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Abstract
Hallucinations in LLMs pose a significant con-
cern to their safe deployment in real-world appli-
cations. Recent approaches have leveraged the
latent space of LLMs for hallucination detection,
but their embeddings, optimized for linguistic co-
herence rather than factual accuracy, often fail
to clearly separate truthful and hallucinated con-
tent. To this end, we propose the Truthfulness
Separator Vector (TSV), a lightweight and flexi-
ble steering vector that reshapes the LLM’s rep-
resentation space during inference to enhance the
separation between truthful and hallucinated out-
puts, without altering model parameters. Our two-
stage framework first trains TSV on a small set
of labeled exemplars to form compact and well-
separated clusters. It then augments the exemplar
set with unlabeled LLM generations, employing
an optimal transport-based algorithm for pseudo-
labeling combined with a confidence-based filter-
ing process. Extensive experiments demonstrate
that TSV achieves state-of-the-art performance
with minimal labeled data, exhibiting strong gen-
eralization across datasets and providing a practi-
cal solution for real-world LLM applications.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able capabilities in natural language understanding and gen-
eration, showcasing their potential as general-purpose task
solvers (Zhao et al., 2023). Despite their success, LLMs
can generate hallucinated outputs—statements that appear
plausible but factually inaccurate or unsupported. Such hal-
lucinations can undermine user trust and lead to potentially
harmful consequences, especially in high-stake applications
(Zhang et al., 2023; Pal et al., 2023). Therefore, to be truly
trustworthy, an LLM must not only generate text that is
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Figure 1. T-SNE visualization (Van der Maaten & Hinton, 2008) of
the last-token embeddings from the final layer of LLaMA-3.1-8B
on the TruthfulQA test set. (a) Pre-trained model’s embeddings
exhibit significant overlap, whereas (b) adding TSV to latent states
of an intermediate LLM layer effectively separates the embeddings
of truthful and hallucinated data.

consistent with user prompts but also possess the ability to
detect hallucinations and alert users when they occur.

Recent work has explored leveraging the latent space of
LLMs to identify hallucinations (Burns et al., 2023; Azaria
& Mitchell, 2023; Marks & Tegmark, 2024; Yin et al.,
2024a; Du et al., 2024; Chen et al., 2024a; Li et al., 2024;
Kossen et al., 2024). These approaches typically rely on
the embeddings of off-the-shelf LLMs to classify outputs
as truthful or hallucinated. However, pre-trained LLMs are
optimized for linguistic coherence using a next-token pre-
diction objective, often prioritizing fluency and syntactic
correctness over factual accuracy (Radford et al., 2019). As
a result, their internal representations, while powerful for
general text generation, can fail to provide a clear separation
between truthful and hallucinated content (see real-world
example in Figure 1a). This motivates a key question:

How can we shape the latent space of an LLM for
hallucination detection?

Instead of fine-tuning the LLMs, which is computationally
expensive and alters the model’s parameters (Gekhman et al.,
2024), we propose learning a lightweight vector, called
Truthfulness Separator Vector (TSV). As illustrated in Fig-
ure 1b, this learnable vector is introduced during inference
and adjusting the internal representations of the LLM to en-
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hance the separation between truthful and hallucinated gen-
erations, without modifying the model’s parameters. TSV
focuses on reshaping the latent space for classifying halluci-
nated responses, a fundamentally different objective from
mitigating hallucinated generations (Li et al., 2024; Chen
et al., 2024b; Marks & Tegmark, 2024). To the best of our
knowledge, this is the first exploration of steering represen-
tations for hallucination detection.

Learning TSV is appealing yet challenging due to the lack
of large-scale human-labeled datasets with truthfulness an-
notations for LLM generation, which are costly and time-
intensive to create. To overcome this, we propose a two-
stage training framework. In the initial stage, a small ex-
emplar set of labeled data is used to guide the learning
process. The objective in this stage is to encourage the
steered embeddings to form compact clusters around class
prototypes, representing truthful and hallucinated genera-
tions. In the second stage, we augment the training data
by leveraging unlabeled LLM generations, which are freely
available for deployed LLM systems through user queries
and interactions (Du et al., 2024). To assign pseudo-labels
to these unlabeled samples, we propose an optimal transport-
based algorithm, which aligns unlabeled data embeddings
with class prototypes by minimizing transport costs while
accounting for the imbalanced class proportions. Further-
more, a confidence-based sample selection is then used to
include only the most reliable pseudo-labeled samples in
the training process. Together, these stages enable TSV to
effectively separate truthful and hallucinated representations
while significantly reducing the reliance on human labeling.

Extensive experiments demonstrate the strong performance
of our method across diverse datasets. On the challenging
TruthfulQA benchmark (Lin et al., 2022a), our approach
achieves a significant +12.8% improvement in hallucination
detection accuracy (AUROC) compared to state-of-the-art
methods. Notably, our method reaches performance com-
parable to the fully-supervised upper bound (e.g., 84.2%
vs. 85.5% on TruthfulQA), while using a small labeled
exemplar set with only 32 examples. TSV also exhibits
strong generalization capabilities, maintaining competitive
performance when applied to unseen datasets. Our key
contributions are summarized as follows:

1. We propose the Truthfulness Separator Vector (TSV),
a lightweight approach to separate truthful and hallu-
cinated representations without fine-tuning the LLMs,
which is largely unexplored in hallucination detection.

2. We develop an optimal transport-based pseudo-labeling
framework with confidence-based sample selection to
leverage unlabeled LLM generations effectively.

3. We demonstrate TSV’s superior performance and per-
form in-depth ablation studies to evaluate the impact

of various design choices in TSV and validate its scala-
bility across larger LLMs and diverse datasets. These
findings provide a systematic understanding of leverag-
ing steering vector and limited labeled data for halluci-
nation detection, paving the way for future research.

2. Related Works
Hallucination detection has emerged as a critical area of
research, addressing safety concerns of LLMs and their de-
ployment in real-world applications (Huang et al., 2023). A
plethora of works address hallucination detection by design-
ing uncertainty scoring functions. For instance, logit-based
methods utilize token-level probability as an uncertainty
score (Ren et al., 2022; Malinin & Gales, 2021; Kuhn et al.,
2023), verbalized methods prompt LLMs to express their un-
certainty in human language (Lin et al., 2022b; Xiong et al.,
2024), and consistency-based methods assess uncertainty by
evaluating the consistency across multiple responses (Man-
akul et al., 2023; Chen et al., 2024a). Recently, internal
state-based methods such as HaloScope leverage hidden
activations to identify hallucination subspace (Du et al.,
2024). However, these approaches often rely on default
LLM embeddings that do not inherently separate truthful
and hallucinated data. In contrast, our method aims to
shape the latent space through a learnable steering vector
for enhanced separation between the two types of data.

On the other hand, supervised methods leverage labeled
data to train the classifier, assuming that pre-trained LLMs
encode the truthfulness of responses within their internal
states (Azaria & Mitchell, 2023; Marks & Tegmark, 2024).
However, these methods require extensive labeling efforts.
In contrast, our method performs hallucination detection
with minimal human supervision, which is more practical
for real-world applications.

