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Abstract

Understanding the decision-making process of black-box models has become not just a legal
requirement, but also an additional way to assess their performance. However, the state
of the art post-hoc explanation approaches for regression models rely on synthetic data
generation, which introduces uncertainty and can hurt the reliability of the explanations.
Furthermore, they tend to produce explanations that apply to only very few data points.
In this paper, we present BELLA, a deterministic model-agnostic post-hoc approach for
explaining the individual predictions of regression black-box models. BELLA provides ex-
planations in the form of a linear model trained in the feature space. BELLA maximizes
the size of the neighborhood to which the linear model applies so that the explanations are
accurate, simple, general, and robust. BELLA can produce both factual and counterfactual
explanations.

1 Introduction

Machine Learning (ML) and Artificial Intelligence (AI) models have been employed to handle tasks in various
domains, including justice, healthcare, finance, self-driving cars, and many more. Consequently, legislative
regulations have been proposed to protect interested parties and control the usage of these models. One
example is the General Data Protection Regulation of the European Union (Goodman & Flaxman, 2017),
which stipulates the right to an explanation in situations where an AI system has been employed in a decision-
making process. The AI act (European Parliament and Council of the EU, 2024), too, has stipulated the
transparency of AI models according to the level of risk they pose.

The main issue is that many ML models are black-box models, i.e. one cannot easily understand how
they arrive at a decision. This has led to the emergence of eXplainable Artificial Intelligence (xAI), a
research field that aims to make black-box models human-understandable. In this paper, we are concerned
with understanding regression models, i.e., models that make a numerical prediction. We are interested in
explaining a given prediction of such a model post-hoc, i.e., after it has been produced. This is usually done
by building an interpretable surrogate-model (e.g., a decision tree) that mimics the black-box model and
that can be used to understand the prediction.

Numerous approaches have been proposed to build such surrogate models, in particular SHAP (Lundberg
& Lee, 2017), LIME (Ribeiro et al., 2016), and MAPLE (Plumb et al., 2018). We review them in Section 2.
To evaluate the surrogate models, several criteria have been proposed: we want the surrogate model to be
accurate, i.e., to reflect the predictions of the black-box model; we want it to be simple, i.e., to use few
features; we want it to be robust, i.e., giving similar explanations to similar data points; we want it to be
general, i.e., applicable to many data points; and we want them to be counterfactual, i.e., to tell us how we
have to modify the data point at hand to get a different prediction. We survey these desiderata in Section 3.
We find that existing approaches tend to be good on some of these criteria, but never excel on all of them.
This is not surprising, as the desiderata stand in obvious conflict: A simple surrogate model, e.g., risks being
not very accurate, because usually accurate predictions can be made only by the type of complex models
that we wish to explain in the first place.
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Our key idea (which we present in Section 4) is to train a local linear model on the neighborhood of the
data point that we wish to explain. This allows us to develop an approach called BELLA (Black-box model
Explanations by Local Linear Approximations). We can show through extensive experiments (in Section 5)
on a dozen datasets that BELLA beats all existing approaches across nearly all desiderata.

2 Related Work

Explainable AI has received much attention in the scientific literature (Beaudouin et al., 2020; Guidotti
et al., 2018; Adadi & Berrada, 2018; Murdoch et al., 2019; Burkart & Huber, 2021; Hassija et al., 2024). In
this paper, we are interested in post-hoc approaches, i.e., those that add interpretability to a given black-box
model. Some of these approaches have been developed specifically for a given type of learners (such as Gat
et al. (2022) for neural models). However, we are interested in model-agnostic approaches, i.e., those that can
interpret any black-box model. Some model-agnostic approaches compute feature importance (Chen et al.,
2018; Bang et al., 2021). However, these approaches do not allow explaining unseen data points. Hence,
we focus on approaches that build a surrogate model, i.e., a model that mimics the black-box model but
that is interpretable by design (e.g., a decision tree). While global methods provide an interpretation of the
black-box model behavior on the whole space, local models provide an interpretation for a single data point.
In this paper, we are interested model-agnostic post-hoc local explanations for regression models, i.e., we aim
to provide an explanation for a given real-valued decision by any type of model for a given data point. We
are thus not interested in approaches that work for classification only (Vo et al., 2022; Mothilal et al., 2020;
Bui et al., 2022; Vo et al., 2023).

One approach to deal with regression models is to adjust the methods for classification models (such as
LORE (Guidotti et al., 2019)), e.g., by discretization or clustering. However, this loses information and
may require domain knowledge. Therefore several approaches have been developed to natively support both
classification and regression models: SHAP (Lundberg & Lee, 2017) introduces a game theory approach to
compute the contribution of each feature. The explanation applies to a single data point and it is given as a
linear combination of the feature contributions. In order to improve computation time, AcME (Dandolo et al.,
2023) computes feature contributions based on the perturbations based on data quantiles. LIME (Ribeiro
et al., 2016) generates synthetic data points by feature perturbations. This yields a weighted neighbourhood
that is used to train a linear model, whose coefficients are then used as an explanation. However, both
LIME and SHAP compute feature contributions in a projected, binary, space, which does not correspond to
the original feature space. MAPLE (Plumb et al., 2018) addresses this problem and uses Random Forests
to assign weights to the training examples. In this way, it forms a weighted neighbourhood on which the
explanation applies. SHAP, LIME, and MAPLE are direct competitors to our method BELLA, and we will
see in our experiments that BELLA outperforms all of them on the quality of the explanations.

