 6= yt,
such that, for all x ∈ I, we have Ly(x) ≤ [f(x)]yt − [f(x)]y. For each Ly, one computes
minx∈I Ly(x) to obtain a global lower bound that is true for all x ∈ I. If we obtain positive bounds
for all y 6= yt, robustness is proven. To simplify notation, we will say that the certification objective
L(x) is the function Ly(x) with the smallest minimum value on I. We will call its corresponding
minimum value the certification error. We requireLy(x) to be a linear function of x. This requirement
is consistent with many popular certification algorithms based on convex relaxation, such as CROWN
(Zhang et al., 2018), DeepZ (Singh et al., 2018a), and DeepPoly (Singh et al., 2019). Without loss
of generality, for the rest of this paper, we will treat DeepPoly as our preferred certification method.

2.2 CERTIFICATION AGAINST GEOMETRIC TRANSFORMATIONS

DeepPoly operates over specifications based on linear constraints over input pixels for verification.
These constraints are straightforward to provide for simple pixel intensity transformations such as
adversarial patches (Chiang et al., 2020) and L∞ (Carlini & Wagner, 2017) perturbations that provide
a closed-form formula for the input region. However, geometric transformations do not yield such
linear regions. To prove the robustness of our generated examples to geometric transformations, we
rely on DeepG (Balunović et al., 2019) which, given a range of geometric transformation parameters,
creates an overapproximation of the set of input images generated by the geometric perturbations.
DeepG then leverages DeepPoly to certify the input image region. When generating our geometric
robust examples, we work directly in the geometric parameter space and, thus, our input region I and
the inputs to our certification objective L(x) are also in geometric space. Despite this change, as our
approach is agnostic to the choice of the verifier, in the remainder of the paper we will assume the
certification is done using DeepPoly and not DeepG, unless otherwise stated.

2.3 RANDOMIZED SMOOTHING

Randomized smoothing (Lécuyer et al., 2019; Cohen et al., 2019) is a provable defense mechanism
against adversarial attacks. For a chosen standard deviation σ and neural network f as defined
above, randomized smoothing computes a smoothed classifier g based on f , such that g(x) =
argmax

c
P(y(x+ ε) = c) with random Gaussian noise ε ∼ N (0, σ2I). This construction of g allows
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Cohen et al. (2019) to introduce the procedure CERTIFY that provides probabilistic guarantees on the
robustness of g around a point x:
Proposition 1. (From Cohen et al. (2019)) With probability at least 1− α over the randomness in
CERTIFY, if CERTIFY returns a class y and a radius R (i.e does not abstain), then g predicts y within
radius R around x : g(x+ δ) = y, for all ‖δ‖2 < R.

We define adversarial attacks on smoothed classifiers, as follows:
Definition 1 (Adversarial attack on smoothed classifiers). For a fixed σ, α and an adversarial
distance R′ ∈ R>0, we call x̃ ∈ Rn0 an adversarial attack on the smoothed classifier g at the point
x ∈ Rn0 , if ‖x̃− x‖2 < R′ and g(x) 6= g(x̃).

Similarly to generating adversarial attacks on the network f , we need to balance the adversarial
distance R′ on g. If too big — the problem becomes trivial; if too small — no attacks exist. We
outline the exact procedure we use to heuristically select R′ in Appendix C.4. Using the above
definition, we define the strength of an attack x̃ as follows:
Definition 2 (Strength of adversarial attack on smoothed classifiers). We measure the strength of an
attack x̃ in terms of Radv– the radius around x̃, whose L2 ball is certified to be the same adversarial
class as x̃ on the smoothed network g using CERTIFY for a chosen σ and α.

Intuitively, this definition states that for points x̃ for which Radv is bigger, the smoothed classifier is
less confident about predicting the correct class, since more adversarial examples are sampled in this
region and therefore, the attack on g is stronger. We use this measure in Section 5 to compare the
effectiveness of our adversarial examples to examples obtained by PGD on g.

3 OVERVIEW

Existing methods for generating robust adversarial examples focus on achieving empirical robustness
(Qin et al., 2019; Athalye et al., 2018). In contrast, we consider provably robust adversarial examples,
defined below:
Definition 3 (Provably Robust Adversarial Example). We define a provably robust adversarial
example to be any large connected neural network input region, defined by a set of perturbations of
an input, that can be formally proven to only contain adversarial examples.

In this section, we outline how PARADE generates such regions. The technical details are given
in Section 4. To generate a provably robust adversarial example, ideally, we would like to directly
maximize the input region’s size, under the constraint that it only contains adversarial examples. This
leads to multiple challenges: Small changes of the parametrization of the input region (e.g., as a
hyperbox) can lead to large changes of the certification objective, necessitating a small learning rate
for optimization algorithms based on gradient descent. At the same time, the optimizer would have to
solve a full forward verification problem in each optimization step, which is slow and impractical.
Additionally, like Balunovic & Vechev (2020), we empirically observed that bad initialization of the
robust region causes convergence to local minima, resulting in small regions. This can be explained
by the practical observation in Jovanović et al. (2021), which shows that optimization problems
involving convex relaxations are hard to solve for all but the simplest convex shapes. We now provide
an overview of how we generate robust adversarial regions while alleviating these problems.

Our method for generating robust examples in the shape of a hyperbox is shown in Figure 1 and
assumes an algorithm A that generates adversarial examples and a neural network verifier V. We
require V to provide the certification objective L(x) as a linear function of the network’s input
neurons (whose values can be drawn from the input hyperbox), as described in Section 2. We split our
algorithm into two steps, described in Section 3.1 and Section 3.2, to address the challenges outlined
above. An optional final step, illustrated in Figure 2 and outlined in Appendix E, demonstrates the
extension of PARADE to generate polyhedral examples.

3.1 COMPUTING AN OVERAPPROXIMATION REGION

In the first step, we compute an overapproximation hyperbox O by fitting a hyperbox around samples
obtained fromA. O is represented as a dashed blue rectangle in Figure 1. Intuitively, we use O to
restrict the search space for adversarial regions to a part of the input space thatA can attack.
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Figure 1: Overview of PARADE. The green triangle denoted T represents the ground truth adversarial
region and the red crosses represent the attacks obtained by A. The dashed blue and violet dotted
rectangles denoted O and U , represent the fitted overapproximation and underapproximation boxes,
respectively. The solid black lines represent hyperplanes generated by the verification procedure,
while their dash-dotted counterparts represent the hyperplanes after bias-adjustment. The arrows
going out of the hyperplanes represent the direction of their corresponding half-spaces.

3.2 COMPUTING AN UNDERAPPROXIMATION REGION

In the second step, we compute the robust adversarial example as a hyperbox U , represented as a
dotted violet rectangle in Figure 1. We will refer to U as underapproximation hyperbox to distinguish
it from the polyhedral robust example P generated in Appendix E. U is obtained by iteratively
shrinking O until arriving at a provably adversarial region. We denote the hyperbox created at
iteration i of the shrinking process with Ui, where U0 = O. At each iteration i, we compute the
certification objective Li−1(x) of the region Ui−1 computed in the previous iteration. If the objective
is proven to be positive, we assign U to Ui−1, as in Step 4 in Figure 1, and return. Otherwise, we solve
an optimization problem, optimizing a surrogate for the volume of Ui ⊆ Ui−1 under the constraint that
minx∈Ui L

i−1(x) ≥ −pi−1, for a chosen bound pi−1 ≥ 0. We describe the optimization problem
involved in the shrinking procedure in the next paragraph. In Section 4, we will present and motivate
our choice of pi−1. In Appendix D.2, we further discuss a sufficient condition under which the overall
procedure for generating U is guaranteed to converge and why this condition often holds in practice.

An important property of our choice of pi−1 is that it becomes smaller over time and thus forces the
certification objective to increase over time until it becomes positive. We note that optimizing L(x)
this way is simpler than directly optimizing for U by differentiating through the convex relaxation of
the network. In particular, our method does not require propagating a gradient through the convex
relaxation of the network and the convex relaxation is updated only once per iteration. Additionally,
it allows PARADE to work with convex relaxation procedures that are not differentiable, such as the
DeepG method employed in this paper. The resulting hyperbox U is a provable adversarial region.

Shrinking Ui−1. There are multiple ways to shrink Ui−1 so that the condition minx∈Ui L
i−1(x) ≥

−pi−1 is satisfied. We make the greedy choice to shrink Ui−1 in a way that maximizes a proxy for the
volume of the new box Ui. We note this may not be the globally optimal choice across all iterations
of the algorithm, however, and that even achieving local optimality in terms of volume of Ui is a hard
problem as it is non-convex in high dimensions.

One possible solution to the shrinking problem is to use a scheme that we call uniform shrinking,
where all lower bounds [li−1]j and upper bounds [ui−1]j in each dimension j of the hyperbox Ui−1
are changed by the same amount. The optimal amount for this uniform shrinking scheme can then
be selected using a binary search. While this gives an efficient shrinking algorithm, in practice
we observe that uniform shrinking produces small regions. This is expected, as it may force all
dimensions of the hyperbox to be shrunk by a large amount even though it might be enough to shrink
only along some subset of the dimensions.