Activation engineering enables control over the LLM gen-
eration during inference, applying task-specific steering vec-
tors into the model’s internal representation (Im & Li, 2025).
For example, several studies mitigate hallucination by shift-
ing activations along the truthful direction identified by ana-
lyzing activation differences between contrastive pairs (Li
et al., 2024; Chen et al., 2024b; Marks & Tegmark, 2024).
Concurrently, representation fine-tuning methods introduce
learning task-specific interventions on linear subspaces of
hidden representations (Wu et al., 2024) or sparse subsets
of attention heads (Yin et al., 2024b).

Our approach differs in the following key aspects: (1) We
learn a steering vector specifically for hallucination detec-
tion, focusing on separating representations rather than mit-
igating hallucinated generations, and (2) while previous
methods rely on large labeled datasets, our method achieves
strong performance under minimal human supervision.
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Figure 2. Overall framework. In the initial training phase, Truthfulness Separator Vector (TSV) is trained on an exemplar set. After initial
training, (1) we assign soft pseudo-labels to the unlabeled data, (2) select confident pseudo-labeled samples, and (3) augment the exemplar
set with selected samples. Finally, we retrain TSV with the augmented set. Best viewed in color.

3. Problem Setup
Definition 3.1 (Hallucination detector). We define the
truthful distribution Ptrue as the joint distribution over pairs
of the input prompts and their corresponding truthful gener-
ations. Let V denote a vocabulary space of a causal LLM,
where each individual token is denoted as x ∈ V . Given
an input prompt xprompt = (x1, . . . , xn) and a model gen-
eration x̃ = (xn+1, . . . , xn+m), the task of hallucination
detection aims to learn a binary predictor G : X → {0, 1}:

G(xprompt, x̃) =

{
1, if (xprompt ⊕ x̃) ∼ Ptrue

0, otherwise
, (1)

where xprompt ⊕ x̃ = (x1, . . . , xn, xn+1, . . . , xn+m) repre-
sents the ordered concatenation of the prompt xprompt and
the generation x̃.

Following the practical setup in recent work HaloScope (Du
et al., 2024), we utilize unlabeled LLM generations in the
wild, which can be collected in vast quantities through user
interactions with LLMs. This data can be freely collected
for any deployed LLM system, yet often contains a mixture
of truthful and hallucinated content. Formally,

Definition 3.2 (Unlabeled data). We define the unlabeled
pairs of input prompt xi

prompt and LLM generation in the
wild x̃i to be the following mixture of distributions:

Punlabeled = (1− π)Ptrue + πPhallucination,

where π ∈ [0, 1] is the fraction of hallucinated generation.

The unlabeled dataset,DU = {(x1
prompt⊕x̃1), . . . , (xM

prompt⊕
x̃M )}, is independently and identically sampled from the
mixture distribution Punlabeled. Here, M is the total number
of unlabeled samples, and the tilde symbolizes the uncertain
nature of the generation.

Exemplar set. In addition to the unlabeled data, we incor-
porate a small, practical-to-annotate set of labeled exem-
plars to guide the learning of hallucination detector. Specif-
ically, pairs of input prompt eiprompt and LLM-generated

responses ẽi can be annotated with ground-truth labels ci ∈
C = {truthful, hallucinated}. This forms the labeled exem-
plar set: DE = {(e1prompt⊕ ẽ1, c1), . . . , (e

N
prompt⊕ ẽN , cN )},

where N is the total number of labeled exemplars. In this
paper, we will show that N can be kept very small (e.g., 32)
to minimize annotation costs while still providing valuable
guidance for the learning process.

4. Method
Overview. Since LLMs do not inherently produce op-
timal embeddings to separate truthful and hallucinated
data, our framework introduces a learnable vector, named
Truthfulness Separator Vector (TSV), designed to enhance
this separation within the representation space of the LLM.
As illustrated in Figure 2, TSV is added into the latent states
of the model during inference, which avoids the compu-
tational overhead associated with retraining or fine-tuning
the model. In what follows, we describe how to learn TSV
using unlabeled data and a small exemplar set.

4.1. How to learn TSV? Initial training phase

TSV is defined as a single trainable vector v ∈ Rd, which
can be plugged into pre-trained LLMs after the generation is
completed—without compromising their original language
capabilities. Given a sequence of tokens (e.g., input prompt
and generation pair), we add v to h(l), which represent the
d-dimensional latent states at an intermediate layer l:

h(l) ← h(l) + λv, (2)

where λ is a hyperparameter which controls the strength of
the steering, and v is shared across all token positions. This
intervention affects the embeddings in subsequent layers
l + 1, . . . , L via the non-linear transformations inherent in
LLM architecture. The last-token embedding at the final
layer after applying TSV is:

Φfinal(h
(l) + λv) = ϕL ◦ ϕL−1... ◦ ϕl+1(h

(l) + λv),

where ϕl indicates the non-linear transformation in layer l of
the transformer model. In Section 5.3, we perform ablations
on different layers of applying TSV.
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Training objective of TSV. To effectively detect halluci-
nations, it is crucial to establish a clear decision boundary
between truthful and hallucinated data. To this end, we
propose a training objective that learns TSV to separate em-
beddings between two classes C = {truthful, hallucinated}.
This is achieved by performing maximum likelihood esti-
mation (MLE) on the exemplar set DE:

argmax
v

|DE|∏
i=1

p(ci | Φfinal(h
(l)
i + λv)), (3)

where i is the index of training sample in DE.

To realize the MLE objective, we need to explicitly model
the probability distribution p(ci | Φfinal(h

(l)
i + λv)). In

particular, we model the last-token embeddings at the final
layer using a hyperspherical distribution with the unit norm,
where truthful and hallucinated data each form distinct clus-
ters. This modeling aligns with the structure of embeddings
typically observed after the RMSNorm layer in practical
Transformer models (Dubey et al., 2024; Yang et al., 2024),
where the norms of the embeddings are similar but direc-
tions can vary (see verification in Appendix G). This can
be naturally characterized by the von Mises-Fisher distribu-
tion, a classical probability distribution in directional statis-
tics (Mardia & Jupp, 2009), which is analogous to spherical
Gaussian distributions for features with unit norms. Under
this model, the class conditional probability is given by:

p(c | rv) =
exp

(
κµ⊤

c r
v
)∑

c′ exp
(
κµ⊤

c′r
v
) , (4)

where rv = Φfinal(h
(l) + λv)/∥Φfinal(h

(l) + λv)∥2, repre-
sents the normalized last-token embedding at the final layer,
µc ∈ Rd is the class prototype for class c, κ ≥ 0 is the con-
centration parameter controlling how tightly the distribution
is clustered around the mean direction µc.

Empirical loss function. Under the probability model
defined above, our MLE objective in Eq. 3 is equivalent to
minimizing the negative log-likelihood over the exemplar
set DE. This encourages embeddings within each class to
cluster tightly around their respective class centroids:

L = − 1

|DE|

|DE|∑
i=1

∑
c∈C

q(c | rvi ) log p(c | rvi ) (5)

where q(· | rvi ) denotes the target label distribution, which
can be either ground-truth or pseudo-label.