DLIME (Zafar & Khan, 2019) is a deterministic variant of LIME that provides stable and consistent expla-
nations. However, it requires extensive manual input, as the user has to provide the number of clusters for
the hierarchical clustering step, the number of neighbours for the KNN step of the method, and the length
of the explanation. As such, DLIME is not well suited for regression tasks and was thus applied only to
classification.

Another group of approaches computes counterfactual explanations. One such method (White & Garcez,
2019) uses the idea of b-counterfactuals, i.e., the minimal change in the feature to gauge the prediction of
the complex model. This method applies only to classification tasks. Another work (Dandl et al., 2020) uses
Multi-Objective Optimization to compute counterfactual explanations, both for classification and regression.
Another work (Redelmeier et al., 2021) uses Monte Carlo sampling for the same purpose. All of these
approaches, however, can compute only counterfactual explanations, not both factual and counterfactual
explanations like BELLA.
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3 Preliminaries

Goal. We are given a tabular dataset T ⊂ F1 × ... × Fn, where each Fi is a set of feature values. We are
also given a function Y : T → R that yields, for each x ∈ T , a target value Y (x) ∈ R. These target values
may, e.g., have been produced by a black-box model, in which case the target value is a prediction. Consider
now one data point x ∈ T with its target value Y (x). We aim to compute an explanation in the following
sense (Das & Rad, 2020):

Definition 1 An explanation is additional meta information, generated by an external algorithm or by the
machine learning model itself, to describe the feature importance or relevance of an input instance towards
a particular output classification.

If the target value was produced by a black-box model, we cannot be sure post-hoc that the features we
identify really contributed to the computation of the target value (the model may just as well have thrown
a dice, independently of any feature values). However, if several data points with these or similar feature
values produce a similar prediction, we can use abductive reasoning to infer that these features may have
contributed to the prediction, and that, hence, the features constitute an explanation. This is in fact common
in the literature (Ribeiro et al., 2016; Lundberg & Lee, 2017; Radulovic et al., 2021; Ignatiev et al., 2019).

Quality measures. Several properties of “good” explanations have been proposed. Some of them, such as
plausibility and accordance with prior beliefs, require human evaluation. Among the criteria that do not,
we commonly find (Miller, 2019; Guidotti et al., 2018; Burkart & Huber, 2021; Molnar, 2018):

1. Fidelity: we want the value that the surrogate model explains to be close to value that the black-box
model predicts.

2. Simplicity: we want the explanation to contain few features.

3. Robustness: we want similar data points to have similar explanations.

In addition, users tend to favor explanations that apply to many data points (Radulovic et al., 2021). This
appears counter-intuitive, as we aim to explain only a single data point, no matter the others. And yet, it
is easy to see that an explanation such as “You have a high risk of diabetes because your body mass index
is 27, your A1C level is 7%, and your blood sugar level is 210mg/dL” is little satisfactory, as it allows no
generalization. More helpful is to know that, generally, people with a body mass index larger than 25, an
AIC level above 6.5%, and a blood sugar level of 200 mg/dL have a high risk of diabetes (Mayo-Clinic, 2023).
We would thus like to have:

4. Generality: we want the number of data points to which an explanation applies to be large.

Desiderata. In addition to the above quality measures, there are also several criteria in the literature that
either apply or don’t apply to a given method of explanation. One of them is (Miller, 2018; Wachter et al.,
2017):

5. Counterfactuality: the ability to provide a set of modifications to the data point at hand that
would entail a change in the decision of the black-box model.

Counterfactuality is obviously of interest to a user who wishes not just to understand the prediction, but
also to actively influence it (e.g., after having been attributed a high risk of diabetes based on the results of
a blood test).

Several methods for post-hoc explainability use randomization to probe the black-box model. However, this
entails that the same data can lead to different explanations, which introduces uncertainty for the user (Zhang
et al., 2019; Slack et al., 2020). We thus have an additional desideratum:

6. Determinism: the avoidance of randomization steps
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Finally, some methods (Plumb et al., 2018) propose explanations that take the form of a linear equation,
which allows computing the predicted value from the feature values. This is a very attractive property, as the
user can toy with the explanation and apply it also to neighboring data points. We thus have a desideratum
that we call

7. Verifiability: the possibility to compute the predicted value from the feature values

Given this plethora of quality measures and desiderata, it is not surprising that no existing method (including
our own) can satisfy all of them perfectly. However, we can at least show that our method ticks all desiderata,
and outperforms existing methods across nearly all quality measures.

4 BELLA

We are given a tabular dataset T , a data point x ∈ T , and a real-valued target value y, and we aim to compute
an explanation for this target value. Our idea is to find a linear equation y ≈ w1 ·f1+w2 ·f2+· · ·+wn ·fn+w0,
where wi are real-valued regression coefficients and fi are feature values of x in T . Such an equation tells
the user (1) what the important features are and (2) how their can be used to compute the predicted value.
To find this equation, BELLA proceeds in three steps (Algorithm 1):

1. Compute the distance of x to the other points in T .

2. Conduct a linear search to find the best neighborhood of x, according to a defined metric.

3. Train a sparse linear model on that neighborhood, and propose this model as an explanation.

Algorithm 1 BELLA
Input: Dataset T with labels Y

Labeled data point x ∈ T
1: d← ComputeDistances(x, T )
2: L, N ← NeighborhoodSearch(x, T, d)
3: return L, N

Step 1: Computing the distances. To compute the neighborhood of the input data point, we need a
distance measure. A good starting point is to have all numerical features on the same scale so that each
feature contributes to the distance measure in the same range. Therefore, we first standardize all numerical
features to have a mean of 0 and a standard-deviation of 1.

