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Abstract

Generative AI (GenAI) has rapidly expanded into domains such as healthcare, fi-1

nance, education, and media, raising acute concerns around fairness, transparency,2

accountability, and governance. While prior Responsible AI (RAI) surveys have3

addressed bias mitigation, privacy, and ethical design, they largely focus on tra-4

ditional AI and overlook the distinctive risks of GenAI, including hallucinations,5

stochastic outputs, intellectual property disputes, and large-scale synthetic content6

generation. This survey addresses that gap by systematically reviewing more than7

80 studies published between 2022 and 2024 to examine Responsible Generative8

AI through both technical and regulatory perspectives. We identify five core prob-9

lem areas: data-related risks, model-related risks, challenges with regulation,10

the limited scope of existing benchmarks, and poor explainability. In response,11

we highlight emerging solutions across five domains: establishing clear princi-12

ples, adopting governance frameworks, defining measurable metrics, validating13

through AI-ready testbeds, and enabling adaptive oversight via regulatory sand-14

boxes. By mapping these problem and solution spaces, this study contributes15

an integrated framework for Responsible Generative AI, providing actionable in-16

sights for researchers, practitioners, and policymakers seeking to align innovation17

with ethical, societal, and legal expectations.18

1 Introduction19

Artificial Intelligence (AI) is emerging as a pervasive technology influencing institutions and daily20

life across society. AI systems are increasingly integrated into decision-making across health-21

care [81], finance [22], transportation [2], and education [194], raising critical concerns about fair-22

ness, transparency, accountability, and related issues [64, 164, 197].23

To address these challenges, a substantial body of work on Responsible AI (RAI) has developed,24

encompassing measures such as bias mitigation, privacy protection, security enhancement, and the25

safeguarding of human rights [122, 143]. Contributions include frameworks from industry [7, 61,26

100, 159] and academia [38, 93, 148], offering both theoretical principles [93, 97, 103, 144] and27

practical implementations [25, 40, 71]. Yet existing surveys remain limited in two important ways.28

First, most focus on traditional AI rather than the distinctive risks of Generative AI (GenAI), such as29

hallucination, intellectual property conflicts, and large-scale generation of synthetic content [18, 99,30

185]. Second, prior studies typically analyze RAI through either a technical [40, 71] or a regulatory31

lens [70, 148], overlooking how these perspectives intersect. Recent analyses reveal that existing32

AI safety frameworks cover only a fraction of identified risks, underscoring persistent gaps between33

regulation and technical implementation [154].34
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This survey addresses these gaps by focusing on the current challenges and state-of-the-art solutions35

that enable Responsible Generative AI across both technical and regulatory domains. Our guiding36

research question is: Our guiding research question is: What are the most pressing challenges and37

promising solutions towards Responsible Generative AI from technical-regulatory perspectives?38

To answer this question, we systematically reviewed more than 80 studies published between 202239

and 2024 across leading journals, conferences, and governance reports [23, 37, 71]. As part of this40

review, we traced the evolution of the Responsible AI landscape (Section 2), prioritized the most41

important current challenges, highlighted in Section 3, and examined promising solution strategies42

(Section 4 ). A structured quality assessment, conducted by a team of twelve academic and industry43

experts, evaluated rigor, validity, and relevance [47, 80]. This dual perspective strengthens our44

analysis by grounding it in both scholarly research and real-world practice.45

As with similar reviews of Responsible AI frameworks [18, 47, 80, 99], this study has several lim-46

itations. First, it is framed primarily through technical and regulatory perspectives, which may47

underrepresent insights from social sciences and civil society. Second, it synthesizes existing liter-48

ature and frameworks rather than providing new empirical validation. Third, the rapid evolution of49

generative AI means some findings may become time-sensitive and require future updates.50

Despite these limitations, this survey offers a consolidated view of frontier challenges and solu-51

tions across both technical and regulatory domains, providing a foundation for organizations and52

policymakers to shape effective responsible AI strategies.53

2 Evolution of the responsible AI landscape54

To address our research question, we first trace the evolution of Responsible AI, highlighting the55

trends of challenges, and solution strategies that have emerged over time. Over the past decade,56

multiple perspectives have shaped the evolving landscape of Responsible AI. Fairness, Account-57

ability, and Transparency (FAT/FAccT) established bias mitigation, accountability mechanisms,58

and transparency as early foundations for ethical AI [11, 104]. Trustworthy AI was subsequently59

advanced through ethical frameworks such as AI4People [48] and comparative analyses of global60

guidelines [80], highlighting privacy, robustness, and security as prerequisites for public trust. In61

parallel, research on Explainable AI (XAI) developed methods for interpretability and transparency,62

aiming to make opaque systems more understandable to users and regulators [8, 62]. Human-63