In contrast, our shrinking scheme adjusts each [li−1]j and [ui−1]j individually. While this shrinking
scheme is more powerful, optimizing the size of Ui with respect to its lower and upper bounds [li]j
and [ui]j becomes more complex. We approach the problem differently in the high dimensional input
setting related to L∞ perturbations and the low dimensional setting related to geometric changes.

Shrinking for L∞ Transformations. For the high-dimensional setting of L∞ pixel transformations,
we maximize

∑n0

j=1[wi]j , where [wi]j = [ui]j − [li]j denotes the width of the jth dimension of Ui.
The linear objective allows for solutions where a small number of dimensions are shrunk to 0 width
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in favor of allowing most input dimensions to retain a big width. As a result, in our computed region
Ui there are few pixels that can only take a single value while most other pixels can take a big range
of values. Since,

∑n0

i=j [w
i]j is a linear function of [li−1]j and [ui−1]j , the optimization can be posed

as a Linear Program (LP) (Schrijver, 1998) and be efficiently solved with an LP solver to obtain
optimal values for [ui]j and [li]j w.r.t the objective, as we show in Appendix B.2.

Shrinking for Geometric Transformations. As discussed in Section 2.2, we generate our provably
robust examples to geometric transformations in the low-dimensional geometric parameter space.
Therefore, the resulting region Ui is also low-dimensional. We found that maximizing the logarithm
of the volume of Ui is more effective in this setting, as this objective encourages roughly equally-sized
ranges for the dimensions of Ui. We solve the optimization problem using PGD, which can lead to
merely locally-optimal solutions for the volume of Ui. We, therefore, rely on multiple initializations
of PGD and choose the best result. Appendix B.3 describes the process in detail.

3.3 PROVABLY ROBUST POLYHEDRAL ADVERSARIAL EXAMPLES

We remark that our provably robust adversarial examples are not restricted to hyperbox shapes.
Appendix E describes an optional final step of PARADE that generates provably robust polyhedral
adversarial examples P from U and O. P is iteratively cut from O, such that P ⊇ U is ensured.
Therefore, P represents a bigger region, but takes additional time to compute. The computation of P ,
requires a V that accumulates imprecision only at activation functions, such as ReLU or sigmoid,
in order to work. This property is violated by DeepG’s handling of the geometric transformations.
For this reason, we only apply it in the L∞-transformation setting. We refer interested readers to
Appendix E for information on how we generate polyhedral adversarial examples.

4 PARADE: PROVABLY ROBUST ADVERSARIAL EXAMPLES

We now present PARADE in more formal terms. We already discussed how to compute O in
Section 3. We use Algorithm 1 to compute U , which is the output of PARADE. It requires a neural
network f : Rn0 → Rnl with l layers, adversarial target class yt, an overapproximation hyperbox
O, a speed/precision trade-off parameter c ∈ [0, 1], a maximum number of iterations uit, an early
termination threshold t and a certification method V that takes a neural network f , a hyperbox Ui−1
and a target yt and returns a linear certification objective Li−1(x).

Algorithm 1 GENERATE_UNDERAPPROX

1: func GENERATE_UNDERAPPROX( f, O,V, yt, c, uit, t )
2: U0 = O
3: for i ∈ {1, 2, . . . , uit} do
4: Li−1(x), ei−1 =V( f,Ui−1, yt )
5: if ei−1 ≥ 0 then
6: return Ui−1

7: end if
8: pi−1 = −ei−1 · c
9: if pi−1 ≤ t then

10: pi−1 = 0
11: end if
12: if L∞_transformation then
13: Ui = Shrink_LP(Ui−1, L

i−1(x), pi−1 )
14: else
15: Ui = Shrink_PGD(Ui−1, L

i−1(x), pi−1 )
16: end if
17: end for
18: return FailedToConverge
19: end func

As described in Section 3.2, the al-
gorithm generates a sequence of hy-
perboxes U0 ⊇ U1 ⊇ . . . ⊇ Uuit

with U0 = O and returns the first
hyperbox from the sequence proven
to be adversarial by V. At each iter-
ation, the algorithm attempts to cer-
tify the hyperbox from the previous
iteration Ui−1 to be adversarial by
computing the certification error ei−1
(Line 4) and checking if it is positive
(Line 5). If successful, Ui−1 is re-
turned. Otherwise, we use Li−1(x)
generated by our attempt at verifying
Ui−1 (Line 4) and generate the con-
straint minx∈Ui L

i−1(x) ≥ −pi−1
based on a parameter pi−1 ≥ 0. We
note that minx∈Ui L

i−1(x) is a func-
tion of the hyperbox Ui, parametrized
by its lower and upper bounds. In or-

der to shrink Ui−1, we optimize the lower and upper bounds of Ui explicitly, such that the constraint
holds true for the bounds. Next, we specify and motivate our choice of pi−1.

At each iteration i, we use the constraint minx∈Ui L
i−1(x) ≥ −pi−1 to shrink Ui−1 (Line 12 – 16)

by calling either the SHRINK_LP or SHRINK_PGD optimization procedures. SHRINK_LP and
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Table 1: Comparison between different methods for creating adversarial examples robust to intensity
changes. Column ε depicts the preturbation radius used by adversarial algorithm A. Columns #Corr,
#Img, #Reg show the number of correctly classified images, adversarial images and adversarial
regions for the network. For each method columns #VerReg, Time and #Size show the number of
verified regions, average time taken, and number of concrete adversarial examples inside the regions.

BASELINE PARADE BOX PARADE POLY

DATASET MODEL ε #CORR #IMG #REG #VERREG TIME SIZE #VERREG TIME SIZE #VERREG TIME SIZEO

MNIST
8 X 200 0.045 97 22 53 41 272 S 1024 53 114 S 10121 53 1556 S < 10191

CONVSMALL 0.12 100 21 32 31 171 S 10339 32 74 S 10494 32 141 S < 10561

CONVBIG 0.05 98 18 29 15 1933S 109 28 880 S 10137 28 5636 S < 10173

CIFAR10 CONVSMALL 0.006 59 23 44 28 238 S 10360 44 113 S 10486 44 264 S < 10543

CONVBIG 0.008 60 25 36 26 479 S 10380 36 404 S 10573 36 610 S < 10654

SHRINK_PGD are detailed in Appendix B.2 and Appendix B.3, respectively. To enforce progress
of the algorithm, we require the constraint to remove non-zero volume from Ui−1. Let pmax

i−1 be any
upper bound on pi−1, for which if pi−1 exceeds pmax

i−1 the constraint minx∈Ui L
i−1(x) ≥ −pi−1 is

trivially satisfied with Ui = Ui−1. We can show pmax
i−1 = −minx∈Ui−1

Li−1(x) is one such upper
bound, as we have: minx∈Ui L

i−1(x) ≥ minx∈Ui−1 L
i−1(x) = −pmax

i−1 , where the inequality follows
from Ui ⊆ Ui−1. We show the hyperplane Li−1(x) = −pmax

i−1 denoted as Upper in Step 3 in Figure 1.
We note that Upper always touches Ui−1 by construction. Decreasing the value of pi−1, increases
the volume removed from Ui−1, as demonstrated by the other two hyperplanes in Step 3 in Figure 1.
Additionally, we require pi−1 ≥ 0 because any value of pi−1 ≤ 0 creates a provably adversarial
region Ui and choosing pi−1 < 0 generates smaller region Ui than choosing pi−1 = 0. We denote
the hyperplane corresponding to pi−1 = 0 in Figure 1 as Provable. We, thus, use pi−1 ∈ [0, pmax

i−1 ).

We note that while pi−1 = 0 is guaranteed to generate a provable region Ui, it is often too greedy.
This is due to the fact that with an impreciseV, Li−1(x) itself is also imprecise and, therefore a more
precise certification method may certify Ui as adversarial for pi−1 > 0. Further, as the region Ui−1
shrinks, the precision of V increases. Thus, V might be capable of certifying Ui, for pi−1 > 0, since
on the next iteration of the algorithm the more precise certification objective Li(x) will be used for
certifying the robustness of the smaller Ui. We choose pi−1 heuristically, by setting pi−1 = pmax

i−1 · c,
for a chosen parameter c ∈ [0, 1). This is depicted in Line 8 in Algorithm 1. The closer c is to 1, the
bigger the chance that the modified region will not verify, but, also, the bigger the region we produce
and vice versa. Thus, c balances the precision and the speed of convergence of the algorithm. We
empirically verify the effect of c on our regions in Appendix A.1. The hyperplane resulting from
c = 0.65, denoted as Chosen, is shown in Step 3 in Figure 1.

Finally, if at some iteration i, the Upper hyperplane gets closer than a small threshold t to the Provable
hyperplane, that is pi−1 ≤ t, we set pi−1 = 0 to force the algorithm to terminate (Line 10). This
speeds up the convergence of PARADE in the final stages, when the precision loss ofV is not too big.