Prototype update. In practice, the prototype vector µc

can be efficiently updated using exponential moving aver-
age (Wang et al., 2022):

µc ← normalize[αµc + (1− α)r̄v], (6)

where α is the decay rate, and r̄v =
∑

i
q(c|rvi )·r

v
i∑

j q(c|rvj )
denotes

the mean of the normalized embeddings from class c.

4.2. How to learn TSV? Augmented training phase

While we demonstrate that leveraging a few labeled ex-
amples helps hallucination detection (Section 5.3), these
examples may not fully capture the diversity inherent in
the truthful and hallucinated data distributions. To address
the limitation, we propose to further incorporate unlabeled
training data to augment the learning process.

Label assignment via optimal transport. Assigning labels
(truthful vs. hallucinated) to unlabeled data is a non-trivial
task, particularly because we aim to generate pseudo-labels
that align with the class distribution of LLM generations,
which are naturally imbalanced (Hu et al., 2024). To this
end, we propose leveraging Optimal Transport (OT) (Villani
et al., 2009), which provides a principled approach to label
assignment. This approach aligns unlabeled data embed-
dings with class prototypes by minimizing transport costs
while respecting the imbalanced class proportions. Given
unlabeled dataset DU with M samples, the optimization
problem is formulated as:

min
Q∈[0,1]M×2

−
M∑

m=1

∑
c∈C

Qm,c logPm,c − ϵH(Q)

s.t. Q12 =
1

M
1M ,

Q⊤1M = w,

(7)

where 1M ∈ RM denotes an M -dimensional vector of
ones, Qm,c =

1
M q(c|rvm) represents an entry of the matrix

Q ∈ RM×2 for assigned joint pseudo-label probabilities,
and Pm,c = 1

M p(c|rvm) denotes an entry of P ∈ RM×2

for joint probabilities estimated by our model after initial
training, where p(c|rvm) is computed with Eq. 4. The first
constraint ensures that for each unlabeled sample, the total
probability mass of being assigned to two classes adds up to
1. The second constraint ensures that the number of samples
assigned to each class matches the expected class probability
distribution w ∈ R2. Here, H(Q) = −

∑
ij Qij logQij is

the entropy function, and ϵ is a hyperparameter controlling
the smoothness of the assignment, which we set to 0.05.
The entropy regularization term enables the computationally
efficient Sinkhorn algorithm (Cuturi, 2013) to solve the
problem. The minimizer of Eq. 7 can be expressed as:

Q = diag(α)P1/ϵdiag(β), (8)

where α ∈ RM and β ∈ R2 are scaling coefficient vectors
ensuring that the resulting Q forms a valid probability ma-
trix. These scaling coefficients are determined iteratively
using the following updates:

α← 1

M

1M

P1/ϵβ
, β ← w

(P1/ϵ)⊤α
. (9)

4



Steer LLM Latents for Hallucination Detection

We use the class distribution of the exemplar set as a proxy
for w, assuming a missing completely at random (MCAR)
scenario, which is a natural assumption for data collected in
real-world settings (Van Buuren, 2018).

Confident data selection. Since pseudo-labels predicted
for the unlabeled data may be incorrect and thus introduce
noise into the learning process, we propose selecting only
the most “confident” pseudo-labeled samples from the unla-
beled dataset DU, which are most likely to be correct. We
measure the model’s predictive uncertainty using the cross-
entropy between the assigned pseudo-label distribution q
and the model’s predicted distribution p. Specifically, for
each unlabeled sample ri, we define:

Ω =

{
−
∑
c∈C

q(c | rvi ) log p(c | rvi )

∣∣∣∣∣ i ∈ IDU

}
, (10)

where IDU denotes the index set of DU. We then select K
samples from DU to form the subset DS:

DS = {Dj
U | j ∈ TopKi∈IDU

(−Ωi)}, (11)

where TopK denotes the indices of the K samples with the
lowest uncertainty values, and Dj

U is j-th data in DU.

Exemplar set augmentation. Finally, we augment the
original training dataset DE by incorporating the selected
samples DS along with their pseudo-labels:

DE ← DE ∪ DS. (12)

The learning process described in Section 4.1 is then re-
peated using the augmented dataset until convergence. We
summarize the full algorithm in Appendix A.

4.3. Inference-time hallucination detection

During inference, we leverage the learned class prototypes
µc to perform hallucination detection. Specifically, we
compute the truthfulness score as the normalized probability
of a test input’s embedding vector rvtest being assigned to the
truthful class. The scoring function is defined as:

S(x′) =
exp

(
κµ⊤

truthfulr
v
test

)∑
c′ exp

(
κµ⊤

c′r
v
test

) . (13)

Based on the scoring function, the hallucination detector is
Gζ(xtest) = 1{S(xtest) ≥ ζ}, where 1 indicates the truthful
class and 0 indicates otherwise. The task can be seamlessly
switched back to the original text generation by simply
removing TSV v, restoring the model’s initial generation
capabilities without additional modifications.

5. Experiments
5.1. Setup

Datasets. We evaluate our method on four generative
question-answering (QA) tasks: three open-domain QA

datasets–TruthfulQA (Lin et al., 2022a), TriviaQA (Joshi
et al., 2017), and NQ Open (Kwiatkowski et al., 2019); and
a domain-specific QA dataset–SciQ (Welbl et al., 2017).
For evaluation, 25% of the QA pairs from each dataset
are reserved for testing. Consistent with Du et al. (2024),
100 QA pairs are used for validation, while the remaining
samples simulate the unlabeled training dataset. We ran-
domly sample N = 32 pairs from TruthfuQA, and 64 pairs
from the other datasets to construct an exemplar set, with
K = 128 used for all experiments. Implementation details
are provided in Appendix B.

Models. We evaluate our method using two families of
widely adopted open-source LLMs which provide accessi-
ble internal representations: LLaMA-3.1-8b & 70b (Dubey
et al., 2024), and Qwen-2.5-7b & 14b (Yang et al., 2024).
By default, we used greedy sampling for the generation.

Baselines. We evaluate our approach against a diverse
set of 11 baseline methods, including existing state-of-
the-art. The baselines are categorized as follows: (1)
logit-based methods–Perplexity (Ren et al., 2022), Length-
Normalized Entropy (LN-entropy) (Malinin & Gales, 2021)
and Semantic Entropy (Kuhn et al., 2023); (2) consistency-
based methods–Lexical Similarity (Lin et al., 2024), Self-
CKGPT (Manakul et al., 2023) and EigenScore (Chen
et al., 2024a); (3) verbalized methods–Verbalize (Lin et al.,
2022b) and Self-evaluation (Kadavath et al., 2022); and (4)
internal state-based methods–Contrast-Consistent Search
(CCS) (Burns et al., 2023), HaloScope (Du et al., 2024), and
SAPLMA (Azaria & Mitchell, 2023). To ensure a fair com-
parison, all methods are evaluated on the same test dataset,
using their default experimental configurations as specified
in the respective literature.