Centered AI further emphasized usability, human agency, and participatory design [153], while64

AI Safety and Alignment addressed risks posed by advanced AI systems, focusing on robustness,65

controllability, and alignment with human values [6, 142]. Alongside these, Sustainability Perspec-66

tives such as AI for Social Good and Green AI stressed the role of AI in advancing societal well-67

being while reducing the environmental costs of large-scale training and deployment [151, 178].68

More recently, Responsible AI has emerged as a unifying framework integrating fairness, safety,69

accountability, and governance [38, 93], while Responsible Generative AI extends these practices70

to tackle new risks such as hallucination, intellectual property conflicts, and disinformation [18, 99].71

Finally, the concept of Regulatable AI emphasizes designing systems with features that facilitate72

compliance and oversight, enabling more effective regulatory intervention [55, 107].73

3 Current challenges in responsible GenAI74

3.1 Technical challenges75

Technical challenges in Responsible Generative AI are empirically testable issues in data, models,76

and systems. They can be grouped into three main categories: data-related challenges, model-related77

challenges, and misinformation and media manipulation [82].78

Data-related challenges Ensuring integrity, fairness, diversity, and balance in training data is crit-79

ical. Biased or unrepresentative datasets reinforce inequities, while responsible curation practices80

(e.g., datasheets) improve accountability. Techniques such as augmentation, bias correction, and81

audits are used to enhance quality [105, 132, 156, 172].82

Model-related challenges Advanced AI models face persistent issues of explainability, trans-83

parency, and accountability, as deep architectures often act as black boxes with declining inter-84

pretability at scale [58, 63, 98, 190]. They also propagate biases from training data, creating fair-85

2



ness–privacy tradeoffs that require safeguards such as differential privacy, federated learning, and86

encryption [12, 13, 46, 67]. Further, robustness and generalization remain limited, with models87

vulnerable to adversarial inputs and misuse risks, including deepfakes and disinformation [27, 102].88

Misinformation and media manipulation Generative models exacerbate the spread of misinfor-89

mation through hallucinated outputs, fake citations, fabricated media, and numerical errors, under-90

mining trust in information ecosystems [53, 130, 145, 189, 192]. Addressing these risks requires91

robust verification mechanisms as well as content moderation strategies, including filtering algo-92

rithms, adversarial defenses, and detection of fake personas and bot networks [17, 83, 131, 133].93

At the same time, increasingly realistic visual and audio manipulation—enabled by face swapping,94

voice cloning, synthetic identities, and diffusion models like Stable Diffusion and DiffVoice—raises95

serious risks of fraud, deception, and security breaches, necessitating stronger detection methods96

and regulatory oversight [14, 26, 28, 54, 136, 137, 191].97

3.2 Regulatory challenges98

Regulatory challenges are the normative and institutional tasks of creating and enforcing frameworks99

to ensure the ethical, accountable, and privacy-compliant use of AI [37]. They fall into six main100

categories:101

Copyright and intellectual property disputes. Training GenAI on copyrighted data raises unre-102

solved questions of authorship and ownership, with models reproducing protected works and expos-103

ing gaps in existing law [52, 82, 120, 196].104

Ethical AI alignment. Generative models can produce biased or toxic content, undermining105

trust [185]. Regulatory measures include bias-free data, detection algorithms [161], ethical au-106

dits [84], and fairness and accountability frameworks [119], complemented by user feedback.107

Accountability and transparency gaps. GenAI often generates biased, hallucinated, or privacy-108

sensitive content, leaving responsibility unclear across developers, data providers, and users [42].109

