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Abstract

Identifying functional enzymes that can perform
unannotated reactions is a major biotechnological
bottleneck. While multi-modal machine learning
models can be used to retrieve enzymes given tar-
get functions (reactions), existing methods have
not been adequately compared to each other. Two
key areas warrant further investigation: first, the
optimal way to incorporate 3D protein structure
and predicted binding pockets for enzyme re-
trieval, and second, the most effective learning
objectives for training such multi-modal models.
We examine these questions through experiments
on Task 2 of Classification and Retrieval for En-
zymes (CARE) benchmark, demonstrating that
multi-modal representations combining protein
structure with pocket information have better per-
formance than sequence-only methods. Second,
we evaluate learning objectives and found that
contrastive learning generally provides superior
performance for enzyme retrieval compared to a
binary classification. Our work underscores the
value of integrating structural and pocket infor-
mation for precise enzyme-reaction matching and
offers insights into effective training objectives
for such retrieval models.

1. Introduction

Enzymatic catalysis underlies virtually every cellular pro-
cess and powers a broad array of industrial biotechnologies.
Many enzymes are useful as biocatalysts or can be engi-
neered for industrially relevant applications (Buller et al.,
2023; Reisenbauer et al., 2024), but the functional land-
scape of enzymes remains only partially charted (Breaker,
1997; Knowles, 1991; Arnold, 2018; Chen & Arnold, 2020).
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While approximately 246 million protein sequences are
now available through sequencing efforts, fewer than 1%
have been annotated with functional information, and only
0.23% of UniProt entries are well-studied (Consortium,
2025; Ribeiro et al., 2023). In these databases, a com-
mon formalism for categorizing enzymatic activity is the
Enzyme Commission (EC) number, a four-level numerical
identifier that hierarchically encodes the chemistry of the
catalyzed reaction (Sanderson et al., 2023; Li et al., 2018;
Dalkiran et al., 2018). Since many protein sequences are not
annotated with EC numbers and many reactions do not fall
under existing EC numbers, retrieving a protein sequence
given a specified biochemical reaction can be a challenging
task, necessitating new computational methods for this task
(Yang et al., 2024a).

Recent multi-modal machine-learning efforts have tackled
these problems of enzyme function prediction and retrieval.
These distinct modalities can include protein sequence in-
formation, 3D protein structure, localized functional site
information (such as binding pockets), and chemical reac-
tion representations (e.g., SMILES strings or fingerprints).
Contrastive Reaction-Enzyme Pretraining (CREEP) (Yang
et al., 2024b) uses language models ProtT5 (Elnaggar et al.,
2021) and rxnfp (Schwaller et al., 2021) to jointly align
and learn sequence-only protein representations with re-
action representations. CLIPZyme (Mikhael et al., 2024)
contrastively learns and aligns an E(n)-equivariant GNN
over 3-D protein graphs with a de novo message-passing
network that encodes 2-D reaction graphs. Other methods
like EnzymeCAGE (Liu et al., 2024) focus directly on the
catalytic pocket and are trained with a classification loss.

On “Task 2” of the CARE benchmarks, which focuses on
retrieving a protein given an unannotated reaction, CREEP
has demonstrated the highest performance—potentially be-
cause encoders for different modalities are finetuned but
also potentially because the training process for CLIPZyme
was not optimized in this case (Yang et al., 2024b). Thus,
fundamental questions still remain, as CREEP, CLIPZyme,
and EnzymeCAGE have not been fairly compared to each
other. First, the role and impact of explicitly incorporating
additional modalities like three-dimensional protein struc-
ture and predicted binding pockets on enzyme annotation
performance, particularly compared to sequence-only repre-
sentations utilized by CREEP, remain to be fully understood.
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Second, identifying the most effective learning objective
(contrastive versus classification loss) for combining multi-
ple modalities for retrieval has not been explored.