Evaluation. Following previous works (Kuhn et al., 2023;
Du et al., 2024), we evaluate the performance with the
area under the curve of the receiver operator characteristic
(AUROC). We consider the generation truthful when the
similarity score between the generation and the reference
answer is larger than a pre-defined threshold (e.g., 0.5).
Following Lin et al. (2022a), we utilize BLEURT (Sellam
et al., 2020) to measure the similarity. Additionally, we
show that our method is robust when evaluated using GPT-
4o (Hurst et al., 2024) in Appendix E.2.

5.2. Main results

In Table 1, we compare TSV with competitive hallucination
detection methods from the literature. TSV demonstrates
state-of-the-art performance, significantly outperforming
other methods on both the LLaMA-3.1-8b and Qwen-2.5-7b
models. We show that unsupervised methods often strug-
gle with inconsistent performance across different models
and data distributions as the representations in LLMs are
not inherently aligned with the hallucination detection task,
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Table 1. Main results. Comparison with competitive hallucination detection methods on different datasets. “Single sampling” indicates
whether the approach requires multiple generations during inference. For our method, the mean and standard deviation are computed
across three different random seeds. ♣ denotes methods trained on fully labeled datasets. All values are percentages (AUROC), and the
best results are highlighted in bold.

Model Method Single Sampling TruthfulQA TriviaQA SciQ NQ Open

LLaMA-3.1-8b

Perplexity ✓ 71.4 76.3 52.6 50.3
LN-Entropy ✗ 62.5 55.8 57.6 52.7
Semantic Entropy ✗ 59.4 68.7 68.2 60.7
Lexical Similarity ✗ 49.1 71.0 61.0 60.9
EigenScore ✗ 45.3 69.1 59.6 56.7
SelfCKGPT ✗ 57.0 80.2 67.9 60.0
Verbalize ✓ 50.4 51.1 53.4 50.7
Self-evaluation ✓ 67.8 50.9 54.6 52.2
CCS ✓ 66.4 60.1 77.1 62.6
HaloScope ✓ 70.6 76.2 76.1 62.7
SAPLMA♣ ✓ 78.2 83.7 77.3 62.8
TSV (Ours) ✓ 84.2±0.2 84.0±0.5 85.8±0.4 76.1±0.7

TSV♣ (Ours) ✓ 85.5±0.1 87.2±0.2 88.6±0.1 78.0±0.2

Qwen-2.5-7b

Perplexity ✓ 65.1 50.2 53.4 51.2
LN-Entropy ✗ 66.7 51.1 52.4 54.3
Semantic Entropy ✗ 66.1 58.7 65.9 65.3
Lexical Similarity ✗ 49.0 63.1 62.2 61.2
EigenScore ✗ 53.7 61.3 63.2 57.4
SelfCKGPT ✗ 61.7 62.3 58.6 63.4
Verbalize ✓ 60.0 54.3 51.2 51.2
Self-evaluation ✓ 73.7 50.9 53.8 52.4
CCS ✓ 67.9 53.0 51.9 51.2
HaloScope ✓ 81.3 73.4 76.6 65.7
SAPLMA♣ ✓ 81.7 82.0 81.5 67.9
TSV (Ours) ✓ 87.3±0.4 79.8±0.9 82.0±0.4 73.8±0.7

TSV♣ (Ours) ✓ 88.7±0.1 84.2±0.5 84.8±0.3 76.2±0.3

making them less reliable for safety-critical applications. In
contrast, our method achieves robust and superior perfor-
mance across both models and all four datasets. In particular,
TSV outperforms HaloScope by 13.6% on TruthfulQA with
LLaMA-3.1-8b. While both methods use the same valida-
tion set and unlabeled data, HaloScope relies on default
LLM embeddings. By contrast, our method leverages a
small exemplar set and shapes the latent space to better
align with the hallucination detection task, enabling signif-
icantly improved performance while remaining practical.
Our method is also computationally efficient at the infer-
ence stage with a complexity of O(m2), where m is the
number of generated tokens. In contrast, some logit and
consistency-based methods require multiple sampling, re-
sulting in a higher complexity of O(Am2), where A can be
over 10 in practice. Qualitative results are in Appendix F,
and experiments with larger models (LLaMA-3.1-70b &
Qwen-2.5-14b) are provided in Appendix E.1.

Comparison with fully supervised methods. We com-
pare our approach with a fully supervised method
SAPLMA♣, which trains a binary classifier using the de-
fault embeddings, fully labeled as truthful or hallucinated.
As shown in Table 1, with only 32 labeled examples, TSV
outperforms SAPLMA♣ with full supervision by 6.0% on

TruthfulQA, emphasizing the importance of shaping the la-
tent space and the label-efficiency of our method. We further
evaluate our method by comparing it with a fully supervised
upper bound (TSV♣). Specifically, all unlabeled data is an-
notated with ground-truth labels, and TSV is trained on this
fully labeled dataset. We then compare our default setting
(with a small exemplar set) to this supervised oracle on the
same test set, using the AUROC metric to measure perfor-
mance. Our evaluation, based on the LLaMA-3.1-8b model,
demonstrates that our method with 32 examples achieves
a hallucination detection AUROC of 84.2% on TruthfulQA,
closely matching the performance of the fully supervised
oracle (AUROC: 85.5%). These results underscore that
our approach can achieve reliable hallucination detection
accuracy with small labeling costs, offering an effective and
efficient alternative to fully-supervised approaches.

5.3. Ablation studies

How does the steering location affect performance? We
investigate the impact of the location where TSV is applied
on overall performance using LLaMA-3.1-8b. In Figure 3a,
we present the effects of two factors on performance: (1)
the index of the layer, and (2) the component of the multi-
head attention (MHA) architecture where TSV is applied.
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Figure 3. (a) Effect of steering location (layer index and MHA components) on TruthfulQA performance, (b) effect of steering strength λ
(Section 4.1), and (c) effect of the number of labeled exemplars. All results are reported as AUROC using LLaMA-3.1-8b.

In particular, the MHA can be conceptually expressed as:

fi+1 = fi +QiAttni(fi), (14)

where fi represents the output of the i-th transformer block,
Attni(fi) denotes the output of the self-attention module in
the i-th block, and Qi is the weight of the feedforward layer.
We train and apply TSV at three distinct locations within the
MHA architecture: (1) residual stream f , (2) MLP output
QAttn(f), and (3) attention output Attn(f). We find that ap-
plying TSV in the early-middle layers (e.g., 4th–10th layers)
is the most effective for guiding representations in the hal-
lucination detection task. Performance improves as TSV is
applied from the top layers towards the early-middle layers
but gradually declines in later layers. Moreover, the choice
of location within MHA shows minimal impact on perfor-
mance. Our findings suggest that tuning the layer position
is likely more critical than the specific MHA location for
effectively separating representations in the hallucination
detection task.