To compute the distances, we employ the generalized distance function (Harikumar & Surya, 2015), which
consists of three separate distance measures to account for numerical, categorical, and binary data types, as
follows:

d(x1, x2) =
mn∑
i=1

dn(x1i, x2i) +
mc+mn∑
j=mn+1

dc(x1j , x2j)+

mn+mc+mb∑
k=mc+mn+1

db(x1k, x2k) (1)

Here, mn, mc and mb are the number of numerical, categorical, and binary features, respectively. The
distance measure for the numerical attributes dn is the L1 norm dn(x1, x2) = |x1 − x2|, which is preferred
over L2, as it is more robust to outliers (Hopcroft & Kannan, 2014). For categorical features, dc is the
distance measure (Ahmad & Dey, 2007), which takes into account the distribution of values and their co-
occurrence with values of other attributes. The distance between two values x and y of an attribute Ai with
respect to attribute Aj is given by:

δij(x, y) = P (Aj ∈ ω|Ai = x) + P (Aj ̸∈ ω|Ai = y)− 1
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Figure 1: Left: an explanation for a data point x that is too specific, applying only to a very small neigh-
borhood. Right: An explanation that applies to a larger neighborhood, which is what we aim at.

Here, P (Aj ∈ ω|Ai = x) is the conditional probability that attribute Aj will take a value from the set ω given
that the attribute Ai takes the value x. ω is a subset of all possible values of attribute Aj that maximizes the
sum of the probabilities. Since both probabilities can take values from [0, 1], we subtract 1 in order to arrive
at δij(x, y) ∈ [0, 1]. Lastly, for binary features, we use the Hamming distance: dh(a, b) = 1 if a = b, and zero
otherwise. In Line 1 of Algorithm 1, the function ComputeDistances returns the distances by Equation 1.

Step 2: Neighborhood Search. After computing the distances, we proceed with the exploration of the
neighborhood of the input data point x. The goal is to find a set of points, closest to x according to the
distance measure, that will serve as a training set for a local surrogate model. Several common techniques
could be considered to that end, including kNN, K-Means, and other distance-based clustering methods.
In our case, however, we aim to find a neighborhood such that a linear regression model trained on that
neighborhood represents an accurate local approximation of the black-box model. Hence, the quality of the
neighborhood is proportional to the quality of the performance of the linear model fitted on it. Common
drawbacks of regression evaluation metrics metrics are missing interpretability, sensitivity to outliers and
near-zero values, divisions by zero, missing bounds, and missing symmetry. We find that the Berry-Mielke
universal R value ℜ (Berry & Mielke Jr, 1988) avoids most of these pitfalls. ℜ represents the measure of
agreement between raters and it is a generalization of Cohen’s kappa (Cohen, 1960). ℜ measures how much
better the model is compared to a naive one (e.g., to a random predictor). ℜ takes values from the range
[0, 1], and it can be interpreted easily: If ℜ is equal to 0, the model performance is equal to the one of the
random model and if it is 1, then the model has perfect performance. ℜ is defined as ℜ = 1 − δ

µ , where δ
and µ are defined as:

δ = 1
n

n∑
i=1

∆(ŷi, yi), µ = 1
n2

n∑
i=1

n∑
j=1

∆(ŷj , yi). (2)

Here, n is the number of samples, yi is the actual target value, ŷi is the predicted value, and ∆(·) represents
the distance function between the true and the predicted value. The original work by (Berry & Mielke Jr,
1988) uses the Euclidean distance, but later works (Janson & Olsson, 2001; 2004) propose to use the squared
Euclidean distance instead, because this distance is equivalent to the variance of the variable, which further
improves the interpretability of ℜ. We follow this argumentation, and use ∆(x, y) = (x−y)2. This definition
implies that ∆ is in fact equal to the Mean Squared Error (MSE). Thus, by optimizing ℜ, we are actually
optimizing the accuracy of the local model.

However, to avoid explanations that are too specific, i.e., explanations that apply to very small neighbor-
hoods, as in Figure 1 (left), we wish to optimize not just the accuracy, but also the generality of the surrogate
model. Therefore we include the size of the neighborhood in the optimization function, to aim for explana-
tions that are at the same time accurate and general (Figure 1 (right)). One way to do this is to maximize
the lower bound of the confidence interval of ℜ. The lower and upper bounds for the confidence interval of
ℜ are given by (Berry & Mielke Jr, 1988):

CIℜ = ℜ±MOEℜ = 1− δ ∓MOEδ

µ
(3)
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Here, MOE stands for the Margin of Error. From Equation 3, it follows that computing the lower bound
of ℜ is analogous to computing the upper bound of δ. Therefore, we can compute the margin of error for
δ as MOEδ = t σ√

n
, where σ is the standard deviation of the sample, n is the sample size and t represents

the critical value from the t-distribution. We use the t-distribution because it is adapted for small sample
sizes, which is what we encounter when we grow the neighborhood. The distribution converges to the normal
distribution as the sample size increases.

