© ©® N O O A~ W N =

20
21
22
23

24
25
26
27
28
29
30
31
32
33
34

Responsible Generative AI: A Review of Technical
and Regulatory Frontiers

Anonymous Author(s)
Affiliation
Address

email

Abstract

Generative Al (GenAl) has rapidly expanded into domains such as healthcare, fi-
nance, education, and media, raising acute concerns around fairness, transparency,
accountability, and governance. While prior Responsible Al (RAI) surveys have
addressed bias mitigation, privacy, and ethical design, they largely focus on tra-
ditional Al and overlook the distinctive risks of GenAl, including hallucinations,
stochastic outputs, intellectual property disputes, and large-scale synthetic content
generation. This survey addresses that gap by systematically reviewing more than
80 studies published between 2022 and 2024 to examine Responsible Generative
Al through both technical and regulatory perspectives. We identify five core prob-
lem areas: data-related risks, model-related risks, challenges with regulation,
the limited scope of existing benchmarks, and poor explainability. In response,
we highlight emerging solutions across five domains: establishing clear princi-
ples, adopting governance frameworks, defining measurable metrics, validating
through Al-ready testbeds, and enabling adaptive oversight via regulatory sand-
boxes. By mapping these problem and solution spaces, this study contributes
an integrated framework for Responsible Generative Al, providing actionable in-
sights for researchers, practitioners, and policymakers seeking to align innovation
with ethical, societal, and legal expectations.

1 Introduction

Artificial Intelligence (Al) is emerging as a pervasive technology influencing institutions and daily
life across society. Al systems are increasingly integrated into decision-making across health-
care [81]], finance [22], transportation [2]], and education [194], raising critical concerns about fair-
ness, transparency, accountability, and related issues [64, 164, [197].

To address these challenges, a substantial body of work on Responsible Al (RAI) has developed,
encompassing measures such as bias mitigation, privacy protection, security enhancement, and the
safeguarding of human rights [[122} [143]]. Contributions include frameworks from industry [[7} 61}
100, [159] and academia [38| |93} |148]], offering both theoretical principles [93\ 197, [103} [144] and
practical implementations [25} 140} [71]. Yet existing surveys remain limited in two important ways.
First, most focus on traditional Al rather than the distinctive risks of Generative Al (GenAl), such as
hallucination, intellectual property conflicts, and large-scale generation of synthetic content [18],199,
1835]]. Second, prior studies typically analyze RAI through either a technical [40, [71] or a regulatory
lens [70, [148]), overlooking how these perspectives intersect. Recent analyses reveal that existing
Al safety frameworks cover only a fraction of identified risks, underscoring persistent gaps between
regulation and technical implementation [[154].
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This survey addresses these gaps by focusing on the current challenges and state-of-the-art solutions
that enable Responsible Generative Al across both technical and regulatory domains. Our guiding
research question is: Our guiding research question is: What are the most pressing challenges and
promising solutions towards Responsible Generative Al from technical-regulatory perspectives?

To answer this question, we systematically reviewed more than 80 studies published between 2022
and 2024 across leading journals, conferences, and governance reports [23L 137, [71]]. As part of this
review, we traced the evolution of the Responsible Al landscape (Section [2), prioritized the most
important current challenges, highlighted in Section [3] and examined promising solution strategies
(Sectionfd]). A structured quality assessment, conducted by a team of twelve academic and industry
experts, evaluated rigor, validity, and relevance [47, [80]. This dual perspective strengthens our
analysis by grounding it in both scholarly research and real-world practice.

As with similar reviews of Responsible Al frameworks [18} 147, 180} [99]], this study has several lim-
itations. First, it is framed primarily through technical and regulatory perspectives, which may
underrepresent insights from social sciences and civil society. Second, it synthesizes existing liter-
ature and frameworks rather than providing new empirical validation. Third, the rapid evolution of
generative Al means some findings may become time-sensitive and require future updates.

Despite these limitations, this survey offers a consolidated view of frontier challenges and solu-
tions across both technical and regulatory domains, providing a foundation for organizations and
policymakers to shape effective responsible Al strategies.

