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Abstract

In NLP, Zero-Shot Classification (ZSC) has
become essential for enabling models to clas-
sify text into categories unseen during training,
particularly in low-resource languages and do-
mains where labeled data is scarce. While pre-
trained language models (PLMs) have shown
promise in ZSC, they often rely on large train-
ing datasets or external knowledge, limiting
their applicability in multilingual and low-
resource scenarios. Recent approaches lever-
aging natural language prompts reduce the de-
pendence on large training datasets but strug-
gle to effectively incorporate available labeled
data from related classification tasks, especially
when these datasets originate from different
languages or distributions. Moreover, existing
prompt-based methods typically rely on man-
ually crafted prompts in a specific language,
limiting their adaptability and effectiveness in
cross-lingual settings. To address these chal-
lenges, we introduce RoSPrompt, a lightweight
and data-efficient approach for training soft
prompts that enhance cross-lingual ZSC while
ensuring robust generalization across data dis-
tribution shifts. RoSPrompt is designed for
small multilingual PLMs, enabling them to
leverage high-resource languages to improve
performance in low-resource settings without
requiring extensive fine-tuning or high com-
putational costs. We evaluate our approach
on multiple multilingual PLMs across datasets
covering 106 languages, demonstrating strong
cross-lingual transfer performance and robust
generalization capabilities over unseen classes.

1 Introduction

Zero-Shot Classification (ZSC) is a task in NLP
where a model classifies inputs into classes that it
has not seen during training. This task is crucial in
real-world scenarios where some classes are under-
represented with little or no labeled data. Tradition-
ally, two approaches have dominated the landscape:
entailment-based and similarity-based approaches.

Entailment-based approaches (Yin et al., 2019) fo-
cus on understanding relationships between sen-
tences, particularly determining the level of entail-
ment between the document and the potential class
labels. This method requires the model to have a
deep understanding of language structure and logic.
On the other hand, similarity-based approaches
focus on computing the similarity between the in-
put and labels of each class, even if the model
has never encountered them during training. This
method often relies on embeddings or vector rep-
resentations of text, allowing the model to make
inferences based on how closely the input aligns
with class descriptors (Schopf et al., 2023).

However, these methods face inherent draw-
backs, as they depend on Natural Language Infer-
ence or Semantic Text Similarity datasets that re-
quire considerable effort to develop and are suscep-
tible to potential biases (Pavlick and Kwiatkowski,
2019; Kalouli et al., 2023). In light of this, and with
the acknowledgment of the extensive knowledge
embedded in general pre-trained language mod-
els (PLMs) and the potential to extract it, a novel
paradigm has arisen: prompting. Prompting refor-
mulates a task as a cloze-style task using a natural
language prompt, retrieves the model’s masked or
next token prediction, and maps it to the right class
via a verbalizer, while requiring little to no training
data. Nevertheless, traditional prompting methods
are hindered not only by manual effort and inherent
biases of the individuals creating the prompts and
verbalizers, but also by other factors such as the
order of examples in the prompt during in-context
learning (Zhao et al., 2021; Lu et al., 2022).

To address this, Shin et al. (2020) developed an
automated system for generating prompts and ver-
balizers using a limited number of training samples.
Furthermore, Hu et al. (2022) introduced a tech-
nique that eliminates the need for training data by
automatically creating a verbalizer using an exter-
nal knowledge base. Motivated by the goal of elim-



inating the need for any additional data, Zhao et al.
(2023) proposed a method that forms a verbalizer
using only the PLM’s embedding space, without
requiring any training data or external knowledge
base. This approach, while efficient and effective
in various ZSC tasks, shares a limitation with the
methods of Shin et al. (2020) and Hu et al. (2022):
it relies on language-specific prompts which in-
troduce a language bias, making the method less
effective in multilingual scenarios. Moreover, de-
spite the high efficiency and appeal of methods
that operate without existing data, their inability to
leverage even a minimal amount of available data
from a similar classification task in a high-resource
language, can be seen as a significant limitation in
our data-abundant world.

To address these shortcomings, we suggest to
transform the language-specific hard prompts into
trainable soft prompts (Lester et al., 2021), which
can then be fine-tuned. However, directly adopting
the conventional soft prompt tuning (SPT) setup
leads to overfitting on the seen classes (§7), there-
fore, does not generalize under data distribution
shifts. In response to this constraint, we intro-
duce Robust Soft Prompts (RoSPrompt), a novel
method for cross-lingual zero-shot topic classifica-
tion through few-shot SPT, which exhibits robust
out-of-distribution generalization and strong cross-
lingual transfer performance. RoSPrompt not only
retains the efficiency and effectiveness of leverag-
ing the knowledge of PLMs but also enhances it
by incorporating small sets of existing data. By do-
ing so, we aim to broaden the applicability of ZSC
in a multilingual context, ensuring more accurate
topic classification across diverse languages and
datasets.

Specifically, our approach

(a) enables the training of soft prompts, which
are better suited for ZSC tasks compared to
hand-crafted, natural language hard prompts.

(b) shows strong cross-lingual transfer perfor-
mance after few-shot fine-tuning in English,
with soft prompts significantly improving ac-
curacy compared to hard prompts.

(c) displays significant robustness against data
distribution shifts, enabling the fine-tuning of
the prompt on any available topic classifica-
tion data for subsequent use in diverse topic
classification tasks.

(d) exhibits computational efficiency, as fewer
than 1% of parameters are fine-tuned in com-
parison to full-model fine-tuning.

To showcase the efficacy of our proposed ap-
proach, we conduct a comprehensive evaluation
using three distinct types of multilingual language
models (encoder-only, decoder-only, and encoder-
decoder) and three diverse datasets, encompassing
106 languages, thereby highlighting the versatility
and applicability of our method in cross-lingual
scenarios.

2 Background

Soft Prompt Tuning (SPT) Our approach is
based on SPT (Lester et al., 2021), extending it
specifically for cross-lingual zero-shot topic clas-
sification. SPT appends tunable vectors (soft
prompts) to the input of a PLM, training only
the soft prompts while keeping the original model
weights frozen. This method demonstrates effi-
cacy in various downstream tasks, providing a bal-
ance between model performance and resource
efficiency, and is particularly effective for cross-
lingual transfer (Philippy et al., 2024).

Given an input sequence x and the set of C po-
tential classes C, we define the two main compo-
nents of SPT:

• A soft prompt p that is appended to x in
order to obtain x′ = [x;p], where [·; ·] is the
concatenation function.

