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Abstract

To utilize the raw inputs and symbolic knowledge simultaneously, some recent
neuro-symbolic learning methods use abduction, i.e., abductive reasoning, to inte-
grate sub-symbolic perception and logical inference. While the perception model,
e.g., a neural network, outputs some facts that are inconsistent with the symbolic
background knowledge base, abduction can help revise the incorrect perceived facts
by minimizing the inconsistency between them and the background knowledge.
However, to enable effective abduction, previous approaches need an initialized per-
ception model that discriminates the input raw instances. This limits the application
of these methods, as the discrimination ability is usually acquired from a thorough
pre-training when the raw inputs are difficult to classify. In this paper, we propose
a novel abduction strategy, which leverages the similarity between samples, rather
than the output information by the perceptual neural network, to guide the search
in abduction. Based on this principle, we further present ABductive Learning with
Similarity (ABLSim) and apply it to some difficult neuro-symbolic learning tasks.
Experiments show that the efficiency of ABLSim is significantly higher than the
state-of-the-art neuro-symbolic methods, allowing it to achieve better performance
with less labeled data and weaker domain knowledge.

1 Introduction

To address the limitations of current machine learning methods, the next generation of Artificial
Intelligence calls for the integration of data-driven machine learning and knowledge-driven reasoning
such as logic inference [1]. Neuro-Symbolic Learning [8, 22] and Statistical Relational AI [23] are
representative works in this direction. However, most of these approaches try to approximate logical
calculus with differentiable functions using distributed representations in a neural network, and train
the model in an end-to-end manner, which usually demand a large number of labeled data.

Abductive Learning (ABL) [5, 29] is a novel framework attaching machine learning models to a first-
order logical reasoning model while preserving the full expressive power of each side: The machine
learning model learns to convert raw input data (e.g., images, text) into symbolic representations, and
the logical model tries to reason about them. Because ABL allows full-featured logical reasoning, it
can directly consult symbolic background knowledge bases and reduce the requirement for massive
labeled data. The logical reasoning model adopts abductive reasoning [20], or abduction, to search
for the labels of the unlabeled instances, which are used for updating the machine learning model.
Because abductive reasoning is non-deterministic, for each unlabeled instance there could be multiple
abduced labels. To choose the best labels, one needs to minimize the inconsistency between the
abduced labels and the symbolic background knowledge.
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Hence, a well-designed consistency measure improves the quality of the abduced labels and leads to
a high-performance model. For example, some approaches take the consistency score as the size of
the largest subset of unlabeled examples with abduced labels that are consistent with knowledge base,
leading to a subset-selection problem that is difficult to solve [5, 29]; some other works measure
the confidence of the predicted labels by the perceptual machine learning model, which could be
unreliable when the model is under-trained [19, 4, 2].

According to its definition, abduction refers to the process of inferring specific facts that give the best
explanation to observations based on background knowledge [20]. Hence, not only the symbolized
information—the labels predicted by perception model and the symbolic background knowledge
base, but also the observed raw representation of the inputs contribute to the goodness of abduced
labels. For example, when babies start learning an unknown language, although they could not make
sense of the acoustic syllables in a sentence, they can amazingly learn from a handful of examples
and understand a few words by distinguishing different sound patterns (raw representation) as well as
identifying frequently occurred syllable combinations (symbolic relations) [9].

Inspired by this phenomenon, we develop a similarity-based consistency measure for abduction,
which takes the idea that samples in the same category are similar in feature space while samples of
different classes are dissimilar. It can be regarded as the clustering initialization for the perception
model [29], and then the metric for clustering in embedding space is improved when the model
gets updated by the abduced labels during training. Applying this principle, we propose ABductive
Learning with Similarity (ABLSim), which adopts beam search to solve the optimization problem
of finding the best abduced labels. We verify the effectiveness of ABLSim on four neuro-symbolic
tasks. Compared with other methods, ABLSim can abduce higher quality labels for unlabeled data
and accelerate the model training, bringing a significantly better performance. Moreover, even when
we increase the difficulty of abduction by removing some rules from the knowledge base, ABLSim
still achieves comparable results as the other abduction-based neuro-symbolic learning methods with
a full knowledge base.

