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Abstract

Temporal Knowledge Graph Embedding models predict missing facts in temporal
knowledge graphs. Previous work on static knowledge graph embedding models
has revealed that KGE models utilize shortcuts in test set leakage to achieve high
performance. In this work, we show that a similar test set leakage problem exists
in widely used temporal knowledge graph datasets ICEWS14 and ICEWS05-15.
We propose a naive rule-based model that can achieve start-of-the-art results on
both datasets without a deep-learning process. Following this consideration, we
construct two more challenging datasets for the evaluation of TKGEs1.

1 Introduction

Temporal Knowledge Graphs (TKG) represent facts in the real world with their time information to
indicate if a triple exists during a time interval or at a time point. Facts are stored in the quadruple
form (s, p, o, τ), where s and o denote the head entity and tail entity a.k.a as ’nodes’ in TKGs. p
denotes the relation between entities, a.k.a as ’edges’ and τ specifies the fact is valid at this time. To
deal with the incompleteness problem in temporal knowledge graphs, temporal knowledge graph
embedding (TKGE) models adopt link prediction tasks and predict missing facts based on observed
patterns in temporal knowledge graphs. Although impressive progress on performance gain has been
achieved by models from TTransE (Leblay and Chekol, 2018) to TLT-KGE (Zhang et al., 2022),
fine-grained analysis of experiment results is still unexplored. TKGs exhibit various kinds of patterns
in nature. For instance, (France, host a visit, Angela Merkel, 2014-02-03) reveals (Angela Merkel,
make a visit, France, 2014-02-03) as the relation “host a visit" and “make a visit" are inverse relations.

In static knowledge graph datasets, Toutanova and Chen (2015); Dettmers et al. (2018) discovered
that the FB15k and WN18 datasets suffer from test set leakage because of inverse relations, i.e.,
80.9% and 94.0% test set triples in FB15k and WN18 could find their inverse relations in the train
set Toutanova and Chen (2015). Dettmers et al. (2018) proposes a simple rule-based model based
on pure inverse patterns of relations and achieves state-of-the-art results on both WN18 and FB15k.
To mitigate the test set leakage problem, FB15k-237 and WN18RR are constructed by keeping only
one of a set of inverse or duplicate relations. However, a similar test set leakage problem has not
been studied in temporal knowledge graph datasets yet. Compared to static knowledge graphs, the
popular temporal knowledge graphs ICEWS14 and ICEWS05-15 exhibit two different characteristics:
1) Patterns in TKGs are related to temporal information. 2) In TKGs, the same event may happen
repeatedly historically. To investigate the test leakage problem in these two datasets, we construct

1The datasets and code are provided in https://github.com/NacyNiko/naive_rule

Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans.

https://github.com/NacyNiko/naive_rule


a naive rule-based model based on the aforementioned characteristics which achieves comparable
results with state-of-the-art models. Subsequent analysis demonstrates that current models heavily
rely on symmetry/inverse patterns and repeated facts in TKGs to make predictions. We construct two
more challenging datasets from ICEWS14 and ICEWS05-15 and test state-of-the-art models on the
new datasets. The vast decrease in performance shows that more sophisticated forms of inference
such as multi-hop query are severely needed for temporal knowledge graph completion datasets.

2 Related Work

Previous test set leakage analyses only focus on static knowledge graph models. (Toutanova and
Chen, 2015) detect a huge number of near-duplicate and inverse relations exist in FB15k and WN18
datasets. They construct a new dataset FB15k-237 by removing the aforementioned relations from
FB15K which is difficult for models based on simple observed features. Following this work,
(Dettmers et al., 2018) systematically investigated the influence of reported inverse relation leakage
and found that a single rule-based model could achieve comparable performance with state-of-the-art
models on FB15k and WN18. To mitigate this problem, they designed a new dataset WN18RR
from WN18 similar to (Toutanova and Chen, 2015). However, no analysis of the test set leakage
problem has been conducted on temporal knowledge graph datasets. (Han et al., 2021) classify
temporal knowledge graph embedding methods into two types: (1) timestamp embedding methods in
which entity embeddings and time embedding are represented separately. (2) time-dependent entity
embedding methods which entity embeddings evolve over time. They discovered that when trained
appropriately, timestamp embedding methods could achieve comparable or even better performance
than time-dependent entity embedding methods. Our work replenishes their observations with the
discovery that shortcuts in the TKG datasets are not so relevant to time.