To fairly compare multimodal frameworks for enzyme re-
trieval, we modify the CREEP framework to accommo-
date different representations of proteins and loss objectives
(Figure 1). We demonstrate that structure-based modality
performs better than sequence-based modality for protein
function prediction, and adding pocket information to the
structure-based representations achieves even better perfor-
mance. Additionally, we present a systematic evaluation
of learning objectives for enzyme-reaction retrieval models,
showing that contrastive learning outperforms binary classi-
fication. Overall, our findings provide valuable insights into
model design choices for enzyme function retrieval.

2. Methods

Our objective is to retrieve protein sequences given target,
unseen reactions and generate a ranked list of Enzyme Com-
mission (EC) numbers that correspond to those retrieved
proteins (Task 2 of CARE benchmark) (Yang et al., 2024b).
Our models address this multi-modal task by leveraging
protein information (from sequence, 3D protein structure,
and integrating structure with pocket-level information) and
chemical reaction representation.

All of our models are trained in a similar fashion to the orig-
inal CREEP model, but we modify how protein represen-
tations from these different modalities are encoded within
this framework. For models utilizing the protein sequence
modality, protein representations are derived using fixed
ESM-2 embeddings (Lin et al., 2022) processed through
a non-linear multi-layer perceptron network. For models
based on the 3D protein structure modality, we follow the
approach used in CLIPZyme. We encode each protein as
a three-dimensional graph G = (V, E'). Each node v; € V
has distinct coordinates ¢; € R? and corresponds to residue-
level information, while each edge e;; € E represent bonds
between residues. Initial node features are derived from
ESM-2 embeddings (Lin et al., 2022) pretrained with 150
M parameters, yielding, for each residue, a 640-dimensional
feature vector. The protein graph features are processed
using an Equivariant Graph Neural Network (EGNN) (Sator-
ras et al., 2021). For all models, we encoded reactions as
SMILES/SMARTS strings (Weininger, 1988) and conse-
quently finetuned using rxnfp, a BERT-style model (Devlin
et al., 2019) that generates chemical fingerprints. Additional
details of all models are provided in Appendix C.

To further enhance enzyme retrieval by incorporating bind-
ing pocket information as an additional modality to structure,
we explored integrating active site features to the structure
by leveraging a state-of-the-art pocket prediction method,

P2Rank (Krivak & Hoksza, 2018; Jendele et al., 2019),
to identify potential ligand-binding sites and assign them
calibrated probability and raw scores. The detailed method-
ology of how P2Rank generates these pocket-level scores
(S;) and probabilities (P(S;)) from protein structures is
provided in Appendix D.

We explored three distinct strategies for integrating these
residue-level pocket features with the ESM-2 embeddings
as listed below. Detailed pocket integration strategies are
provided in Appendix E.

1. Direct Concatenation (‘Structure + Pockets’): This
entails concatenating raw P2Rank-derived pocket prob-
ability and score features directly to the initial residue
embeddings.

2. Adapted Pockets (‘Structure + Adapted Pockets’):
This involves projecting the normalized residue-level
pocket probability into a learnable dense vector, before
concatenation with residue embeddings.

3. Pocket-Weighted Message Passing (‘Structure +
Weighted Pockets’): This strategy modulates the mes-
sage aggregation process within the EGNN layers us-
ing residue-level pocket probabilities as attention-like
weights.

3. Results

We evaluated our multi-modal models on reaction-to-
enzyme retrieval tasks with contrastive loss. Evaluations
were conducted on easy, medium, and hard splits from a
modified version of the Task 2 CARE benchmark (Yang
et al., 2024b), for which protein structure representations
were curated based on AlphaFold-predicted structures.
Dataset details can be found in Appendix A, Figure 2, and
Table 3. CREEP retrieves protein sequences for a query
reaction, which are then mapped to a ranked list of EC num-
bers for further evaluation, details of which can be found in
Appendix B. Retrieval performance is evaluated using the
Top-k Success Rate at k = 1, where the top k EC numbers
from the ranking are selected, and the accuracy of the most
correct EC number is provided at four EC hierarchy levels.