2 Evolution of the responsible AI landscape

To address our research question, we first trace the evolution of Responsible Al, highlighting the
trends of challenges, and solution strategies that have emerged over time. Over the past decade,
multiple perspectives have shaped the evolving landscape of Responsible Al. Fairness, Account-
ability, and Transparency (FAT/FAccT) established bias mitigation, accountability mechanisms,
and transparency as early foundations for ethical Al L1}, [104]. Trustworthy AI was subsequently
advanced through ethical frameworks such as Al4People [48] and comparative analyses of global
guidelines [80], highlighting privacy, robustness, and security as prerequisites for public trust. In
parallel, research on Explainable AI (XAI) developed methods for interpretability and transparency,
aiming to make opaque systems more understandable to users and regulators [8 62]. Human-
Centered Al further emphasized usability, human agency, and participatory design [153]], while
AI Safety and Alignment addressed risks posed by advanced Al systems, focusing on robustness,
controllability, and alignment with human values [6}142]. Alongside these, Sustainability Perspec-
tives such as Al for Social Good and Green Al stressed the role of Al in advancing societal well-
being while reducing the environmental costs of large-scale training and deployment [[151} [178]].
More recently, Responsible AI has emerged as a unifying framework integrating fairness, safety,
accountability, and governance [38} (93], while Responsible Generative AI extends these practices
to tackle new risks such as hallucination, intellectual property conflicts, and disinformation [[18}99].
Finally, the concept of Regulatable AI emphasizes designing systems with features that facilitate
compliance and oversight, enabling more effective regulatory intervention 53} [107]].

3 Current challenges in responsible GenAl

3.1 Technical challenges

Technical challenges in Responsible Generative Al are empirically testable issues in data, models,
and systems. They can be grouped into three main categories: data-related challenges, model-related
challenges, and misinformation and media manipulation [82].

Data-related challenges Ensuring integrity, fairness, diversity, and balance in training data is crit-
ical. Biased or unrepresentative datasets reinforce inequities, while responsible curation practices
(e.g., datasheets) improve accountability. Techniques such as augmentation, bias correction, and
audits are used to enhance quality [105} (132} 156 [172].

Model-related challenges Advanced AI models face persistent issues of explainability, trans-
parency, and accountability, as deep architectures often act as black boxes with declining inter-
pretability at scale [58, 163} 98] [190]. They also propagate biases from training data, creating fair-
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ness—privacy tradeoffs that require safeguards such as differential privacy, federated learning, and
encryption [12} [13] 46| [67]]. Further, robustness and generalization remain limited, with models
vulnerable to adversarial inputs and misuse risks, including deepfakes and disinformation [27,102].

Misinformation and media manipulation Generative models exacerbate the spread of misinfor-
mation through hallucinated outputs, fake citations, fabricated media, and numerical errors, under-
mining trust in information ecosystems [53} [130} [145 [189| [192]. Addressing these risks requires
robust verification mechanisms as well as content moderation strategies, including filtering algo-
rithms, adversarial defenses, and detection of fake personas and bot networks [17, [83} [131} [133].
At the same time, increasingly realistic visual and audio manipulation—enabled by face swapping,
voice cloning, synthetic identities, and diffusion models like Stable Diffusion and DiffVoice—raises
serious risks of fraud, deception, and security breaches, necessitating stronger detection methods
and regulatory oversight [[14} 26} 128 154,136, 137, [191]].

3.2 Regulatory challenges

Regulatory challenges are the normative and institutional tasks of creating and enforcing frameworks
to ensure the ethical, accountable, and privacy-compliant use of Al [37]]. They fall into six main
categories:

Copyright and intellectual property disputes. Training GenAl on copyrighted data raises unre-
solved questions of authorship and ownership, with models reproducing protected works and expos-
ing gaps in existing law [52,[82, [120, [196].

Ethical AI alignment. Generative models can produce biased or toxic content, undermining
trust [185]. Regulatory measures include bias-free data, detection algorithms [161]], ethical au-
dits [|84], and fairness and accountability frameworks [119], complemented by user feedback.

Accountability and transparency gaps. GenAl often generates biased, hallucinated, or privacy-
sensitive content, leaving responsibility unclear across developers, data providers, and users [42].
The EU Al Act addresses these gaps through risk classification and transparency mandates [117]],
but disputes over unauthorized data use remain.

Ethical dilemmas in automated decision-Making. Applications in hiring, lending, and healthcare
risk perpetuating discrimination when trained on biased data, requiring stronger regulatory oversight
to ensure fairness.