The EU AI Act addresses these gaps through risk classification and transparency mandates [117],110

but disputes over unauthorized data use remain.111

Ethical dilemmas in automated decision-Making. Applications in hiring, lending, and healthcare112

risk perpetuating discrimination when trained on biased data, requiring stronger regulatory oversight113

to ensure fairness.114

Algorithmic accountability and explainability. Mandates such as those in the EU AI Act re-115

quire explainability for high-risk systems, but complexity in models like GPT-4 limits interpretabil-116

ity [154]. This creates compliance tensions, while evolving risks such as deepfakes in elections117

demand updated standards.118

Lack of standardized codes of practice. The absence of uniform standards for AI integra-119

tion heightens risks of bias, privacy violations, and unreliable systems, underscoring the need for120

industry-wide codes [154].121

Together, these categories highlight the persistent gaps in aligning generative AI with robust regula-122

tory, ethical, and institutional safeguards.123

3.3 Gaps in AI safety benchmarks124

We evaluated 17 AI safety benchmarks against the technical risks identified in Section 3.1. While125

most benchmarks address bias, discrimination, and toxicity, coverage of security, misinformation,126

and privacy remains limited. Emerging threats such as deepfakes and AI system failures are no-127

tably underrepresented, underscoring gaps in risk mitigation and the need for stronger regulatory128

alignment [16, 33, 51, 57, 72, 73, 88, 89, 91, 96, 134, 139, 147, 152, 176, 182, 195]. Table 1 maps129

existing benchmarks to regulatory areas, illustrating the uneven coverage of critical risks.130

3.4 Gaps in explainability of GenAI131

Advanced GenAI models remain opaque black boxes, creating fundamental barriers to transparency132

and accountability [8, 98]. Key obstacles arise from intrinsic opacity, as highly complex neural133

architectures defy direct human interpretation; stochastic outputs, where identical prompts yield134
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Table 1: Mapping AI Safety Benchmarks to Regulatory Areas. A checkmark (‘x‘) indicates that the
benchmark addresses the regulatory concern.

Benchmark Bias/ Dis-
crimination

Toxicity Security Mis-/ Disin-
formation

Deepfakes Privacy System
Failure

Malicious
Actors

HarmBench [96] x x x x
SALAD-Bench [88] x x x x x
Risk Taxonomy [33] x x x x x
TrustGPT [72] x x
RealToxicityPrompts
[57]

x

DecodingTrust [182] x x x x
SafetyBench [195] x x x x
MM-SafetyBench [91] x x x x x
Xstest [139] x x
Rainbow Teaming [147] x x x x x
MFG for GenAI [51] x x x
AI Safety Benchmark
[176]

x x x

HELM [89] x x x
SHIELD [152] x x
BIG-Bench [16] x x x x
BEADs [134] x x x
TrustLLM [73] x x x x x

different results depending on sampling parameters such as temperature or top-k decoding [75]; and135

multimodal complexity, where models integrate text, images, and audio in ways that complicate136

causal reasoning [123]. These issues are compounded by hallucinations and fabricated outputs,137

which undermine trust, complicate accountability, and increase risks in sensitive domains such as138

healthcare and finance [185].139

The lack of explainability in these systems directly erodes confidence of users, making AI adoption140

increasingly difficult [39]. At the same time, explainability is foundational to governance objectives141

such as transparency, auditability, and accountability. Without it, these objectives become unattain-142

able, which in turn makes regulatory compliance difficult [8, 80, 181, 186]. These gaps highlight143

explainability not as a secondary consideration but as a central challenge for Responsible Generative144

AI. Section 3.4 therefore examines frontier solutions for explainability, focusing on approaches to145

mitigate these deficiencies. Despite these challenges there are signifcant efforts towards explainable146

AI.147

Explainability is not merely another principle within Responsible AI but functions simultaneously148

as a regulatory compliance and a trust mechanism [181]. It is increasingly mandated in high-149

risk AI contexts to ensure oversight and accountability, while also enabling users and stakeholders150

to evaluate outputs, thereby fostering confidence and facilitating adoption [8, 39, 186]. This dual151

role situates explainability at the core of Responsible Generative AI, requiring continuous technical152

innovation alongside regulatory support.153

In principle, one might aim for intrinsic interpretability, where models are designed to be transparent154

by construction, such as decision trees or linear models. This remains feasible for smaller-scale155

machine learning models but not for large, complex foundation models due to their multi-layered156

architectures and scale [140]. Consequently, researchers rely on post-hoc explainability methods157

that generate explanations after predictions are produced, without modifying the underlying model.158

Techniques such as LIME and SHAP exemplify this approach, providing local, retrospective insights159

by approximating model behavior and highlighting influential features [94, 138].160