Due to the non-monotonic nature of the ℜ value, we have to explore the whole space to maximize its lower
bound. We employ a linear search algorithm (Algorithm 2) to this end.

Algorithm 2 Neighborhood Search
Input: Labeled data point x ∈ T

Dataset T with labels Y
Distances d :T→ R of the data points to x

1: Sort T by ascending d
2: n← number of features in T
3: maxℜlb ← 0, bestN← 0, bestL← ∅
4: for i = min(2n, |T |) to |T | do
5: L← TrainLocalSurrogateModel(T [0 : i])
6: if ℜlb(L) > maxℜlb then
7: maxℜlb ← ℜlb(L), bestN← i, bestL←L
8: end if
9: end for

10: return bestL, T[0:bestN]

The algorithm receives as input a labeled data point x that is to be explained, a labeled training set T , and
a vector of distances between x and each point in the training set T . We sort the training set by increasing
distance to x, train a linear model on the first i data points for increasing i, and return the set of neighbors
for which the lower bound of ℜ is maximal. As the neighbourhood is very small in the beginning, the training
easily lead to overfitting. Therefore, we consider at least 2n data points for our neighborhood, where n is
the number of features. This ensures that the estimation of regression coefficients exhibits less than 10%
relative bias (Austin & Steyerberg, 2015).

Algorithm 3 Train Local Surrogate Model
Input: Neighborhood of data points N

1: F ← the set of all features in N
2: F ′ ← {f |f ∈ F ∧VIF(f) < 10.0}
3: FeaturesLasso ← Lasso(cv = 5, features = F ′)
4: return OLS(FeaturesLasso)

Step 3: Building a local surrogate model. We build our local surrogate model on the neighborhood
we have found. To obtain a model with few parameters (i.e., a simple model), we use regularization. In
terms of feature selection, L1 regularization (e.g. Lasso (Hastie et al., 2009)) is able to select a nearly perfect
subset of variables in a wide range of situations. The only condition for this to work is that there are no
highly collinear variables (Candès & Plan, 2009), which can significantly reduce the precision of estimated
regression coefficients. To remove highly collinear features, we compute the variance inflation factor (VIF),
and, following a rule of thumb (Stine, 1995), adopt 10 as the cut-off value for the VIF.

After removing highly collinear features, the next step is to train a linear model with Lasso regularization.
Lasso regularization adds a penalty term in the form of the sum of absolute values of regression coefficients.
The objective function is minβ∈Rp(||y−βX||22 +λ||β||1), where λ is the shrinkage parameter. This provides a
sparse model, by forcing some coefficients to be zero. Removing some features ensures a better generalization,
and results in simpler, and thus more comprehensible explanations. On the other hand, coefficients obtained
by minimizing the Lasso objective function are biased towards zero. Therefore, Lasso is preferred for model
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Figure 2: Explanation example.

The value predicted by the model is 551 and the explained value is 557.
This explanation applies to 476 other instances.

selection rather than for prediction. The common strategy is to train an Ordinary Least Squares (OLS)
linear model on the subset of variables selected by Lasso. This corresponds to a special variation of the
relaxed Lasso (Meinshausen, 2007), with ϕ = 0.

To determine the value of the shrinkage coefficient λ, we use 5-fold cross-validation (CV). To preserve the
deterministic nature we perform CV on adjacent slices of the dataset, without random shuffles. CV selects
the best model in terms of a prediction error. Since the goal of this step is model selection, we want to avoid
choosing λ too small, and hence we apply the common one-standard-error rule. According to this rule, the
most parsimonious model is the one whose error is no more than one standard error above the error of the
best model (Hastie et al., 2009).

Once we have obtained the most parsimonious model, i.e., the best set of features, we train the final local
surrogate model as an OLS model using the features selected by Lasso. This procedure is described in
Algorithm 3, and it returns a local linear model.

Providing an explanation. As the final result, BELLA outputs the OLS model computed by Algorithm 3,
together with the size of the neighborhood. As an example, consider the Iranian Churn dataset (Jafari-
Marandi et al., 2020). It contains the (anonymized) customers of a telecommunication company, with their
age, subscription length, the satisfaction with the service, etc. The goal is to predict the commercial value
of the customer to the company (in dollars).

Let us now consider a given customer, for which a black-box model predicted a commercial value of $551.
The explanation that BELLA can provide for this prediction is shown in Figure 2. All numerical features
have been standardized to have mean value equal to 0 and standard deviation equal to 1. (Thus, a customer
has a “negative age” if they are younger than the average customer.) In the explanation, the base value
is the output of the model when all inputs are set to zero (i.e., to their mean value). Each bar shows the
total contribution of each feature to the predicted value: The more the customer phones (variable seconds),
the more revenue the company generates. The age (which is below average for this particular customer),
likewise, has a small positive impact. The number of SMS, in contrast, (variable freqSMS) impacts the
revenue negatively. Finally, the number of distinct phone numbers called (variable distnum) has a small
negative impact. These sizes of the bars are easy to interpret: The size of each bar is equal to the value of
the feature multiplied by the weight computed by our method. Their sum is then directly equivalent to the
explained value:

y ≈ 458.47 + 190.27× seconds− 102.91× age + 480.08× freqSMS− 17.71× distNums

This computation applies to all data points in the neighborhood of the input data point (to the current
instance and 476 others in our example). We thus see that BELLA’s explanations are verifiable (because

7



Under review as submission to TMLR

they take the form of a linear equation), deterministic (because BELLA does not use any randomized steps),
simple (because we applied regularization), general (because we maximized the neighborhood), and accurate
(because we optimized the linear model on the local neighborhood). In addition, BELLA does not probe
the black-box model. This means that, unlike many of its competitors, BELLA can explain not just the
decisions of a black-box model, but any numerical variable in a tabular dataset – even if that variable was
not generated by a model at all but merely observed in reality (such as, e.g., housing prices). Let us now
turn to the missing desideratum, counterfactuality.