• A verbalizer v : T → C which maps the
token predicted by the model to the respec-
tive class. T = {t1, . . . , tC} is a subset of
the model’s vocabulary V and the token tc
"describes" the class c.

If we denote the function performed by the
model as f , with its parameters θ (which are frozen
during SPT), the logits over the vocabulary V for
the next token in the sequence are given by:

fθ(x
′) = {z1, . . . , z|V|}

The predicted class will then be

ŷ = argmax
c∈C

ztc

Nonparametric Prompting (NPPrompt) Zhao
et al. (2023) demonstrated that PLMs possess sig-
nificant innate capabilities for ZSC, even with-
out task-specific fine-tuning. Their technique,



NPPrompt, involves adding a natural language
prompt to the input example, prompting the model
to fill in the [MASK] for BERT-based models, or pre-
dict the next token for autoregressive and Seq2Seq
models, which are then used for the final classifi-
cation of the sample. Nevertheless, their strategy
is primarily designed for English, as the prompts
employed are in English. Applying their method
to additional languages would necessitate the engi-
neering of new prompts specific to those languages.
Furthermore, despite the appeal of their zero-shot
framework, particularly when there is a lack of fine-
tuning data, it falls short by not accommodating
the use of existing labeled data when it is avail-
able. Therefore, we suggest to extend their method
by transforming the natural language prompt into
a trainable soft prompt (Lester et al., 2021), en-
abling its training through any available topic clas-
sification data in the source language for subse-
quent zero-shot topic classification in any target
language.

3 RoSPrompt

We describe our technique as a hybrid of SPT
(Lester et al., 2021) and NPPrompt (Zhao et al.,
2023). SPT excels in data efficiency but is sensitive
to data distribution shifts, needing unique prompts
for each topic classification dataset. On the other
hand, NPPrompt uses one prompt for various data
distributions but fails to leverage existing data. Our
strategy combines their strengths, using a single,
robust soft prompt for different data distributions
and enhancing data utilization (Figure 1).
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Figure 1: Conventional SPT (Lester et al., 2021), while
effective in leveraging existing data, requires distinct
training for each topic classification task. Conversely,
NPPrompt (Zhao et al., 2023) offers versatility with a
single natural language prompt for various tasks but
lacks data leverage. Our method combines the strengths
of both methods, enabling data utilization with a single
soft prompt applicable across diverse topic classification
tasks, while effectively overcoming the drawbacks of
both methods.

Figure 2 provides a graphical illustration of our
approach. The novelty of our method is most ap-
parent in the training phase (§3.1), which involves
three main components: 1) the application of a
multilingual verbalizer; 2) the use of contrastive
label smoothing; 3) the adoption of a custom loss
function penalty. For the inference phase of our
method, we adopt the technique proposed by Zhao
et al. (2023), aligning seamlessly with our goals.

3.1 Training
Below, we detail the three main components of our
training approach.

1) Multilingual Class Description Tokens As
mentioned before, in the standard methodology of
SPT, a class c is characterized, via the verbalizer, by
a single token tc from the vocabulary V . However,
this single token might not fully capture the essence
of the respective class. Moreover, it is confined to
one language, leading to potential inconsistencies
in multilingual settings, where the sample and the
verbalizer token may be in different languages.

Therefore we propose, during training, to extend
the single verbalizer token tc to a multilingual set
of verbalizer tokens Tc = {t(1)c , t

(2)
c , . . .}. These

augmented verbalizer tokens could be additional
descriptive tokens, such as synonyms or transla-
tions of the original label token.

Our method does not mandate a uniform number
of verbalizer tokens across different classes, and
the manual labor involved in generating these labels
is a one-time effort only required for fine-tuning
the soft prompt.

2) Contrastive Label Smoothing Convention-
ally, when pre-training large language models, us-
ing self-supervised tasks such as the masked lan-
guage modeling or next-token prediction objective,
a single token from the vocabulary is considered to
be the gold truth.

Mathematically, given a token vocabulary V ,
y =

[
y1, . . . , y|V|

]
represents the "true" masked

or next token in one-hot encoded form. When us-
ing a "hard" probability distribution, if t∗ is the
"true" token, ∀t ∈ V ,

yt = 1× 1{t=t∗}

for the cross-entropy loss defined as

CE(ŷ, y) = −
|V|∑
t=1

yt × log (ŷt)



Presentation Title 6

Soft PromptGolf is a game in which players use clubs to hit balls into holes. [MASK]

c Class
Label

Multilingual Class Description Tokens
Tc

1 NATURE [nature], [Nature], [naturaleza], [自然], [طبیعت], [प्रकृति]

2 = 𝑐∗ SPORTS [sports], [sport], [Sport], [deporte], [खेल], [ورزش]

3 ANIMAL [animal], [Tier], [حیوان], [动物]

Model
(frozen)

Soft PromptStaying hydrated is essential for overall well-being. Model

c Class 
Label Top-k nearest tokens to the class label

1 ECONOMY [economy], [Economy], [economía], [οικονομία]

2 HEALTH [health], [Health], [santé], [saúde], [건강], [terveys]

3 ART [art], [Art], [arte], [arts], [Kunst], [artist], [изкуство]

0

1 − 𝜖
|𝑇𝑐∗|

𝜖
𝒱 − σ𝒞 |𝑇𝑐|

Training

Inference (Zhao et al., 2023)
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Figure 2: Visual representation of RoSPrompt. During training, each class is categorized by a multilingual set
of label tokens ( 1⃝). We apply contrastive label smoothing ( 2⃝) to the probability distribution across the entire
vocabulary. To further deter overfitting, we integrate a custom penalty ( 3⃝) into the loss function. During inference,
we retrieve the logits predicted by the model and use the aggregation technique proposed by Zhao et al. (2023) to
make the final prediction.

where ŷ represents the probabilities predicted by
the model.

In other words, this standard method assigns a
probability of 1 to the true token and 0 to the oth-
ers, which might lead to overfitting as the model
becomes overly confident in certain predictions. A
strategy to resolve this is label smoothing (Szegedy
et al., 2016), a regularization technique penalizing
models for over-confident predictions and thereby
mitigating overfitting. Label smoothing achieves
this by shifting from a "hard" probability distri-
bution, where only the true token gets a non-zero
probability, to a "soft" distribution, where small
probabilities are allocated to all or some vocabu-
lary tokens, and the probability for the true token
is reduced.