2 Related Work

Neuro-symbolic (NeSy) learning [8, 22] proposes to enhance machine learning with symbolic
reasoning. It tries to learn the ability for both perception from the environment and reasoning from
what has been perceived. Most of the approaches model this pipeline with an end-to-end deep
neural network, in which a symbolic domain knowledge base is used for building the structure
of neural networks [8, 25, 11, 10, 24, 27]. However, most of these methods replace the symbolic
representation with distributed representation and approximate logic inference with fuzzy operations.
As a consequence, they usually require a large amount of labeled training data and are difficult to
extrapolate.

Probabilistic Logic Program (PLP) [6] and Statistical Relational Learning (SRL) [15, 23] supply
symbolic models with a probabilistic semantic and preserve the logical formulation. PLP extends
first-order logic to accommodate probabilistic groundings to include probabilistic inference; SRL tries
to leverage domain knowledge to construct a probabilistic graphical model structure for statistical
inference. They usually require direct semantic level input and are difficult to be applied to raw input
data such as images. A typical exception in this area is DeepProbLog [21], which unifies probabilistic
logical inference with neural network training by gradient descent. However, due to the exponential
complexity of the probabilistic distribution on the Herbrand base, the probabilistic inference in these
methods could be inefficient for complicated tasks.

Recently, some approaches leverage abduction to train machine learning and perform logical reasoning
simultaneously, e.g., the Abductive Learning (ABL) [5, 29] framework. ABL uses machine learning
models to predict pseudo-labels for the unlabeled data, and then uses first-order logical abduction
to revise them and update the machine learning model. The abduction searches for a set of revised
pseudo-labels to minimize the inconsistency between data and knowledge base. However, when
the model is under-trained, the revision becomes difficult because the predicted pseudo-labels are
mostly incorrect, and the abduction could be easily trapped in local optima [4, 2]. The Neural-
Grammar-Symbolic model (NGS) [19] shares a similar idea of abduction. It takes context-free
grammar as the knowledge base and uses Markov Chain Monte Carlo (MCMC) sampling to revise
the pseudo-labels according to their posterior, which suffers from the same problem when the neural
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Figure 1: An example of the inference and learning process of ABL. In the inference process, the input data
is a decimal equation represented by several CIFAR-10 images, e.g., the images “plane” represent digit 1,
“automobile” for digit 2, “dog” for digit 9. The final output is the reasoning result on both symbols predicted
by the perception model and the knowledge base. In the learning stage, the reasoning model abduces several
consistent revised pseudo-labels and searches for the best one by minimizing the inconsistency, which are then
used to update the perception model.

network is under-trained. Different from these approaches, ABLSim considers the similarity between
input examples in the feature space rather than the output space.

3 Abductive Learning

3.1 Inference

The Abductive Learning (ABL) framework contains a perception model and a reasoning model. The
perception model is used for mapping the raw input data x ∈ X into discrete symbols z ⊆ Z , where
X is the input space and Z is the output space of the perception model; x and z are the input example
and extracted symbols, respectively, where x = {x1, x2, . . .} and z = {z1, z2, . . .} are the bags of
meaningful instances detected from x and the corresponding symbolic labels. For the example in
Figure 1, an input image of the equation is x; the segmented instances of CIFAR-10 images and
operation symbols are xi; the sequence of predicted equation string is z, with each of its characters
as zi; whether the equation satisfies KB is denoted as y = True or y = False.

The reasoning model contains knowledge base KB of first-order logic rules, which receives the
symbols z and reasons about the final output y ∈ Y . Note that Z and Y are subsets of the Herbrand
base of KB, i.e., elements in Z ∪ Y are ground facts of the predicates defined in KB. For example,
given the symbolic rules of decimal arithmetic, the reasoning model would output a ground fact
y = True when the input fact is z =“1+1=2”, and a ground fact y = False when input is
z =“1+9=10”. Figure 1(a) gives an example of the inference process in the CIFAR-10 Decimal
Equation Decipherment task (cf. Section 6.3).

3.2 Abductive Reasoning

Abduction (i.e. abductive reasoning) [14, 20] is a basic form of logical inference that seeks the
best explanation for observations based on implication. It is a non-deterministic process that may
have multiple answers. For example, when observing an arithmetic puzzle “dog + cat = 2”,
based on our background knowledge in mathematics, we could explain it with three abduced facts:
“dog = cat = 1”, “dog = 2 ∧ cat = 0” or “dog = 0 ∧ cat = 2”.