Counterfactual explanations provide information about a (minimal) change needed to alter the prediction
of the black-box model. In a classification scenario, the goal is to make the model predict a different class. In
a regression scenario, the goal is not to make the model predict any other value, but the value that the user
would like to see. In our example of the Iranian churn dataset, an analyst may ask why the model predicted
$551 instead of, say, $1000. A counterfactual explanation should suggest a set of changes that should be
applied to reach this reference value. To provide such an explanation with BELLA, we select candidates,
i.e. data points whose target value is in an ϵ-vicinity to the reference value (with ϵ = 5%). There can be
multiple candidates.

To find the best one, we optimize two criteria: the distance between the given data point and the candidate,
and the amount of change needed. The first criterion will favor candidates that are in the vicinity of the
given data point. The second criterion controls the amount of change applied. To alter the outcome, one
can usually either apply a small change to several features, or a big change to few features. The second
approach is risky: without human intervention, we can end up with a set of features that are difficult or
impossible to change (e.g., the age of a customer). Therefore, we rather aim to minimize the average amount
of change and suggest smaller adjustments to multiple features (such as frequency of use, or the number of
SMS messages). This yields the following objective function:

min
xi∈S

(d(x, xi) + d(x, x′)
|∆| ) (4)

Here, xi is a counterfactual candidate data point, d is a distance measure defined in Equation 1, x′ represents
the modified data point x according to the counterfactual explanation and |∆| is the number of features that
have been modified. The modified data point, x′, represents the counterfactual explanation.

The overall process is described in Algorithm 4. The algorithm takes as input the labeled dataset T , a
labeled datapoint x ∈ T , a reference value yref ∈ R, and a permitted deviation ϵ from the reference value.
We first choose the set of counterfactual candidates Xc that have the target value in the ϵ neighbourhood
of the reference value yref. For each xi among these candidates, we compute the explanation using BELLA.
This explanation gives us a set of features, and the proposed modification of x is to set all these features
of x to the values given by xi. Among these proposed modifications, we choose the one that minimizes the
objective function in Equation 4.

Algorithm 4 Computing a counterfactual explanation
Input: Dataset T of data points xi with labels yi

Labeled data point x ∈ T
A reference value yref ∈ R
Deviation from reference value ϵ = 0.05

1: Xc ← {xi ∈ T : yi ∈ [yref − ϵ, yref + ϵ]}
2: for xi ∈ Xc do
3: Li, Ni ← BELLA(T, xi) ▷ Algorithm 1
4: x′

i ← xi modified according to Li

5: end for
6: xref ← argminx′

i
(d(x, xi) + d(x,x′

i)
|∆| )

7: return xref
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Table 1: Regression Datasets
Dataset Features Numerical Categorical Instances
Auto MPG 7 6 1 392
Bike 12 9 3 8760
Concrete 8 8 0 1030
Servo 4 0 4 167
Electrical 12 12 0 10000
Superconductivity 81 81 0 21262
White Wine Quality 11 11 0 4898
Real Estate Valuation 5 5 0 414
Wind 14 14 0 6574
CPU activity 12 12 0 8192
Echocardiogram 9 6 3 17496
Iranian Churn 11 8 3 3150

5 Experiments

Datasets. We performed experiments on datasets from two standard repositories (Dua & Graff, 2017;
Romano et al., 2021), shown in Table 1. Among them is also a high-dimensional dataset, Superconductivity,
with 81 features. All categorical features have been one-hot encoded and all numerical features have been
standardized. To show that BELLA works with different families of models, we trained a random forest
(with 1000 trees), and a neural network (with one hidden layer with 500 nodes) as black-box models. For
space reasons, we show only results for the neural network while the results for the random forest are in the
supplementary material.

BELLA. Our method is implemented in Python. For the black-box models, we use the implementations of
scikit-learn (Pedregosa et al., 2011). All experiments are run on a Fedora Linux (release 38) computer
with an Intel(R) Xeon(R) v4 @ 2.20GHz CPU, a memory of 64 GB, and Python 3.9. All code and the data
for BELLA and the experiments is available on Github (URL masked for anonymity).

Competitors. We compare BELLA to LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017) and
MAPLE (Plumb et al., 2018). We use the implementations by the authors123. We do not compare to
methods that are designed for classification tasks, or that can provide only counter-factual explanations and
not factual ones (see again Section 2).

5.1 Experimental results

We compare BELLA’s performance against the competitors on the quality measures from Section 3. All
tables show the average performance on the test set of each method with confidence intervals at α = 95%.