3 A Naive Rule-based Model for Temporal Knowledge Graph Completion

We consider four simple rules to infer the missing entities in the test set: 1) Static symmetry/inverse
pattern detection, 2) Dynamic symmetry/inverse pattern detection, 3) Repeated facts detection, and 4)
Connected entities detection. We will explain our proposed approach in the following. For further
details, we refer to the Algorithm 1 in the Appendix.

3.1 Patterns in Temporal Knowledge Graph

Patterns such as symmetry and inverse in TKGs have been studied in previous work Chen et al.
(2022); Xu et al. (2020) and could serve as direct hints for link prediction. For example, if Angela
Merkel Consult Barack Obama on 2014/08/29, we could easily infer that Barack Obama Consult
Angela Merkel on 2014/08/29 also holds as Consult is a symmetric relation. We generalize and go
beyond these approaches and consider static temporal patterns and dynamic temporal patterns. If a
pattern holds regardless of time information as in traditional knowledge graphs, we call it a static
temporal pattern. Otherwise, we call it a dynamic temporal pattern. Figure 1 shows examples of
patterns and the detection procedure of defined patterns is provided in Appendix A.

Definition 1 A temporal relation p is static symmetric at all points in time iff ∀s, o, τ : (s, p, o, τ) →
(o, p, s, τ).

Definition 2 A temporal relation p1 is the static inverse of temporal relation p2 at all points in time
iff ∀s, o, τ : (s, p1, o, τ) → (o, p2, s, τ).

Definition 3 A temporal relation p is temporal symmetric
iff ∀s, o, τ1 : ∃τ2 : (s, p, o, τ1) → (o, p, s, τ2).

Definition 4 A relation p1 at time τ1 is the dynamic inverse of relation p2 at time τ2 iff ∀s, o : ∃τ1, τ2 :
(s, p1, o, τ1) → (o, p2, s, τ2).
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Figure 1: Patterns in temporal knowledge graphs. Sub-figures (a), (b), (c), and (d) present examples
of static symmetric, static inverse, dynamic symmetric, and dynamic inverse patterns respectively.

3.2 Naive Rule-based Model

Rule 1:Static Symmetry/inverse Pattern Detection For query (s, p, ?, τ)2, if p is static symmetry
or inverse relation, we detect if its reversed quadruple (?, p, s, τ) or (?, p−1, s, τ) exists in the train set
and return a sorted list of subject entities based on their occurrence frequency. Occurrence frequency
here serves as an intuitive signal for interaction probability.

Rule 2:Dynamic Symmetry/inverse Pattern Detection If p is dynamic symmetry or inverse
relation, we follow a similar procedure as in Rule 1. However, as time is flexible for Rule 2, we detect
reversed quadruple (?, p, s,−) or (?, p−1, s,−). Here − is a placeholder any detected time.

Rule 3: Repeated Facts In TKGs, some facts appear to happen many times during a long period.
For example, China may Consult Japan many times during 2005-2015. Previous work Zhu et al.
(2021) utilizes this feature for the temporal knowledge graph extrapolation task and achieves good
performance. However, this feature has not been studied for the temporal knowledge graph inter-
polation task yet. In Rule 3, for missing facts (s, p, ?, τ), we relax the time constraint to (s, p, ?,−)
and obtain the object entity set from training graph Gtrain. A sorted entity list based on occurrence
frequency is returned as facts happening frequently tend to happen again in the future.

Rule 4: Connected Entities In rule 4, we relax the constraint of relation and assume entities
showing more co-occurrences by means of all relations tend to co-occur again in the test set. Therefore,
for missing facts (s, p, ?, τ), we obtain the object entity set from (s,−, ?,−) in Gtrain and return a
sorted object entity list based on occurrence frequency.