Figure 1 presents a conceptual mapping of these frontier post-hoc approaches. As the figure illus-161

trates, interpretability pathways clarify decision rationales at the feature level [193], model simpli-162

fication enhances transparency by approximating complex systems with more tractable forms [32],163

and visualization tools such as attention maps and heatmaps make hidden processes more acces-164

sible to stakeholders [68, 174]. In parallel, fairness and bias mitigation methods operationalize165

ethical constraints through quantifiable metrics [109], while trust enhancement mechanisms rein-166

force user confidence by validating outputs in human-understandable terms [186]. Taken together,167

these approaches contribute to transparency, accountability, and trust in systems such as LLMs168

and VLMs. By situating explainability in this structured manner, researchers can bridge the gap169
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between advanced AI capabilities and societal expectations for ethical and accountable deploy-170

ment [125, 128, 136].171

Figure 1: A conceptual mapping of post-hoc explainability approaches in AI.

4 Frontier solutions of responsible GenAI172

4.1 Principles for responsible GenAI173

Establishing clear principles is indispensable to implement Responsible Generative AI [49, 80].174

They provide the normative foundation that guides the entire life cycle of AI design, development,175

deployment, and use [106]. Our analysis highlights four overarching categories of principles, includ-176

ing technical, legal, sustainable, and innovation management, as illustrated in Figure 2. Together,177

they provide a framework that guides the selection of principles for Responsible Generative AI.178

The technical dimension encompasses accountability, transparency, fairness, privacy, safety, and179

autonomy. Accountability clarifies responsibility and enables redress when harms occur [180].180

Transparency facilitates auditability and oversight [8, 39]. Fairness reduces discriminatory out-181

comes and promotes equitable treatment [11, 41]. Privacy safeguards legitimacy and public trust182

by protecting data boundaries [110]. Safety addresses unintended failures and risks of harm in de-183

ployment [6]. Autonomy preserves human agency and ensures that decision-making remains under184

meaningful human control [20].185

The legal dimension anchors AI within binding regulatory frameworks and engages with interna-186

tional standards to promote coherence across jurisdictions. Compliance with national laws pro-187

vides enforceable safeguards, while voluntary adoption of international best practices strengthens188

legitimacy and trust. Examples include the OECD AI Principles and the EU AI Act, which em-189

phasize accountability, fairness, and proportionality as legal standards for responsible AI develop-190

ment [59, 115].191

The sustainable dimension addresses the broader social, environmental, and economic impacts of192

AI systems [24, 158, 178]. This includes reducing the carbon footprint of model training and de-193

ployment, ensuring inclusion and accessibility in applications, and fostering equitable benefit shar-194

ing across communities [106]. Sustainability must also extend to procurement, with organizations195

prioritizing suppliers and AI systems that meet environmental and social responsibility criteria [56].196

The responsible innovation management dimension emphasizes anticipation, reflexivity, respon-197

siveness, and inclusion as guiding commitments [157, 179]. Anticipation identifies risks and oppor-198

tunities early in the design process. Reflexivity ensures continuous reassessment of assumptions,199

methods, and impacts. Responsiveness enables adaptation to emerging evidence and societal needs.200
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Inclusion embeds diverse stakeholders in development and oversight. Together, these commitments201

integrate ethical responsibility into organizational processes and knowledge management, ensuring202

responsibility is systematically practiced rather than applied ad hoc [118, 149].203

In short, these categories provide an integrated structure for selecting and tailoring principles that204

enable the responsible design and deployment of generative AI.205

Figure 2: Principles for Responsible Generative AI grouped into technical, legal, sustainable, and
innovation management dimensions.

4.2 Governance frameworks and tools206

Governance frameworks provide actionable mechanisms to translate principles and high-level com-207

mitments into operational practice [49, 80]. They establish structured processes for documentation,208

risk management, monitoring, auditability, and compliance, among others [106]. Effective adoption209

requires organizations to examine established frameworks, assess their relevance to regulatory and210

industrial contexts, and tailor them holistically to reflect the principles set for Responsible Genera-211

tive AI [90, 126].212

In this study, we examined a range of governance frameworks and identified representative exam-213

ples, summarized in Table 2. The table also includes complementary technical tools that support214

practitioners in implementing these frameworks or specific components of them. On the governance215

side, standards such as ISO/IEC TR 24027:2021 and NIST SP-1270 provide systematic structures216

for bias mitigation, while the OECD AI principles and U.S. GAO accountability framework es-217

tablish mechanisms for transparency and oversight [115, 171]. On the technical side, toolkits like218