5 EXPERIMENTAL EVALUATION

We now evaluate the effectiveness of PARADE on realistic networks. We implemented PARADE
in Python and used Tensorflow (Abadi et al., 2015) for generating PGD attacks. We use Gurobi 9.0
(Gurobi Optimization, LLC, 2020) for solving the LP instances. We rely on ERAN (Singh et al.,
2018b) for its DeepPoly and DeepG implementations. We ran all our experiments on a 2.8 GHz 16
core Intel(R) Xeon(R) Gold 6242 processor with 64 GB RAM.

Neural Networks. We use MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky, 2009) based
neural networks. Table 5 in Appendix C.1 shows the sizes and types of the different networks. All
networks in our L∞ experiments, except the CIFAR10 ConvBig, are not adversarially trained. In
our experiments, normally trained networks were more sensitive to geometric perturbations than for
L∞. Therefore, we use DiffAI-trained (Mirman et al., 2018) networks which tend to be less sensitive
against geometric transformations. Our deepest network is the MNIST 8 × 200 fully-connected
network (FFN) which has 8 layers with 200 neurons each and another layer with 10 neurons. Our
largest network is the CIFAR10 ConvBig network with 6 layers and ≈ 62K neurons. This network
is among the largest benchmarks that existing certification methods can handle in a scalable and
precise manner. We compare the methods on the first 100 test images of the datasets, a standard
practice in the certification literature (Balunović et al., 2019; Singh et al., 2019), while filtering the
wrongly-classified ones. For each experiment, we tuned the value of c to balance runtime and size.
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Table 2: Comparison between methods for creating adversarial examples robust to geometric changes.
Columns #Corr, #Img, #Reg show the number of correctly classified images, adversarial images and
adversarial regions for the network. For each method columns #VerReg, Time and #Splits show the
number of verified regions, average time taken, and number of splits used to verify. Under and Over
show median bounds on the number of concrete adversarial examples inside the regions.

BASELINE PARADE

DATASET TRANSFORM #CORR #IMG #REG #VERREG TIME #SPLITS #VERREG TIME #SPLITS UNDER OVER

MNIST
CONVSMALL

R(17) SC(18) SH(0.03) 99 38 54 10 890 S 2X5X2 51 774 S 1X2X1 > 1096 < 10195

SC(20) T(-1.7,1.7,-1.7,1.7) 99 32 56 5 682 S 4X3X3 51 521 S 2X1X1 > 1071 < 10160

SC(20) R(13) B(10, 0.05) 99 33 48 2 420 S 3X2X2X2 40 370 S 2X1X1X1 > 1070 < 10455

MNIST
CONVBIG

R(10) SC(15) SH(0.03) 95 40 50 9 812 S 2X4X2 44 835 S 1X2X1 > 1077 < 10205

SC(20) T(0,1,0,1) 95 34 46 2 435 S 4X2X2 42 441 S 2X1X1 > 1064 < 10174

SC(15) R(9) B(5, 0.05) 95 39 52 2 801 S 3X2X2X2 46 537 S 2X1X1X1 > 10119 < 10545

CIFAR
CONVSMALL

R(2.5) SC(10) SH(0.02) 53 24 29 1 1829 S 5X2X2 29 1369 S 2X1X1 > 10599 < 101173

SC(10) T(0,1,0,1) 53 28 32 1 1489 S 4X3X3 32 954 S 2X1X1 > 1066 < 10174

SC(5) R(8) B(1, 0.01) 53 21 25 1 2189 S 5X2X2X2 21 1481 S 2X1X1X1 > 10513 < 102187

5.1 ADVERSARIAL EXAMPLES ROBUST TO INTENSITY CHANGES

Table 1 summarizes our results on generating examples robust to intensity changes, whose precise
definition is in Appendix B.1. Further, Appendix F.2 shows images of the examples obtained in our
experiment. We compare the uniform shrinking described in Section 3, used as a baseline, against
the PARADE variants for generating robust hyperbox and polyhedral adversarial examples. In all
experiments, we compute O using examples collected within an L∞ ball around a test image with
the radius ε specified in Table 1. The values of ε are chosen such that the attack has a non-trivial
probability (> 0 but < 1) of success. Additional details about the experimental setup are given in
Appendix C.2.

For the hyperbox adversarial examples obtained by both PARADE and the baseline, we calculate the
size of the example in terms of the number of concrete adversarial examples it contains and we report
the median of all regions under the Size columns in Table 1. For the polyhedral adversarial examples,
we report the median number of concrete adversarial examples contained within an overapproximated
hyperbox around the polyhedral region in the SizeO column. We note that our hyperbox regions are
contained within our polyhedral regions by construction and, thus, the size of the hyperbox regions
acts as an underapproximation of the size of our polyhedral regions. We also report the average
runtime of all algorithms on the attackable regions.

We note that for MNIST ConvBig and 8×200, the regions obtained forO produced huge certification
error > 1000, which prevented our underapproximation algorithm U to converge on these networks.
To alleviate the problem, we used uniform shrinking to lower the error to under 100 first. We then
used the obtained box in place of O. We conjecture the reason for this issue is the huge amount of
imprecision accumulated in the networks due to their depth and width and note that the uniform
shrinking on these networks alone performs worse. For each network, in Table 1, we report the
number of distinct pairs of an image and an adversarial target on whichA succeeds (column #Reg), as
well as the number of unique images on whichA succeeds (column #Img). We note that #Reg > #Img.
We further report the number of test images that are correctly classified by the networks (column
#Corr). The table details the number of regions on which the different methods succeed (column
#VerReg), that is, they find a robust adversarial example containing > 1000 concrete adversarial
examples. As can be seen in Table 1, PARADE Box creates symbolic regions that consistently
contain more concrete adversarial examples (up to 10573 images on CIFAR10 ConvBig) than the
baseline while being faster. PARADE also succeeds more often, failing only for a single region due
to the corresponding hyperbox O also containing < 1000 concrete examples versus 53 failures for
the baseline. Overall, our method, unlike the baselines, generates robust examples containing large
number of examples in almost all cases in which the image is attackable, in a few minutes.

5.2 ADVERSARIAL EXAMPLES ROBUST TO GEOMETRIC CHANGES

Next, we demonstrate the results of our algorithm for generating examples robust to geometric
transformations, whose precise definition is given in Appendix B.1. Here, PARADE relies on DeepG
for robustness certification, as detailed in Section 2. To increase its precision, DeepG selectively
employs input space splitting, where each split is verified individually. This strategy is effective due
to the low dimensionality of the input space (3 to 4 geometric parameters in our experiments). To
this end, we uniformly split our method’s initial region O, instead, where all splits are individually
shrunken and their sizes are summed. We compare PARADE against a baseline based on a more
aggressive uniform splitting of O that does not use our shrinking procedure. Since the cost and
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Table 3: The robustness of different examples to L2 smoothing defenses.
MNIST CIFAR

METHOD 8X200 CONVSMALL CONVBIG CONVSMALL CONVBIG

BASELINE 0.55 0.38 0.59 0.53 0.26
PARADE 1.00 1.00 1.00 1.00 1.00
INDIVIDUAL ATTACKS MEAN 0.29 0.16 0.18 0.48 0.25
INDIVIDUAL ATTACKS 95% PERCENTILE 0.53 0.44 0.51 0.61 0.37

precision of verification increases with the number of splits, to allow for fair comparison we select
the number of baseline splits, so the time taken by the baseline is similar or more than for PARADE.

Table 2 summarizes the results for PARADE and the baseline on the MNIST and CIFAR10 datasets.
Further, Appendix F.3 shows visualizations of the adversarial examples obtained in the experiment.
The Transform column in Table 2 represents the set of common geometric transformations on the
images. Here, R(x) signifies a rotation of up to ±x degrees; Sc(x), scaling of up to ±x%; Sh(m),
shearing with a factor up to ±m%; B(γ, β), changes in contrast between ±γ% and brightness
between ±β%; and T (xl, xr, yd, yu), translation of up to xl pixels left, xr pixels right, yd pixels
down and yu pixels up. The selected combinations of transformations contain ≤ 4 parameters, as
is standard for assessing adversarial robustness against geometrical perturbations (Balunović et al.,
2019). Unlike DeepG, we chose only combinations of ≥ 3 parameters, as they are more challenging.
The chosen combinations ensure that all transformations from DeepG are present. Similar to L∞, we
chose the parameter bounds such that the attack algorithm has a non-trivial probability of success.
Additional details about the experimental setup are given in Appendix C.3.

We note that in this setting PARADE creates robust regions in the geometric parameter space, however
since we are interested in the number of concrete adversarial images possible within our computed
regions, we use DeepG to compute a polyhedron overapproximating the values of the pixels inside the
region. For each polyhedron, we compute underapproximation and overapproximation hyperboxes,
resulting in a lower and an upper bound on the number of concrete examples within our computed
regions. The underapproximation hyperbox is computed as in Gopinath et al. (2019) and the
overapproximation is constructed by computing the extreme values of each pixel. The medians of the
bounds are shown in the Over and Under columns in Table 2. For all experiments, the baseline failed
to generate regions with > 1000 examples on most images and, thus, we omit its computed size to
save space. On the few images where it does not, the size generated by PARADE is always more.