3.3 Learning

Formally, given unlabeled data X = {x〈1〉,x〈2〉, . . .}, the knowledge base KB and the final desired
output Y = {y〈1〉, y〈2〉, . . .}, the target is to learn a perception model f : X 7→ Z that accurately
predicts the labels of the input instances that together with KB entails y. Since we do not have any
supervision on z, we call it pseudo-label just like in weakly-supervised learning [28].
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The ABL framework involves three steps—predict pseudo-labels, abduce revised labels and update
the model. First, the perception model f is used to obtain the symbolic predictions z = f(x) as
pseudo-labels. Then ABL revises the pseudo-labels z to z̄ by abductive reasoning. Usually, there
are several candidates z̄ that are consistent with KB. The reasoning model abduces the most likely
correct pseudo-labels z̄ under the principle of minimal inconsistency between the data and knowledge
base. Finally, ABL treats the z̄ as ground-truth labels to update the perception model, and the above
routine repeats iteratively.

Figure 1(b) gives an example, where the ground-truth labels of the input are “2+9=11” and y = True.
The perception model f predicts the wrong pseudo-labels z =“2+9=10”. After minimizing the
inconsistency in abduction, z̄ =“2+9=11” is selected as the final revised label to update f .

3.4 Consistency Measure

Consistency measure for abduction plays an important role in ABL. It is used to guide the search of
the abduced labels z̄ from the set of consistent candidate labels A = {z̄ | KB ∪ z̄ |= y}, where |=
means logical entailment. Because z̄ will be treated as ground-truth to update the perception model,
whether and how the model improves mainly depends on the design of this consistency measure.
Current consistency measures mainly depend on the model’s output labels or confidence, which
could perform poorly when f is inaccurate or not properly initialized [4, 2]. We verify this in our
experiments in Section 6.

4 The Similarity-based Consistency Measure

We propose a similarity-based consistency measure for abduction, which takes the idea that samples
in the same category are similar in feature space while samples of different classes are dissimilar. It
is motivated by how humans perform abductive reasoning. Take the example in Figure 1(b). If we
misclassified the last image to digit 0 and the prediction becomes “2+9=10”, which is inconsistent
with the knowledge base. Revisions “1+9=10”, “2+8=10” and “2+9=11” are all consistent revisions.
By looking at the images directly, we could observe that the last two images are similar, while the
other pairwise combinations of these images look quite different. Therefore, the last two images
probably share the same label. Finally, we conclude that “2+9=11” are the most likely correct labels,
which could be regarded as the best abduced labels.

Given the final output y and knowledge base KB, let A be the set of all consistent candidates by
abductive reasoning, i.e., A = {z̄ | KB ∪ z̄ |= y}. The consistency optimization problem is
equivalent to selecting the best revised labels z̄ in A, which can be formalized as follows:

max
z̄∈A

SimilarityScore(x, z̄), (1)

where the SimilarityScore measures the consistency of the revised labels z̄. We define the consistency
as the average difference between each sample’s inter-class distance and intra-class distance:

SimilarityScore (x, z̄) =
1

| x |
∑
xi∈x

(InterclassDis(xi, z̄)− IntraclassDis(xi, z̄)) . (2)

The inter-class distance InterclassDis(xi, z̄) of sample xi stands for the average distance of other
instances xj that have different revised labels as xi; while the intra-class distance IntraclassDis(xi, z̄)
defines the average distance of other instances xj that have the same revised labels as xi, i.e.,

InterclassDis(xi, z̄) =
1

| Di,z̄ |
∑

xj∈Di,z̄

Dis(xi, xj), (3)

IntraclassDis(xi, z̄) =
1

| Si,z̄ |
∑

xj∈Si,z̄

Dis(xi, xj), (4)

where Di,z̄ = {xj | z̄j 6= z̄i, j 6= i} is the set of instances whose labels are different from xi’s, and
Si,z̄ = {xj | z̄j = z̄i, j 6= i} is the set of the other instances that share the same revised labels
as xi. Note that Di,z̄ ∪ Si,z̄ ∪ xi = x. Dis(xi, xj) is the distance between xi and xj , which will
be explained later. If | Di,z̄ |= 0 or | Si,z̄ |= 0, where the denominator becomes 0, we use the
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Algorithm 1 ABLSim Learning