AI Fairness 360 [15], Fairlearn [184], and AIX360 [9] operationalize these governance principles219

by enabling bias detection, interpretability, and explainability in practice. Similarly, robustness220

toolkits (e.g., ART) and privacy solutions (e.g., TensorFlow Privacy) extend governance mandates221

into concrete assurance techniques [158, 184]. Taken together, these frameworks and tools provide222

practitioners with a robust set of instruments to operationalize governance and align Responsible223

Generative AI with real-world deployment.224

4.3 Key performance indicators for responsible AI225

The objectives and tasks embedded within governance frameworks for Responsible AI must be op-226

erationalized through clear and measurable indicators; otherwise, commitments to responsibility227

remain aspirational rather than actionable [48, 80]. Selecting appropriate Key Performance Indica-228

tors (KPIs) across the full AI lifecycle—from design and data preparation to development, deploy-229

ment, and monitoring—is therefore critical. These indicators translate the principles and objectives230
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Table 2: Representative governance frameworks and technical AI tools for Responsible AI.
Category Governance Frameworks Technical Tools
Fairness & Bias Mit-
igation

ISO/IEC TR 24027:2021 [1] (AI and data qual-
ity); NIST SP-1270 [150] (bias identification
and management); AI4ALL [4] (diversity and
inclusion in AI)

Google What-if Tool [187] (visual fairness eval-
uation); IBM AI Fairness 360 [15] (bias detec-
tion and mitigation); Microsoft Fairlearn [184]
(fairness metrics and debiasing)

Interpretability &
Explainability

IEEE P2976 [124] (standards for XAI); IEEE
P2894 [30] (guidelines for XAI implementa-
tion); UK ICO–Turing Guidance [87] (regula-
tory guidance for explainability)

LIT [162] (interactive model interpretabil-
ity); InterpretML [146] (explainability with
LIME/SHAP); ELI5 [35] (simple explanations);
IBM AIX360 [9] (toolkit for multiple explana-
tion techniques)

Transparency & Ac-
countability

US GAO AI Accountability Framework [171]
(accountability practices for AI); OECD AI
Principles [115] (global policy recommenda-
tions)

Evidently [44] (monitoring and evaluation);
MLBench [108] (benchmarking transparency
and robustness)

Privacy, Safety &
Security

NASA Hazard Modes [155] (safety in ML for
space); IEEE P7009 [45] (fail-safe autonomous
systems); ISO/IEC TS 27022:2021 [160] (secu-
rity guidelines); NIST AI 100-2 [114] (cyberse-
curity for AI); UK AI Cybersecurity Code [36];
MIT Risk Repo [154] (AI risk documentation);
Google SAIF [76] (secure AI framework)

Unitary [170] (toxicity detection); ART Ro-
bustness Toolbox (adversarial robustness); Pri-
vacy Meter (privacy auditing); Google DP [60]
(differential privacy); SecretFlow (privacy-
preserving ML); TensorFlow Privacy [163]; Bet-
terdata PET [77] (synthetic data privacy)

Ethical Guidelines &
Compliance

GDPR [169] (EU data protection law); EU AI
Act [85] (risk-based AI regulation); Canadian
Voluntary Code of Conduct [112]; US AI Ex-
ecutive Order [69]; WHO Ethics in AI for
Health [116]

Google RAI Practices [3]; Australia AI Ethics
Principles [10]; Microsoft RAI Toolbox [101];
OneTrust [113] (compliance and risk manage-
ment)

Monitoring & Audit-
ing

AI Incident Database [34] (documented harms
from AI); UK ICO AI Auditing Frame-
work [167] (auditing standards)

FairVis [21] (bias visualization); Aequitas [50]
(fairness audit toolkit); Audit-AI [78] (bias au-
diting in ML)

of Responsible AI into measurable outcomes and allow organizations to track progress systemati-231

cally [95, 129].232

Based on our examination, we identify a set of representative KPIs that measure the “responsible-233

ness” of AI solutions across the lifecycle. Table 3 presents these indicators. In the design and data234

preparation stage, data quality and integrity measure the accuracy, consistency, and reliability of235

datasets, ensuring trustworthy inputs [121]. Data privacy compliance evaluates adherence to regu-236

latory standards such as GDPR or CCPA, quantifying the proportion of compliant data records [86].237