3.1. Structural and Pocket Features Enhance Enzyme
Retrieval

Our findings, summarized in Table 1, reveal a clear hierar-
chy of performance on the modified CARE Task 2 dataset.
First, utilizing ‘Structure’-based representations leads to
better performance than ‘Sequence’-only representations
across the easy, medium, and hard data splits, particularly
at the most specific EC level 4. These findings strongly
suggest that structural embeddings provide a more infor-
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Figure 1. Overview of different multi-modal architectures for enzyme-reaction representation learning, illustrating the integration of
various modalities. (A) Contrastive learning aligns embeddings from different protein and reaction modalities. (B) A Binary MLP predicts
if a given protein-reaction pair matches, using embeddings derived from their respective modalities. (C) Protein representation encoders
for different input modalities: (1) Protein sequence modality processed by an ESM-2 based encoder; (2). 3D Protein structure modality
processed by an EGNN; (3) Integrated 3D protein structure and binding pocket modalities processed by an EGNN.

mative representation for enzyme retrieval than sequence
embeddings alone.

Second, explicitly incorporating predicted binding pocket
information via direct concatenation (‘Structure + Pockets’)
yielded further performance gains over the ‘Structure-only’
model. While the ‘Structure + Pockets’ model did not sur-
pass the ‘Structure-only’ model in every single metric, show-
ing a decrease of 0.2% in retrieval accuracy for the Medium
split at EC Level 4, it demonstrated superior performance
across all the other splits and EC hierarchy levels, achieving
the best overall results among the tested configurations, with
an average increase of 3.38% in retrieval accuracy across
all splits and EC Levels. This highlights the significant
value of including localized functional site information as
a valuable signal for more accurate enzyme retrieval. We
then explored if more sophisticated methods for integrating
pocket features—specifically an “adapted” variant (project-
ing pocket probabilities) and a “weighted” variant (pocket-
weighted message passing in the EGNN)—could further
amplify these benefits. However, neither of these more com-
plex strategies consistently outperformed the simpler direct
concatenation used in ‘Structure + Pockets’. The “adapted”
variant demonstrated lower performance compared to sim-
ple concatenation, while the “weighted” message-passing
approach generally underperformed relative to both the stan-
dard concatenation and the adapted integration.

These results indicate that while explicit pocket information
is beneficial, the simple concatenation of the raw proba-
bility and score signal proved most effective in our setup
compared to the explored adaptation or weighted message
passing strategies. One potential reason for the underper-
formance of the adapted and weighted variants could be
that the transformation or weighting processes might have
inadvertently obscured more important fine-grained infor-
mation present in the raw pocket signal. Alternatively, per-
formance for the adapted and weighted variants can be im-
proved through hyperparameter tuning.

3.2. Contrastive Learning Outperforms Binary
Classification

We compared our primary EBM-NCE contrastive learning
(Liu et al., 2022) approach against models trained with bi-
nary classification (BCE loss) as the objective, for sequence-
based representations. The contrastive setup aims to learn a
joint embedding space where query reactions and their corre-
sponding target enzymes are brought closer, while pushing
non-target enzymes further away; the binary classification
approach frames the task as predicting individual reaction-
enzyme relationships. In both cases, we loaded the same
positive and negative pairs as training data. More details on
the contrastive and binary classification objectives used can
be found in Appendix F and Appendix G, respectively.
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Table 1. Enzyme retrieval performance by different protein modalities, split, and hierarchy levels on modified CARE Task 2 dataset under
the EBM-NCE objective. Performance is measured as k=1 retrieval accuracy (%). Bolded accuracy is the best model.

Split Protein Representation Level 4 Level 3 Level2  Level 1
P P (XXXX) (XXX (XXe-o) (Xeoo)
Easy Structure 37.3 62.0 78.7 88.7
Structure + Pockets 38.8 67.6 83.8 92.0
Structure + Adapted Pockets 34.4 59.9 74.3 88.7
Structure + Weighted Pockets 31.9 63.5 76.6 90.5
Sequence 15.7 38 58.1 79.2
Medium  Structure 4.1 334 51.4 78.1
Structure + Pockets 3.9 37.0 59.6 79.7
Structure + Adapted Pockets 23 35.2 56.3 77.9
Structure + Weighted Pockets 2.3 28.5 47.3 75.6
Sequence 23 18.3 39.1 66.1
Hard Structure 1.1 6.3 17.6 50.0
Structure + Pockets 2.6 9.1 18.5 56.7
Structure + Adapted Pockets 1.1 7.6 16.5 51.7
Structure + Weighted Pockets 0.9 7 17.2 493
Sequence 04 4.6 159 49.8