Algorithmic accountability and explainability. Mandates such as those in the EU Al Act re-
quire explainability for high-risk systems, but complexity in models like GPT-4 limits interpretabil-
ity [154]]. This creates compliance tensions, while evolving risks such as deepfakes in elections
demand updated standards.

Lack of standardized codes of practice. The absence of uniform standards for Al integra-
tion heightens risks of bias, privacy violations, and unreliable systems, underscoring the need for
industry-wide codes [154].

Together, these categories highlight the persistent gaps in aligning generative Al with robust regula-
tory, ethical, and institutional safeguards.

3.3 Gaps in Al safety benchmarks

We evaluated 17 Al safety benchmarks against the technical risks identified in Section[3.1] While
most benchmarks address bias, discrimination, and toxicity, coverage of security, misinformation,
and privacy remains limited. Emerging threats such as deepfakes and Al system failures are no-
tably underrepresented, underscoring gaps in risk mitigation and the need for stronger regulatory
alignment [16] 33|51} 57, 72! 731 [88. [89L 011 96| 134} [1391 [147. 152, [176| [182] [195]. Table [T maps
existing benchmarks to regulatory areas, illustrating the uneven coverage of critical risks.

3.4 Gaps in explainability of GenAl

Advanced GenAl models remain opaque black boxes, creating fundamental barriers to transparency
and accountability [8, 98]]. Key obstacles arise from intrinsic opacity, as highly complex neural
architectures defy direct human interpretation; stochastic outputs, where identical prompts yield
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Table 1: Mapping Al Safety Benchmarks to Regulatory Areas. A checkmark (‘x°) indicates that the
benchmark addresses the regulatory concern.

Benchmark Bias/ Dis- | Toxicity | Security| Mis-/ Disin- | Deepfakes | Privacy | System | Malicious
crimination formation Failure | Actors

HarmBench [96] X X X X

SALAD-Bench [88] X X X X X

Risk Taxonomy [33] X X X X X

TrustGPT [72] X X

RealToxicityPrompts X

1571

DecodingTrust [182] X X X X

SafetyBench [195] X X X X

MM-SafetyBench [91] X X X X X

Xstest [139] X X

Rainbow Teaming [147] | x X X X X

MEG for GenAlI [51] X X X

Al Safety Benchmark | x X X

[176]

HELM [89] X X X

SHIELD [152] X X

BIG-Bench [16] X X X X

BEAD:s [[134] X X X

TrustLLM [73] X X X X X

different results depending on sampling parameters such as temperature or top-k decoding [[75]]; and
multimodal complexity, where models integrate text, images, and audio in ways that complicate
causal reasoning [123]. These issues are compounded by hallucinations and fabricated outputs,
which undermine trust, complicate accountability, and increase risks in sensitive domains such as
healthcare and finance [[185]].

The lack of explainability in these systems directly erodes confidence of users, making Al adoption
increasingly difficult [39]]. At the same time, explainability is foundational to governance objectives
such as transparency, auditability, and accountability. Without it, these objectives become unattain-
able, which in turn makes regulatory compliance difficult 8} 80,181} [186]. These gaps highlight
explainability not as a secondary consideration but as a central challenge for Responsible Generative
AL Section [3.4] therefore examines frontier solutions for explainability, focusing on approaches to
mitigate these deficiencies. Despite these challenges there are signifcant efforts towards explainable
AL

Explainability is not merely another principle within Responsible Al but functions simultaneously
as a regulatory compliance and a trust mechanism [181]. It is increasingly mandated in high-
risk Al contexts to ensure oversight and accountability, while also enabling users and stakeholders
to evaluate outputs, thereby fostering confidence and facilitating adoption [8l 39} [186]. This dual
role situates explainability at the core of Responsible Generative Al, requiring continuous technical
innovation alongside regulatory support.

In principle, one might aim for intrinsic interpretability, where models are designed to be transparent
by construction, such as decision trees or linear models. This remains feasible for smaller-scale
machine learning models but not for large, complex foundation models due to their multi-layered
architectures and scale [140]. Consequently, researchers rely on post-hoc explainability methods
that generate explanations after predictions are produced, without modifying the underlying model.
Techniques such as LIME and SHAP exemplify this approach, providing local, retrospective insights
by approximating model behavior and highlighting influential features [94} [138]].