Input: Unlabeled data X = (x〈1〉,x〈2〉, · · · ,x〈m〉); Final output y = (y〈1〉, y〈2〉, · · · , y〈m〉);
Current model f ; Knowledge base KB; Beam width (beam size of beam search) b

Output: Model f
1: for t = 1 to T do
2: A← [] # the candidate labels
3: for k = 1 to m do
4: z〈k〉 ← f(x〈k〉) # generate pseudo-labels
5: A〈k〉 ← Abduce(KB,z〈k〉, y〈k〉) # abduce all consistent revised pseudo-labels
6: A← A× A〈k〉 # Cartesian product
7: x←X[1 : k]
8: score← [] # the score of each candidate labels
9: for z̄ ∈ A do

10: score.append(Score(x, z̄)) # get the score of candidate labels according to Eq. (12)
11: end for
12: A← TopN(A, score, b) # select ’b’ candidate labels in A with the highest score
13: end for
14: Z̄ ← TopN(A, score, 1) # select the label in A with the highest score
15: f ← Update(f,X, Z̄) # update model f using data X and abduced labels Z̄
16: end for

average inter-class/intra-class distance of other xj as the estimated distance of xi. The details on the
calculation when the denominator becomes 0 are shown in the supplementary material.

Combining (1)-(4), the similarity-based consistency measure optimization problem becomes:

max
z̄∈A

1

| x |
∑
xi∈x

 1

| Di,z̄ |
∑

xj∈Di,z̄

Dis(xi, xj)−
1

| Si,z |
∑

xj∈Si,z̄

Dis(xi, xj)

 . (5)

The distance Dis(xi, xj) in (3)-(5) measures the similarity between instances xi and xj , where the
higher the similarity, the smaller the distance. It can be represented as follows:

Dis(xi, xj) = Distance(φ(xi), φ(xj)). (6)

where φ is the feature map function. For example, for images or text, we can use a neural network
as φ to extract the embedding for samples; for tabular data, φ can be the normalization function. In
practice, we can use any appropriate metrics in (6). In this work, we use the cosine distance in our
implementation, i.e., Dis(xi, xj) = CosineDistance(φ(xi), φ(xj)).

Obviously, maximizing the score in (2) means maximizing the average gap between
InterclassDis(xi, z̄) and IntraclassDis(xi, z̄). In other words, among all revised labels candi-
dates that are consistent, the one with a large inter-class distance and a small intra-class distance is
preferred.

Calculating the similarity between instances does not depend on any supervised training. Hence,
one could use any unsupervised learning approaches to obtain a good φ without accessing any label
information [3, 7]. This consistency measure can be regarded as an implicit clustering initialization
on the output space of function φ [29]. In addition, if we use the perception model f ’s embedding
layer as the function φ , the φ and the distance measurement could be further improved during the
subsequent neuro-symbolic learning and accelerates the abduction reasoning.

5 Abductive Learning with Similarity

Based on the proposed consistency measure, we present the Abductive Learning with Similarity
(ABLSim) approach, which is optimized through a greedy beam search. And then we show that
ABLSim can be simply combined with other consistency measures to enhance abduction-based
neuro-symbolic learning. Algorithm 1 shows an outline of ABLSim.
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Figure 2: An example of beam search in ABLSim. It involves three unlabeled and consistent equations whose
ground-truth labels are “2+9=11”, “1+2=3”, “2+1=3”, and the beam width is 2. In the first iteration, after
computing the scores, ‘2+9=11” and “3+8=11” are kept in the candidate set. In the second iteration, “2+9=11
1+2=3” and “3+8=11 0+4=4” rank top 2 among all candidate revised labels, while other candidates are pruned.
In the last iteration, we get the final abduced label “2+9=11 1+2=3 2+1=3” according to the computed scores of
consistency measure.

5.1 Optimization

One possible situation when applying ABLSim is that the number of instances in x is usually small,
and for some example x〈k〉 there is no 〈i, j〉 such that z̄〈k〉i = z̄

〈k〉
j , making it challenging to calculate

the intra-class distance. For example in Figure 1(b), the size |x| = 6, and for the revised pseudo-labels
candidate z̄ =“2+9=11”, we could not measure the intra-class distance of the first image x1 because
there is no other sample xj whose revised label z̄j is digit 2. Moreover, even if instances with the
same revised label exist, the average distance may deviate due to limited samples.