Table 2. Enzyme retrieval performance by split, loss functions,
and hierarchy Levels on modified CARE Task 2 dataset, for the
sequence-based modality. Performance is measured as k=1 re-
trieval accuracy (%). Bolded accuracy is the best model.

Split Loss Function Level 4 Level 3 Level 2 Level 1
XXXX) XXX-) XX--) Xe--0)
Easy EBM-NCE 15.7 38 58.1 79.2
BCE 3.1 15.4 37.5 69.9
Medium EBM-NCE 2.3 18.3 39.1 66.1
BCE 1 14.9 35.5 63.8
Hard EBM-NCE 0.4 4.6 15.9 49.8
BCE 04 3.9 7.2 29.3

As shown in Table 2, the EBM-NCE model generally
demonstrated superior £ = 1 retrieval accuracy compared
to the BCE model, particularly on the ‘Easy’ and ‘Medium’
data splits across most EC hierarchy levels. However, on the
‘Hard’ split, the performance between the two loss functions
was more nuanced at the finer-grained EC levels. Specif-
ically, the BCE model achieved the same performance of
in retrieval accuracy as the EBM-NCE model at Level 4 on
this split. However, the EBM-NCE model remained supe-
rior for Levels 1, 2, and 3. Given the substantially weaker
performance of the BCE model we did not proceed with
evaluating the binary loss function on our more computa-
tionally intensive structure-based models.

4. Discussion

Our study primarily investigated two design choices for
multi-modal enzyme retrieval: utilizing structural and
pocket features as part of protein representations, and com-
paring learning objectives. Overall, the better performance
of our ‘Structure + Pockets’ model over both sequence-only
and structure-only approaches solidifies the importance of

3D conformational and functional site information. Simi-
larly, better performance of contrastive learning over binary
cross-entropy for sequence-based retrieval aligns with the
broader success of contrastive methods in learning discrimi-
native embeddings for complex data. Taken together, these
findings point towards a promising direction for enzyme
function prediction.

While our ‘Structure + Pockets’ model achieved best perfor-
mance on the modified CARE benchmark, its effectiveness
is tied to the quality of external tools like AlphaFold and
P2Rank. The output of these tools can vary, which thereby
affects how well our current models work across all protein
families.

Future directions of our work include the following. First,
while our study highlights the value of structural protein
representations, the role of the reaction modality can be
further explored. To address this, our future work will
include a reaction modeling ablation study that will exam-
ine alternative reaction encodings and investigate whether
structure-based graph representations of reactions can yield
similar gains (Mikhael et al., 2024). Second, we aim to test
ESM-2 finetuning to evaluate if it can improve performance
for all models. Beyond the CARE benchmark, we plan
to evaluate the generalization capabilities of our models
on prominent, useful enzyme classes such as Cytochromes
P450, phosphatases, and terpene synthases (Liu et al., 2024).
Finally, to strengthen the functional relevance of our re-
trieval framework, we aim to perform wet-lab validation of
top predictions, to discover real enzymes with unannotated
activities. By testing a subset of high-confidence model
predictions in vitro, we seek to bridge the gap between in
silico retrieval and real-world enzymatic and in doing so aim
confirm the biological validity of our multi-modal approach.
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A. Dataset Details
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|

Protein Structures
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(45,033 Protein-EC Pairs)
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out of 4960 ECs

Filtered Reaction
Datasets
Easy, Medium, Hard Splits

Create Graph
Representations
from AlphaFold Structures

Filtered Proteins
w/ Graphs
(44954 Protein-EC Pairs)

Figure 2. Workflow used to process the datasets containing EC numbers, protein sequences, and reactions used in this study. This process
starts with the original CARE Task 2 datasets and applies filtering based on AlphaFold structure availability and successful graph creation
to produce the modified datasets used for our experiments.