We report the number of concrete examples, the number of splits, the average runtime on attackable
regions, and the number of successfully verified regions for both the baseline and PARADE in the
#Splits, Time, and #VerReg columns. Table 2 demonstrates that in a similar or smaller amount of time,
PARADE is capable of generating robust adversarial examples for most regions O, while the baseline
fails for most. Further, our regions are non-trivial as they contain more than 1064 concrete adversarial
attacks. We note that the runtimes for generating robust examples in this setting is higher than in
Table 1. This is due to both the inefficiency of the attack and the time required for the robustness
certification of a single region. Due to the flexibility and the generality of our method, we believe it
can be easily adapted to more efficient attack and certification methods in the future.

5.3 ROBUSTNESS OF ADVERSARIAL EXAMPLES TO RANDOMIZED SMOOTHING

Next, we show that our adversarial examples robust to intensity changes are significantly more
effective against state-of-the-art defenses based on randomized smoothing compared to the concrete
attacks by A generated for our examples, as well as the baseline from Table 1. We note that our
setting is different than Salman et al. (2019) which directly attacks the smoothed classifier. Instead,
we create examples with PARADE on the original network f withA, based on the L2 PGD attack and
evaluate them on g. For all methods, we calculate the quantity Radv for g, introduced in Definition 2,
that measures the adversarial attack strength on g. For PARADE and the baseline we select x̃ in
Definition 2 as the middle point of the underapproximation box projected back to the L2 ball, with
center x and radius the adversarial distance R′. For the concrete attacks, x̃ is simply the attack
itself. We exclude images whose adversarial distance R′ is more than 33% bigger than the certified
radius R of x, as we consider them robust to attacks. We experiment with networks f with the same
architectures as in Table 1. We supply additional details on the experimental setup in Appendix C.4.

In Table 3, we show the ratio between the adversarial strengths Radv of all other methods and
PARADE averaged across the first 100 test images. The last two rows in Table 3 depict the mean and
the 95% percentile of the strength ratio across the attacks generated byA. We note the smaller the
ratio in Table 3 is, the weaker the attacker is with respect to PARADE. We observe that our examples
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produce attacks on the smoothed classifier g with average strength ranging from 2× to 6× larger
compared to the alternatives. We conjecture, this is caused by our examples being chosen such that
the regions around them have comparatively higher concrete example density. We note the uniform
baseline also largely performs better than the mean individual attack, further supporting our claim.

5.4 COMPARISON WITH EMPIRICALLY ROBUST EXAMPLES

We compare our provably robust adversarial examples to empirically robust adversarial exam-
ples (Athalye et al., 2018) – large input regions, defined by a set of perturbations of an image, that
are empirically verified to be adversarial. The empirical verification is based on calculating the
expectation over transformations (EoT) of the obtained region defined in Athalye et al. (2018). We
consider a region to be an empirically robust adversarial example if it has an EoT ≥ 90%. We
demonstrate that EoT is a limited measure, as it is not uniform. That is, empirically robust adversarial
examples can exhibit high EoT - e.g 95%, while specially chosen subregions incur very low EoT
scores. In Appendix C.5, we discuss our extension to Athalye et al. (2018) used in this experiment.

We execute the experiment on the first MNIST ConvBig transformation in Table 2. We note that the
algorithm from Athalye et al. (2018) relies on sampling and does not scale to high dimensional L∞
perturbations. The algorithm produces 24 different regions, significantly less than our 44 provable
regions. The 24 empirically robust adversarial examples produced achieve average EoT of 95.5%.
To demonstrate the non-uniformness of the empirical robustness, for each region, we considered a
subregion of the example, with dimensions of size 10% of the original example, placed at the corner
of the example closest to the original unperturbed image. We calculated the EoT of these subregions
and found that 14/24 regions had an EoT of < 50%, with 9 having an EoT of 0%.

This demonstrates that the fundamental assumption that the EoT of a region is roughly uniform
throughout does not hold and instead it is possible and even common in practice that a significant
part of an empirically robust example is much less robust than the remaining region. Further, this
often happens close to the original input image, thus providing the misleading impression that an
empirically robust adversarial example is a much stronger adversarial attack than it actually is. This
misleading behaviour suggests that provably robust adversarial examples, which cannot exhibit such
behaviour by construction, provide a more reliable method of constructing adversarial examples
invariant to intensity changes and geometric transformations. We note that a limiting factor to the
practical adoption of our method remains scalability to real world networks and datasets such as
ImageNet, due to the reliance on certification techniques that do not scale there yet. We note that our
method is general and efficient enough to directly benefit from any future advancement in verification.

5.5 COMPARISON WITH LIU ET AL. (2019)

In this section, we extend the method proposed in Liu et al. (2019) to generate provably robust
hyperbox regions against pixel intensity changes and compare the resulting algorithm to PARADE.
As the code provided in Liu et al. (2019) only applies to fully connected networks, we applied
both their approach and PARADE on a new 8x200 MNIST fully connected network with the same
architecture as the one used in Table 1. To facilitate simpler comparison, the network was trained using
the code provided in Liu et al. (2019). We initialized both methods with the same overapproximation
hyperbox O and compare the shrinking phase. With similar runtime (≈ 200s), out of 84 possible
regions, PARADE and Liu et al. (2019) created 84 and 76 regions with median underapproximation
volume of 10184 and 1046, respectively. We point out that our method is capable of creating polyhedral
regions and handle the geometric perturbations, while Liu et al. (2019) cannot.

6 CONCLUSION

We introduced the concept of provably robust adversarial examples – large input regions guaranteed
to be adversarial to a set of perturbations. We presented a scalable method called PARADE for
synthesizing such examples, generic enough to handle multiple perturbations types including pixel
intensity and geometric transformations. We demonstrated the effectiveness of PARADE by showing
it creates more and larger regions than baselines, in similar or less time, including regions containing
≈ 10573 adversarial examples for pixel intensity and ≈ 10599 for geometric transformations.
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Table 4: Comparison between regions created with different values for the parameter c introduced in
Algorithm 1 on the MNIST ConvBig Sc(20) T(0,1,0,1) experiment. Columns Under and Over show
the median bounds on the number of concrete adversarial examples contained within the regions. The
columns Time and #It depict the average time and number of iterations taken by Algorithm 1.

C #VERREG UNDER OVER TIME #IT

0.45 25 > 1059 < 10167 264 S 1.6
0.55 36 > 1052 < 10162 333 S 2.9
0.65 42 > 1064 < 10174 441 S 4.5
0.75 44 > 1067 < 10181 585 S 6.7
0.85 44 > 10113 < 10199 871 S 10.6

A ADDITIONAL EXPERIMENTS

A.1 DEPENDENCE OF PARADE ON THE VALUE OF c

In this section, we examine the effect of the parameter c, introduced in Algorithm 1, on the size of our
provably robust adversarial examples. We show how the number of concrete adversarial examples
contained in our regions robust to geometric transformations vary, as a function of c. Table 4 depicts
the results on the MNIST ConvBig scaling and translation experiment, originally depicted in Table 2.
The columns Time and #It depict the average time and number of iterations taken by Algorithm 1
in order to converge. Similarly to Table 2, the #VerReg column depicts the number of verified
regions. The results correspond to our intuition for c: the higher the value of c is, the greater the
volume produced by our method and vice versa. Further, we observe that for higher values of c, our
algorithm succeeds to produce significantly more verified regions. We chose the value c = 0.65 for
the experiments in Table 2 in the main body of the paper, as it represents a good trade-off between
the speed and the number of regions recovered, as shown in Table 4.

B FURTHER DETAILS ON OUR ALGORITHM DESIGN

B.1 ADVERSARIAL EXAMPLE DEFINITIONS

In this section, we provide precise definitions of our adversarial examples robust to pixel intensity
changes and geometric changes, used in Table 1 and Table 2.

B.1.1 ADVERSARIAL EXAMPLES ROBUST TO L∞ PIXEL INTENSITY CHANGES

Definition 4. For an image x ∈ Rn0 , a neural network f , adversarial budget ε ∈ R, and adversarial
class yt 6= f(x), a convex region I ⊆ Rn0 is called an adversarial example around x robust to pixel
intensity changes, iff for all points x̄ ∈ I it is satisfied that ‖x̄− x‖∞ ≤ ε and yt = f(x̄).

B.1.2 ADVERSARIAL EXAMPLES ROBUST TO GEOMETRIC CHANGES

Definition 5. Let T : Rn0 × Rt → Rn0 be a geometric perturbation that takes an image x ∈ Rn0

and a vector p ∈ Rt of geometric parameters, bounded within the hyperbox [pl, pu], given by the
lower and upper bound vectors pl, pu ∈ Rt, and produces geometrically transformed version of the
image, denoted x̄, that should be classified the same as x. For an image x ∈ Rn0 , a neural network
f , and adversarial class yt 6= f(x), a convex region I ⊆ Rt is called an adversarial example around
x robust to the geometric perturbation T , iff for all points p̄ ∈ I it is satisfied that p̄ ∈ [pl, pu] and
yt = f(T (x, p̄)).