To get a sound and reliable score for consistency measure, we borrow some more samples to conduct
the abductive reasoning. Assume that there are m examples, denoted as x〈1〉,x〈2〉, · · · ,x〈m〉. Each
example x〈k〉 has a corresponding final output y〈k〉 and the candidate set of revised labels is A〈k〉.
If labeled data exists, it can also be regarded as bags of instances, whose candidate pseudo-label
set A〈k〉 contains only the ground-truth labels. Let X = (x〈1〉,x〈2〉, · · · ,x〈m〉) be the set of input
examples, and Z̄ = (z̄〈1〉, z̄〈2〉, · · · , z̄〈m〉) be the set of corresponding bags of abduced labels. If
Z̄ is consistent with knowledge base, it should be an element of the Cartesian product of A〈k〉, i.e.,
Z̄ ∈ A〈1〉 × A〈2〉 × · · · × A〈m〉. The abduction problem for set X can be formalized as follows:

max
Z̄

Score(X, Z̄), (7)

s.t. X = (x〈1〉,x〈2〉, · · · ,x〈m〉), (8)

Z̄ ∈ A〈1〉 × A〈2〉 × · · · × A〈m〉, (9)

A〈k〉 = {z̄ | KB ∪ z̄ |= y〈k〉}. (10)

This is a combinatorial optimization problem where the search space of Z̄ grows exponentially with
m. ABLSim uses beam search to solve this optimization problem greedily. Eventually, the element
with the highest score in the final candidate set A will be selected as the best abduced labels.

Figure 2 gives an example of the beam search in ABLSim in the CIFAR-10 Equation Decipherment
task. There are three unlabeled examples x〈1〉,x〈2〉,x〈3〉 consistent with the knowledge base and the
beam width b = 2. In each iteration, ABLSim keeps the top-2 candidates ranked by their scores. The
final abduced label is Z̄ =“2+9=11 1+2=3 2+1=3”, which is the ground-truth label.

The above ABLSim algorithm could be accelerated by GPU and parallel computations. The basic
idea is that the score of each candidate label z̄ in A (cf. Line 9-10 in Algorithm 1) can be computed
separately, and we formulate the calculation as matrix operations for parallel computations with GPU.
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Table 1: Image test accuracy and convergence time of different methods. The convergence time stands for the
time taken to accuracy 95% in handwritten images and 85% for CIFAR-10. NGS-dft stands for NGS with default
parameters, and NGS-opt for the fine-tuned optimal parameters. We set the time limit to 10 hours for all tasks.
• indicates ABLSim is significantly better than compared methods (paired t-tests at 95% significance level)

Method Addition Addition (CIFAR) HWF HWF (CIFAR)

Acc / %

DeepProbLog 96.5±0.5• 21.6±1.7• 32.2±0.6• 15.2±2.6•
NGS-dft 39.9±54.1• 38.7±35.1• 99.6±0.2• 23.8±6.3•
NGS-opt 98.5±0.3• 88.7±0.8 99.6±0.2• 66.0±14.5•

ABLSim (ours) 98.8±0.1 88.9±0.5 99.9±0.1 88.4±0.7

Time / s

DeepProbLog 396±3 time out time out time out
NGS-dft time out time out 299±36 time out
NGS-opt 46±4 6954±558 240±7 time out

ABLSim (ours) 42±5 6066±79 130±4 7263±122

During the beam search, the score of each z̄ is updated incrementally based on the previous results,
which further reduces the memory and time consumption. Please refer to the supplementary material
for details.

5.2 Combining Similarity and Confidence in Consistency Measure

ABLSim can also be combined with other consistency measures. For example, the confidence score
of a revised pseudo-label z̄ could be defined as follows:

ConfidenceScore(x, z̄) =
1

| x |
∏
xi∈x

Confidence(xi, z̄i), (11)

where Confidence(xi, z̄i) indicates the confidence that sample xi belongs to label z̄i.

Combining (2) and (11), we get the final score for ABLSim’s consistency measure:

Score(x, z̄) = θ · SimilarityScore(x, z̄) + (1− θ) · ConfidenceScore(x, z̄), (12)

where θ ∈ R is the weighting coefficient. The similarity score and confidence score need to be
normalized before computing the final score.