Our method employs a modified form of con-
ventional label smoothing, which we refer to as
contrastive label smoothing. This variation is de-
signed to handle multiple "true" tokens for each
class. Additionally, it not only prevents overcon-
fident predictions by the model but also penalizes

it for consistently favoring class label tokens over
those without a class assignment. We argue that
this approach leads to improved generalization over
unseen classes in ZSC setups.

If C represents the potential classes of the train-
ing data, we denote (Tc)c∈C as the label class token
collections for each class, where Tc is the collec-
tion of verbalizer tokens of class c. If a sample
belongs to class c∗ we distribute the probabilities
across the vocabulary, ∀t ∈ V , as follows:

yt =



1−ϵ
|Tc∗ |

if t ∈ Tc∗

ϵ
|V|−

∑
c∈C |Tc| if t /∈

⋃
c∈C

Tc

0 otherwise

In other words we uniformly distribute a collective
probability of 1− ϵ over the label tokens of the true
class, i.e. Tc∗ , and the remaining probability ϵ over
all other tokens in the vocabulary except the label
tokens of other classes.



3) Penalty In order to further penalize the soft
prompt for overfitting on the seen classes during
training, we additionally add a penalty to the cross-
entropy loss function. We define

¯̂y C\c∗ =

∑
c∈C\c∗

∑
t∈Tc

ŷt∑
c∈C\c∗

|Tc|
and ¯̂yc∗ =

∑
t∈Tc∗

ŷt

|Tc∗ |

as the average predicted probabilities for all verbal-
izer tokens across all classes except the true class
c∗, and for all verbalizer tokens within the class c∗,
respectively.

With these definitions, we express the penalty Ω
as:

Ω (ŷ) =
¯̂y C\c∗

¯̂yc∗

This penalty simply expresses the ratio of the
average predicted probabilities for the true class
tokens and the class tokens for all other potential
classes.

Hence, the final loss function used in our ap-
proach becomes

L(ŷ, y) = CE(ŷ, y) + α× Ω (ŷ)

where α is the coefficient that controls the influence
of the penalty.

3.2 Inference
During inference we use the methodology proposed
by Zhao et al. (2023).

The verbalizer tokens get automatically chosen
by selecting the the top-k nearest tokens in the
embedding space to each original English class
label tc. More specifically, for a given class c, its
verbalizer tokens are given by

Tc = Top-k
t∈V

{S(emb(t), emb(tc))}

where S(·) is the cosine similarity function.
For a given input document x, the aggregated

prediction score for class c, based on the model’s
output logits for the next or MASK token, ŷ, is
given by

Q(c|x) =
∑
t∈Tc

w(t, tc) · ŷt

where the weight of each token in the verbalizer
for a given class c is given by

w(t, tc) =
exp(S(emb(t), emb(tc)))∑

j∈Tc
exp(S(emb(j), emb(tc)))

The final predicted class is then given by

ĉ = argmax
c∈C

Q(c|x)

This selects the class with the highest aggregated
prediction probability.

4 Experimental Setup

We provide a general description of the datasets for
training and evaluation, along with the models used
in our experiments. Further specific details about
the experimental setup can be found in Appendix
A.

4.1 Datasets

For our experiments, a general English document
classification dataset serves as the source data for
training the soft prompts. We then evaluate these
prompts on three diverse multilingual datasets,
each with its own set of classes.

4.1.1 Training
As training data we use the English DBPedia14
dataset, an ontology classification dataset, com-
piled from Wikipedia’s most frequently used in-
foboxes and containing 14 distinct classes. Ev-
ery class includes 40.000 samples for training and
5.000 samples for testing.

4.1.2 Evaluation
For evaluation we use 3 distinct multilingual topic
classification datasets. Further details being pro-
vided in Appendix A.3.

MLSUM (Scialom et al., 2020), a multilingual news
summarization dataset. We classify articles based
on their summaries, using six main categories
per language, although the exact categories differ
slightly across languages.

MTOP (Li et al., 2021), a multilingual utterance clas-
sification dataset, featuring 11 different domains
and covering 6 languages.

SIB-200 (Adelani et al., 2024), a multilingual topic
classification dataset featuring 7 categories and cov-
ering more than 200 languages.

We focus on using MTOP and MLSUM to test
the robustness of our method under distribution
shifts, but since they are limited to high-resource
languages, we leverage SIB-200 to assess cross-
lingual transfer to low-resource languages, thanks
to its broader language coverage



4.2 Models

We evaluate our method on three distinct models,
each one based on a different architecture:

XGLM (Lin et al., 2022), a decoder-only model sup-
porting 30 different languages.

mT0 (Muennighoff et al., 2023), an encoder-
decoder model supporting 101 languages, which is
a multi-task fine-tuned version of the mT5 model
(Xue et al., 2021).

XLM-R (Conneau et al., 2020), an encoder-only
model, supporting 100 languages.

More specifically, we use the XGLM-564M,
mT0-base and XLM-RoBERTa-large variants. We
describe them in more detail in Appendix A.4.

4.3 Baselines

We evaluate RoSPrompt against different baselines:

NPPrompt (Zhao et al., 2023), previously de-
scribed in Section 2, using the English hard prompt
"In this sentence, the topic is about [MASK]".

NPPrompt-t, a variant of NPPrompt where the En-
glish prompt is translated into the target language
for inference.1

SPT (Lester et al., 2021), previously described in
Section 2, where a soft prompt is fine-tuned on
English samples using standard SPT practices and
then used with NPPrompt during inference.

Zero-Shot Prompting, where we evaluate genera-
tive LLMs prompted in a zero-shot manner using
a natural language instruction. Specifically, we
use the 8-bit quantized variants of Llama3.1-8B
(Dubey et al., 2024) and Phi3.5-mini (Abdin et al.,
2024). We focus on SIB-200 for this baseline, as
RoSPrompt is not designed for high-resource lan-
guages where smaller models cannot compete with
large LLMs trained on extensive data. For trans-
parency, results on MTOP and MLSUM are in-
cluded in Appendix B, along with further details
on this baseline.

4.4 Technical Details

Our experimental setup includes freezing all model
parameters and appending a soft prompt to the ini-
tial input, as detailed in Section 2. We start by
initializing the soft prompt with the embeddings
of the natural language prompt from Zhao et al.

1Languages unsupported by Google Translate or with syn-
tax that does not place the [MASK] token at the end are ex-
cluded. In Table 2, English prompt performance is used for
reporting.

(2023): "In this sentence, the topic is about". We
then fine-tune this prompt using 8 randomly se-
lected English samples from each class in DBPedia.
Our methodology includes using translations of the
original English label tokens into a diverse range
of languages2, and selecting words that tokenize
as a single token for our multilingual label tokens.
We then assess the model’s performance using the
trained soft prompt on all three evaluation datasets
across all supported languages. During evaluation,
only the original English class names are needed,
with no need for further translation efforts.