Figure ] presents a conceptual mapping of these frontier post-hoc approaches. As the figure illus-
trates, interpretability pathways clarify decision rationales at the feature level [[193]], model simpli-
fication enhances transparency by approximating complex systems with more tractable forms [32],
and visualization tools such as attention maps and heatmaps make hidden processes more acces-
sible to stakeholders [68l [174]. In parallel, fairness and bias mitigation methods operationalize
ethical constraints through quantifiable metrics [[109], while trust enhancement mechanisms rein-
force user confidence by validating outputs in human-understandable terms [[186]]. Taken together,
these approaches contribute to transparency, accountability, and trust in systems such as LLMs
and VLMs. By situating explainability in this structured manner, researchers can bridge the gap
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between advanced Al capabilities and societal expectations for ethical and accountable deploy-
ment [[125} 128, [136]].
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Figure 1: A conceptual mapping of post-hoc explainability approaches in Al

4 Frontier solutions of responsible GenAl

4.1 Principles for responsible GenAl

Establishing clear principles is indispensable to implement Responsible Generative Al [49, 80].
They provide the normative foundation that guides the entire life cycle of Al design, development,
deployment, and use [[L06]]. Our analysis highlights four overarching categories of principles, includ-
ing technical, legal, sustainable, and innovation management, as illustrated in Figure 2] Together,
they provide a framework that guides the selection of principles for Responsible Generative Al.

The technical dimension encompasses accountability, transparency, fairness, privacy, safety, and
autonomy. Accountability clarifies responsibility and enables redress when harms occur [180].
Transparency facilitates auditability and oversight [8, 39]]. Fairness reduces discriminatory out-
comes and promotes equitable treatment [11} 41]]. Privacy safeguards legitimacy and public trust
by protecting data boundaries [110]. Safety addresses unintended failures and risks of harm in de-
ployment [6]]. Autonomy preserves human agency and ensures that decision-making remains under
meaningful human control [20].

The legal dimension anchors Al within binding regulatory frameworks and engages with interna-
tional standards to promote coherence across jurisdictions. Compliance with national laws pro-
vides enforceable safeguards, while voluntary adoption of international best practices strengthens
legitimacy and trust. Examples include the OECD Al Principles and the EU Al Act, which em-
phasize accountability, fairness, and proportionality as legal standards for responsible Al develop-
ment [59,[115]].

The sustainable dimension addresses the broader social, environmental, and economic impacts of
Al systems [24 [158l [178]. This includes reducing the carbon footprint of model training and de-
ployment, ensuring inclusion and accessibility in applications, and fostering equitable benefit shar-
ing across communities [[106]. Sustainability must also extend to procurement, with organizations
prioritizing suppliers and Al systems that meet environmental and social responsibility criteria [56].

The responsible innovation management dimension emphasizes anticipation, reflexivity, respon-
siveness, and inclusion as guiding commitments [[157,[179]. Anticipation identifies risks and oppor-
tunities early in the design process. Reflexivity ensures continuous reassessment of assumptions,
methods, and impacts. Responsiveness enables adaptation to emerging evidence and societal needs.
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Inclusion embeds diverse stakeholders in development and oversight. Together, these commitments
integrate ethical responsibility into organizational processes and knowledge management, ensuring
responsibility is systematically practiced rather than applied ad hoc [118},[149]].

In short, these categories provide an integrated structure for selecting and tailoring principles that
enable the responsible design and deployment of generative Al.

Accountability Fairness Safety
Ensuring entities are responsible Gubavam;eeing Al systems aro Ensuring Al operates without
for Al actions and decisions. unbiased and equitable. causing harm.
Ensuring the technical aspect
3| of the Al t igns with i
ethical standards. Privacy Autonomy
Making Al processes Protecting personal data Respecting human autonomy
understandable and traceable. handled by Al systems. in Al interactions.
Legal ( Laws National Laws
f’am@wws aA"‘d d’eg““a‘”"f Global regulations and Country specific laws and
Responsible Al for governing Al deploymen agreement on Al usage. policies for Al governance.
The development, deployment \
and maintenance of Al in ethical
and the socially acceptable way
Sustainable Al ( .
Environmental Impact Societal Impact Economic Impact
Designing Al with a mindful
approach to long-term impacts Reducing Al's carbon Promoting positive ~social Ensuring Al contributes to
footprint and resource usage. change through Al. equitable economic growth.
.