Fidelity is measured by the Root Mean Squared Error (RMSE) of the local surrogate models wrt. the
predictions of the black-box models (Table 2, with a min-max normalized average). SHAP always has an
error of 0. This is because it provides exact explanations that apply only to a single data point. Among the
methods that apply to a neighborhood of points, MAPLE is generally the best, followed closely by BELLA.
LIME comes last. Among all these methods, BELLA is the only one that can provide both factual and
counterfactual explanations. To evaluate the quality of BELLA’s counterfactual explanations, we measure
their fidelity wrt. a reference value. For each data point x with its target value y, we set the reference
values to yref = y ± 0.3× |ymax − ymin|. We see that the counterfactual explanations of BELLA are often of
similar fidelity as its factual explanations. Even in the cases where the error of counterfactual explanations

1https://github.com/marcotcr/lime
2https://github.com/slundberg/shap
3https://github.com/GDPlumb/MAPLE/tree/master
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Table 2: Fidelity comparison (RMSE – smaller is better)
Factual Counterf.

Dataset LIME MAPLE BELLA SHAP BELLA
Auto MPG 2.16±0.487 1.04±0.239 0.75±0.245 0.00 3.74±1.100

Bike 392.00±23.70 67.60±5.110 164.00±11.00 0.00 474±20.72

Concrete 11.70±1.540 2.30±0.382 3.71±0.554 0.00 1.23±0.410

Servo 0.87±0.289 0.26±0.092 0.88±0.197 0.00 0.89±0.203

Electrical 0.03±0.002 0.01±0.001 0.02±0.001 0.00 0.03±0.001

Supercond. 25.20±1.271 2.56±0.357 6.84±0.978 0.00 58.00±1.860

White Wine 0.35±0.041 0.19±0.026 0.19±0.023 0.00 0.86±0.058

Real Estate 5.22±1.350 1.83±0.641 0.84±0.511 0.00 8.76±2.231

Wind 3.85±0.539 1.28±0.233 1.45±0.231 0.00 4.62±0.204

CPU Activity 18.70±1.700 0.75±0.058 0.92±0.114 0.00 2.76±0.370

Echocard. 9.56±0.250 2.09±0.087 2.92±0.119 0.00 13.1±0.422

Iranian Churn 147.00±20.70 2.82±0.468 14.30±2.530 0.00 28.00±5.970

Norm. avg. 0.11±0.008 0.03±0.003 0.04±0.006 0.00 0.12±0.047

Table 3: Generality comparison (% - larger is better)
Dataset LIME SHAP MAPLE BELLA
Auto MPG 10.08±2.520 0.00 38.33±3.100 37.27±8.710

Bike 4.14±0.458 0.00 5.42±0.088 32.11±2.160

Concrete 1.10±0.400 0.00 31.75±1.000 21.55±4.142

Servo 16.82±4.130 0.00 74.35±3.730 76.31±9.410

Electrical 0.02±0.011 0.00 20.67±0.321 21.61±3.180

Supercond. 0.01±0.709 0.00 15.98±0.498 30.25±3.480

White Wine 0.83±0.243 0.00 17.89±0.369 15.34±1.950

Real Estate 3.75±1.710 0.00 46.34±3.990 16.21±6.410

Wind 0.24±0.044 0.00 12.69±0.186 94.00±1.520

CPU Activity 0.71±0.250 0.00 9.30±0.227 17.50±1.610

Echocard. 0.00±0.001 0.00 5.13±0.060 83.76±1.180

Iranian Churn 0.65±0.202 0.00 12.10±0.417 6.41±2.140

Average 3.21±1.190 0.00 24.16±1.166 37.95±3.813

is an order of magnitude larger, it is still lower or comparable to the error of the factual-only explanations
provided by LIME (shown in bold).

Generality is measured by the number of data points to which the explanation applies (as a percentage of
all data points in the training set). For BELLA, we simply return the size of the neighborhood. For MAPLE
we return the number of data points that have weights larger than 0. For LIME, an explanation comes with
the range of values for each feature. We count the number of data points that fall into this range. The
results are shown in Table 3. For SHAP, the size of the neighborhood is always 0. This is because SHAP
provides feature contributions that are specific for the given data point, and there is no way to apply these
explanations to other data points. LIME’s explanations are more general, and MAPLE’s explanations even
more. Still, they are vastly less general than the explanations of BELLA.

Simplicity is most commonly measured by the number of features that an explanation contains (Table 4).
LIME has the same size of explanations as BELLA. This is because LIME takes this parameter as input and
we set it to the size of the explanation provided by BELLA. SHAP and MAPLE constantly provide longer
explanations than BELLA. MAPLE has higher complexity than SHAP, even though it comes with lower
accuracy.
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Table 4: Simplicity comparison (smaller values are better). LIME requires the explanation size as input,
and we give it the size of the explanation computed by BELLA.