Our experiments utilized the pre-defined protein dataset, EC list, and Easy, Medium, and Hard out-of-distribution splits for
Task 2 from the CARE benchmark (Yang et al., 2024b). These datasets were subsequently modified for our structure-based
approach (Figure 2), which addresses the problem of reaction-enzyme mapping.

The Task 2 splits of the CARE Benchmark contain 185,995 protein-EC data pairs in total. For our structure-based approach,
we sought to obtain corresponding AlphaFold structures from AlphaFold DB (Varadi et al., 2022) for the proteins in our Task
2 protein dataset based on their UniProt IDs. We also clustered the sequences at 50% identity with mmseqs2 (Steinegger
& Soding, 2017) to reduce the number of sequences used during training and inference, while preserving diversity. Some
structures could not be successfully retrieved for all proteins using the UniProt IDs from our protein dataset, potentially due
to missing entries in AlphaFold database, or because the corresponding protein structure was listed under a different UniProt
ID in AlphaFold database than the one provided in our dataset. Consequently, the initial set of protein-EC pairs for which
AlphaFold structures were successfully retrieved contained 45,033 pairs.

From the proteins corresponding to these 45,033 successfully retrieved AlphaFold structures, we proceeded to create graph
representations. Only the protein entries for which this graph creation process was successful were retained, forming the
protein entries included in our final modified protein dataset. 79 protein entries were lost due to errors encountered during
graph creation, such as structural inconsistencies in the AlphaFold data that prevented graph formation. This filtering, based
on the successful creation of graph representations from the retrieved AlphaFold structures, directly determined the final
size of the protein dataset used in our study, a total of 44,954 protein-EC data pairs.

This filtering of protein entries also impacted the associated EC numbers. We compiled an EC blacklist, which consists of
34 unique EC numbers that no longer had any associated protein entries after the protein filtering step. Consistent with
this protein and EC filtering, reaction entries in the separate reaction datasets prepared for each of the easy, medium, and
hard splits were also filtered to remove those associated with the blacklisted EC numbers. Detailed statistics regarding the
number of unique ECs and sample counts for each split in the original and modified datasets are provided in Table 3.

Despite this reduction in the size of the datasets and the exclusion of a small number of ECs, the modified dataset retains the
vast majority of the functional space covered by the original EC numbers. We note that due to the filtering criteria tied to
structural data availability and successful graph creation, the distribution of protein instances per specific EC may differ
when compared to the original dataset.
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Table 3. Summary of train-test splits used, comparing the original Task 2 CARE benchmark counts to the modified version. ”Samples”
refers to the number of reaction-EC pairs.

Split name | Description | Unique ECs | Reaction Train Samples | Reaction Test Samples
| | Original | Modified | Original | Modified | Original | Modified
Easy Certain reactions are held out, sampled uni- 4,960 4,926 61,373 61,147 393 393

formly across ECs, but no EC numbers are
held out. The test set is the same as the hold-
out set.

Medium All reactions corresponding to certain ECs 4,748 4,716 57,691 57,480 393 393
are held out, at EC level 4 (X.X.X.X). Test
set reactions are sampled uniformly across
ECs from the holdout set.

Hard All reactions corresponding to certain ECs 3,052 3,037 35,252 35,086 460 460
are held out, at EC level 3 (X.X.X.-). Test
set reactions are sampled uniformly across
ECs from the holdout set.

B. Downstream Retrieval

A Downstream Reaction to Protein Retrieval

Retrieval

Accuracy Metrics
Query Reaction

(test set)
Similarity or
Binary Classification Scoring
Ranking of EC hits
Reference Database Trained
(train set - EC cluster Protein
centroids of Representation
protein sequence Encoder
representations)

EC cluster EC cluster
4211 4.2.1.20

Figure 3. Downstream retrieval for all pretrained models in this work. Modified with permission from Yang et al. (2024b).