Ranking Strategy From Rule 1 to 4, the constraints for searching quadruples are getting more
relaxed and inaccurate. Therefore, we merge the sorted ranking list Erank from Rule 1 to 4. At test
time, we check if the correct entity etarget for (s, p, ?, τ) is in Erank. If yes, the rank corresponding
to etarget in Erank will be the final rank. Otherwise, we select a random rank between |Erank|+ 1
and |E|. It’s noted that we remove repeated entities when building an entity list for each rule.

4 Experiments

Datasets ICEWS14 (Garcia-Duran et al., 2018) and ICEWS05-15 (Garcia-Duran et al., 2018) are
two popular temporal knowledge graph benchmark datasets. They are two subset datasets from the
Integrated Conflict EarlyWarning System (ICEWS)(O’brien, 2010), which contain news facts in 2014
and between 2005 and 2015 respectively. Table 3 in the Appendix shows the details of the datasets.

Baselines We select state-of-the-art TKGE models, TTransE(Leblay and Chekol, 2018), TA-
DistMult(Garcia-Duran et al., 2018), TeRo(Xu et al., 2020), T(NT)ComplEx(Lacroix et al., 2019),
RotateQVS(Chen et al., 2022) and TLT-KGE(Zhang et al., 2022) as baselines.

Evaluation Metrics We adopt the link prediction task for evaluation. Link prediction infers the
missing entities for incomplete facts. During the test step, we follow the procedure of (Xu et al.,

2For simplicity, we only use query (s, p, ?, τ) to represent incomplete quadruple in the following part
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Table 1: Link prediction results on ICEWS14 and ICEWS05-15. Naive-Rules show a stable
performance in 10 runs with variances on all metrics less than 0.0001.

Model ICEWS14 ICEWS05-15
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TTransE(Leblay and Chekol, 2018) 25.5 7.4 - 60.1 27.1 8.4 -
TADistMult(Garcia-Duran et al., 2018) 47.7 36.3 - 68.6 47.4 34.6 - 72.8
TeRo(Xu et al., 2020) 56.2 46.8 62.1 73.2 58.6 46.9 66.8 79.5
RotateQVS(Chen et al., 2022) 59.1 50.7 64.2 75.4 63.3 52.9 70.9 81.3
TComplEx(Lacroix et al., 2019) 61.9 54.2 66.1 76.7 66.5 58.3 71.6 81.1
TNTComplEx(Lacroix et al., 2019) 60.7 51.9 65.9 77.2 66.6 58.3 71.8 81.7
TLT-KGE(dim=100)(Zhang et al., 2022) 54.9 46.7 59.2 70.9 58.4 49.9 63.0 74.6
TLT-KGE(dim=1200)(Zhang et al., 2022) 63.0 54.9 67.8 77.7 68.6 60.7 73.5 83.1
Naive-Rules 57.3 49.4 61.5 72.6 58.5 49.6 63.4 76.0

2020) to generate candidate quadruples. From a test quadruple (s, p, o, τ), we replace s with s̄ ∈ E
and o with ō ∈ E to get candidate quadruples (s, p, ō, τ) ∪ (s̄, p, o, τ). All candidate quadruples
will be ranked by their scores using a time-aware filtering strategy (Goel et al., 2020). We evaluate
our models with five metrics: Mean Rank(MR), Mean Reciprocal Rank (MRR), the mean of the
reciprocals of predicted ranks of correct quadruples, and Hits@(1/3/10), the percentage of ranks not
higher than 1/3/10. For MR, the smaller the better. For others, the higher the better.

5 Results

Main Result Table 1 presents the link prediction results of baselines and our proposed naive-rules
model. Strikingly, without using any embeddings or deep learning, Naive Rules achieves comparable
results with state-of-the-art methods on many different metrics for both ICEWS14 and ICEWS05-15.
It validates our assumption that shortcuts also exist in temporal knowledge graph datasets. To a
large extent, the performance of current neural network models could be attained by simple patterns
rather than complicated patterns in the TKGs. Moreover, the result of TLT-KGE(dim=100) and
TLT-KGE(dim=1200) shows that current neural network models require high embedding dimensions
and massive computing resources to transcend the performance of naive rules.