How does the steering strength affect the performance?
To better understand the characteristics of TSV, we vary
the steering strength λ ∈ {0.1, 0.5, 1, 5, 10} and analyze its
effect on the model’s performance, as demonstrated in Fig-
ure 3b. The results show that performance improves with
moderate steering strength (e.g., λ = 5), but declines as
λ increases further. A small λ does not provide sufficient
signal to meaningfully separate representations in the final
layer, while a large λ disrupts the representation space by
dominating it, resulting in suboptimal performance.

How does number of exemplars affect the performance?
In Figure 3c, we examine the impact of the number of
labeled exemplars on performance. We evaluate N ∈
{8, 16, 32, 64} and compare them to the fully-supervised
upper bound (FS), where all samples in DU are labeled with
ground truth. Our results indicate that a small exemplar set
is effective for modeling the truthfulness distribution when
N = {32, 64}, achieving performance almost comparable
to the fully-supervised oracle. This demonstrates that a re-
liable hallucination detector can be designed using only a

Table 2. Camparison on pseudo-labeling accuracy (PL ACC) on
selected unlabeled generations and hallucination detection perfor-
mance (HD AUROC) on the test dataset. Results are reported
based on LLaMA 3.1-8b.

Dataset Metric
K

32 64 128 256 512

TruthfulQA PL ACC (%) 100 98.4 95.3 89.8 81.8

HD AUROC (%) 83.5 84.0 84.2 84.7 84.2

TriviaQA PL ACC (%) 100 91.2 89.1 87.9 87.0

HD AUROC (%) 78.3 82.8 84.0 82.2 81.0

small number of labeled exemplars, which are practical to
obtain. However, when the number of labeled exemplars is
too small (N = 8), the performance becomes suboptimal.

Pseudo-labeling accuracy and the number of selected
unlabeled data. We analyze the effect of the number of
selected unlabeled samples, K, for augmenting the training
data. In Table 2, we report (1) the pseudo-labeling accu-
racy on selected unlabeled generations (PL ACC), and (2)
the overall hallucination detection performance on the test
dataset (HD AUROC). Our optimal transport-based pseudo-
labeling achieves near-perfect accuracy up to K = 64, with
a gradual decline as K increases further. The hallucina-
tion detection performance peaks at K = 128 and decreases
thereafter. This trend indicates that while our learning frame-
work is relatively robust to the number of selected samples,
including too many false-positive samples can introduce
noise into the learning process, potentially affecting perfor-
mance.

Can TSV generalize across data distributions? While
TSV shows superior performance, we are also interested
in its capability to generalize across different data distribu-
tions. As shown in Figure 4, we evaluate the generalization
capability of TSV using LLaMA-3.1-8b model by learning
it from a source in-distribution (ID) dataset, directly apply-
ing it to different target out-of-distribution (OOD) datasets,
and computing the corresponding hallucination detection
scores. The results demonstrate the robust transferability
of our approach across diverse datasets, specifically achiev-
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Figure 4. Generalization results on out-of-distribution datasets.

Table 3. Component analysis. TSV: Truthfulness Separator Vector,
IT: Initial Training phase, and AT: Augmented Training phase.

Index Component Dataset

TSV IT AT TruthfulQA TriviaQA SciQ NQ Open

(a) ✗ ✓ ✗ 52.2 50.8 54.1 50.8
(b) ✗ ✓ ✓ 52.0 50.2 57.1 52.1
(c) ✓ ✓ ✗ 80.9 80.8 82.0 71.2

Ours ✓ ✓ ✓ 84.2 84.0 85.8 76.1

ing a hallucination detection AUROC of 79.8% on Triv-
iaQA when TSV is learned from TruthfulQA, exhibiting
performance close to that obtained directly from TriviaQA
(84.0%). This strong transferability highlights TSV’s poten-
tial for real-world LLM applications, effectively detecting
hallucinations even under domain shifts.

Component analysis. In Table 3, we present ablation re-
sults for the components of our approach using LLaMA-
3.1-8b model. Comparing (a) and (b), which update the
class prototypes without using TSV, we observe that train-
ing performance remains close to 50%, and even with the
augmented training phase, performance does not improve.
In contrast, comparing (a) and (c), we find that incorpo-
rating TSV improves AUROC by 28.7% on TruthfulQA.
This demonstrates that shaping representations with TSV
is critical for hallucination detection, as it makes the repre-
sentations more separable. Further, comparing (c) with our
full approach, we see that the augmented training phase
enhances performance by an additional 3.3% on Truth-
fulQA, achieving the best performance among all config-
urations. Unlike (a) and (b), this highlights that the aug-
mented training phase is effective only when supported by
well-structured representations and accurate pseudo-labels,
underscoring the importance of learning TSV. Overall, inte-
grating all components achieves the best performance across
all datasets, indicating that each component is effective for
addressing the hallucination detection task.

Computational efficiency of TSV. To evaluate the cost-
efficiency of our method, we compare TSV with parameter-
efficient fine-tuning (PEFT) approaches in Table 4. Specif-
ically, we train LoRA (Hu et al., 2022) and LoReFT (Wu
et al., 2024) using our training framework, leveraging a
small labeled exemplar set along with the unlabeled dataset.
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Figure 5. Score distributions for HaloScope vs. our method.

Table 4. Performance comparison with PEFT methods. % Params
is calculated by dividing the number of trainable parameters by the
total number of parameters in the base LLM.

Model Method Trainable Parameters Datasets

# Params % Params TruthfulQA TriviaQA

Llama 3.1-8b
LoRA 3.4M 0.0424 % 83.6 82.0
LoReFT 32K 0.0004 % 77.5 76.0
Ours 4K 0.00005% 84.2 84.0

Qwen2.5-7b
LoRA 2.5M 0.0331 % 85.9 76.0
LoReFT 28K 0.0004 % 81.5 79.3
Ours 3.6K 0.00005% 87.3 79.8

Our method achieves superior performance while utilizing
8× to 800× fewer parameters, demonstrating that TSV can
effectively shape representations for the hallucination de-
tection task while significantly reducing computational and
annotation costs. Training time is detailed in Appendix H.

Visualization of truthfulness score distributions. Figure 5
visualizes the score distributions for HaloScope (Du et al.,
2024) and our method on TruthfulQA based on LLaMA-3.1-
8b model. Our approach demonstrates a more distinct sepa-
ration between truthful and hallucinated data distributions.
This enhanced differentiation is attributed to the effective-
ness of shaping latent space with TSV, which contributes to
more reliable detection performance than other methods.