Downstream retrieval for any pretrained model in this study is illustrated in Figure 3. Our approach is similar to the
methodology used in CREEP, but we additionally incorporate binary classification scoring for the binary classification
task. The process, briefly described here, retrieves Enzyme Commission (EC) numbers relevant to a query chemical
reaction. The query reaction is encoded into an embedding using a finetuned reaction encoder, rxnfp. This embedding
is then compared against a reference database of protein representations. To reduce inference time, first, this database
is constructed by clustering protein sequences at 50% identity. Subsequently, the trained protein representation encoder
(e.g., structure representation encoder) is used to calculate the centroid representation for each EC cluster. The comparison
between the query embedding and the reference database yields a ranked list of ECs, which is then used to evaluate retrieval
accuracy. Ranking depends on the learning objective. For contrastive learning, inference is done by comparing the reaction
representation to the cluster centroids of protein sequence representations for each EC number, and subsequently ranking
ECs based on their proximity to the reaction. For binary classification, inference is done by predicting the probability of a
reaction belonging to each EC number, and subsequently ranking ECs based on their predicted probabilities.
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C. Core Model Implementation Details
C.1. Structure Representation Encoder

Our Equivariant Graph Neural Network (EGNN) architecture for processing 3D protein graphs is identical to the structural
encoder described in CLIPZyme (Mikhael et al., 2024), including aspects such as the number of layers, hidden dimensions,
and activation functions. Contrary to CLIPZyme, which utilizes 1280-dimesional embeddings from the ESM-2 language
model pretrained with 650M parameters, due to computational resource contraints, we used 640-dimensional embeddings
derived from ESM-2 language model (Lin et al., 2022) pretrained with 150M parameters.

C.2. Sequence Representation Encoder

For our ‘Sequence-only’ baseline model, we use the ESM-2 language model (Lin et al., 2022) pretrained with 150M
parameters with frozen weights, which produces 640-dimensional embeddings, whereas CREEP utilized embeddings from
the ProtT5 language model. We then use an MLP to introduce non-linear transformations to these fixed embeddings. These
input embeddings from the protein language model are first passed through a linear layer to 512-dimensional hidden space,
followed by a ReLU activation. A final linear layer then maps this hidden representation to a 256-dimension feature vector.

C.3. Reaction Encoder

The encoding of chemical reactions from SMILES/SMARTS strings and the subsequent fine-tuning of the rxnfp model
follows the exact methodology as CREEP (Yang et al., 2024b). This includes the end-to-end fine-tuning of rxnfp as part of
the overall model training.

D. P2Rank

P2Rank (Krivdk & Hoksza, 2018; Jendele et al., 2019) operates on predicted protein structures to identify potential ligand-
binding sites. It analyzes local surface properties and employs a trained Random Forest model to assign a preliminary
ligandability score to each surface accessible (SAS) point x; on the protein surface. A pre-trained Random Forest model RF
maps each descriptor vector f; characterizing the local surface environment of point x; to a ligandability score:

S; = RF(fZ),
where s; € [0, 1] quantifies the likelihood that the SAS point x; is part of a ligand-binding region.

Subsequently, SAS points with high ligandability scores are grouped into discrete binding pockets { P; j‘il through single-
linkage clustering, employing a spatial threshold of 3A. Each identified pocket P;j is assigned a raw score S; by aggregating
the ligandability scores of its constituent SAS points:

1
Sj = — Z S
|P‘7| z; EP;

These raw scores .S; are then calibrated to probability scores P(.S;) representing the empirical likelihood that a pocket with
score S; is a true ligand-binding site. This calibration is performed using empirical priors derived from annotated datasets:

Ts,

J

P(S;)= ——
(Sj) TSj _|_st;

where T's. and Fi, denote the cumulative counts of true positive and false positive pockets, respectively, in a calibration
dataset for pockets with raw scores less than or equal to 5.

We utilized all pockets and their associated scores (.S;) and probabilities (P(S;)) as output by P2Rank using its default
parameters, without applying any further filtering criteria, before deriving our residue-level features as described in Section 2.