Re-dividing Dataset by Complete Symmetry or Inverse Pairs ICEWS14 and ICEWS05-15
present test data leakage from 1) symmetry relations 2) inverse relations. In static knowledge
graphs, Toutanova and Chen (2015) and Dettmers et al. (2018) remove one relation from the inverse
relation pairs to construct FB15k237 and WN18RR. For example, when detecting the relation
/award/award_nominee is inverse of /award_nominee/award, only one of the relation will be kept.
However, this strategy does not work for ICEWS14 and ICEWS05-15 for two reasons: 1) Symmetry
relations such as Consult form the pair by itself and could not be removed. 2) Relations in TKGs
have closer connections compared to relations in KGs. For example, Discuss by Telephone is a
strong signal for Consult. Simply removing relations may devastate the inference path between
quadruples. Therefore, we propose a novel re-division strategy for symmetry and inverse relations. As
shown in Figure 2, ICEWS14 and ICEWS05-15 divide the quadruple randomly to train/valid/test sets.
Consequently, the edges which form a complete symmetry or inverse pair may appear in different
subsets and the model could easily infer the missing link in valid or test set by the symmetry or
inverse quadruple known in the train set. To fix this problem, we divide the two quadruples which
form a complete symmetry or inverse pair simultaneously to train/valid/test sets. In this way, models
have to predict the whole symmetry or inverse pair from evidence provided by other quadruples.
Table 3 presents the details of the constructed datasets ICEWS14RR and ICEWS05-15RR. We argue
that this re-division strategy is more realistic and universal than the removing strategy by (Toutanova
and Chen, 2015) and Dettmers et al. (2018). It can also be extended to static KG datasets.

Results on ICEWS14RR and ICEWS05-15RR Table 2 presents the link prediction results on
more challenging dataset ICEWS14RR and ICEWS05-15RR. As expected, the performance of all
models dropped a lot. Moreover, the performance gap between the rule-based model and neural
network model enlarges marginally. This demonstrates that existing models highly rely on easy
patterns for prediction and only possess weak ability to do multi-step inference such as discover
unobserved relations between entities from other known facts and then infer its symmetry or inverse
pair. Interestingly, T(NT)ComplEx performs much better than TLT-KGE on ICEWS14RR and

4



𝑟, 𝑡

（a）

（b）

（c）

（d）

（e）

𝒆𝟏

𝑟′, 𝑡

𝑟, 𝑡

𝑟, 𝑡

𝒆𝟐

𝑟, 𝑡

𝒆𝟐 𝒆𝟑

𝒆𝟒𝒆𝟑

𝒆𝟏

𝒆𝟐

𝒆𝟑

𝒆𝟐

𝒆𝟑

𝒆𝟒

𝒆𝟏 𝒆𝟐

𝑟, 𝑡

𝑟, 𝑡

𝑟, 𝑡

𝑟, 𝑡

𝒆𝟑 𝒆𝟒

𝑟, 𝑡

𝑟, 𝑡

𝑟′, 𝑡

𝒆𝟏 𝒆𝟐
𝑟, 𝑡

𝑟, 𝑡

𝑟′, 𝑡

𝑟, 𝑡
𝒆𝟑 𝒆𝟒

𝒆𝟐 𝒆𝟑
𝑟, 𝑡

𝑟, 𝑡

Temporal knowledge graph dataset

Training set of ICEWS14 Test set of ICEWS14

Training set of ICEWS14RR Test set of ICEWS14RR

Figure 2: In Sub-figure(a), e1 and e2, e2 and e3 form two pairs of symmetry relation. e3 and e4 form
one pair of inverse relation. As shown by sub-figure (b) and (d), ICEWS14 randomly divide training
set and test set based on edges between entities. Therefore, TKGE models could easily complete
the missing edges in test set through known edges in training set. In contrary, our proposed new
division strategy will assign the entire pairs to training set or test set as shown in sub-figure (c) and
(e). Therefore, models need to infer the connection between entities from other facts and capture the
temporal patterns at the same time.

ICEWS05-15RR although TLT-KGE is the best model on ICEWS14 and ICEWS05-15, which
validates the new challenging datasets could provide new insights of TKGC models.