To account for variability in few-shot experi-
ments, we repeat each experiment four times using
different random seeds and report the average re-
sults.

5 Results

For each of the three models, our experimental find-
ings are presented in Table 1 for MLSUM and MTOP,
across all languages. Given the extensive range
of languages in SIB-200, we present average re-
sults for each major language family in Table 2,
while detailed results for individual languages are
shown in Appendix C (see Table 10). Overall, our
methodology shows a significant advantage over
NPPrompt in nearly all cases. In particular, our
training method, which leverages a mere 8 sam-
ples per class from an existing topic classification
dataset, generates a soft prompt that is more ef-
fective for ZSC than a natural language prompt,
demonstrating robust generalization capabilities for
unseen classes.

Additionally, we observe that while larger gen-
erative LLMs slightly outperform the smaller
RoSprompt-enhanced LLMs on high-resource lan-
guages, they significantly underperform, often
worse than the random baseline, on low-resource
languages, highlighting the effectiveness of our
method in such scenarios.

6 Ablation Study

To illustrate the individual contributions of each
component in our training method, we carry out
an ablation study. We assess the efficacy of our
original method against variants lacking the loss
penalty, contrastive label smoothing, and/or multi-
lingual labels.

2We used the following languages as they are spoken by at
least one member of our team: de, en, es, fa, fr, hi, ro, sv, uk,
zh.



MTOP MLSUM
Model de en es fr hi th de es fr ru

X
G

L
M

RoSPrompt 54.99 64.31 58.95 55.38 56.47 47.59 79.47 70.77 71.60 62.66
NPPrompt 48.72 55.02 47.77 47.57 52.49 49.26 56.30 48.83 43.92 42.97

NPPrompt-t 26.63 55.02 42.03 19.14 - 33.27 61.22 21.68 31.97 38.24
SPT 30.52 31.98 32.51 30.98 28.69 29.46 63.12 53.26 54.00 53.68

m
T

0

RoSPrompt 47.65 53.23 51.48 48.21 49.42 46.28 65.24 50.58 48.00 45.22
NPPrompt 43.14 46.35 48.57 43.60 46.04 38.37 65.07 48.10 43.23 43.14

NPPrompt-t 33.14 46.35 33.36 7.02 - 39.89 59.51 43.36 31.33 26.80
SPT 46.22 52.31 47.87 44.19 44.42 42.98 64.64 52.81 47.32 45.92

X
L

M
-R

RoSPrompt 55.64 63.93 54.79 52.91 62.25 53.28 81.77 65.46 60.66 53.39
NPPrompt 36.38 46.03 35.76 34.95 47.69 39.02 62.38 50.77 52.79 58.17

NPPrompt-t 35.25 46.03 35.29 28.47 - 47.05 72.95 41.89 38.18 48.37
SPT 39.10 43.75 35.29 36.35 40.04 37.55 69.00 57.83 50.40 49.59

Table 1: Comparison of accuracy scores on the MTOP and MLSUM datasets between RoSPrompt and baselines.

Model Afro-
Asiatic

Atlantic-
Congo

Austro-
nesian

Dravi-
dian

Indo-
European

Sino-
Tibetan Turkic Uralic

X
G

L
M

RoSPrompt 69.12 65.32 73.04 64.95 70.80 72.92 72.55 71.51
NPPrompt 60.78 61.76 59.31 58.09 61.48 58.83 62.25 62.26

NPPrompt-t 53.92 58.82 63.73 58.09 54.41 53.68 62.25 40.69
SPT 59.19 55.51 66.05 58.15 60.94 54.05 60.42 66.54

m
T

0

RoSPrompt 71.69 71.69 75.61 75.61 75.75 74.27 74.39 73.10
NPPrompt 57.11 59.13 59.95 61.64 61.52 62.42 61.03 63.40

NPPrompt-t 46.41 51.16 51.84 61.64 54.84 59.47 61.03 53.27
SPT 65.05 66.42 67.37 70.07 69.91 72.18 68.28 69.40

X
L

M
-R

RoSPrompt 72.67 65.69 71.69 66.91 68.65 68.63 67.89 70.59
NPPrompt 57.43 56.62 63.14 64.83 64.20 63.73 65.13 65.69

NPPrompt-t 45.26 38.24 57.25 64.83 52.05 57.84 65.13 57.03
SPT 56.78 52.33 61.96 64.49 61.65 65.28 61.40 57.31

Llama3.1-8B 25.42 18.44 26.42 8.58 39.84 35.29 26.82 44.61
Phi-3.5-mini 42.30 38.11 57.95 7.72 55.17 54.09 46.08 65.03

Table 2: Comparison of accuracy scores on the SIB-200 dataset between RoSPrompt and baselines.

The outcomes of this study, presented in Table
3 for MTOP across three models, indicate that all
three elements are integral to our method’s success.
Notably, the removal of the loss penalty leads to the
most significant decline in performance for XGLM
and mT0, while the lack of multilingual labels has
the greatest negative impact on XLM-R.

XGLM mT0 XLM-R
RoSPrompt 56.28 49.38 57.13

w/o penalty 30.22 31.91 51.59
w/o LS 50.05 49.71 48.18
w/o penalty & LS 29.38 41.53 51.26
w/o ML labels 50.05 50.37 47.40

Table 3: Ablation study results for MTOP.

This could potentially be attributed to XLM-R’s
enhanced code-switching capabilities (Winata et al.,
2021; Zhang et al., 2023), making it more efficient
at using multilingual label tokens during training
compared to XGLM and mT0.

7 Generalized Zero-Shot Learning

In our initial experiments, training (seen) and eval-
uation (unseen) classes were distinct with merely
minimal overlap. In contrast, the Generalized Zero-
Shot Learning (GZSL) settings, which mirror real-
world situations more closely, involve evaluating
on a mix of both seen and unseen classes. Models
in this setting often struggle with overfitting to seen
classes and fail to perform well on unseen classes



(Xian et al., 2019).
Therefore, we aim to investigate whether our

method is also efficient under GZSL settings. For
this, we fine-tune the soft prompt on a subset of
classes from a dataset, then test it on the entire set
of classes. Considering the potential variability re-
sulting from the specific choice of seen and unseen
classes, we repeat this process four times for each
dataset and model, each time with a different sub-
set of seen classes. We then average the F1 scores
for seen and unseen classes and present them in
Table 4. These experiments are conducted with all
three models, but only for the SIB-2003 and MTOP
datasets, as MLSUM does not support English, and
has varying categories across languages.