We note that this definition allows for T to be a complex composition of simple geometric transfor-
mations such as rotations and translations, as it is the case in Table 2. In this case, p is a vector of the
parameters of all transformations. We further note that while Definition 5 defines I in terms of the
geometric parameters p, one can also look at I , as the region in image space obtained by propagating
all possible p̄ through T . DeepG Balunović et al. (2019) overapproximates the later region in image
space with a polyhedra to produce the polyhedral region Ī in image space. In Table 2, we report
the underapproximation and overapproximation sizes of Ī in terms of number of concrete images it
contains.
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Algorithm 2 PGD_PROJECT

1: func PGD_PROJECT( li, ui, li−1, ui−1, hp, a, b, pi−1 )
2: li = Clip( li, li−1, ui−1 )
3: ui = Clip(ui, li, ui−1 )
4: val = hp( li, ui )− b
5: if val ≥ −pi−1 then
6: return li, ui

7: end if
8: [li]a>0 = − [li]a>0·(pi−1−b)

val

9: [ui]a<0 = − [ui]a<0·(pi−1−b)

val
10: li = Clip( li, li−1, ui−1 )
11: ui = Clip(ui, li, ui−1 ) RETURN li, ui

12: end func

B.2 DETAILED DESCRIPTION OF SHRINK_LP

In this section we describe in detail the function SHRINK_LP, used to shrink Ui−1 to Ui when
generating examples robust to pixel intensity changes, based on the parameters Li−1(x) and pi−1.
SHRINK_LP defines two sets of LP variables for the lower bounds li ∈ Rn0 and the upper bounds
ui ∈ Rn0 of Ui. As described in Section 3.2, the LP optimizes the sum of widths of the dimensions
of Ui, i.e.,

∑n0

j=1([ui]j − [li]j).

Recall that Li−1(x) is a linear function of x and, thus, can be represented as Li−1(x) = a · x+ b. As
described in Section 3.2, the LP we define needs to enforce minx∈Ui L

i−1(x) ≥ −pi−1. We rewrite
minx∈Ui L

i−1(x) as:

hp( li, ui ) = max(0, a) · li + min(0, a) · ui + b.

Since hp(li, ui) is a linear function of li and ui, we add the constraint hp(li, ui) ≥ −pi−1 to the LP.
This results in the LP problem:

l
i
, ui = argmax

∑n0

j=1([ui]j − [li]j)

s.t. hp(li, ui) ≥ −pi−1
[li−1]j ≤ [li]j ≤ [ui]j ≤ [ui−1]j for all j.

where li−1, ui−1 ∈ Rn0 represent the lower and upper bounds of Ui−1, the second constraint enforces
Ui ⊆ Ui−1 and l

i
, ui ∈ Rn0 denotes the LP solution. Finally, SHRINK_LP outputs the hyperbox

Ui = [l
i
, ui].

B.3 DETAILED DESCRIPTION OF SHRINK_PGD

In this section we describe in detail the function SHRINK_PGD, used to shrink Ui−1 to Ui for
generating regions robust to geometric transformations, based on the parameters Li−1(x) and pi−1.

SHRINK_PGD relies on PGD to optimize the log volume of Ui with respect to its lower and upper
bounds, as described in Section 3.2. The optimization problem can be written as:

l
i
, ui = argmax

∑n0

j=1 log([ui]j − [li]j)

s.t. hp(li, ui) ≥ −pi−1
[li−1]j ≤ [li]j ≤ [ui]j ≤ [ui−1]j for all j,

(1)

where we use the same notations as in the previous section. Since we rely on PGD, we need to define
how to project values of li and ui that violate the constraints in Equation 1.

Algorithm 2 demonstrates the heuristic we use for the projection. Algorithm 2 slightly abuses the
notations above, and treats li and ui, as the concrete values of li and ui to be projected, instead of
treating them as variables.

It first clips li and ui to enforce Ui ⊆ Ui−1 (Line 2—3). It then checks whether hp(li, ui) ≥ −pi−1 is
satisfied and if so returns (Line 4—7). Otherwise, all elements of li corresponding to positive values
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Table 5: Neural networks used in our experiments. For each, we list the number of layers and neurons,
as well as, their type (fully connected (FFN) or convolutional (Conv)).

DATASET MODEL TYPE NEURONS LAYERS

MNIST
8× 200 FFN 1,610 9

CONVSMALL CONV 3,604 3
CONVBIG CONV 48,064 6

CIFAR10 CONVSMALL CONV 4,852 3
CONVBIG CONV 62,464 6

of a, [li]a>0, and all elements of ui corresponding to negative values of a, [ui]a<0, are adjusted by
a factor of −pi−1−b

val , where val = hp(li, ui)− b. This enforces hp(li, ui) ≥ −pi−1 (Line 8—9). In
rare cases the second projection can result in values of li and ui violating Ui ⊆ Ui−1. Our solution is
to clip again (Line 10—11).

After the last clipping operation, in the rare case mentioned above the returned values for li and ui
violate hp(li, ui) ≥ −pi−1. However, we did not find this to be a problem in practice, as it occurs
rarely. Further, one can view such violations, as choosing a different value for c in Algorithm 1,
resulting in different value for −pi−1.

C FURTHER DETAILS ON EXPERIMENTAL SETUP

C.1 NETWORKS

Table 5 shows the architectures of the networks on which we evaluate.

C.2 FURTHER DETAILS ON THE EXPERIMENTAL SETUP IN SECTION 5.1

In this section, we provide further details on the experimental setup in Section 5.1. In this experiment,
for creating O we use 2500 adversarial examples each from the Frank-Wolfe optimization algorithm
(Frank & Wolfe, 1956) and PGD with step size 0.1ε and 0.01ε, respectively. For the PGD examples,
we use output diversification (Tashiro et al., 2020) with 5 iterations. Throughout the experiment, we
set c = 0.99 and multiply it by a factor of 0.99 at each iteration of Algorithm 1.

C.3 FURTHER DETAILS ON THE EXPERIMENTAL SETUP IN SECTION 5.2

In this section, we provide further details on the experimental setup in Section 5.2. For all experiments
in Table 2, we compute O using random sampling attacks which are the state-of-the-art for geometric
transformations (Engstrom et al., 2019). For the 3 dimensional experiments, we rely on 15000 random
samples, while for the 4D configurations we use 50000. We use c = 0.65 for all experiments, except
for the 4 dimensional CIFAR10 experiment, where we use c = 0.75 to increase the precision of
PARADE. For the MNIST experiments in Table 2, we execute SHRINK_PGD with 50 initialization
and 200 PGD steps of size 5× 10−5. For CIFAR10 experiments, we use 500 initialization and 50
PGD steps instead.

C.4 DETAILED DESCRIPTION OF EXPERIMENTAL SETUP IN SECTION 5.3

Neural networks In Section 5.3, we experiment with networks f with the same architectures as in
Table 5. Following the standard practices for training networks used alongside smoothing, outlined in
Cohen et al. (2019), we trained the networks on images with added Gaussian noise with a standard
deviation of 0.15.

Selecting α and σ In the experiments in Section 5.3, we need to select α and σ to compute Radv
using Definition 2. For all methods we use α = 0.005, as suggested by Cohen et al. (2019). We
select the σ value that produces the biggest adversarial strength Radv for our method and use it for
computing Radv for all methods. We note that tuning σ for the individual attacks generated by A is
very computationally intensive and therefore we avoid it.
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Selecting R′ In this paragraph, we detail how the adversarial distance R′ is chosen. We choose it
heuristically, for each individual x. For each x, we select R′ by searching for the smallest adversarial
distance on f , where at least 10% of 500 attacks withA on f succeed but exclude images x, whose
R′ is more than 33% bigger than the certified radius R of g. This procedure allows us to select the
adversarial distance R′, that is neither too small, nor too big, which is important to avoid making the
problem trivial, as outlined in Section 2.3. In particular, for this choice of R′ the smoothed classifier
g is likely to be attackable, since f contains enough attacks for a high density input adversarial region
to exist. On top of that, the exclusion of images x with too big adversarial distance R′ experimentally
allowed us to exclude trivial attacks, for which x is attackable for most classes on g.

C.5 DETAILED DESCRIPTION OF ADAPTED EOT USED IN EXPERIMENTS IN SECTION 5.4

In this section, we discuss the extension of Athalye et al. (2018) we use to produce the empirically
robust adversarial examples for the experiment in Section 5.4. We define an optimization procedure,
where we seek a hyperbox geometric region Uemp ⊆ Rn0 , defined in terms of the lower bound
lemp ∈ Rn0 and the upper bound uemp ∈ Rn0 vectors. We seek to find Uemp within the set of allowed
geometric transformations I ⊆ Rn0 , such that Uemp is an empirically robust adversarial example
with maximal log volume, and high EoT. Similarly to Athalye et al. (2018) EoT is calculated on set
of samples from Uemp. We rely on differentiable bilinear interpolation (Jaderberg et al., 2015) to
allow gradients to flow through the geometric transformations we consider and optimize lemp and
uemp using PGD.