Bias detection quantifies disparities across protected groups using fairness metrics such as Statisti-238

cal Parity Difference or Disparate Impact [121, 135].239

In model development, fairness scores assess the equity of outcomes across demographic groups,240

explainability indices capture the interpretability of model decisions to stakeholders, and robust-241

ness assessments test system reliability under perturbed or adversarial conditions [65, 177]. Dur-242

ing deployment, equal performance ensures comparable predictive accuracy across groups [127],243

while sustainability metrics track energy consumption and environmental impact of large-scale244

models [158, 173]. Finally, monitoring and governance rely on high-stakes error rates, which245

quantify harmful or unsafe outputs, and audit frequency and resolution times, which reinforce246

accountability by measuring the pace of issue detection and remediation [37, 66].247

In sum, these KPIs provide a systematic foundation for aligning AI systems with ethical and societal248

expectations, reinforcing trust, accountability, and sustainable innovation.249

4.4 AI-ready testbeds250

Testing in controlled environments prior to deployment is essential for translating Responsible AI251

principles into practice and for validating systems against both technical and governance require-252

ments [141, 166, 175]. In this landscape, AI-ready testbeds provide experimental settings for al-253

gorithmic validation and repeatable evaluation (e.g., robustness, bias, privacy), while regulatory254

sandboxes offer supervised, real or simulated conditions where innovators and regulators jointly255

probe compliance, accountability, and oversight [141, 175].256

Testbeds help examine GenAI’s distinctive risks (stochastic outputs, multimodality, and hallucina-257

tions) using structured experiments and repeat runs; they also enable targeted probes for fairness,258
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Table 3: Key Performance Indicators (KPIs) for Evaluating Responsible AI
KPI Description and Formula
Design & Data Preparation
Data Quality and Integrity Accuracy, consistency, and reliability of datasets.

Q =
Valid Entries
Total Entries

× 100

Data Privacy Compliance Proportion of data compliant with privacy standards (e.g., GDPR, CCPA).

P =
Compliant Data Points

Total Data Points
× 100

Bias Detection Measures disparities across groups, e.g., Statistical Parity Difference (SPD).

SPD = P (ŷ = 1 | A = a)− P (ŷ = 1 | A = b)

Model Development
Fairness Score Disparate Impact (DI) quantifies equity across groups.

DI =
P (ŷ = 1 | A = a)

P (ŷ = 1 | A = b)

Explainability Index Aggregate contribution of features to interpretability.

E =

n∑
i=1

|Feature Contributioni|

Robustness Assessment Reliability under perturbations or adversarial conditions.

R =
Errors under Perturbation

Total Perturbed Inputs
× 100

Deployment
Equal Performance Consistency in predictive accuracy across groups.

∆accuracy = |AccuracyA=a − AccuracyA=b|

Sustainability Metrics Environmental cost of computation.

Ec = P × T

Monitoring & Governance
High-Stakes Error Rate Proportion of harmful or critical errors.

Eh =
Critical Errors

Total Predictions
× 100

Audit Frequency and Resolution
Time

Frequency of audits and average resolution speed.

Fa =
Number of Audits

Time Period
, Tr = Average Time to Resolve Issues

safety, and privacy before release [111, 122, 183]. Table 4 summarizes representative testbeds used259

to study RAI properties in practice, including platforms oriented to explainability, accountability,260

and human-centered evaluation [31, 92, 188].261

Regulatory Sandboxes Unlike technical testbeds, sandboxes are policy instruments designed to bal-262

ance innovation with compliance by permitting supervised experimentation under legal and proce-263

dural safeguards [141, 166, 175]. They have become a central feature of the EU AI Act’s imple-264

mentation discourse and several national strategies, functioning as a bridge between technical risk265

assessment and institutional oversight [19].266

In practice, organizations can use AI-ready testbeds to gather technical evidence (e.g., fairness, ro-267

bustness, privacy leakage) and then leverage regulatory sandboxes to validate procedures, docu-268
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Table 4: Representative AI-ready testbeds for evaluating Responsible AI practices.
Testbed Name Domain Key Features
AI4EU AI-on-
Demand [31]

General AI Devel-
opment

EU-funded platform promoting responsible AI develop-
ment with ethical principles, transparency, and explain-
ability.