Reflexivity Inclusion
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opportunities of Al adjusting Al development
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ethical principles. e Management

Organizing and  utiizing
A::‘““ﬂlg A“ “°nz°°r‘:"3' needs knowledge effectivelly in Al
and ethical standards. projects

Involving diverse stakeholders
in Al developments

Figure 2: Principles for Responsible Generative Al grouped into technical, legal, sustainable, and
innovation management dimensions.

4.2 Governance frameworks and tools

Governance frameworks provide actionable mechanisms to translate principles and high-level com-
mitments into operational practice [49,[30]. They establish structured processes for documentation,
risk management, monitoring, auditability, and compliance, among others [106]. Effective adoption
requires organizations to examine established frameworks, assess their relevance to regulatory and
industrial contexts, and tailor them holistically to reflect the principles set for Responsible Genera-
tive AI [90} [126]].

In this study, we examined a range of governance frameworks and identified representative exam-
ples, summarized in Table 2] The table also includes complementary technical tools that support
practitioners in implementing these frameworks or specific components of them. On the governance
side, standards such as ISO/IEC TR 24027:2021 and NIST SP-1270 provide systematic structures
for bias mitigation, while the OECD AI principles and U.S. GAO accountability framework es-
tablish mechanisms for transparency and oversight [[115} [171]. On the technical side, toolkits like
Al Fairness 360 [15]], Fairlearn [184], and AIX360 [9] operationalize these governance principles
by enabling bias detection, interpretability, and explainability in practice. Similarly, robustness
toolkits (e.g., ART) and privacy solutions (e.g., TensorFlow Privacy) extend governance mandates
into concrete assurance techniques [[158] [184]. Taken together, these frameworks and tools provide
practitioners with a robust set of instruments to operationalize governance and align Responsible
Generative Al with real-world deployment.

4.3 Key performance indicators for responsible Al

The objectives and tasks embedded within governance frameworks for Responsible Al must be op-
erationalized through clear and measurable indicators; otherwise, commitments to responsibility
remain aspirational rather than actionable [48 [80]. Selecting appropriate Key Performance Indica-
tors (KPIs) across the full Al lifecycle—from design and data preparation to development, deploy-
ment, and monitoring—is therefore critical. These indicators translate the principles and objectives
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Table 2: Representative governance frameworks and technical Al tools for Responsible Al

and management); AI4ALL [4] (diversity and
inclusion in AI)

Category Governance Frameworks Technical Tools
Fairness & Bias Mit- | ISO/IEC TR 24027:2021 [1] (AI and data qual- | Google What-if Tool [187] (visual fairness eval-
igation ity); NIST SP-1270 [150] (bias identification | uation); IBM Al Fairness 360 [[15] (bias detec-

tion and mitigation); Microsoft Fairlearn [184]
(fairness metrics and debiasing)

Interpretability &
Explainability

IEEE P2976 [124] (standards for XAI); IEEE
P2894 [30] (guidelines for XAI implementa-
tion); UK ICO-Turing Guidance [87] (regula-
tory guidance for explainability)

LIT [162] (interactive model interpretabil-
ity); InterpretML [146] (explainability with
LIME/SHAP); ELIS [35] (simple explanations);
IBM AIX360 [9] (toolkit for multiple explana-
tion techniques)

Transparency & Ac-

US GAO Al Accountability Framework [171]

Evidently [44] (monitoring and evaluation);

work [167] (auditing standards)

countability (accountability practices for AI); OECD AI | MLBench [108] (benchmarking transparency
Principles [115] (global policy recommenda- | and robustness)
tions)

Privacy, Safety & | NASA Hazard Modes [155] (safety in ML for | Unitary [170] (toxicity detection); ART Ro-

Security space); IEEE P7009 [45] (fail-safe autonomous | bustness Toolbox (adversarial robustness); Pri-
systems); ISO/IEC TS 27022:2021 [160] (secu- | vacy Meter (privacy auditing); Google DP [60]
rity guidelines); NIST AI 100-2 [114] (cyberse- | (differential privacy); SecretFlow (privacy-
curity for AI); UK AI Cybersecurity Code [36]; | preserving ML); TensorFlow Privacy [163]; Bet-
MIT Risk Repo [[154] (Al risk documentation); | terdata PET [77] (synthetic data privacy)
Google SAIF [76] (secure Al framework)