E. Integrating Pockets into our Core Model

Ligand binding and catalytic activity in enzymes are typically associated with specific three-dimensional regions known as
binding pockets (active sites in enzymes). Incorporating information about these predicted pockets can provide valuable

9
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functional priors to the residue representations learned by our graph neural network. To achieve this, we first leverage
a state-of-the-art pocket prediction method, P2Rank (Krivak & Hoksza, 2018; Jendele et al., 2019), to identify potential
ligand-binding sites and assign them calibrated probability and raw scores. The detailed methodology of how P2Rank
generates these pocket-level scores (S;) and probabilities (P(.S;)) from protein structures is provided in Appendix D.

For each residue r, we define two scalar features summarizing the pocket information:
s = max S
J
rrEP;
pr = max P(S;)
J
rrEP;

Here, s}, is the maximum raw score among all predicted pockets P; (outputted by P2Rank) that contain residue 7y, and py, is
the corresponding maximum probability-calibrated score. By taking the maximum, we assign the strongest pocket signal
to a residue. This is especially important for residues that are located at the interface of multiple predicted pockets. For
residues 7, that do not satisfy the distance criterion for inclusion in any predicted pocket P;, we assign default values of
(sk,pr) = (0,0), indicating the absence of a significant pocket signal at that location.

It is important to note that the probability P(.S;) used to derive py, is an aggregated value calibrated at the pocket level by
P2Rank, representing the overall likelihood of the entire pocket P; being a true binding site based on its total score S;. Our
residue feature py, leverages this pre-computed, pocket-level confidence measure directly.

We explored three distinct strategies for integrating these residue-level pocket features (sg, pi) with the initial ESM-2
embeddings hy:

E.1. Direct Concatenation (‘Structure + Pockets’):

The two pocket-derived features, s; and py, are directly concatenated to the original ESM-2 node feature vector hy, for each
residue 7y, yielding an enhanced feature vector hj, € R42.

E.2. Adapted Pockets (‘Structure + Adapted Pockets’)

While the direct incorporation of raw pocket scores s and probabilities py, as described in Appendix E, provides a valuable
initial signal to the model, we observe two main limitations within this straightforward approach (described in Section 3.1).
First, the residue-level pocket probability py, derived from P2Rank, is inherently sparse. Approximately 95% of residues in
typical proteins do not fall within predicted pocket regions and are assigned a py, value of 0. Second, representing potentially
complex pocket-related information using only two scalar values (s, pr) might be insufficient to fully complement the
high-dimensional structural context captured the 640-dimensional node embeddings per residue.

We propose an adapted pocket feature representation. Our approach transforms the sparse, scalar pocket probability py, into
a dense, learnable vector representation.

First, we focus exclusively on residue-level pocket probabilities py, as they directly encode the chance a residue is part of a
potential binding site. To provide a more standardized input for subsequent processing, we apply a standard normalization
across distribution of {py, } ¥_, values. We denote these normalized probabilities for residue 7, as pi°™. We then project

pR™ into a higher-dimensional feature space using an MLP, which produces a feature vector we denote as fj, € RS, for
each residue 7.

Furthermore, to allow the model to adaptively control the influence of this engineered pocket feature relative to the pre-
computed structural features hj, we introduce a learnable scalar scaling factor v € R. This factor modulates the magnitude
of the projected pocket feature vector: ~
Je=7" [k,
where f;, € R16 is the final adapted pocket feature vector for residue 7. The scaling factor + is initialized to 1.0 and is
trained jointly with the rest of the network parameters. The resulting n-dimensional adapted pocket feature vector fj, is then
concatenated with the original ESM-2 feature vector hj to form the enhanced node feature vector hy, that is used as input to
the subsequent EGNN layers: ~
hy, = concat(hy, fx).

where hy, € R56,
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E.3. Pocket-Weighted Message Passing (‘Structure + Weighted Pockets’)

Building upon the residue representations hy, which are enriched with local structural and pocket-derived features, we
introduce a mechanism to guide the message aggregation process within the EGNN, prioritizing information flow from
residues likely involved in catalysis. Standard Graph Neural Networks often aggregate information from neighbors either
uniformly or through learned attention mechanisms, where the weighting is determined solely by the network’s parameters
based on features (Kipf & Welling, 2017; Velickovic et al., 2018; Wu et al., 2020). However, the catalytic activity of an
enzyme is predominantly localized within specific binding pocket regions (Yabukarski et al., 2020).