SIB-200 MTOP
Unseen Seen Unseen Seen

X
G

L
M SPT 20.02 48.56 28.04 49.04

RoSPrompt 48.68 49.60 62.41 61.50

m
T

0 SPT 31.32 39.44 32.26 23.49
RoSPrompt 67.11 65.44 39.33 52.98

X
L

M
-R SPT 26.88 53.78 17.63 43.88

RoSPrompt 56.64 55.68 62.54 57.96

Table 4: Comparison of average F1 scores for seen and
unseen classes using standard SPT versus RoSPrompt.

For conventional SPT, there is a notable im-
balance in performance between seen and unseen
classes, with seen classes showing higher perfor-
mance, suggesting overfitting to seen classes and
poor generalization to unseen classes. However,
when training the soft prompts using our method,
the performance is more balanced, indicating im-
proved generalization to unseen classes.

8 Contextualizing Our Approach

In this study, we acknowledge that comparing our
approach with NPPrompt may not constitute an
entirely fair comparison. RoSPrompt uses a small
dataset for training, while NPPrompt directly lever-
ages a PLM without additional fine-tuning. How-
ever, it is important to emphasize that the intent of
our research is not to demonstrate RoSPrompt’s per-
formance superiority over NPPrompt. Instead, our

3For computational efficiency during this experiment, we
limited our evaluation to a subset of ten linguistically diverse
languages (en, ru, zh, de, ar, bn, ta, ko, my, sw) instead of all
supported ones.

objective is to illustrate how RoSPrompt’s method-
ology can effectively improve cross-lingual transfer
capabilities of natural language prompts. This as-
pect is vital as our findings indicate that merely
converting hard prompts to soft prompts and then
fine-tuning them using the standard SPT approach
results in non-robust prompts which are ineffective
for Generalized ZSC.

Additionally, while our paper focuses on topic
classification, we believe that our approach could
be equally effective for other types of classifica-
tion tasks as well. Nonetheless, we emphasize the
significance of zero-shot learning in topic classifi-
cation, where classes often change more frequently
over time or across domains, unlike in more stable
tasks like sentiment analysis, where classes show
less variation.

Furthermore, we want to emphasize the three-
fold efficiency of our approach: 1) it is data ef-
ficient, requiring only a small number of labeled
training samples from any comparable classifica-
tion task; 2) it is computationally efficient as fewer
than 0.1% of parameters are fine-tuned compared
to full-model fine-tuning, reducing training time
by approximately 50% in our experiments; 3) it is
memory-efficient, as for n training processes, be-
sides the resulting n prompts that take up a few hun-
dred KBs at most, only one model copy is stored,
in contrast to full-model fine-tuning where each
model occupies several GBs of storage.

Moreover, while our method is theoretically ap-
plicable to larger models with billions of param-
eters, our primary target is smaller LLMs, which
are often sufficient for tasks like zero-shot classifi-
cation but need more focused guidance. These
smaller multilingual models also excel in low-
resource languages, where larger English-centric
models, as we demonstrate, are less effective.

9 Conclusion

In this paper, we introduced RoSPrompt, a novel
approach for cross-lingual zero-shot topic classifi-
cation. It combines the advantages of few-shot
SPT with the extensive knowledge acquired by
language models in their pre-training phase. Our
training method is designed for computational ef-
ficiency and incorporates three key components
to enhance the standard SPT methodology, con-
tributing to RoSPrompt’s cross-lingual abilities and
resilience to data distribution shifts.



Limitations

Our research was conducted on datasets encom-
passing a variety of classes and data distributions.
However, the absence of multilingual datasets
across entirely distinct domains limits our ability to
test the method’s effectiveness in distant or niche
domains. Therefore, while our results are promis-
ing within the domains we studied, they may not
fully represent the model’s capabilities across all
specific domains.

In addressing the few-shot learning nature of our
approach, varied the training samples across 4 itera-
tions for each experiment to reduce potential biases.
Nonetheless, the specific selection of these samples
can still influence the outcomes due to the inherent
characteristics of few-shot learning. This limitation
suggests that our findings could be partially influ-
enced by the particular datasets used, and might
not entirely reflect the model’s performance with
different or broader data samples.

Ethics Statement

In our work, we prioritized two key ethical aspects,
through which we strive to contribute to the inclu-
sive and responsible advancement of NLP technol-
ogy.

Language Diversity and Equity. Our method
aims to balance performance across various lan-
guages, addressing the common disparity in model
effectiveness between high- and low-resource lan-
guages. By enhancing multilingual capabilities,
RoSPrompt contributes towards more balanced per-
formance across languages, ensuring fair and inclu-
sive technology across diverse linguistic groups.

Environmental Responsibility. Our method is
designed for computational efficiency, requiring
fine-tuning of fewer than 1% of parameters com-
pared to traditional methods. This approach not
only conserves computational resources but also
aligns with environmental sustainability goals by
reducing the energy consumption and carbon foot-
print associated with training and deploying NLP
models.
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A Technical Details

Access to the code used in our research will pro-
vided in the camer-ready version.

A.1 Training

We conducted all of our experiments using the
Transformers library (Wolf et al., 2020) and ran
them on 4 A100 Nvidia GPUs within a few hours.
We used AdamW (Loshchilov and Hutter, 2019)
as an optimizer. We provide the hyperparameters
used during our experiments in Table 5. Due to
computational constraints, we did not perform ex-
haustive hyper-parameter optimization, but instead
selected hyper-parameters that demonstrated satis-
factory performance in preliminary experiments.

XGLM XLM-R mT0
Batch size 8 8 8

Learning rate 0.01 0.01 0.3
Epochs 10 10 10

α 100 10 200
ϵ 0.2 0.1 0.8

Prompt length 8 8 9

Table 5: Hyperparameters

A.2 Evaluation

During evaluation, NPPrompt (Zhao et al., 2023)
requires a parameter k, which is referred to as the
neighborhood number. In our experimental setup,
for each model and dataset type, we selected the
value of k that achieved the highest average perfor-
mance across the development sets of all supported
languages. The specific values selected for k in the
evaluation of RoSPrompt, NPPrompt (including
NPPrompt-t) and SPT are presented in Tables 6, 7
and 8 respectively.

XGLM XLM-R mT0
SIB-200 3 4 14
MTOP 4 2 8

MLSUM 300 5 7

Table 6: Chosen neighborhood number k values for
RoSPrompt.