Ethical Guidelines & | GDPR [169] (EU data protection law); EU AI | Google RAI Practices [3]; Australia Al Ethics

Compliance Act [85] (risk-based Al regulation); Canadian | Principles [10]; Microsoft RAI Toolbox [101];
Voluntary Code of Conduct [112]; US AI Ex- | OneTrust [113] (compliance and risk manage-
ecutive Order [69]; WHO Ethics in AI for | ment)
Health [116]

Monitoring & Audit- | AI Incident Database [34] (documented harms | FairVis [21] (bias visualization); Aequitas [S0]

ing from AI); UK ICO AI Auditing Frame- | (fairness audit toolkit); Audit-Al [78] (bias au-

diting in ML)

of Responsible Al into measurable outcomes and allow organizations to track progress systemati-
cally [95,[129].

Based on our examination, we identify a set of representative KPIs that measure the “responsible-
ness” of Al solutions across the lifecycle. Table [3] presents these indicators. In the design and data
preparation stage, data quality and integrity measure the accuracy, consistency, and reliability of
datasets, ensuring trustworthy inputs [[121]]. Data privacy compliance evaluates adherence to regu-
latory standards such as GDPR or CCPA, quantifying the proportion of compliant data records [86].
Bias detection quantifies disparities across protected groups using fairness metrics such as Statisti-
cal Parity Difference or Disparate Impact [[121} [135]].

In model development, fairness scores assess the equity of outcomes across demographic groups,
explainability indices capture the interpretability of model decisions to stakeholders, and robust-
ness assessments test system reliability under perturbed or adversarial conditions [65 [177]. Dur-
ing deployment, equal performance ensures comparable predictive accuracy across groups [127],
while sustainability metrics track energy consumption and environmental impact of large-scale
models [158} [173]]. Finally, monitoring and governance rely on high-stakes error rates, which
quantify harmful or unsafe outputs, and audit frequency and resolution times, which reinforce
accountability by measuring the pace of issue detection and remediation [37, 66l

In sum, these KPIs provide a systematic foundation for aligning Al systems with ethical and societal
expectations, reinforcing trust, accountability, and sustainable innovation.

4.4 Al-ready testbeds

Testing in controlled environments prior to deployment is essential for translating Responsible Al
principles into practice and for validating systems against both technical and governance require-
ments [141} [166, [175]. In this landscape, Al-ready testbeds provide experimental settings for al-
gorithmic validation and repeatable evaluation (e.g., robustness, bias, privacy), while regulatory
sandboxes offer supervised, real or simulated conditions where innovators and regulators jointly
probe compliance, accountability, and oversight [141, [175].

Testbeds help examine GenAlI’s distinctive risks (stochastic outputs, multimodality, and hallucina-
tions) using structured experiments and repeat runs; they also enable targeted probes for fairness,
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Table 3: Key Performance Indicators (KPIs) for Evaluating Responsible Al

KPI [ Description and Formula
Design & Data Preparation
Data Quality and Integrity Accuracy, consistency, and reliability of datasets.
0— Valid Entries
"~ Total Entries
Data Privacy Compliance Proportion of data compliant with privacy standards (e.g., GDPR, CCPA).

Compliant Data Points
P= 100
Total Data Points x

Bias Detection Measures disparities across groups, e.g., Statistical Parity Difference (SPD).

SPD=P(j=1|A=a)—P(G=1|A=b)

Model Development
Fairness Score Disparate Impact (DI) quantifies equity across groups.
DI = P(g{:1|A:a)
Pig=1]A=b)
Explainability Index Aggregate contribution of features to interpretability.
E= Z |Feature Contribution; |
i=1
Robustness Assessment Reliability under perturbations or adversarial conditions.
Errors under Perturbation
= x 100
Total Perturbed Inputs
Deployment
Equal Performance Consistency in predictive accuracy across groups.
Auccuracy = |Accuracy ,_, — Accuracy ,_, |
Sustainability Metrics Environmental cost of computation.
E.=PxT
Monitoring & Governance
High-Stakes Error Rate Proportion of harmful or critical errors.

. Critical Errors 100

~ Total Predictions

Audit Frequency and Resolution | Frequency of audits and average resolution speed.