6 Experiments

This section presents the experimental results on four neuro-symbolic tasks, including two benchmark
datasets and two hard tasks with increased perception difficulty, to demonstrate that ABLSim can
perform more efficient and effective abduction than previous state-of-the-art methods by leveraging
the similarity among samples. Furthermore, we verify whether it can help the perception model learn
faster and achieve better performance with less labeled data and weaker domain knowledge. All
experiments are repeated five times on a server with Intel Xeon Gold 6248R CPU and Nvidia Tesla
V100S GPU. In experiments, we simply fix the coefficient θ of ABLSim to 0.96, though it may be
better to let it vary with training. The hyperparameters of ABLSim are determined by cross-validation
on training data. The code is available for download1.

6.1 MNIST (CIFAR-10) Addition

This task was first introduced in [21], the inputs are pairs of MNIST [17] images and the outputs are
their sums. We also prepare a hard version of this task by replacing the MNIST images with CIFAR-
10 [16] images. We compare ABLSim with the Neural-Grammar-Symbolic (NGS) model [19] (with
default and fine-tuned parameters) and DeepProbLog [21]. All methods share the same knowledge
base and perception model (LeNet [17] for MNIST and ResNet-50 [12] for CIFAR-10), which are
initialized randomly. The feature for calculating the similarity score is obtained from the second last
layer in the perceptual neural net.

Table 1 shows the experimental results. In the MNIST Addition task, all methods except NGS-dft
converge. DeepProbLog converges slowly because computing gradients of the probabilistic logic

1https://github.com/AbductiveLearning/ABLSim
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program is time-consuming. The performance of NGS-dft is greatly affected by initialization, which
leads to a large standard deviation in the table. For the CIFAR-10 version, DeepProbLog and NGS-dft
fail to converge, while NGS-opt converges slower than ABLSim, which solves all tasks efficiently
and achieves higher accuracy.

6.2 Handwritten Formula Recognition

The HWF dataset [19] contains images of decimal formulas and their computed results. We also
create a (perceptual) harder version by replacing the digit images with CIFAR-10 [16] images.

The perception neural networks are initialized randomly for all methods. Note that the HWF in the
original paper of NGS includes length-one equations as a pre-training curriculum, which are deleted
in our experiments. Thus our results are different from those in [19].

As shown in Table 1, ABLSim significantly outperforms others by time efficiency and predictive
accuracy. Because the background knowledge is the same, this result verifies the benefit of leveraging
the similarity-based consistency optimization. Both NGS and DeepProbLog are trapped in local
minimum and fail to converge in the hard version tasks, this is probably caused by the unreliable
confidence output from the perception neural network when it is not pre-trained.

6.3 CIFAR-10 Decimal Equation Decipherment

6.3.1 Dataset and Knowledge base

This task is the most challenging one in our experiments, which extends the Digital Binary Additive
equations experiment in ABL [5] with decimal digits. The input contains images of an arithmetic
equation and the output is the label of its correctness. Instead of learning binary equations represented
by MNIST images, here we use CIFAR-10 [16] images to encode decimal equations. An example
of this dataset is shown in Figure 2. The task’s inputs are sequential images of randomly generated
decimal equations, which consist of twelve symbols (0,1,· · · ,9,+,=). Besides, the knowledge base
contains symbolic rules about how to carry out decimal addition operations. The correctness labels
(True or False) of training equations are provided in the form of logical facts.

6.3.2 Experimental Setup

We compare ABLSim with four baselines: 1) ABL: Abductive learning [5] that maximizes consistency
with minimal revisions. If multiple abduced labels have the minimal revisions, it would randomly
select one. 2) ABL-Conf: Abductive learning that measures consistency using only the confidence
predicted by neural net, i.e., θ = 0 in equation (12). 3) ABL-pre-train: ABL with model pre-
trained on a small set of labeled images. 4) ABL-Conf-pre-train: ABL-Conf with a pre-trained
network. ABLSim uses the perception model’s embedding layer to calculate the similarity. For the
non-pre-trained methods, including ABLSim, the perception model, a ResNet-50 [12], is initialized
by self-supervised learning [3] on training images. Note that this process is unsupervised and does
NOT use any image labels.

6.3.3 Results

Learning Curve. The learning curves of all models are shown in Figure 3(a). The proposed
ABLSim converges much faster and achieves higher accuracy than other methods. ABL-Conf and
ABL fail to converge and get low accuracy because their abduction processes are based on the pseudo-
labels or label confidence predicted by the perception model, which are unreliable when there lacks
supervised pre-train. Both ABL and ABL-pre-train are inferior to their ‘-Conf’ versions, indicating
that pseudo-label confidence is helpful. Starting from high initial accuracy, ABL-Conf-pre-train gets
a similar accuracy as ABLSim, but it converges slower than our presented ABLSim, which learns
without any supervised pre-training and has the fastest converge rate.