Dataset SHAP MAPLE BELLA/LIME
Auto MPG 9.00±0.000 6.75±0.208 4.90±0.369

Bike 11.63±0.038 12.44±0.080 7.30±0.115

Concrete 8.00±0.000 7.00±0.000 5.42±0.297

Servo 13.06±0.218 15.71±0.155 5.06±0.645

Electrical 12.00±0.000 12.00±0.000 8.63±0.087

Supercond. 77.97±0.246 79.99±0.008 13.10±0.555

White Wine 11.00±0.000 10.00±0.000 7.54±0.198

Real Estate 5.00±0.000 4.00±0.000 4.05±0.327

Wind 13.65±0.132 13.00±0.000 9.47±0.102

CPU Activity 12.00±0.000 12.00±0.000 10.80±0.204

Echocardiogram 9.00±0.000 8.47±0.026 8.23±0.037

Iranian Churn 9.15±0.054 9.53±0.059 5.65±0.166

Norm. Avg. 0.92±0.002 0.91±0.004 0.59±0.022

Table 5: Robustness comparison (0 to 1 – larger is better)
Dataset LIME SHAP MAPLE BELLA
Auto MPG 0.78±0.023 0.68±0.083 0.84±0.037 0.80±0.038

Bike 0.79±0.026 0.70±0.037 0.66±0.033 0.76±0.050

Concrete 0.78±0.047 0.72±0.028 0.68±0.041 0.65±0.081

Servo 0.77±0.017 0.59±0.021 0.56±0.097 0.64±0.029

Electrical 0.63±0.015 0.59±0.022 0.76±0.022 0.76±0.041

Supercond. 0.89±0.014 0.87±0.031 0.58±0.076 0.93±0.059

White Wine 0.67±0.035 0.56±0.051 0.66±0.030 0.65±0.064

Real Estate 0.70±0.057 0.74±0.041 0.77±0.058 0.65±0.085

Wind 0.64±0.037 0.62±0.035 0.67±0.023 0.99±0.109

CPU Activity 0.46±0.034 0.73±0.035 0.76±0.031 0.83±0.039

Echocardiogram 0.75±0.039 0.66±0.034 0.55±0.039 0.96±0.017

Iranian Churn 0.62±0.035 0.79±0.045 0.84±0.039 0.76±0.049

Average 0.71±0.032 0.69±0.039 0.68±0.044 0.78±0.055

Robustness judges how similar the explanations for close data points are. We measure robustness as:

robustness = 1− 1
n

n∑
i=1

|β1i − β2i|
|β1i|+ |β2i|

. (5)

Here, n is the number of features, and β1i and β2i are the weights of feature i in the first and second
explanation, respectively. Robustness is in the range of [0, 1], with 1 indicating that two explanations are
identical. We compute explanations for each data point in the test set, and compute robustness wrt. the
10 closest data points (Table 5). LIME samples 5000 data points to create a synthetic neighborhood. Thus,
LIME can perform slightly better than our approach on datasets that have fewer observations. Still, in the
majority of cases, and on average, BELLA outperforms LIME. BELLA also outperforms SHAP by a wide
margin. This is because SHAP’s explanations are tailored for a single data point. BELLA also outperforms
MAPLE. This is because the crisp neighbourhood of BELLA provides much more robust explanations than
MAPLE’s weighted neighbourhood.

The results when the black box model is a random forest are shown in the appendix, and they do not
differ much. From Tables 2, 3, 4, and 5, we can see that at the same level of simplicity, BELLA provides

11



Under review as submission to TMLR

more general, more robust, and more accurate explanations than LIME. BELLA provides less accurate
explanations than SHAP and MAPLE, but at the same time, BELLA’s explanations are more general, more
robust, and vastly simpler.

Counterfactuality is a desideratum that only BELLA, and neither LIME nor SHAP nor MAPLE fulfills.
To evaluate the quality of BELLA’s counterfactual explanations, we measure the fidelity of an explanation
wrt. a reference value. For each data point x with its target value y, we set the reference values to
yref = y±0.3×|ymax−ymin|. The last column of Table 2 shows the RMSE of the counterfactual explanations.
We see that the counterfactual explanations of BELLA are often of similar fidelity as its factual explanations.
Even in the cases where the error of counterfactual explanations is an order of magnitude larger, it is still
lower or comparable to the error of the factual-only explanations provided by LIME.

Other desiderata outlined in Section 3 were determinism, and verifiability (the possibility to compute the
explained value from the feature values). SHAP offers none of these. Neither does LIME. While both SHAP
and LIME compute linear models with feature weights, these models are not verifiable in our sense: There
is no way that the user can insert the feature values of a neighboring point into these models and obtain
an explained value. This is because the linear models do not operate in the original input feature space.
Only MAPLE offers this verifiability. However, it relies on randomization and provides no counterfactuality.
BELLA is thus the only approach that delivers deterministic, verifiable, and both factual and counterfactual
explanations.

Verification on an interpretable model. To confirm that the explanations provided by BELLA represent
what the black-box model has learned, we evaluate them with regard to an already interpretable model.
Instead of a black-box model, we train an Ordinary Least Square linear regression model and consider the
5 most important features. We then compute the explanations for each data point in the test set with our
method. BELLA was able to recover on average 85.12% of the original top-5 features across all datasets.
This shows that our method provides explanations that generally agree with prior beliefs, as encoded in an
interpretable model.

6 Conclusion

We have presented BELLA, an approach to provide post-hoc local explanations for any regression black-box
model, or indeed any static tabular dataset with a numeric variable to be explained. BELLA is deterministic,
and can provide both factual and counterfactual explanations. BELLA’s objective function ensures accurate,
general, robust, and simple explanations. Detailed experiments show that BELLA outperforms state-of-the-
art approaches on these desiderata, often by a wide margin.

Future work could investigate how human intervention could lead to more plausible explanations. For
example, our counterfactual explanations could be improved if users specified which features can be modified.
We hope that our work can open the door to research along this line and others, and ultimately make machine
learning models more interpretable.
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A Appendix

In the main paper, we presented the experiments using a neural network as a black-box model. Here, we
show the results of experiments using a random forest of 1000 trees as a black-box model. The results are
shown in Tables 6, 7, 8, and 9. They do not differ much from the results on the neural network black box
model.