IEEE Ethical AI
Testbed [188]

Ethical AI Devel-
opment

Evaluation with ethical frameworks, human-centered
AI, and fairness.

AI Testbed for Trust-
worthy AI (TNO) [165]

Trustworthy AI Assesses robustness, transparency, and fairness.

ETH Zurich Safe AI
Lab [43]

Safe and Fair AI Safety-critical validation with focus on robustness, fair-
ness, and reliability.

HUMANE AI [74] Human-Centric AI Ensures alignment with human values, societal impact,
and fairness.

AI for Good Testbed
(ITU) [79]

Social Good Ethical AI aligned with UN SDGs, emphasizing ethics
and societal benefit.

UKRI TAS Hub [168] Autonomous Sys-
tems

Trustworthy autonomy with accountability, trans-
parency, and compliance.

Algorithmic Justice
League [5]

Algorithmic Fair-
ness

Fairness testing, bias mitigation, and ethical AI develop-
ment.

ClarityNLP Health-
care [29]

Healthcare AI Fairness, transparency, and ethical data usage in clinical
NLP.

ToolSandbox [92] LLM Tool Use Evaluates LLMs for privacy, fairness, transparency, and
accountability in stateful tasks.

Table 5: Representative sample of regulatory sandboxes for AI.
Program / Instrument Jurisdiction Focus in the literature
EU AI Act Regulatory Sand-
boxes [141, 175]

European Union Supervised experimentation to align innovation
with risk-based requirements; dialogue with reg-
ulators; openness and oversight design.

Spain AI Regulatory Sandbox
(pilot) [19]

Spain Early pilot implementation; allocation of over-
sight, procedural clarity, and cross-border consis-
tency.

Cross-sector EU experimenta-
tion facilities [141]

EU (comparative) Relationship between AI sandboxes, living labs,
and experimentation facilities; governance chal-
lenges and standardization needs.

Conceptual models for high-risk
AI sandboxes [166]

Comparative Legal design rationales; criteria for eligibility, su-
pervision, and exit; risks of fragmentation.

mentation, and controls under supervisory conditions, thereby aligning technical performance with269

regulatory expectations [141, 175].270

5 Conclusion271

This survey has mapped the problem and solution spaces for Responsible Generative AI through272

technical and regulatory perspectives. Taken together, these dimensions highlight the frontier for273

advancing Responsible Generative AI.274

On the problem side, what stands out as particularly concerning are challenges in data (bias, qual-275

ity, diversity, and privacy at scale) and model (opacity, stochastic outputs, robustness limits, and276

misuse risks). Alongside these technical issues, challenges with regulation add further complexity277

through accountability gaps, intellectual property disputes, and compliance burdens across jurisdic-278

tions. Limited benchmarks continue to lag in covering critical risks, while poor explainability279

undermines transparency, accountability, and trust in generative systems.280

On the solution side, promising directions include establishing clear principles that anchor respon-281

sible practices, adopting governance frameworks that translate commitments into operational pro-282

cesses, and defining measurable metrics to track progress systematically. In addition, technical283

testbeds enable pre-deployment validation across domains, while supervised regulatory sandboxes284

provide dynamic policy environments for experimentation under oversight.285
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Question: Do the main claims made in the abstract and introduction accurately reflect the867

paper’s contributions and scope?868

Answer: [Yes]869
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2. Limitations871
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Answer: [Yes]873
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experiments but instead synthesizes and evaluates existing literature.875
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a complete (and correct) proof?878

Answer: [NA]879
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and regulatory literature.882

4. Experimental result reproducibility883
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material?891
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results?896
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Answer: [NA]902

8. Experiments compute resources903
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subjects948

Question: Does the paper describe potential risks incurred by study participants, whether949

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)950

approvals (or an equivalent approval/review based on the requirements of your country or951

institution) were obtained?952

Answer: [NA]953

Justification: The paper does not involve experiments with human subjects and therefore954

does not require IRB approval.955

16. Declaration of LLM usage956

Question: Does the paper describe the usage of LLMs if it is an important, original, or957
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Justification: This survey does not use LLMs as part of its methodology or results. Any962

AI tools used were limited to standard writing/editing assistance and did not affect the963

scientific content or originality of the work.964
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