D ANALYSIS OF ALGORITHM 1

In this section, we analyze the properties of PARADE.

D.1 SOUNDNESS OF ALGORITHM 1

Theorem 1. If Algorithm 1 converges, it returns a provably robust region U .

Proof. Algorithm 1 can only complete its execution using Line 6 or Line 18. Since we assume the
algorithm successfully converged, returning at Line 18 is impossible. Therefore, the algorithm must
have returned the region Ui−1 at Line 6 and, therefore, ei−1 must be non-negative (otherwise we
would not have taken the right branch at Line 5). However, ei−1 is obtained by executing the verifier
V on Ui−1 at Line 4. By the definition of our verifier V, it returns non-negative ei−1 only if Ui−1 is
provably robust. This finishes our proof.

D.2 CONVERGENCE OF ALGORITHM 1

In this subsection, we demonstrate that Algorithm 1 converges exponentially fast under a suitable
assumption for the monotonicity of the neural network certification method V. To this end, we
introduce the following definition of monotonicity of V, that we will leverage for the rest of the
subsection.

Definition 6. Let V(f, I, yt) be a neural network certification method that returns the certification
objective LI(x) for an input region I and target yt on the neural network f . We call V objective-
monotonic if for all f and input regions X and Y with X ⊆ Y the property:

min
x∈X

LX (x) ≥ min
x∈X

LY(x)

is satisfied.

Intuitively, Definition 6 states that a verifier is objective-monotonic if the certification objective
produced for a smaller region X is always higher (closer to verification) than the certification
objective produced for a bigger region Y , when both of them are optimized over the smaller region
X .

We note that most practical neural network certification methods, including DeepPoly, are not
objective-monotonic — that is one can find triples f , X and Y violating the definitions above.
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However, in practice we find that for all practical neural network certification methods the definitions
hold for most triples. This is expected, as for violating triples we know that the overapproximation
generated for X needs to be larger than the one generated for Y . Intuitively, if that was the case for a
large portion of the triples, the certification method will not be tight.

Next, we leverage this defition to demonstrate that our algorithm converges exponentially fast under
the idealized condition that the certification method used is objective-monotonic.
Theorem 2. For objective-monotonic certification methods V in Algorithm 1, the certification error
at the i-th iteration ei converges exponentially fast towards 0 (towards certification).

Proof. To prove Theorem 2, we will leverage the definition of objective-monotonic certification
method above to bind the certification error between consequitive iterations of Algorithm 1. We will
then use the bound to derive a bound on the certification error ei in terms of the intial certification
error e0. Finally, we will use the bound to show the exponential convergence.

Since Ui ⊆ Ui−1, we can apply Definition 6 to get the inequality:

min
x∈Ui

Li(x) ≥ min
x∈Ui

Li−1(x).

By construction of Ui, we further know:
min
x∈Ui

Li−1(x) ≥ −pi−1 = ei−1 · c.

Combining both inequalities and noting that ei = minx∈Ui L
i(x), we get:

ei ≥ ei−1 · c. (2)
Since Equation 2 holds for all i, we can apply it recursively on its right-hand side to get:

ei ≥ e0 · ci. (3)
We recall that ei is negative unless Ui verifies. Therefore by Equation 3, ei converges exponentially
fast towards 0, regardless of e0.

E PROVABLY ROBUST POLYHEDRA ADVERSARIAL EXAMPLES

In this section, we show an extension to PARADE that allows us to generate provably robust
adversarial examples represented as a general polyhedron shapes P in the neural network input space.
The approach relies on the underapproximation and overapproximation boxes U and O, presented in
the main body, to guide the search of P and is demonstrated in Figure 2. The results of the method
presented in this section were shown in Table 1 in Section 5.1.

E.1 BACKGROUND

Our method for generating polyhedral robust adversarial examples requires more restricted form for
V, compared to the algorithms presented in the main body. In this subsection, we discuss the relevant
background and the additional requirements we pose on V and introduce the relevant notation for the
rest of this section.

For this section, we will focus on ReLU-based neural networks. We note that our concepts can easily
be extended to networks with other activation functions such as sigmoid or tanh. We consider neural
network with l layers f1, . . . , fl. The first l − 1 layers are of the form fi(x) = max(0, Ai · x + bi)
for i ∈ {1, . . . , l − 1} and the final layer is of the form fl(x) = Al · x + bl. The neural network f
is the composition of all layers: f = fl ◦ · · · ◦ f1. Let ni be the number of neurons in layer i. If
zai,j is the input to the j-th ReLU activation in layer i and zri,j is the corresponding ReLU output,
we can represent the neural network as the following system of constraints: For i ∈ {1, . . . , l} and
j ∈ {1, . . . , ni},

zai,j = [bi]j +

ni−1∑
k=1

[Ai]j,k · z
r
i−1,k,

zri,j = max(0, zai,j).
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Figure 2: Overview of our method for generating provably robust polyhedral adversarial examples.
The green triangle denoted T represents the ground truth adversarial region. The dashed blue
rectangle denoted O and the violet dotted rectangle denoted U represent the fitted overapproximation
and underapproximation boxes, respectively. The solid black lines represent hyperplanes generated
by the certification procedure V, while their dash-dotted counterparts represent the hyperplanes after
bias-adjustment. The small arrows going out of the hyperplanes in Step 1 and Step 2 represent the
direction which is retained by the hyperplanes’ corresponding half-spaces. The output polyhedral
region denoted P is shown in red in Step 3.
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Figure 3: Convex approximations for the ReLU function: (a) shows the triangle approximation
Ehlers (2017) with the minimum area in the input-output plane, (b) and (c) show the two convex
approximations used in DeepPoly Singh et al. (2019). In the figure, λi,j = ui,j/(ui,j − li,j) and
µi,j = −li,j · ui,j/(ui,j − li,j). The figure is taken from Singh et al. (2019).

Here, zr0,j describes the j-th of n0 input activations. We call the two types of constraints affine
constraints and ReLU constraints, respectively. We additionally constrain our inputs zr0 to be points
inside of a polyhedron P ⊆ Rn0 . An adversarial class yt has the highest score on all inputs in P
if min(zal,yt − z

a
l,y) > 0 with respect to all constraints for all y ∈ {1, . . . , nl} \ {yt}. The goal in

section will be to find a large polyhedron P for which we can verify that this is true.

Linear approximations of ReLU As reasoning about neural network constraints directly is often
intractable, given bounds li,j ≤ zai,j ≤ ui,j , the triangle approximation (Ehlers, 2017) relaxes the
ReLU constraints such that all involved inequalities are linear:

zri,j ≥ zai,j , zri,j ≥ 0,

zri,j ≤ λi,j · zai,j + µi,j .

Figure 3 (a) visualizes the triangle approximation. Here, λi,j = ui,j/(ui,j − li,j) and µi,j =
−li,j · ui,j/(ui,j − li,j) are selected such that this set of constraints describes the convex hull of the
ReLU constraints in the (zai,j , z

r
i,j)-plane and the given bounds.

The DeepPoly approximation (Singh et al., 2019) further relaxes the triangle approximation by
keeping only one of the lower bounds on each variable zri,j . It picks either zri,j ≥ zai,j or zri,j ≥ 0,
whichever minimizes the area of the resulting triangle in the (zai,j , z

r
i,j)-plane. Figure 3 (b) and (c)

show the two convex relaxations used in DeepPoly.
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We can obtain li,j and ui,j by optimizing each component of zai,j according to the previously
determined constraints for layers 0, . . . , i. We note that in the special case where ui,j ≤ 0 or li,j ≥ 0,
no approximation is needed and zri,j is directly assigned 0 or zai,j , respectively. Neurons for which
the approximation is needed are called undecided.

Computing neuron bounds Most verification algorithms based on convex relaxation start with a
chosen input region for which they calculate the bounds li,j and ui,j of zai,j in layer-by-layer fashion,
where the constraints for previous layers are used to derive the bounds for layer i. In addition to
DeepPoly and the triangle approximation, this is also true for other commonly used convex relaxation
algorithms such as CROWN (Zhang et al., 2018) and DeepZ (Singh et al., 2018a).

Next, we briefly describe how the bounds are computed for a particular layer in DeepPoly. We focus
on DeepPoly since it is the particular convex relaxation algorithm we chose to employ in this section.
For all neurons, DeepPoly stores a single linear lower and upper bound inequality. These inequalities
bound the neuron’s value in terms of the values of neurons from previous layers in the network. For
ReLU neurons, these are the inequalities described above. For affine neurons, these are simply the
affine transformations, where the affine equality is converted to a pair of inequalities.