To leverage this prior explicitly, we propose a pocket-weighted message passing scheme. Instead of learning context-
dependent attention weights or applying uniform weights, we directly utilize the previously computed residue-level pocket
probability py (derived from P2Rank’s pocket prediction confidence) to modulate the contribution of neighbor messages.

Let h(-l) denote the node embedding of residue 7 at layer /. The set of neighbors of residue 7 in the graph is denoted by N ().

Like CLIPZyme (Mikhael et al., 2024), the message m( ) generated from neighbor j to node ¢ is produced by an Edge MLP,
Qe as follows.

Cbe(h(l h(l) (l))

1 ) J ? 'LJ

where e( ) refers to the relative distance embeddings between residues ¢ and j at layer [/, which are encoded sinusoidally
(Vaswani et al., 2017; Atz et al., 2022). For our pocket-weighted message passing, we modify the message passing method

of CLIPzyme to obtain hz(-H_l) at layer [ + 1 as follows:

R = n" + ¢, | concat | A Z (m(l) )
JGN( )

where p; is the pocket probability feature (maximum pocket probability) of node 7.

F. Contrastive Objective

For training the sequence and structure models, we follow a similar methodology to CREEP, which is briefly described in
the following paragraphs.

In the contrastive pre-training phase, protein representations x,, (either sequence or structure-based) and reaction representa-
tions x, (derived from rxnfp) from the same enzyme family = form positive pairs (z,, ). We create negative samples in
the following manner. We randomly sample from a Gaussian distribution, which is taken as an approximation of empirical
data distribution, to obtain representations x; and z.. For each positive sample, we sample sixteen, negative samples in our
implementation. The protein and reaction representations are projected to 256-dimensional vectors in a shared latent space.

Our approach takes inspiration from GraphMVP and employs the Energy-Based Model Noise-Contrastive Estimation
(EBM-NCE) objective function to estimate mutual information between our modalities (Liu et al., 2022). This objective
aligns protein-reaction pairs from the same enzyme family while contrasting them against pairs from different families. The
EBM-NCE loss is written as

1
LEsM.NCE = —§[E%,IT log o(E(xp, 2r)) + Eq, o log(1 — o (E(xp, 27.)))
+ Es, 2, log o(E(2p, x,)) + Eur z, log(1 — O'(E(l‘;, z,)))] (1)

where E(-) and o(-) are the energy and sigmoid functions, respectively. The dot product is used to compute the similarity of
the aforementioned representations within the latent space.

G. BCE Objective with Sequence-Based CREEP

For binary classification, the protein (x,) and reaction (x,) representations associated with an enzyme family x are combined
via concatenation, yielding a feature vector that is then input to a shallow neural network classifier. The classifier yields a
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predictive probability § € [0, 1], signifying the likelihood that the specific protein and reaction corresponding to z, and z,

engage in the interaction of interest. The classifier is trained by minimizing the Binary Cross-Entropy (BCE) logits loss
function, which is formulated as:

LBCEWithLogits(Z(xpa r.),y) = —[ylog(cr(z(acp,xr))) + (1 —y)log(1 — a(z(xp,xr)))]

where z(z,, x,) explicitly denotes the model’s predicted logits conditioned on the input protein and reaction representations.

We employed a Multi-Layer Perceptron (MLP). This network processes concatenated 256-dimensional protein from the
sequence representation encoder and 256-dimensional reaction embeddings, resulting in a 512-dimensional input. This
input is passed through a linear layer to a 128-dimensional hidden space, followed by Bat chNorm1d for stabilization and
a ReLU activation. A final linear layer then maps this hidden representation to a single output logit, which is used with a
BCEWithLogitsLoss function.
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