XGLM XLM-R mT0
SIB-200 4 3 6
MTOP 3 2 5

MLSUM 5 4 6

Table 7: Chosen neighborhood number k values for
NPPrompt Zhao et al. (2023) and NPPrompt-t (Zhao
et al. (2023) with translated hard prompt).
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XGLM XLM-R mT0
SIB-200 2 17 5
MTOP 100 7 12

MLSUM 200 16 7

Table 8: Chosen neighborhood number k values for
SPT.

Impact of Hyperparameters RoSPrompt’s
training methodology primarily relies on two
numerical hyperparameters: the contrastive label
smoothing factor, denoted as ϵ, and the penalty
strength, represented by α.

In Figure 3, we illustrate RoSPrompt’s perfor-
mance using XGLM and mT0 on the SIB-200
dataset, using a diverse subset of languages4, across
various values for α and ϵ, while maintaining the
other hyperparameter at zero each time. Generally,
we find that both excessively low and high values
for α and ϵ do not lead to optimal outcomes.

Figure 3: Average performance (accuracy) of
RoSPrompt across 10 languages on SIB-200 for dif-
ferent values of ϵ and α.

A.3 Datasets
As source data to train the soft prompts, we use
the DBPedia14 ontology classification dataset5

(Lehmann et al., 2015). It is a subset of the
English version of DBpedia 20146, consisting
of randomly chosen 560 000 training and 70 000
test samples equally distributed across 14 distinct
classes. These classes represent the most common
infobox categories on Wikipedia, including cate-
gories like Company, Artist, Athlete, Village,
Animal, among others.

4en, ru, zh, de, ar, bn, ta, ko, my, sw
5https://huggingface.co/datasets/dbpedia_14
6https://downloads.dbpedia.org/wiki-archive/

data-set-2014.html

For evaluation we use three different multlingual
datasets:
MLSUM (Scialom et al., 2020), a multilingual news
summarization dataset. However, each article-
summary pair is also labeled with its respective
news category. Therefore, in our experiments, we
use, for each article, the summary for its classi-
fication. Given the differing data sources for dif-
ferent languages, the categories across languages
slightly differ. More specifically we use articles on
society, politics, culture, sports, economy
and science for Spanish, Russian and French and
articles on politics, sports, economy, travel,
car and education for German. This selection
amounts to 8935, 612, 5950, 5315 test samples for
German, Russian, French and Spanish respectively.
MLSUM is licensed under the MIT License7.

MTOP8 (Li et al., 2021), a multilingual utterance
classification dataset, featuring 11 different do-
mains, such as alarm, reminder, recipes or
weather. The dataset covers 6 languages: English,
German, Spanish, French, Hindi and Thai, with
respective test sample counts of 4386, 3549, 2998,
3193, 2789, and 2765. MTOP is licensed under the
Creative Commons Attribution-ShareAlike 4.0 In-
ternational License9.

SIB-20010 (Adelani et al., 2024), a multilin-
gual topic classification dataset covering 203
languages. The dataset is derived from the
FLORES-200 benchmark (NLLB Team et al.,
2022) and consists of 701 training, 99 validation
and 204 test samples in each language. It fea-
tures 7 distinct classes: geography, politics,
science/technology, travel, sports, health
and entertainment. SIB-200 is licensed under
the Apache License 2.011.

A.4 Models

In our work, we use the following models:
XGLM564M

12 (Lin et al., 2022) is a decoder-only mul-
tilingual model supporting a diverse selection of 30
languages. Pre-trained on the CC100-XL dataset,

7https://opensource.org/license/mit/
8https://huggingface.co/datasets/mteb/mtop_

domain
9https://creativecommons.org/licenses/by-sa/4.

0/
10https://github.com/dadelani/sib-200
11https://www.apache.org/licenses/LICENSE-2.0.

txt
12https://huggingface.co/facebook/xglm-564M
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MTOP MLSUM
Model de en es fr hi th de es fr ru

Llama3.1-8B 83.26 93.50 85.32 83.15 84.69 75.26 78.13 70.21 68.27 53.92
Phi-3.5-mini 79.57 86.34 78.62 78.52 70.49 66.22 77.08 71.17 66.91 59.64

Table 9: Accuracy scores on the MTOP and MLSUM obtained through zero-shot prompting.

an expansion of CC100 (Conneau et al., 2020; Wen-
zek et al., 2020), it features 564 million parameters,
24 layers, a hidden dimension size of 1024, and 16
attention heads.

XLM-RLarge
13 (Conneau et al., 2020) is an encoder-

only multilingual RoBERTa-based (Liu et al., 2019)
model supporting 100 languages, pre-trained on
CC100 (Conneau et al., 2020; Wenzek et al., 2020)
using the MLM objective. It consists of 550 million
parameters, 24 hidden layers, a dimension of 1024,
and 16 attention heads.

mT0Base
14 (Muennighoff et al., 2023) is an encoder-

decoder model supporting 101 languages. It is an
mT5 model (Xue et al., 2021) that has been multi-
task fine-tuned on the xP3 dataset15 (Muennighoff
et al., 2023). It features 584 million parameters,
12 encoder and decoder layers, 12 attention heads,
and a hidden dimension size of 768.

B Additional Details on "Zero-Shot
Prompting" Baseline

For this baseline, we used the 8-bit quantized
versions of Llama3.1-8B16 (Dubey et al., 2024)
and Phi-3.5-mini17 (Abdin et al., 2024), which
have been designed with robust multilingual ca-
pabilities. Llama3.1-8B is a transformer-based
language model with 8.03 billion parameters, de-
signed for efficient text generation tasks. Phi-3.5-
mini, a smaller variant, has 3.82 billion parameters
and shares a similar transformer architecture opti-
mized for lightweight inference. Both models were
prompted using the prompt shown in Figure 4 and
used with 8-bit quantization.

The results on MTOP and MLSUM are provided
in Table 9.

13https://huggingface.co/xlm-roberta-large
14https://huggingface.co/bigscience/mt0-base
15https://huggingface.co/datasets/bigscience/

xP3
16https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
17https://huggingface.co/microsoft/Phi-3.

5-mini-instruct

I will provide text and potential
categories, and I would like you
to classify the text into one
of the given categories based on
its content. Please ensure the
classification is accurate and
consistent.

Categories:
- Label 1
- Label 2
- ...

Text: "{Document}"

Only return the category name.

Figure 4: The prompt used for the Zero-Shot LLMs
baseline with Llama3.1-8B and Phi-3.5-mini.