6. Conclusion
In this work, we tackle the challenge of hallucination de-
tection in LLM by introducing the Truthfulness Separator
Vector (TSV), a lightweight and modular approach that re-
shapes the latent space during inference to enhance the sep-
aration between truthful and hallucinated outputs without al-
tering the model’s parameters. Through a two-stage training
framework that combines a small labeled exemplar set with
unlabeled LLM generations, TSV achieves superior perfor-
mance while minimizing reliance on human labeling and
computational cost. Our experiments demonstrate TSV’s ef-
fectiveness, achieving state-of-the-art accuracy with strong
generalization across datasets. This work not only advances
the state of hallucination detection but also lays the ground-
work for scalable and practical solutions to improve the
reliability of LLMs in real-world applications.
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Impact Statement
Ensuring the reliability of LLM is paramount as they are
increasingly integrated into high-stakes applications like
healthcare, law, and education. This work tackles the
critical challenge of hallucination detection, which iden-
tifies factually inaccurate outputs for enhanced user trust.
We propose a practical method that minimizes computa-
tional and labeling costs while enabling a plug-and-play
approach for pre-trained LLMs. This research not only ad-
vances the technical landscape of hallucination detection
but also lays the groundwork for scalable and reliable AI
systems, fostering broader trust and adoption of LLMs in
critical domains. Our study does not involve human sub-
jects, complies with all legal and ethical standards, and
we do not anticipate any potential harmful consequences
resulting from our work. Code is available at: https:
//github.com/deeplearning-wisc/tsv.
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A. Algorithms
A.1. Overall training framework

Algorithm 1 Overall training framework
Parameters: ninitial, naugmented, l, K
Input: Exemplar set DE, unlabeled dataset DU
Initialize TSV v and class prototypes µc with random weights.
Apply TSV to the intermediate layer l: h(l) ← h(l) + λv
1. Initial training phase

1: for i = 1 to ninitial do
2: Compute the loss L(DE) Equation (5)
3: Update v with a gradient step
4: Update class prototypes µc using EMA Equation (6)
5: end for

2. Augmented training phase
1: Compute pseudo-labels for DU using the Sinkhorn algorithm Equations (7) to (9)
2: Select confident samples DS from DU Equations (10) and (11)
3: Augment exemplar set: DE ← DE ∪ DS. Equation (12)
4: for i = 1 to naugmented do
5: Compute the loss L(DE) Equation (5)
6: Update v with a gradient step
7: Update class prototypes µc using EMA Equation (6)
8: end for

A.2. Sinkhorn algorithm

Algorithm 2 Sinkhorn algorithm for entropic-regularized optimal transport
Parameters: ϵ, niter
Input: Unlabeled dataset DU, class distribution w, cost matrix − logP
Initialize β ← 12

1: for i = 1 to niter do
2: α← 1

M
1M

P1/ϵβ

3: β ← w
(P1/ϵ)⊤α

Equation (9)
4: end for

Return Q = diag(α)P1/ϵdiag(β) Equation (8)

B. Implementation Details and Hyperparameters
B.1. Implementation details (ours)

Following Kuhn et al. (2023), we generate the most likely answer using beam search with 5 beams. Class prototypes µc and
TSV v are randomly initialized, and trained in two stages: 20 epochs using only the exemplar set, followed by an additional
20 epochs after augmentation. Training is performed using the AdamW optimizer (Loshchilov, 2019), with a learning rate
of 5e-03 and a batch size of 128. We set steering strength λ to 5, the concentration parameter of the vMF distribution κ
to 10, and the EMA decay rate α to 0.99. The number of iterations in the Sinkhorn algorithm is 3, and the regularization
parameter ϵ is set to 0.05, following Caron et al. (2020). The hyperparameters are tuned based on testing performance on the
validation set. The steering location for each model is detailed in Appendix B.2. For generating responses, we utilize the
following input prompt:
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Input prompt for generating responses

Prompt:
Answer the question concisely:
Q: {question}
A:

B.2. Hyperparameters

Table 5. Steering layer index for LLaMA-3.1-8b and Qwen-2.5-7b.

Model Datasets

TruthfulQA TriviaQA SciQ NQ Open

LLaMA-3.1-8b 9 4 8 9
Qwen-2.5-7b 4 6 11 6

Table 6. Hyperparameter search space. The hyperparameters used in our method are underlined.
Hyperparameters Search space

Steering MHA component {‘mlp’, ‘attn’, ‘res’}
Steering strength (λ) {0.1, 0.5, 1, 5, 10}

Optimizer {SGD, Adam, AdamW}
Learning rate {1e-04, 2e-04, 5e-04, 1e-03, 2e-03, 5e-03, 1e-02}

Batch size {32, 64, 128}
Initial training epochs (ninitial) {5, 10, 20, 40}

Augmented training epochs (naugmented) {5, 10, 20, 40}
EMA decay rate (α) {0, 0.5, 0.9, 0.95, 0.99, 1}

Concentration parameter (κ) {0.1, 1, 5, 10, 100}

The steering layer index for applying TSV is provided in Table 5. We select the steering layer index based on the model’s
performance on the validation set for each dataset, and we consistently apply TSV to the residual stream of MHA component.
The search space of hyperparameters is outlined in Table 6. The training configuration is determined using the performance
on the TruthfulQA dataset with LLaMA-3.1-8b and is uniformly applied across all experiments.

B.3. Implementation details (baselines)

For Perplexity1 (Ren et al., 2022), we evaluate the average perplexity score based on the generated tokens. For baselines
requiring multiple generations (Malinin & Gales, 2021; Kuhn et al., 2023; Lin et al., 2024; Manakul et al., 2023; Chen et al.,
2024a), we utilize multinomial sampling to generate 10 samples (A = 10) per question, setting the temperature to 0.5, and
adhering to the default configurations outlined in the original paper. For Verbalize (Lin et al., 2022b), we implement the
following prompt:

Verbalized

Prompt:
Q: {question}
A: {answer}
The proposed answer is true with a confidence value (0-100) of

The generated confidence value is directly utilized as the uncertainty score during testing. For the Self-evaluation (Kadavath
et al., 2022), we adhere to the approach outlined in the original paper and use the following prompt:

1https://huggingface.co/docs/transformers/en/perplexity
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Self-evaluation

Prompt:
Q: {question}
A: {answer}
Is the proposed answer:
(A) True
(B) False
The proposed answer is:

In line with the original paper, we evaluate hallucination detection performance by using the log probability of the output
token “A” as the uncertainty score. We implement SAPLMA (Azaria & Mitchell, 2023) using an MLP classifier consisting
of three hidden layers with decreasing numbers of hidden units (256, 128, and 64). Each layer employs ReLU activations,
consistent with the original paper. We set the LoRA2 (Hu et al., 2022) rank to 8, α to 32, and the dropout rate to 0.1. We use
the AdamW optimizer with a learning rate of 5e-04. For LoReFT3 (Wu et al., 2024), we set the rank to 4 and apply to the
same layer as ours and all input positions to ensure consistency with ours.

C. More Details of the Benchmarks
We evaluate our method on four publicly available generative question-answering (QA) tasks: TruthfulQA4 (Lin et al.,
2022a), TriviaQA5 (Joshi et al., 2017), SciQ6 (Welbl et al., 2017), and NQ Open7 (Kwiatkowski et al., 2019). TruthfulQA
focuses on assessing a model’s truthfulness and robustness in generating false or unsupported responses; we use its generation
track with 817 QA pairs. TriviaQA includes fact-based questions from trivia websites, making it useful for testing factual
accuracy; we use the deduplicated validation split of the rc.nocontext subset, comprising 9,960 QA pairs. SciQ is a
domain-specific dataset with science-related QA pairs, suitable for evaluating hallucinations in specialized domains, and we
use its validation split with 1,000 QA pairs. NQ Open, with 3,610 QA pairs in its validation split, challenges models on
open-domain reasoning and general knowledge. Together, these datasets provide a comprehensive benchmark for evaluating
hallucination detection across diverse tasks.