Table 6: Fidelity comparison for Random Forest as black-box model
Factual Counterf.

Dataset LIME MAPLE BELLA SHAP BELLA
Auto MPG 1.63±0.430 0.74±0.218 1.36±0.421 0.00 4.02±0.950

Bike 322.72±16.83 66.14±5.420 176.42±10.58 0.00 362.99±21.30

Concrete 6.09±0.954 2.36±0.381 3.75±0.601 0.00 1.25±0.411

Servo 0.49±0.129 0.16±0.088 0.52±0.146 0.00 0.68±0.321

Electrical 0.01±0.001 0.01±0.000 0.01±0.00 0.00 0.01±0.000

Supercond. 28.40±1.470 2.94±0.409 5.41±0.499 0.00 43.47±1.513

White Wine 0.31±0.027 0.16±0.013 0.28±0.023 0.00 0.44±0.033

Real Estate 4.08±1.202 3.16±1.050 3.39±0.756 0.00 7.89±3.139

Wind 1.49±0.084 0.55±0.036 1.01±0.060 0.00 4.61±0.180

CPU Activity 11.66±1.030 0.71±0.101 1.44±0.238 0.00 0.88±0.058

Echocard. 3.51±0.113 1.74±0.069 3.17±0.121 0.00 12.31±0.402

Iranian Churn 146.68±20.73 10.92±2.335 14.28±2.543 0.00 150.77±20.35

Norm. avg. 0.07±0.008 0.02±0.004 0.04±0.005 0.00 0.09±0.012
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Table 7: Generality comparison (% - larger is better)
Dataset LIME SHAP MAPLE BELLA
Auto MPG 4.25±2.653 0.00 43.91±3.493 77.05±9.229

Bike 1.30±0.225 0.00 5.48±0.089 39.99±2.392

Concrete 0.33±0.168 0.00 31.18±1.444 23.26±4.079

Servo 4.63±1.900 0.00 79.57±5.023 81.69±12.721

Electrical 0.01±0.001 0.00 17.12±0.305 16.89±1.882

Supercond. 0.01±0.159 0.00 14.93±0.439 53.55±2.386

White Wine 0.68±0.245 0.00 18.44±0.306 65.31±2.879

Real Estate 2.52±0.968 0.00 49.42±3.936 55.38±12.020

Wind 0.37±0.057 0.00 12.41±0.176 99.97±0.014

CPU Activity 0.75±0.146 0.00 9.54±0.215 51.63±1.570

Echocard. 0.31±0.040 0.00 5.90±0.081 86.40±1.080

Iranian Churn 1.5±0.216 0.00 11.91±0.429 12.49±1.843

Average 1.18±0.565 0.00 24.98±1.328 55.21±4.341

Table 8: Simplicity comparison (smaller values are better)
Dataset SHAP MAPLE BELLA/LIME
Auto MPG 8.00±0.000 7.90±0.097 3.90±0.382

Bike 12.00±0.032 12.57±0.080 7.43±0.303

Concrete 8.00±0.000 7.00±0.000 5.40±0.301

Servo 10.12±0.845 15.94±0.125 6.76±1.068

Electrical 12.00±0.000 12.00±0.000 8.06±0.201

Supercond. 48.90±1.159 80.00±0.007 15.50±0.344

White Wine 11.00±0.000 10.00±0.000 6.70±0.291

Real Estate 5.00±0.000 4.00±0.000 3.76±0.256

Wind 13.63±0.048 13.00±0.000 7.82±0.155

CPU Activity 12.00±0.000 11.00±0.000 10.35±0.523

Echocardiogram 9.00±0.000 7.48±0.025 5.65±0.145

Iranian Churn 9.19±0.043 9.44±0.063 5.56±0.176

Norm. Avg. 0.90±0.006 0.89±0.003 0.57±0.022
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Table 9: Robustness comparison (0 to 1 – larger is better)
Dataset LIME SHAP MAPLE BELLA
Auto MPG 0.87±0.017 0.67±0.044 0.65±0.060 0.70±0.028

Bike 0.77±0.004 0.66±0.005 0.51±0.063 0.79±0.009

Concrete 0.76±0.020 0.65±0.019 0.70±0.050 0.69±0.035

Servo 0.90±0.019 0.79±0.038 0.52±0.108 0.75±0.030

Electrical 0.82±0.002 0.50±0.004 0.59±0.028 0.81±0.006

Supercond. 0.76±0.006 0.85±0.005 0.49±0.033 0.80±0.011

White Wine 0.62±0.007 0.51±0.007 0.59±0.042 0.77±0.013

Real Estate 0.63±0.040 0.69±0.038 0.66±0.057 0.85±0.060

Wind 0.71±0.006 0.63±0.006 0.61±0.027 0.98±0.002

CPU Activity 0.52±0.005 0.69±0.008 0.65±0.040 0.84±0.006

Echocardiogram 0.81±0.004 0.52±0.002 0.46±0.037 0.99±0.011

Iranian Churn 0.75±0.017 0.79±0.011 0.65±0.055 0.78±0.012

Average 0.74±0.012 0.66±0.016 0.59±0.050 0.81±0.019
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