C Full Results for SIB-200

Table 10 presents the experimental results for each
language on SIB-200, with average values per lan-
guage family reported in Table 2 in Section 5.

https://huggingface.co/xlm-roberta-large
https://huggingface.co/bigscience/mt0-base
https://huggingface.co/datasets/bigscience/xP3
https://huggingface.co/datasets/bigscience/xP3
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
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afr_Latn 74.02 63.24 62.75 74.39 69.85 62.75 38.73 59.07 44.12 74.51
als_Latn 75.37 62.75 56.86 70.47 69.24 65.69 24.02 61.15 30.88 58.82
amh_Ethi 64.71 55.39 - 63.11 65.56 59.80 - 62.38 2.45 3.92
arb_Arab 69.12 60.78 53.92 59.19 71.69 62.25 64.71 71.08 72.67 69.61 55.39 71.69 48.53 72.06
asm_Beng 72.30 62.75 - 59.31 15.20 11.76
azb_Arab 65.07 54.41 - 58.58 59.80 57.35 - 49.02 23.04 37.25
azj_Latn 75.37 63.24 - 69.73 67.52 69.61 - 67.16 33.33 52.94
bel_Cyrl 74.02 62.75 60.29 69.36 67.89 64.71 44.61 66.67 44.61 51.47

ben_Beng 69.36 61.27 61.27 59.44 72.30 57.35 - 69.85 67.28 64.22 - 59.07 31.86 25.00
bos_Latn 68.14 64.71 60.29 58.70 48.53 60.29
bul_Cyrl 69.49 63.73 57.35 63.73 77.45 63.24 55.88 74.02 68.26 66.18 59.80 67.77 51.96 67.65
cat_Latn 71.81 65.69 59.80 59.19 79.90 65.20 51.47 71.32 69.61 64.71 59.31 67.77 53.43 75.98
ceb_Latn 69.12 61.27 54.41 69.12 29.90 65.20
ces_Latn 75.25 62.25 50.98 71.81 65.93 64.71 53.92 64.83 55.88 72.06
cym_Latn 63.97 55.88 32.84 63.48 65.69 59.80 46.57 59.19 28.92 49.51
dan_Latn 73.77 64.22 61.76 72.06 69.00 67.16 38.24 64.22 52.94 74.51
deu_Latn 70.22 62.25 48.04 66.91 75.12 66.18 62.25 72.55 69.36 68.14 50.49 64.34 66.67 80.39
ell_Grek 69.36 57.84 52.45 62.75 73.65 58.82 65.20 69.49 69.12 70.10 47.06 64.83 51.47 43.63
eng_Latn 73.53 63.73 63.73 69.00 79.41 65.20 65.20 73.53 68.01 61.76 61.76 52.33 75.98 83.33
epo_Latn 77.08 67.16 40.20 73.04 67.65 67.16 20.59 59.44 43.14 62.25
est_Latn 69.36 61.76 22.55 65.56 73.28 66.18 45.59 72.30 69.73 66.18 47.06 58.21 36.76 55.88
eus_Latn 71.20 63.73 - 60.17 74.51 63.73 - 74.02 65.81 58.82 - 58.33 31.37 52.45
fin_Latn 73.65 62.75 58.82 67.52 72.92 62.25 52.45 67.28 71.45 66.18 59.31 60.17 47.06 69.12
fra_Latn 71.08 58.33 36.76 60.05 77.70 64.22 58.33 70.71 66.18 65.20 31.86 60.17 65.20 78.92
gaz_Latn 44.24 35.29 29.41 38.48 9.31 25.98
gla_Latn 60.42 48.53 38.24 56.13 59.19 54.90 41.67 53.19 13.24 30.88
gle_Latn 69.00 60.78 29.90 69.24 63.60 57.84 44.61 56.86 19.61 42.16
glg_Latn 76.47 67.65 47.55 76.47 68.75 64.71 52.45 68.50 52.94 77.94
guj_Gujr 74.02 65.20 - 69.24 68.26 60.29 - 64.09 6.86 2.94
hat_Latn 65.81 59.80 62.25 48.41 69.73 55.39 40.69 67.40 18.63 54.41
hau_Latn 60.91 51.47 42.65 61.64 60.54 59.31 45.59 51.10 23.53 33.33
heb_Hebr 73.41 59.80 51.47 68.26 67.28 65.20 41.67 64.83 52.45 58.33
hin_Deva 67.89 62.25 - 58.09 72.43 62.25 - 71.45 71.20 65.69 - 65.56 50.00 55.39
hrv_Latn 68.26 66.67 62.75 58.09 48.04 64.22
hun_Latn 72.92 61.76 - 68.63 69.98 64.71 - 53.55 50.00 70.10
hye_Armn 71.69 61.27 65.69 66.54 70.10 66.67 68.14 63.60 11.27 25.00
ibo_Latn 71.45 62.25 55.88 68.75 24.51 34.80
ind_Latn 73.04 59.31 63.73 66.05 75.61 67.16 57.84 72.92 71.69 67.16 63.73 67.28 52.94 79.41
isl_Latn 70.96 61.27 53.92 69.61 67.77 67.65 39.22 58.82 24.51 48.53
ita_Latn 72.43 63.24 48.53 63.24 75.00 63.24 53.43 73.16 66.79 65.69 44.61 63.73 64.22 79.41
jav_Latn 66.54 60.78 51.96 66.67 19.12 61.76
jpn_Jpan 72.30 62.25 - 59.68 75.49 62.75 - 72.18 69.12 64.22 - 64.22 49.51 72.55
kan_Knda 72.92 62.25 - 68.75 65.20 66.18 - 66.05 8.82 2.45
kat_Geor 74.14 62.25 58.33 72.30 70.47 66.18 55.88 65.93 5.39 18.63
kaz_Cyrl 76.96 63.24 - 71.20 73.04 70.10 - 69.24 28.92 56.86
khk_Cyrl 69.73 58.33 - 69.85 65.69 60.29 - 53.92 20.10 34.80

khm_Khmr 71.57 65.69 61.27 70.71 66.54 66.67 52.45 64.71 3.43 4.90
kir_Cyrl 70.83 60.78 - 69.00 69.49 66.67 - 61.76 22.55 50.00