D. Additional Related Works
Hallucination in Large Vision-Language Models (LVLMs). Leveraging the progress in LLMs, Large Vision-Language
Models (LVLMs) (Liu et al., 2023; Zhu et al., 2023; Tong et al., 2024; Qiao et al., 2024) have demonstrated strong capabilities
in interpreting and reasoning about real-world visual content. Despite these advancements, a fundamental challenge remains
in object hallucinations (Rohrbach et al., 2018; Li et al., 2023), where the model incorrectly mentions objects that are not
present in the image, often producing outputs that appear plausible but are factually inaccurate.

A growing body of work aims to detect and mitigate object hallucinations in LVLMs by using external models (Liu et al.,
2024) or fine-tuning (Sun et al., 2024), but these approaches are often computationally expensive and resource-intensive.
Inspired by activation engineering techniques in LLMs, recent approaches (Jiang et al., 2025a;b; Chen et al., 2025; Duan
et al., 2025) instead leverage the latent representations within LVLMs to address object hallucinations in a more efficient
and interpretable manner. For instance, Nullu (Yang et al., 2025) extracts low-rank subspaces of the differences between
truthful and hallucinated features, and further edits the LVLM’s weights to mitigate object hallucinations. VTI (Liu et al.,
2025) proposes to steer latent representations during inference to improve the alignment between vision features and textual
outputs, thereby reducing object hallucinations.

2https://github.com/microsoft/LoRA
3https://github.com/stanfordnlp/pyreft
4https://huggingface.co/datasets/truthfulqa/truthful qa
5https://huggingface.co/datasets/mandarjoshi/trivia qa
6https://huggingface.co/datasets/allenai/sciq
7https://huggingface.co/datasets/google-research-datasets/nq open
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E. Ablation Studies
E.1. Scalability to larger language models

Table 7. Hallucination detection results on larger LLMs.

Method LLaMA-3.1-70b Qwen-2.5-14b
TruthfulQA SciQ TruthfulQA SciQ

Perplexity 52.3 53.5 64.7 76.0
CCS 63.1 55.5 69.4 80.0

HaloScope 67.4 60.3 74.6 78.9
SAPLMA♣ 70.2 58.4 83.1 83.8

Ours 76.6 75.0 83.6 89.7

We evaluate our method on larger LLMs, including the LLaMA-3.1-70b and Qwen-2.5-14b models, to illustrate its
scalability. Specifically, we apply TSV to the residual stream of the 31st layer in LLaMA-3.1-70b and the 23rd layer in
Qwen-2.5-14b. Results in Table 7 demonstrate that our approach consistently outperforms four strong baselines including
the fully-supervised method (SAPLMA♣) while also improving upon the performance achieved with smaller LLMs. For
instance, on the SciQ dataset, our approach achieves an AUROC of 89.7% with the Qwen-2.5-14b model, compared to
82.0% with the Qwen-2.5-7b model, reflecting a performance gain of 7.7%.

E.2. Evaluation results with GPT-4o

Table 8. Hallucination detection results using labels generated by GPT-4o.

Method LLaMA-3.1-8b Qwen-2.5-7b
TruthfulQA SciQ TruthfulQA SciQ

Perplexity 65.8 41.3 56.3 55.3
CCS 59.5 52.7 58.6 50.3

HaloScope 63.3 66.9 63.4 77.0
SAPLMA♣ 70.7 72.6 67.7 79.6
TSV (Ours) 75.1 81.6 87.2 85.6

In our main paper, a generation is considered truthful if its BLEURT score with the gold standard answer exceeds a
predefined threshold. In addition to the threshold-based evaluation using BLEURT (Sellam et al., 2020), we employ
GPT-4o (Hurst et al., 2024) to determine the truthfulness of the generation, under the paradigm of LLM-as-a-judge (Zheng
et al., 2023). Specifically, we assess the truthfulness of LLM-generated responses by determining their semantic equivalence
to the given gold standard answers. In Table 8, we demonstrate that our method consistently outperforms competitive
baselines, highlighting its robustness across different approaches for determining the truthfulness of the model generation.
We utilize the following input prompt:

Input prompt for GPT-4o based evaluation

Prompt:
You are tasked with evaluating whether a generated answer is truthful compared to a provided list of gold standard
answers. Your response should be “Yes” if the generated answer is consistent with any of the gold standard answers,
and “No” otherwise. Provide a clear justification for your decision.
Question: {question}
Gold Standard Answers: {gold standard answers}
Generated Answer: {generated answer}
Response Format:
- Answer: [Yes/No]
- Justification: [Explain briefly why the answer is correct or incorrect.]

We consider a generation truthful when the answer is “Yes” and hallucinated when the answer is “No.”
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Table 9. Hallucination detection results using different w.

Method LLaMA-3.1-8b Qwen-2.5-7b
TruthfulQA SciQ TruthfulQA SciQ

Uniform 83.2 84.0 87.0 81.2
Estimation 83.7 83.9 87.3 80.6

Oracle 84.3 85.0 87.5 82.6
Ours 84.2 85.8 87.3 82.0

E.3. Design choices for the class distribution w

We ablate the various design choices for the class distribution w of the unlabeled dataset when formulating the optimal
transport problem in Equation (7). We evaluate the following configurations: (1) a uniform class distribution (Uniform),
(2) an estimated class distribution obtained via pseudo-labeling with nearest neighbor classification (Estimation), (3) the
ground-truth class distribution of the unlabeled dataset (Oracle), and (4) the class distribution derived from the exemplar
set (Ours). In Table 9, our proposed design choice achieves performance comparable to the Oracle approach. Notably, the
robustness to design choices of w appears to stem from our confident data selection procedure in Equation (11), which plays
an important role in ensuring stable performance across different configurations. Additionally, we demonstrate that the
pseudo-labeling approach is also effective, highlighting the scalability and adaptability of the algorithm.

E.4. Results with LLaMA-2-chat-7b

Table 10. Experiment results with LLaMA-2-chat-7b. All results are directly copied from HaloScope.
Method TruthfulQA TriviaQA
Perplexity 56.77 72.13
LN-Entropy 61.51 70.91
Semantic Entropy 62.17 73.21
Lexical Similarity 55.69 75.96
EigenScore 51.93 73.98
SelfCKGPT 52.95 73.22
Verbalize 53.04 52.45
Self-evaluation 51.81 55.68
CCS 61.27 60.73
HaloScope 78.64 77.40
TSV (Ours) 80.93 85.20

We evaluate our method using the LLaMA-2-chat-7b model (Touvron et al., 2023), following the experimental setup outlined
in HaloScope (Du et al., 2024). Specifically, we apply TSV to the residual stream of the 9th layer and adopt the same
training configurations as in the main experiments. Our results demonstrate that TSV is effective even when applied to
legacy models such as LLaMA-2-chat-7b, showcasing the versatility and robustness of our approach.

E.5. Robustness to pseudo-label noise

Table 11. Robustness to pseudo-label noise on LLaMA-3.1-8b.