Table 2: Link prediction results on ICEWS14RR, ICEWS05-15RR. The decrease of performance
compared to original datasets is shown in (-).

Model ICEWS14RR ICEWS05-15RR
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TComplEx 48.4(-13.5) 38.6 54.0 66.7 53.3(-13.2) 43.4 59.1 71.9
TNTComplEx 48.2(-12.5) 37.9 54.1 67.4 54.3(-12.3) 44.1 60.3 73.4
TLT-KGE 47.3(-15.7) 36.7 53.2 66.8 51.9(-16.7) 41.3 57.9 72.0
Naive-Rules 41.6(-15.7) 32.1 48.5 62.9 46.1(-17.3) 34.1 50.1 65.4

6 Conclusion

This work studies the test set leakage problem in temporal knowledge graph datasets. We construct
a naive rule-based model and achieve comparable performance with state-of-the-art models on
ICEWS14 and ICEWS05-15. To alleviate the problem that existing neural network models heavily
rely on symmetry or inverse patterns to make prediction, we construct two more challenging datasets
from ICEWS14 and ICEWS05-15. In the future, we plan to construct temporal knowledge graph
datasets with more inference types.
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Table 3: Statistics for ICEWS14, ICEWS05-15, GDELT, ICEWS14RR and ICEWS05-15RR.

Dataset ICEWS14 ICEWS05-15 ICEWS14RR ICEWS05-15RR
Entities 7,128 10,488 7128 10,488
Relations 230 251 230 251
Times 365 4017 365 4017
Train 72,826 368,962 72,581 369,060
Validation 8,941 46,275 9,073 46,134
Test 8,963 46,092 9,076 46,135

A Symmetry/Inverse Relation Detection

To predict missing entities based on the defined patterns, we need to detect symmetry and inverse
relations in TKGs. We calculated the probability of each relation exhibiting a particular pattern on
the training set. For a given pattern h ∈ H and relation p ∈ R, if the proportion of instances that
satisfy the pattern and are related to relation p in the training exceeds a predefined threshold, this
relation will be considered as holding pattern h. The proportion is calculated as:

Pp,h =
|satisfies((s, p, o, τ), h)|

|(s, p, o, τ)|
(1)

where (s, p, o, τ) ∈ Gtrain. In the experiment, we set the threshold as 0.5.

Algorithm 1: Naive Rule-based Model
Data: G: temporal knowledge graph, (s, p, ?, τ): incomplete quadruple from Gvalid or Gtest,

etarget: correct entity for the incomplete quadruple, Rs, Ri: symmetry relation set and
inverse relation set, E: Entity set, R: Relation set, T: Time set.

Result: rank: The ranking of etarget
1 if p in Rs or Ri then
2 if p in Rs then
3 q = p
4 else
5 q = p−1

6 end
7 Erule1 = {e|e ∈ E, (e, q, s, τ) ∈ Gtrain};
8 Sort Erule1 based on the occurrence frequency of (e, q, s, τ) in Gtrain;
9 Erule2 = {e|e ∈ E, e /∈ Erule1, τ

′ ∈ T, (e, q, s, τ ′) ∈ Gtrain};
10 Sort Erule2 based on the occurrence frequency of (e, q, s, τ ′) in Gtrain

11 end
12 Erule3 = {e|e ∈ E, e /∈ Erule1, e /∈ Erule2, τ

′ ∈ T, (s, p, e, τ ′) ∈ Gtrain};
13 Sort Erule3 based on the occurrence frequency of (s, p, e, τ ′) in Gtrain;
14 Erule4 = {e|e ∈ E, e /∈ Erule1, e /∈ Erule2, e /∈ Erule3, τ

′ ∈ T, p′ ∈ R, (s, p′, e, τ ′) ∈
Gtrain};

15 Sort Erule4 based on the occurrence frequency of (s, p′, e, τ ′) in Gtrain;
16 Concat sorted list Erank = [Erule1, Erule2, Erule3, Erule4] ;
17 if etarget ∈ Erank then
18 rank = the index of etarget in Erank +1
19 else
20 rank = a random number between |Erank|+ 1 and |E|
21 end
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