Rate of Successful Abduction. Figure 3(b) illustrates the curves of different methods’ abduction
success rate, i.e., the proportion of the correctly abduced labels. ABLSim converges faster and
achieves a nearly optimal result, where the abduced labels are exactly the ground-truth labels. In the
first few iterations, the abduction success rate is relatively low. However, the extracted embeddings of
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Figure 3: Learning curves (a & b) and the t-SNE visualization of the learned embeddings (c & d).

Table 2: The rate of successful abduction w.r.t. different beam width in the first iteration.

Beam Width 16 32 64 128 256 512 1024 2048

Successful Abductions 62% 63% 65% 71% 72% 73% 75% 75%

images are gradually improved during training, which provide a better similarity metric for abductive
reasoning. Therefore, the rate of successful abduction reaches 1.0 just in a few iterations.

Embedding Visualization. To verify whether the extracted embeddings of neural network are
improved during training, we plot t-SNE [26] visualizations on the second last layer of neural network
that we use for calculating the consistency score. As shown in Figure 3(c)-(d), in the beginning,
the embeddings of classes are not well separated. However, during abductive learning, the distance
between the different classes becomes larger after the neural net is updated with the abduced labels,
which will in turn help accelerate the abduction.

Influence of Beam Width. We study the influence of beam width in optimization, and the results
are presented in Table 2. The successful abduction increases as beam width becomes larger, while the
time cost grows linear at the same time. The improvement becomes marginal when the beam width is
larger than 1k. We use a beam width of 600 in our implementation to achieve the balance between
convergence rate and time complexity.

6.4 Theft Judicial Sentencing

Table 3: Micro-F1-score of the model, and
MAE of the predicted sentence. The label
rates are denoted as suffixes.

KB Method F1 MAE

N/A PL-10 0.814 0.862
N/A Tri-10 0.812 0.840
Full SS-ABL-10 0.862 0.824
Full ABLSim-10 0.861 0.825

Part SS-ABL-10 0.833 0.835
Part ABLSim-10 0.851 0.828

N/A PL-50 0.858 0.832
N/A Tri-50 0.861 0.810
Full SS-ABL-50 0.865 0.788
Full ABLSim-50 0.866 0.786

Part SS-ABL-50 0.862 0.803
Part ABLSim-50 0.866 0.783

This is a real-world task in [13], which aims to train a
model that outputs sentencing elements from criminal
judgment texts, and optimize the parameters in knowledge
base to predict the sentence of a defendant. We use the
same knowledge base and BERT model [7] as in [13],
where the knowledge base contains many law articles rep-
resented by logic rules. We additionally make the task
more challenging by removing some pre-defined rules to
weaken the background knowledge base [13].

We compare ABLSim with SS-ABL [13] and two semi-
supervised methods Pseudo-Label (PL) [18] and Tri-
training (Tri) [30]. It takes about 1 hour to train the model.
As shown in table 3, ABL-based models are superior to
the semi-supervised methods. When the number of la-
beled pre-train data is small (10%), the performance of
ABLSim with weaker KB is even comparable to the SS-
ABL with a full KB. When the number of labeled pre-train
data increased to 50%, ABLSim achieves the highest per-
formance with less pre-defined domain knowledge.
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7 Conclusion

In this paper, we propose a novel consistency measure for abduction-based neuro-symbolic learning,
and further present the Abductive Learning with Similarity (ABLSim) method. Compared to previous
approaches, it not only exploits the full-featured logical reasoning ability, but also utilizes the
information hidden in the feature space of the input data. The proposed consistency measure leverages
the similarity between samples, which previous approaches have never considered. Empirical
evaluation validates that ABLSim significantly outperforms the state-of-the-art neuro-symbolic
learning approaches in terms of speed and performance with less labeled data. The proposed
consistency measure is general, and any other abduction-based approach can use it. The limitation of
the method is that the rules of the domain knowledge base need to be constructed manually. In future
work, we will try to incorporate techniques like predicate invention into our approach to discover new
classes and new knowledge, so that we can automatically extend the knowledge base.
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