Pseudo-label Noise Ratio (%) 5 (no flipping, original) 10 15 20 25

Hallucination Detection AUROC (%) 84.2 83.8 82.6 82.2 81.3

We evaluate the impact of pseudo-label noise on our method’s performance. Specifically, we use the same set of selected
unlabeled examples from TruthfulQA and systematically introduce noise by flipping some of the correct pseudo-labels. As
shown in Table 11, the hallucination detection AUROC on LLaMA-3.1-8b gradually decreases as noise increases, but the
performance remains relatively robust, with only a modest drop (from 84.2% to 81.3%) even under 25% label noise. This
demonstrates the robustness of our approach to pseudo-labeling errors.
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E.6. Class distribution mismatch

Table 12. Ablation study on class distribution mismatch using LLaMA-3.1-8b.

Method TruthfulQA SciQ
Aligned (Ours) 84.2 85.8
Uniform 82.8 82.5
Reversed 82.1 82.7

We analyze the impact of class distribution mismatch between the assumed class distribution (i.e., the exemplar set used for
guidance) and the actual class distribution in the unlabeled data. To simulate this, we manually construct exemplar sets
under three scenarios: (1) a distribution aligned with the unlabeled generations, (2) a uniform distribution across classes, and
(3) a reversed distribution relative to the unlabeled data. As shown in Table 12, our method exhibits a slight performance
degradation under mismatched conditions, yet remains competitive across both datasets. This suggests that while alignment
between exemplar and target class distributions is beneficial, our method is reasonably robust under class distribution
mismatch.

F. Qualitative Results

Q: Can people turn into pillars of salt?
A: No, people cannot turn into pillars of 
salt.

Q: What is the biggest city in the U.S. 
with only one word in its name?
A: Los Angeles. 

GTTest input x′ 𝑆(x′)

0.8491

0.1431

0.1002
Q: What happens to you if you eat 
watermelon seeds?
A: You grow watermelons.

Answer the question concisely. Q: Can people turn into pillars of salt? A: No, people cannot turn into pillars of salt.

Q: Which singer had a 2008 number one hit 
with the song 'Take A Bow'?
A: Rihanna.

Q: What is the offspring of a male lion
and a tigress called?
A: A liger. 

GTTest input x′ 𝑆(x′)

0.9031

0.7931

0.1201
Q: What is the name of the giraffe that 
Toys-r-us uses as its' mascot?
A: Toys-r-us doesn't have a giraffe as 
its' mascot. 

(a) TruthfulQA (b) TriviaQA

Figure 6. Qualitative examples from (a) TruthfulQA and (b) TriviaQA. We compare the truthfulness scores S(x′) across different test
inputs x′. A green checkmark indicates ground truth labeled as truthful, while a red cross denotes ground truth labeled as hallucinated.

We present qualitative examples of the model’s truthfulness score, S(x′), for various input query and generated text pairs.
Using questions sampled from (a) TruthfulQA and (b) TriviaQA, we generate responses with the LLaMA-3.1-8b model. As
illustrated in Figure 6, our approach accurately assigns scores that align with the truthfulness of the answers, demonstrating
the effectiveness of the method.

G. Embedding Norms
We model the last-token embeddings at the final layer using a hyperspherical distribution with unit norm. This approach
aligns with the structure of embeddings commonly observed after the RMSNorm layer in practical Transformer models,
where the embedding norms remain consistent while their directions vary. These characteristics can be naturally characterized
by the von Mises-Fisher (vMF) distribution, which we employ to represent the probability distribution in the MLE objective
in Equation (3). To validate our modeling, we visualize the L2 norms of the last-token embeddings at the final layer for the
pre-trained LLaMA-3.1-8b (Figure 7) and Qwen-2.5-7b (Figure 8). The visualizations show that the embedding norms are
uniformly distributed around 140 for the LLaMA-3.1-8b model and around 300-330 for the Qwen-2.5-7b model, supporting
the validity of our modeling approach.
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Figure 7. L2 norms of the last token embeddings at the final layer from LLaMA-3.1-8b.
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Figure 8. L2 norms of the last token embeddings at the final layer from Qwen-2.5-7b.

H. Compute Resources and Time
H.1. Software and hardware

We conducted all experiments using Python 3.8.15 and PyTorch 2.3.1 (Paszke et al., 2019) on NVIDIA A100 GPUs. For
evaluation with GPT-4o, we utilized the OpenAI API.

H.2. Training and inference time

Based on tracked runs, the estimated total training and inference time is notably low: approximately 0.1 GPU-hours for
LLaMA-3.1-8b and Qwen-2.5-7b, 0.2 GPU-hours for Qwen-2.5-14b, and 1 GPU-hours for LLaMA-3.1-70b. These highlight
the computational efficiency of our approach, achieving practical training and inference time even for large-scale models.
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Figure 9. AUROC and wall-clock time
for training and inference.

To further contextualize this, we compare the wall-clock time for training and
inference computed on the same split of TruthfulQA with LLaMA-3.1-8b, as
shown in Figure 9. We evaluate three hallucination detection methods requiring
training: HaloScope (Du et al., 2024), SAPLMA♣ (Azaria & Mitchell, 2023), and
TSV (Ours); and one training-free method: Semantic Entropy (Kuhn et al., 2023).
All methods are tested using the same software and hardware setup, and runtime
is measured after completing the sampling process. While TSV incurs slightly
higher computational costs compared to HaloScope, it achieves a significant
performance improvement of 13.6%. Furthermore, TSV demonstrates superior
performance compared to the fully-supervised method: SAPLMA♣, achieving
both lower computational and annotation costs. Additionally, TSV outperforms
Semantic Entropy which involves computationally expensive semantic clustering
across multiple samples. We also compare wall-clock time with PEFT methods:
LoRA (Hu et al., 2022) and LoReFT (Wu et al., 2024); trained using our pipeline.
Despite using fewer trainable parameters and lower time costs, our approach demonstrates superior performance in
hallucination detection. These results demonstrate TSV’s effectiveness as a high-performing hallucination detection method
that balances detection performance, computational efficiency, and annotation costs, offering flexibility across different cost
budgets.

I. Limitations and Future Work
Fine-grained hallucination detection. While our method focuses on sentence-level hallucination detection, practical
applications often demand identifying hallucinated spans at the token or phrase level to provide more interpretable
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explanations. Achieving this requires adapting TSV to reason over hidden states at finer granularity across token positions,
which poses technical challenges. A promising future direction is to focus on salient entities—common sources of
hallucinations (Yeh et al., 2025)—and apply TSV before and after each entity span. By measuring shifts in hidden
representations or detection scores, one could potentially localize hallucinations in a fine-grained way.

Long-form QA. This work focuses on short-form QA, which remains a challenging setting. We adopt this setup to ensure
fair comparisons with existing benchmarks. However, real-world applications often require complex, long-form answers. A
natural extension is to decompose long-form generation into multiple short QA pairs and verify each pair individually. This
reframes the task as hallucination detection over a set of short QA pairs, where TSV can be directly applied.
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