To arrive at the bounds li,j and ui,j of zai,j , DeepPoly repeatedly backsubstitutes variables in the linear
inequalities of zai,j with their corresponding linear inequalities from previous layers. The process
continues until we arrive at linear inequalitiesLi,j(zr0) ≤ zai,j ≤ Ui,j(zr0), withLi,j(x) = ai,j ·x+bi,j
and Ui,j(x) = ai,j · x + bi,j denoting linear functions in terms of input variables x ∈ Rn0 with
coefficients ai,j , ai,j ∈ Rn0 and bi,j , bi,j ∈ R. The final bounds li,j and ui,j are obtained by
optimizing the respective functions Li,j(x) and Ui,j(x) over the input region.

We note that our algorithm does not depend on details of DeepPoly’s backsubstitution algorithm: It
only requires the existence of linear functions Li,j(x) and Ui,j(x) bounding neuron values zai,j in
terms of input activations. This makes it compatible with other popular verification algorithms based
on convex relaxation, such as CROWN (Zhang et al., 2018) and DeepZ (Singh et al., 2018a).

Certification Objective To certify the robustness of an input region, V needs to certify that
min(zal,yt − zal,y) > 0 for all y ∈ {1, . . . , nl} \ {yt}. To calculate lower bounds on those min-
ima, a common trick is to introduce an affine layer that computes the objectives zal,yt − z

a
l,y for

each y. We will refer to this layer as objective layer. To obtain lower bounds on our objectives, we
compute lower bounds of the corresponding neuron activations in the objective layer with the usual
backsubstitution procedure.

For the rest of the section we will denote the backsubstituted linear lower bounds on our objectives
in terms of input activations for a given target yt with Ll+1,y(x) = al+1,y · x + bl+1,y for each y.
Finally, to verify that min(zal,yt − z

a
l,y) > 0, it suffices to show that Ll+1,y(x) > 0 for each point

x in the input region and all y 6= yt. We note that the function denoted Ll+1,y(x) in this section
corresponds to the function denoted Ly(x) in the main body.

E.2 COMPUTING P

The algorithm for computing P is presented in Algorithm 3. It takes as input:

– The neural network f , as described in Section E.1.
– The underapproximation hyperbox U .
– The overapproximation hyperbox O.
– A neural network certification method V( f, Pit−1, i, j ) that takes a neural network f , a

polyhedron Pit−1 at iteration it− 1, the layer number i and the neuron number j and returns
the linear functions Li,j(x) and Ui,j(x) and the corresponding concrete bounds li,j and ui,j
(See Section E.1).

– The adversarial attack’s target class yt.
– The maximum number pit of iterations used to generate the polyhedron P .

The algorithm computes P , such that U ⊆ P ⊆ O is satisfied. We motivate this choice by noting that
we know that U is certifiably robust and it is therefore a lower bound on P . The algorithm generates
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Algorithm 3 GEN_POLY

1: func GEN_POLY( f, U , O,V, yt, pit )
2: P0 = O
3: for it ∈ {1, 2, . . . , pit} do
4: hs o, Ver = Gen_Obj_Planes( f, U , Pit−1,V, yt )
5: hs b = Gen_Bound_Planes( f, U , Pit−1,V )
6: Pit = Add_Planes(Pit−1, hs b ∪ hs o )
7: if Ver then
8: return Pit−1

9: end if
10: end for
11: return FailedToConverge
12: end func

Algorithm 4 GEN_OBJ_PLANES

1: func GEN_OBJ_PLANES( f, U , Pit−1,V, yt )
2: hs o = []
3: Ver = True
4: for y ∈ {1, . . . , nl} \ {yt} do
5: Ll+1,y(x), _, ly, _ = V( f, Pit−1, l + 1, y )
6: if ly ≤ 0 then
7: Ver = False
8: L̃l+1,y(x) = Adjust_Bias(U , Ll+1,y(x) )
9: hs o += [ L̃l+1,y(x) ≥ 0 ]

10: end if
11: end for
12: return hs o, Ver
13: end func

a sequence of polyhedra P0 ⊇ P1 ⊇ . . . ⊇ Pp with P0 = O. At each iteration, it computes two
sets of half-space constraints – hs o(Line 4) and hs b(Line 5), corresponding to the neurons in the
objective and the affine layers of the network. We detail how these constraints are computed in the
next two paragraphs. We add these constraints to the polyhedron from the last iteration Pit−1 to
obtain Pit (Line 6). The algorithm terminates when Pit−1 is certified to be robust (Line 7 – 9) and
Pit−1 is returned. The result of our algorithm is represented by the red region denoted as P in Step 3
in Figure 2. We note that, since P0 = O, P ⊆ O is guaranteed by construction, as each subsequent
iteration of the algorithm shrinks the polyhedron further. However, U ⊆ P depends on the choice of
the half-space constraints.

Generating Certification Objective Constraints Algorithm 4 details the procedure we use to collect
the half-space constraints corresponding to the objective layer of the network. To obtain constraints
from V, we first compute the linear functions Ll+1,y(x) and their respective certification errors
ly for all output classes y ∈ {1, . . . , nl} \ {yt} (Line 5). We know that adding the constraints
Ll+1,y(x) ≥ 0 to our polyhedron Pit−1 will result in a certifiably robust region Pit, however the
region will not obey U ⊆ Pit. Therefore, we instead adjust the bias of constraints, so that the resulting
hyperplanes L̃l+1,y(x) = 0 do not intersect U (Line 8). This process is depicted geometrically in
Step 2 in Figure 2 and will be described in more detail below. All resulting bias-adjusted hyperplanes
are collected in the set hs o (Line 9) and returned. We note that if ly > 0 for some y, the half-spaces
Ll+1,y(x) ≥ 0 are trivial. That is {Ll+1,y(x) ≥ 0} ∩ Pit−1 = Pit−1, and thus they are filtered out of
hs o (Line 6). In addition to detecting the trivial constraints, we use the certification errors ly to check
if Pit−1 is certifiably robust and return the result alongside hs o in Line 11.

Issues Related to Using Only Objective Constraints In our experiments, we found that only adding
bias-adjusted objective constraints leads to slow convergence of our algorithm. In particular, we found
that the first few iterations of the algorithm result in a substantial improvement in the certification
objective. However, after this initial fast progress, we observe that the change in the certification
objective becomes very small. The reason for this is that the generated constraints from consecutive
executions of V are very similar. We conjecture that the underlying reason is that the constraints
no longer change the input shape enough to substantially change the convex approximation of the
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Algorithm 5 GEN_BOUND_PLANES

1: func GEN_BOUND_PLANES( f, U , Pit−1,V )
2: hs b = []
3: for i ∈ {1, 2, . . . , l − 1} do
4: for j ∈ {1, 2, . . . , ni} do
5: Li,j(x), Ui,j(x), li,j , ui,j =V( f, Pit−1, i, j )
6: if li,j ≤ 0 and ui,j ≥ 0 then
7: L̃i,j(x) = Adjust_Bias(U , Li,j(x) )
8: Ũi,j(x) = Adjust_Bias(U , −Ui,j(x) )
9: hs b += [ L̃i,j(x) ≥ 0, Ũi,j(x) ≥ 0 ]

10: end if
11: end for
12: end for
13: return hs b
14: end func

network. This is in contrast to what we observe when computing the underapproximation hyperbox
region U . The difference between the two settings comes from the number of added constraints per
iteration. For U , usually many lower and upper bounds are adjusted each iteration, while the objective
constraints added are much less, especially for the pixel intensity changes experiment, where the
input is very high-dimensional.

Generating Constraints from Affine Layers To facilitate faster convergence, we generate addi-
tional constraints for all undecided neurons in the network. We generate two constraints, one with
respect to the lower bound of the neuron Li,j(x) ≥ 0 and one with respect to the upper bound
Ui,j(x) ≤ 0. Algorithm 5 describes the process. Li,j(x) and Ui,j(x) are computed by V (Line 5)
alongside their concrete bounds li,j and ui,j . The concrete bounds are used to check which neurons
are undecided (Line 6).

The generated constraints have the effect of making the neurons decided, while also enforcing
substantial change in the convex relaxation of the neural network. Note that the newly obtained
constraints are bias-adjusted similar to the objective constraints described above (Line 7–8). We
point out that the bias adjustment described below takes care of the problem that Li,j(x) ≥ 0 and
Ui,j(x) ≤ 0 cannot be simultaneously true. Empirically, these hyperplanes serve an important role
for improving the convergence rate of our algorithm. Algorithm 5 collects them in the set hs b (Line 9)
and returns them to be added to Pit−1.