Ti
1me Number of Audits

Fa - " B
Time Period

, T, = Average Time to Resolve Issues

safety, and privacy before release [111} (122} [183]. Table ] summarizes representative testbeds used
to study RAI properties in practice, including platforms oriented to explainability, accountability,
and human-centered evaluation [31) 92, [188]].

Regulatory Sandboxes Unlike technical testbeds, sandboxes are policy instruments designed to bal-
ance innovation with compliance by permitting supervised experimentation under legal and proce-
dural safeguards [141} 166} [175]. They have become a central feature of the EU Al Act’s imple-
mentation discourse and several national strategies, functioning as a bridge between technical risk
assessment and institutional oversight [19].

In practice, organizations can use Al-ready testbeds to gather technical evidence (e.g., fairness, ro-
bustness, privacy leakage) and then leverage regulatory sandboxes to validate procedures, docu-
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Table 4: Representative Al-ready testbeds for evaluating Responsible Al practices.

Testbed Name Domain Key Features

AI4EU Al-on- | General Al Devel- | EU-funded platform promoting responsible Al develop-

Demand [31] opment ment with ethical principles, transparency, and explain-
ability.

IEEE  Ethical Al | Ethical AI Devel- | Evaluation with ethical frameworks, human-centered

Testbed [188]] opment Al, and fairness.

Al Testbed for Trust- | Trustworthy Al Assesses robustness, transparency, and fairness.

worthy Al (TNO) [165]

ETH Zurich Safe Al | Safe and Fair AL Safety-critical validation with focus on robustness, fair-

Lab [43] ness, and reliability.

HUMANE Al [74] Human-Centric AI | Ensures alignment with human values, societal impact,
and fairness.

Al for Good Testbed | Social Good Ethical Al aligned with UN SDGs, emphasizing ethics

ITU) [[79] and societal benefit.

UKRI TAS Hub [168]] Autonomous Sys- | Trustworthy autonomy with accountability, trans-

tems parency, and compliance.

Algorithmic Justice | Algorithmic Fair- | Fairness testing, bias mitigation, and ethical Al develop-

League [3]] ness ment.

ClarityNLP Health- | Healthcare Al Fairness, transparency, and ethical data usage in clinical

care [29] NLP.

ToolSandbox [92] LLM Tool Use Evaluates LLMs for privacy, fairness, transparency, and
accountability in stateful tasks.

Table 5: Representative sample of regulatory sandboxes for Al.

Program / Instrument Jurisdiction Focus in the literature

EU AI Act Regulatory Sand- | European Union Supervised experimentation to align innovation

boxes [141.[175]] with risk-based requirements; dialogue with reg-
ulators; openness and oversight design.

Spain Al Regulatory Sandbox | Spain Early pilot implementation; allocation of over-

(pilot) [19] sight, procedural clarity, and cross-border consis-
tency.

Cross-sector EU experimenta- | EU (comparative) Relationship between Al sandboxes, living labs,

tion facilities [141] and experimentation facilities; governance chal-
lenges and standardization needs.

Conceptual models for high-risk | Comparative Legal design rationales; criteria for eligibility, su-

Al sandboxes [166] pervision, and exit; risks of fragmentation.

mentation, and controls under supervisory conditions, thereby aligning technical performance with
regulatory expectations [14 1} [175]].

5 Conclusion

This survey has mapped the problem and solution spaces for Responsible Generative Al through
technical and regulatory perspectives. Taken together, these dimensions highlight the frontier for
advancing Responsible Generative Al.

On the problem side, what stands out as particularly concerning are challenges in data (bias, qual-
ity, diversity, and privacy at scale) and model (opacity, stochastic outputs, robustness limits, and
misuse risks). Alongside these technical issues, challenges with regulation add further complexity
through accountability gaps, intellectual property disputes, and compliance burdens across jurisdic-
tions. Limited benchmarks continue to lag in covering critical risks, while poor explainability
undermines transparency, accountability, and trust in generative systems.

On the solution side, promising directions include establishing clear principles that anchor respon-
sible practices, adopting governance frameworks that translate commitments into operational pro-
cesses, and defining measurable metrics to track progress systematically. In addition, technical
testbeds enable pre-deployment validation across domains, while supervised regulatory sandboxes
provide dynamic policy environments for experimentation under oversight.
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