kmr_Latn 57.35 52.94 - 57.84 64.09 59.31 - 61.40 20.10 43.14
kor_Hang 68.38 60.78 - 62.99 71.57 59.31 - 68.87 69.00 63.24 - 62.62 45.59 73.53
lao_Laoo 74.39 65.69 61.76 74.02 68.63 61.27 60.78 65.44 3.92 2.94
lit_Latn 74.02 64.71 64.71 69.98 66.05 67.65 25.98 57.35 36.76 59.31
ltz_Latn 66.42 55.88 44.61 66.54 23.53 65.69
lvs_Latn 74.26 61.76 47.55 70.22 69.12 62.75 24.51 48.53 38.24 56.37

mal_Mlym 72.06 58.33 - 68.26 70.10 66.18 - 64.83 8.33 10.78
mar_Deva 71.45 61.27 - 67.52 67.03 61.27 - 57.60 35.29 33.33
mkd_Cyrl 76.47 60.78 63.73 72.06 70.83 61.27 59.80 62.38 40.20 63.24
mlt_Latn 68.26 58.82 27.45 66.18 28.92 65.69
mri_Latn 56.13 47.06 26.47 58.09 11.76 32.35

mya_Mymr 72.30 62.75 - 61.40 71.32 58.33 - 70.71 68.38 61.76 - 68.38 2.45 3.92
nld_Latn 76.35 63.73 66.18 74.63 70.34 68.14 51.96 60.29 58.82 79.41
nno_Latn 74.14 63.73 - 69.24 69.98 62.75 - 66.30 40.69 75.00
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nob_Latn 75.25 62.75 58.82 70.59 70.96 64.71 38.73 62.62 51.47 73.53
npi_Deva 73.04 62.25 - 70.34 69.85 66.18 - 65.44 25.98 45.10
nya_Latn 70.59 61.76 - 69.24 15.69 38.24
pan_Guru 72.30 61.76 - 71.94 9.31 2.94
pbt_Arab 66.91 55.88 - 67.65 65.07 62.75 - 62.62 23.04 38.24
pes_Arab 75.00 60.29 - 68.75 68.75 65.69 - 61.03 45.10 52.94
plt_Latn 67.28 55.88 - 66.54 62.99 54.90 - 48.04 13.24 42.65
pol_Latn 75.98 62.75 54.41 74.14 66.42 64.71 47.55 64.95 57.84 78.43
por_Latn 72.92 64.71 50.49 66.18 76.35 67.16 37.25 74.02 70.34 66.67 57.35 68.63 60.78 77.45
quy_Latn 45.71 44.12 - 32.48 14.71 41.18
ron_Latn 72.43 64.22 37.25 75.86 71.32 68.63 56.86 62.01 50.00 72.55
rus_Cyrl 70.22 60.78 57.84 64.95 75.49 63.73 61.27 72.55 68.75 69.12 65.69 67.28 59.80 75.98
san_Deva 64.34 62.25 - 59.93 18.63 41.18
sin_Sinh 72.18 60.29 - 69.12 68.14 62.25 - 60.05 4.41 3.92
slk_Latn 70.96 62.25 31.86 69.61 67.77 69.12 65.20 63.85 44.61 71.57
slv_Latn 72.43 62.25 52.94 73.53 65.93 64.71 61.27 62.62 40.20 67.65
smo_Latn 60.91 50.49 49.51 63.48 13.24 33.33
sna_Latn 67.03 59.31 48.53 64.71 15.20 39.71
snd_Arab 65.32 58.33 43.63 63.85 67.40 58.82 16.67 55.15 26.47 32.84
som_Latn 59.44 54.90 36.76 60.05 59.19 55.39 39.71 52.21 12.75 36.76
sot_Latn 70.34 58.33 46.57 67.40 14.71 34.80
spa_Latn 74.39 60.29 44.12 55.88 78.19 67.65 56.86 74.02 66.67 65.69 46.57 68.50 68.63 80.39
srp_Cyrl 76.84 64.22 64.71 71.08 69.36 62.75 57.35 59.56 46.08 60.78
sun_Latn 73.04 60.29 54.90 70.83 68.14 67.16 57.35 67.40 17.16 62.25
swe_Latn 72.92 62.25 55.88 70.96 71.81 67.16 57.35 66.67 54.90 75.49
swh_Latn 65.32 61.76 58.82 55.51 71.69 61.76 49.51 68.87 65.69 62.75 50.00 55.27 28.43 44.12
tam_Taml 67.65 60.78 - 61.40 76.10 62.75 - 71.32 66.05 63.24 - 63.48 10.29 15.20
tel_Telu 62.25 55.39 - 54.90 75.12 63.24 - 71.94 67.77 63.73 - 63.60 6.86 2.45
tgk_Cyrl 70.47 60.29 57.84 66.79 23.04 35.78
tgl_Latn 71.94 63.73 59.80 68.63 41.67 70.10
tha_Thai 67.65 58.82 53.92 59.31 73.28 62.25 63.73 70.96 69.12 65.69 54.90 68.87 52.45 54.90
tur_Latn 72.55 62.25 - 60.42 74.39 61.27 - 71.69 67.89 65.20 - 63.11 42.16 70.10
uig_Arab 67.16 62.25 - 59.93 15.20 9.31
ukr_Cyrl 73.65 62.75 63.24 71.32 67.89 69.61 51.96 66.79 50.00 69.61
urd_Arab 67.65 56.86 - 55.27 71.81 59.80 - 69.00 70.83 61.76 - 65.69 53.92 40.69
uzn_Latn 74.63 63.24 - 69.49 69.00 64.71 - 59.56 22.55 46.08
vie_Latn 69.61 66.18 58.33 59.31 72.79 62.25 62.75 70.34 66.79 68.14 54.90 62.50 44.12 69.61
xho_Latn 69.36 61.27 50.49 67.89 52.82 50.49 26.47 49.39 16.18 42.16
ydd_Hebr 60.66 53.43 43.14 59.80 62.25 51.47 30.39 43.14 16.67 18.14
yor_Latn 55.88 49.51 40.69 59.07 14.22 30.88
zho_Hans 73.53 54.90 44.61 46.69 77.21 63.24 58.33 74.88 68.87 63.24 56.86 65.56 54.90 78.92
zho_Hant 74.14 65.69 61.76 70.96 70.22 66.18 54.90 61.89 48.53 79.41
zsm_Latn 73.16 65.69 55.88 69.36 69.61 65.69 58.33 60.42 38.73 74.51
zul_Latn 67.77 58.82 55.88 65.44 18.63 40.20

Table 10: Comparison of accuracy scores on the SIB-200 dataset between RoSPrompt and different baselines across
all supported languages. For each language, the best overall result is underlined, and the best result within each
column group is highlighted in bold.
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