Hyperplane bias adjustment So far, we have discussed how constraints are generated but not how
we adjust their biases. The bias adjustment algorithm is given in Algorithm 6. The bias adjustment
for a lower bound constraint h(x) ≥ 0 enforces that the intersection of the constraint and the
given underapproximation hyperbox U is U . It does so by computing hmin = min

x∈U
(h(x))(Line 2)

and changing the given constraint to h(x) ≥ hmin (Line 4). The optimization hmin = min
x∈U

(h(x))

is analytically solvable, as demonstrated Section B.2. Note that our algorithm adjusts only the
constraints with negative hmin (Line 3), since constraints with positive hmin already satisfy the
property. The following lemma shows the soundness of our bias-adjustment algorithm:

Lemma 3. The intersection of the bias-adjusted half-space constraint h̃(x) ≥ 0 defined in Algo-
rithm 6 with U is U .

Proof. By the construction of hmin, for all points x ∈ U we have h(x) ≥ hmin. We distinguish two
cases for the value of hmin — non-negative and negative.

If hmin ≥ 0, the bias adjustment badj is assigned to 0 and h̃(x) = h(x). Since h(x) ≥ hmin

for all points x ∈ U , h̃(x) = h(x) ≥ hmin ≥ 0 for all points x ∈ U . Therefore, there does
not exist point in U for which the bias-adjusted half-space constraint h̃(x) ≥ 0 is violated. If
hmin < 0, the bias adjustment badj is assigned to hmin and h̃(x) = h(x) − hmin. Therefore,
h̃(x) = h(x) − hmin ≥ hmin − hmin = 0 for all points x ∈ U . Analogously to the other case,
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Algorithm 6 ADJUST_BIAS

1: func ADJUST_BIAS(U , h(x) )
2: hmin = min

x∈U
(h(x))

3: badj = min( 0, hmin )

4: h̃(x) = h(x)− badj

5: return h̃(x)
6: end func

h̃(x) ≥ 0 is not violated by the points in U . Since in both cases h̃(x) ≥ 0 is not violated by any
points in U , the intersection of the constraint and U is simply U .

The bias adjustment for upper bound constraints h(x) ≥ 0 is achieved by calling Algorithm 6 with
−h(x), as in Line 8 in Algorithm 5.

Adapting DeepPoly to Polyhedral Input Regions Out of the box, DeepPoly only handles cer-
tification of hyperbox input regions. This is because in order to obtain the concrete bounds
li,j = minx∈I Li,j(x) and ui,j = maxx∈I Ui,j(x) for an input region I ⊆ Rn0 it uses the an-
alytical solution of the optimization problems discussed in Section B.2. In order to use DeepPoly
for polyhedral region I, we solve the optimization problem using an Linear Program (LP). This is
computationally expensive – it involves solving two LP instances per neuron. For large networks,
this can be prohibitive.

To alleviate this issue, in the first iteration of Algorithm 3, we remember which neurons are undecided.
The computation of the undecided neurons in the first iteration can be done using regular DeepPoly,
as P0 = O. In future iterations we solve the LP instances only for the undecided neurons, while
using the P0 bounds for the decided neurons. This optimization is sound, since we have Pit ⊆ P0 by
construction. This improves the performance substantially – for most certifiably robust input regions
in ReLU-based networks we have just a few undecided neurons.

Proving that P constraints U and is contained within O In this paragraph, we present a proof for
the desired property of Algorithm 3 that P constraints U and is contained within O.

Theorem 4. For all polyhedral regions P generated by Algorithm 3, U ⊆ P ⊆ O holds.

Proof. To prove P ⊆ O, we leverage the fact that the polyhedra P is constructed from the overap-
proximation boxO by intersecting it with the half-space constraints hbib and hbio. Since all constraints
only reduce the volume of the polyhedra, it follows by induction over the generated half-space
constraints that Pi ⊆ O for all i. Therefore, P ⊆ O.

To prove U ⊆ P , we note that the generated half-space constraints hbib and hbio are chosen such that
hbib ∩ U = U and hbio ∩ U = U for all i (See Lemma 3). By applying this property by induction over
the generated half-space constraints, it follows that U ⊆ Pi for all i. Therefore, U ⊆ P .

F VISUALISATION OF ROBUST ADVERSARIAL EXAMPLES

F.1 DISCUSSION

Figure 4 shows an adversarial region provably robust to intensity changes containing 10284 adversarial
images produced by our method on MNIST ConvBig. The original image is of the digit 5, and
all images in our region are classified as 3 by the network. The colorbar in Figure 4 quantifies the
number of values each pixel can take in our inferred region. The yellow and violet colors represent
the two extremes. The intensity of the yellow-colored pixels can vary the most, thus these pixels
contribute to more adversarial examples. The intensity of the purple-colored varies the least, thus the
adversarial examples in our region are sensitive to the intensity values of these pixels. In our region,
the intensity of most background pixels on the edges of the image can vary a lot, as these are green.
Violet and green color are more evenly distributed among pixels closer to the foreground (part of the
digit "5"). Further, the intensity of several pixels in the foreground can also vary significantly. We
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Figure 4: Adversarial region robust to pixel intensity changes.

note that all yellow pixels occur in the foreground. In summary, our region can capture examples that
can be generated by significant variations in the intensities of several background and foreground
pixels. We supply visualizations for all of the experiments described in Section 5.1 and 5.2 in the
next two sections.

F.2 ADVERSARIAL EXAMPLES ROBUST TO INTENSITY CHANGES

In Figure 5 – 8, we visualise adversarial examples provably robust to pixel intensity changes for
the different networks in Table 1. For all figures, the colorbar on the right-hand side quantifies the
number of values each pixel can take in our inferred region. The yellow and violet colors represent
the two extremes. The intensity of the yellow-colored pixels can vary the most, thus these pixels
contribute more to the adversarial examples.

In Figure 5, we show adversarial examples for the MNIST ConvBig network. The 3 sub-figures
represent the digits 9, 5, and 3, but the images in our regions are classified as 4, 3, and 8, respectively.
Our regions are of size 10220, 10284, and 10262, respectively.
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Figure 5: Sensitivity of probably robust adversarial examples based on pixel intensity changes on the
MNIST ConvBig network.

In Figure 6, we show adversarial examples for the MNIST ConvSmall network. The 3 sub-figures
represent the digits 2, 9, and 9, but the images in our regions are classified as 3, 5, and 4, respectively.
Our regions are of size 10520, 10652, and 10708, respectively.

In Figure 7, we show adversarial examples for the MNIST 8 × 200 network. The 3 sub-figures
represent the digits 5, 9, and 2, but the images in our regions are classified as 8, 8, and 3, respectively.
Our regions are of size 10148, 10128, and 10157, respectively.

In Figure 8, we show adversarial examples for the CIFAR10 ConvSmall network. The 3 sub-figures
represent a boat, a bird, and another bird, but the images in our regions are classified as an airplane ,
a frog, and a dog, respectively. Our regions are of size 10626, 10563, and 10608, respectively.
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Figure 6: Sensitivity of probably robust adversarial examples based on pixel intensity changes on the
MNIST ConvSmall network.
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Figure 7: Sensitivity of probably robust adversarial examples based on pixel intensity changes on the
MNIST 8× 200 network.
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Figure 8: Sensitivity of probably robust adversarial examples based on pixel intensity changes on the
CIFAR10 ConvSmall network.

F.3 ADVERSARIAL EXAMPLES ROBUST TO GEOMETRIC CHANGES

In Figure 9 – 11, we visualise adversarial examples provably robust to geometric perturbations for
the different networks in Table 2. For all figures, the colorbar on the right-hand side quantifies the
number of values each pixel can take in our inferred region. The yellow and violet colors represent
the two extremes. The intensity of the yellow-colored pixels can vary the most, thus these pixels
contribute more to the adversarial examples. For all figures, the subfigures represent an adversarial
example for each of the rows in Table 2.

In Figure 9, we show adversarial examples for the MNIST ConvBig network. The 3 sub-figures
represent the digits 6, 1, and 3, but the images in our regions are classified as 5, 8, and 7, respectively.
Our regions have underapproximations of size 10159, 10183, and 1013, respectively.
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Figure 9: Sensitivity of probably robust adversarial examples based on geometric perturbations.
Subfigures (a), (b) and (c) correspond to the first, second, and third geometric perturbations for the
MNIST ConvBig network in Table 2, respectively.

In Figure 10, we show adversarial examples for the MNIST ConvSmall network. The 3 sub-figures
represent the digits 6, 1, and 3, but the images in our regions are classified as 5, 8, and 7, respectively.
Our regions are of size 10115, 1082, and 1063, respectively.
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Figure 10: Sensitivity of probably robust adversarial examples based on geometric perturbations.
Subfigures (a), (b) and (c) correspond to the first, second, and third geometric perturbations for the
MNIST ConvSmall network in Table 2, respectively.
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Figure 11: Sensitivity of probably robust adversarial examples based on geometric perturbations.
Subfigures (a), (b) and (c) correspond to the first, second and third geometric perturbations for the
CIFAR10 ConvSmall network in Table 2, respectively.

In Figure 11, we show adversarial examples for the CIFAR10 ConvSmall network. The 3 sub-
figures represent a dog, a truck, and a frog, but the images in our regions are classified as a frog, an
automobile, and a deer, respectively. Our regions are of size 101422, 101270, and 101505, respectively.
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